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Abstract

The present paper considers the fast solution of boundsegrisl equations on unstructured meshes by the Galerkensetand its
application to the special situation of the radiosity eguratlt is known that the system matrix of the scheme in a wenadsis which
provides vanishing moments with respect to traces of paijals in the space can be compressed{aV log N) relevant matrix
entries, where N denotes the number of degrees of freedomvevdn, the presence of the visibility function in the keroélthe
radiosity equation provides discontinuities for non-aangeometries, which cause trouble for most of the fast nasthidevertheless,
we have purchased a wavelet Galerkin method which is abletiupe a system matrix witt (N log® N) relevant matrix coefficients
for the radiosity equation on a reasonable geometry.
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1. The radiosity equation - Introduction Alternatively, we can write the radiosity equation in the

equivalent formulation
In the present paper we consider the radiosity equation o _ _
the closed surfacE of a 3-dimensional domaif2 € R? with %(x) = R(B)(x) = B(z)~

I' = J,Ty andI; € C'. The inner product in.?(T") on the cos y cos 7
rqa(x / B
r

7l — yll*

boundary shall be given by (y)Vis(z,y)ol'y, zeT,
(u,v) == / v(z)u(x)dr. 1) in which~ and~’ are the angles between the inner norimabknd
r zy or i, andy, resp., cp. figure 1. With it, we have a strictly

. >y 2 -
Furthermore, we will denote the Sobolev spacesrHby(T") as coercive operatoR : L*(I") — L*(I"), whose kernel function

well as the associated norm By ||s for further considerations.
(e, — y) (Ny, y — )

The radiosity equation represents a model for the brigstnes’r (%:¥) = mllz — yl|* Vis(.y)
of a surface when its reflectivity and emissivity is given.islt
formulated by fulfills the decay property
B(z) = E(x)+ (a+ B)!

050, k(z,y)| < ( s>0, (2

sllz — y|))+2atlel 150

(M, © — Y) (Mg, y — T) .
B(y)V or r
T‘i(%)/F ||z — yl|* W)Vis(z,y)o0y, wel, uniformly in the 3-dimensional multi-indicesy = (a1, a2, as)
andg = (81, B2, Bs) for the unoccluded case, i.¥is(z,y) =

with the radiosityB(z), the emitted radiatio (), the diffuse L Va,yer.

reflection coefficient4(x), the inner normal vectors,, 7, and

the visibility function . .
y Let be remarked that the numerical treatment of the ragiosit

. 1 if Ve (0,1): (z+tly—z)eQ equation is completely similar to the treatment of the hedia-
Vis(z,y) = { 0 else . tion equation,

qo(z) = e(x)oT*(z)+

TN, T — Y)(Ny, Yy — T .
iy y (1= e(a) [ Lt V=0 (e, yyar,,
r [z =yl
with the rate of outgoing radiant energy(z), the temperature
T'(z), the emissivity coefficiert, the Stefan-Boltzmann constant
o and the visibility functionVis(z, y).

Figure 1. Geometrical relation between two areas
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2. Galerkin scheme - discretization

Due to the following Galerkin discretization with piecewis
constant ansatz functions we assume that the bouddaynly
provided by its polygonial approximatiofin, i.e. by a set of
2-dimensional plane simplices R® such thatly = Ui\i T
andm; N7 (i # 7) is either empty or a lower dimensional face.
Furthermore, this triangulation should be quasi unifore, i

N
min p; ~ hy ~ N2
i=1

is valid with p; as the inscribed circle of the triangles and the
step widthhy := maxly diam(7;).

On this triangulation we define the spaces of piecewise con-

stant ansatzfunctions

~:=spad¢; :i=1,2,...,N},

For that, we require a uniform hierarchical subdivisionlof,
called cluster tree.

A clusterv is defined as the non-empty union=m; U---U
m; of a certain set of simplices;. For a set of clusters we define
the relation< by v’ < v <=+ Cvand Av" : v Cv" C v,
in which 2’ shall be a son cluster of andv shall be the father
cluster ofv’. If we order a set of clusters hierarchical concern-
ing this father-son relation, the resulting structure ieckcluster
treeT, provided that the following properties are valid.

e The cluster which is equivalent 0y is the only cluster
which has no father cluster and is denotedcas of 7.

e The pairwise intersectior’ Nv"”’ of son clusters of a cluster
v is either empty or a lower dimensional face.

e The union of all son clusters;°™ of a clusterv holds
U, v =v
[ -

in which the support of every single piecewise constanttansa A clusterv of T should belong to théevel j, if there existj

function is restricted to a simplex;, i.e.

|

With the notationsf(z) =

A, zem,
Vil

0, else

E(z), u(z) =

B(z) as well as

clusters{v; }7—, with

v<vj1<..<v =1,

but notj + 1 clusters with the same property. Consequently, the
rootI'y of T"is on level0 and there exists a maximum levé)
which is also denoted afepthof the cluster tree. Furthermore,

R(x) = A(x) we can easily develop the Galerkin scheme for theg|ysters which have no son clusters are caiéaves

resulting operator equatiodu = f onT'x, which reads as:
seekuy € Vv such thal Aun,vn) = (f,on) Von € V.

Making the ansatzy = >~
system of equations

1 ui$i, we have to solve the linear

APu® = £

with the solution vectora® = [u;]iL,, the right hand side
vector f* = [(f,¢:)]X; and the system matribA® =
[(Adir, di)lvir—1-

Moreover, we call the cluster tree a balanced quad tree, if it
additionally fulfills the following properties.

e A cluster has eitheb or 4 sons.

e The diameter diarfv) of a clusterv on the level;j scales
approximately like2™7.

e The number#v of simplices of a cluster on level j,

which we denote asardinality of the cluster, behaves like
22(J—7)

The last one represents the core of our problem, since iThe balanced quad tree with the mentioned properties shuzuld
is usually densely populated and would produce unacceptablgiven for our further consideration. There are several ougho
O(N?) computing and memory costs. For the unoccluded casé@btain such a cluster tree or asymptotically similar stegu For
there exist several fast methods to avoid these costs, sich gore details we refer to [7] for example.

methods based on hierarchical matrices or multipole, e.fL]i
However, in the occluded case, i%x, y1,y2 : Vis(z,y1) = 0,
Vis(z,y2) = 1, the jump in the visibility function provides dis-
continuities in the kernel or in the derivatives of the kérmdich
prevent a reduction to linear-logarithmic memory and cotimgu

With the hierarchical struture of the quad-tree at hand wee ar
in the position to construct the wavelet basis. It shouldizea
hierarchical structure, which means that the support of\velea
w“k on levelj should be restricted to a single clusgeon the

time costs by standard approaches of these fast methodsilWe wlevel ;j to ensure the locality of the wavelets. Moreover, for ma-
show that an approach by a multiscale basis, namely wayelet§ix compression the wavelets should providmishing moments

instead of the traditional singlescale baéis } will solve parts
of this problem. While the idea to use wavelets for the ratios
equation is not essentially new, cf. [5], this paper presamta

short overview the necessary compression and cut-off param

of orderd that is

xw;{k(x)dr =0, |o|<d. (4)

ters for the occluded case as well as it gives some ideas dor th

computation of the system matrix. For a deeper considerat®
would refer to the upcoming papers [10] and [11].

3. The wavelet bases

Since the representation of our geometry automaticallitdim
the finest level of any finite consideration to a single simplee
cannot use refinement strategies.
coarsing procedure to the wavelet construction followigiglj4]
to obtain the multiscale hierarchy

VocVviC---CVy;=Vn. (3

Instead, we apply theofdea

Let be remarked that® is considered as a spatial polynomial in
R? and only their traces oR enter in definition (4).

We consider a clusten on the levelj. The scaling func-
tions @ = {¢}, } and waveletsl’; = {7}, } supported in this
cluster’shall be deflned asa Ilnear combinations from thingca

functions®, , = {<I>J+1 s oo ].H }ofus son clusterg:;°™
on the finer levef + 1

(@), @] = Q"4 Q% ], (5)

7 )
in which the matrlx[Q @,Q ¢] is supposed to be orthogonal
and the matrice®’;, lIl“ andtI»;f+1 are an ordered representa-
tion of the function set§>§.‘, UL and®¥, ;. The beginning of the

1
@51,



recursion on the finest level are initiated by the piecewise con-

stant ansatz functions supported in a clugte®’;  ; := {¢; : 26

supp(¢;) C p}. That way, we obtain the wanted multiscale hi- P
erarchy (3) via L I e .
V; = span{®/ : puis a cluster from the levef}. (6)

Besides, the spaces
W; := span{¥¥ : p is a cluster from the levei}

satisfy

€
Vi =V, & W,

due to the orthogonality of the matricgg’, 5, Q' ¢ ]-

In order to realize (4) we determine the moment matrix
Figure 3: Wavelet with three vanishing moments
wp = | [ ar] ™)

r |a|<d

The wavelet basis can be recursively computed wi¢h{tV)
operations. One wavelet with three vanishing moments i&zsho
in figure 2 and 3 from two different angles.

of the clusten. on the levelj, employ the singular value decom-
position

B T _ w p 17T
Mi =USV =UI5,0] [ 5% JE‘I’} ®) For the application of the wavelets to the Galerkin scheme it

will be necessary to switch between the wavelet and theesingl

i 1ci i H
and obtain the coefficient matrice¥/ ;, andQ’ ,, cf. [14]. scale representations

This algorithm provides recursively defined wavelet func- _
tions. For a complete basis we have to add the scaling furstio Z<f’ by ) s = Z<f’ i) i

on the coarsest level to the wavelet functions. Hence, tvelen 7% ¢

basis is defined by for the determination of the right hand side vector as welbfas
Uy e OF U {0 - T the solution vector. Similar to the wavelet constructio gan
N = ®o U{YF v eT} determine the coefficients recursively via the fast wavebats-

The following theorem provides the most important progartf ~ OrM
the wavelet basis, cp. [8, 14]. [(f, <I’]’f>, (, \IJ}’)] —(, ;+1> [Q?,@Q?,ﬂ 7
Theorem 3.1 The wavelet ¥ v } define an orthonormal basis j =3, 3-1,....0, with linear efforts. SING&? o, Q] is or-

\tﬁ'thl res‘,’?."t to the |_nnetr [I)r%uct)"l Tthhe %mountt of V;’?%’ e_Iets on thogonal, we can pass backwards through this algorithmito ga
€ levey |s_appIQX|maey2 while the diameter of their SUp- % arse wavelet transform. For further details we réder
port scales like2~7. The wavelets provide vanishing moments |n[12 14, 2]

terms of (4) of orderd.
4. Wavelet compression

B S Lo b The idea of the wavelet method is the replacing of the tra-
LR | g el i, o ditional singlescale basigp; } by the wavelet basi® v within

LA Eog g the Galerkin scheme. That means, that we make the ansatz
un =Y, Ujks,k and set up the Galerkin scheme

04, .

nz.).

A%u" =f7. (9)

within the wavelet basis Wit = [(Av,7 k7, V.10 (k). (57 k7

u’ = [k andf¥ = [(f,1;k)];.e- In general, for co-

ercive operators whose kernel functions provides the dpoay

perty (2) the matrixA¥ is a quasi sparse matrix. That means, it

can be compressed to a sparse matrix without compromiseng th
e B, . o 2 stability and accuracy of the underlying Galerkin schemewH

f o, ey e e gl et ever, the standard compression requires a certain smastiofie

s E T T sl os the kernel function, which is partly prevented by the viliipi

function in the case of the radiosity equation.

Figure 2: Wavelet with three vanishing moments
Let us start with the unoccluded case, in which the visibil-
ity function is not apparent due f@is(z,y) = 1. In this case
we can use the standard compression. Following [6, 8, 13] we
receive the following important proposition for the unagtd
case.



Proposition 4.1 Let the cut-off parameteB; ; be defined by

2J(d)—=(i+5")(d' +d)
b ao

B; j» == amax {2_ min{j’j,}, 2 2(d)

I
withae > 1,1 < d < d. Furthermore, le©; , = p be the sup- g_
port of the wavelet functiogt”’, . Then, the system matrix” of

the radiosity equation in the unoccluded case can be corspdes
in accordance with

w
Ac (k)57 k) /

L 0, if diSt(@]’,k7@j/’k/) > Bj
T\ (AYjr,156) otherwise
to only O(N log N) nonzero matrix coefficients without com-

promising the stability and accuracy of the underlying Gkile
scheme.

In the occluded case the visibility function takes effecd an /
we have to distinct between three different caseslatdv be

3’1 (11)  Figure 4: Partly visible case A

two clusters. We say that these clusters are
e completely visibleor 4 < v, if Vis(z,y) =1 Vz €
u,y € vis valid,

e partly visibleor p < v, if the pair holds3x € p,y1,y2 €
v:Vis(xz,y1) =0,Vis(z,y1) = Lisvalid, and

e non-visibleor p # v, if Vis(z,y) =0 Vz € p,y € v
is fulfilled.

If 1 andv are are completely visible, the visibility function Figure 5: Partly visible case B
takes no effect, again. So, we can apply the standard wavelet
compression (11) to these cluster pairs. For a non-visiblster

pair (1, ) we can formulate the simple compression Case A:Letu andv be two clusters on different planes. They

should be partly visible due to a barriBrbetween the two planes.

7 _
Ac Gk =0 In this context we demand, that the distance between theectus

due to the resulting zero kernel. and the barriet/,, andd,, holdsd,., d., > 0, cp. figure 4, and the
angles fulfilly, 7" < I.
The difficulties appear in the consideration of partly Visib Case B:Let ;1 andv be two clusters on different planes in

clusters. For that, it is necessary to make certain assangéind ~ Such a kind that the hyperplane spanned by one cluster and the
specifications to the geometry. A partly visible cluster gai /) other.clusterllntersect in a one d|mgn5|onal manifold, quré
appears, if we have a jump in the visibility functidfis(z, y) on 5. This case includes the degenerations of case A.

1% v. The jumps can be identified by the shadowlines depending Case C:Let 1 be a cluster in a plane andbe a cluster on

on the view pointzo. This is the part of x, which contains the @ curved plane such that surface gyt C T, which is approx-
jumps inVis(zo,y). Due to the idea that this shadowline is a imated byv, holdsI', € C" and the intersection of and a
manifold of lower dimension, which means, that it can be one-tangential plane om is not empty. The partial visibility appears

dimensional at most, we formulate the following assumption ~ due to the curve of, cp. figure 6.
Case D:Let i be a cluster in a plane andbe a cluster on

an edge such that partsefire completely visible by and parts
Assumption 4.2 (Size of shadowlines)et 'y be the given are non-visible by, cp. figure 7.
polygonial approximation of the surface. Then, it holds

Ve € Ty #{m : y1,y2 € m with Vis(z,y1) = 1 and
Vis(z,y2) = 0} ~ O(/TV).

Assumption 4.2 is kept in a very general way. So, we want
to specify the cases of partial visibility in the following\ll the
cases are connected to the asymptotical considerationg, tie
special properties of the macro structure of the geometnjsiia
for a sufficient largeV.

Figure 6: Partly visible case C



to only O(N log® N) nonzero matrix coefficients without com-
promising the stability and accuracy of the underlying Ghiie
scheme.

g The final compression unites the three different comprassio
techniques for the system matrix of the radiosity equatibar
its illustration let us consider the system matrix of theioaily
equation on thd.-block, cp. figure 8. In the following illustra-
tions of the system matrix dark points show non-zero entries

. . while light points describe zero entries.
Figure 7: Partly visible case D

To find a suitable compression for the presented cases of par
tial visibility we use the next proposition, following [13lvhich
is based on the multiscale structure of the wavelet basis.

Proposition 4.3 Let AY be the exact and\” be the disturbed
system matrix. Furthermore, Ie&ﬁlj’,,ﬂj, be the submatrix of all

scalar products{A«¥ ., 1} 1) with fixed levelg andj’. Sim-
ilarly, we define the submatri)&}lj’_ L of the disturbed system
matrix. If the estimate

it

2j,)J_1

v A —2Jqo—2(J—
1AL 1, — ALy, ll2 S 272927

is valid for wavelets based on piecewise constant ansaiz fun
tions, the wavelet Galerkin scheme is stable and the errtir es
mate holds

le = unlls S RO flulle

with -1 < s < 2 and0 < ¢ < 1, in whichu € H" denotes
the exact solution of the boundary integral equatidm = f and  Figyre 8: L-Block with 1792 surface triangles
uy is the solution derived from the disturbed system mairik

This allows us to formulate the new cut-off parameter In figure 9 we have the quasi sparse system matrix in the
o, o, wavelet basis. The matrix has3ax 3 block structure, which
BRad — R i S e (12)  corresponds to the lower left part, the upper right and theeop
: . left part of theL-block. The only compression which has been
with the compression performed was made for entries concerning wavelets whagse su
AEI;,k),(j’,k’) =0 if dist(ej,k, ej/,k/) > Bf;-lld ports are non-VISIbIe'

for the casesd, B andC of partial visibility. The compression

by the cut-off parameteBﬁ]‘?,d does not cover the cade. How-
ever, our geometry is a union of a fixed number of surface parts
I'; € C'. This allows us to adapt the part of the cluster tree for
coarser levels in such a way that from a certain level the £dge
in the caseD merge with the boundaries of the clusters. With it,
the caseD of partial visibility takes only effect up to fixed level
jo. This has influence on constants in certain estimates but no
influence on the general assymptical behaviour.

With this considerations we can finally formulate the follow
ing theorem for the occluded case of the radiosity equation.

Theorem 4.4 Let the cut-off parameteB; ;; be from(10) and
BF? from (12). Furthermore, the assumption 4.2 shall be valid
and the cases of partial visibility shall be restricted t@ thhen-
tioned ones. Then, the system matiX of the radiosity equa-
tion in the occluded case can be compressed in accordanbe wit 200 400 600  BOO 1000 1200 1400 1600

w
Ac (k). (50 k")

0, if dist(©,,k, 07 1) > Bj Figure 9: Quasi sparse system matrix of the radiosity equoiati
) _ the wavelet basis on the-block for N = 1792
ando; x < Oy,

o if dist (0., ©,/ 1) > BRA
- and©; i, < O; i,
0 |f @j,k (7L> Gj’,k’a

(Athjr k1, 95%)  otherwise



Figure 10 shows the system matrix, in which the compressionvith —1 < s < 2 and0 <t < 1.
for non-visible cluster pairs are performed as well as thadsdrd
compression for completely visible cluster pairs. We can et
the matrix blocks concerning the interactions between dhet For further details as well as for the proofs of the presented
left part and the upper right part of tHeblock, which represent ~ results we would refer to [10].
the cases of partial visibility, are hardly compressed.

5. Determination of the system matrix and numerical re-
sults

In the previous section we saw the possibility to obtain a
sparse system matrix. In this section we will shortly intédaow
we achieve the sparse system matrix.

To establish the system matrix we use the a priori infornmatio
which are provided by the cut-off parameters. We only comput
such entries which are indicated by the cut-off parametdaeto
relevant.

For the computation of a single entry we use the fol-
lowing two ideas. LetAy, = [(A¢Y 0 kw,
Al = (A k@ e, ALY = (A5 e, ) ki
and A7 = [(Agl 4, ¥4 )]k be the submatrices of scalar
products between wavelets’, or scaling functlonsap”k from

clustersu andv. We can apply the idea of the recursive defini-
tion of the wavelets (5) to the determination of submatrimes

200 400 800 800 1000 1200 1400 1800

Figure 10: Partly compressed system matrix of the radiosity
equation in the wavelet basis on theblock for N = 1792 { AP, ADY }

5

sV
U, P W
Aufu Au,u

Finally, in figure 11 we see the result of the complete com- Aeon json - A%uon eon
pression and the necessity of the compression for the case of QgT S N v
partial visibility. QLT : [Qz, Qul.
v o .
AMSOTL VSO’!L ot A.HSOTL VSO”‘L
4 71 4 Y4

This recursion allows us to compute from the submatrices con
cerning the scaling functions of the son clusterg_m vson the
som e

wanted entries of the system matik; , as well as the sub-
matrices concerning the scaling functions of the preserdtet
for further recursions. This approach is very useful, if énéries
of the system matrix concerning the son clusters are reietam

In other cases we apply the idea of hierarchical matrices, in
particular the idea of thé{*-matrices [3, 4, 9], to the wavelet
method. For two clusters andv which are completely visible
and fulfill the admissibility condition

max{diam(v),diam(p)} < ndist(v, u)

with the admissibility constantn an entry Af’k, =

20 400 600 8D 1000 1200 1400 1600 (AYY s W, ) can be approximated by interpolation by
(AR e = > Y k(ah,uy)
Figure 11: Compressed system matrix of the radiosity egnati sEKtEK S;’
in the wavelet basis on thie-block for N = 1792 ot

| ([ wt@ewen) ([ swweer,)
Remark 4.5 Let us remark that it would be possible to intensify \/T'x 'y
the cut-off parameteB % to

VL:I,k s VL’\I’ k’,s
BERayd _ 459 *l*%*%, with the Lagrange polynomialg’ and the interpolation points

z¥. This approximation can be applied to whole submatrices,
which would result in the reduction of the sparse matrix towhich reads
O(N log? N) entries. However, the error estimate in the propo-
sition 4.3 would increase to A, = VESVET,

e = . < log()A ol



Table 1: Overall computing timd, .- as well asL..-error and storage requirements for the system matiix

N computing time lu —un||zy lu — un|Lo Kbytes/N
112 21 0.82e-02 1.72e-02 0.66
448 15.7 0.42e-02 1.04e-02 2.29
1792 119.5 0.19e-02 0.71e-02 4.42
7168 838.8 0.83e-03 0.49e-02 6.50
28672 7058 0.38e-03 0.35e-02 8.54
as well as [3] Bérm, S. and Hackbusch, WH?2-approximation of integral

L wap, vy v T
A,u,,uzvq)S Vq) y

with the corresponding matrix entries

Ve = / o () L5 (2)OT .
I'n

H ks

The combination of both ideas provides the next theorem.

Theorem 5.1 The system matri)A‘I’ of the radiosity equation
can be established Withi@(N% #K) operations, in which# K

describes the amount of interpolation points of the Lageang

[4]

5]

[6]

interpolation and depends on the necessaray accuracy. Fur-

thermore, the determination of the system matrix only megui

temporary memory in the size 6 N log® N).

[7]

For the details of the computation method as well as for the

proof of the theorem we refer to [11].

The theorem 5.1 shows that we require aIn’(G@N%) op-

(8]

erations to set up the system matrix. However, once we have

the sparse system matrix all matrix-vector multiplicaipwhich
are necessary for iterative solvers, have only linearityaic
costs in computing time. This provides a great advantagthtor
solution of the radiosity equation for different right hasides,

which can appear in form of different light sources for a fixed

geometry.

[9]

(10]

Finally, we want to present in table 1 some numerical results

for the L-block. Forrg(z) = 0.5 and f(z) = E(z) = 0.5
vz € I" we know the exact solution(z) = B(z) = 1. So, we
can consider the errors in thie;- as well as in theL..-norm.
The computing times in the table 1 shows the prediméa}f%)

behaviour. Besides, the quotient of used memory per dedree
freedom shows that we have achieved a sparse system matrix.

(11]

f12]
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