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Abstract

The present paper considers the fast solution of boundary integral equations on unstructured meshes by the Galerkin scheme and its
application to the special situation of the radiosity equation. It is known that the system matrix of the scheme in a wavelet basis which
provides vanishing moments with respect to traces of polynomials in the space can be compressed toO(N logN) relevant matrix
entries, where N denotes the number of degrees of freedom. However, the presence of the visibility function in the kernelof the
radiosity equation provides discontinuities for non-convex geometries, which cause trouble for most of the fast methods. Nevertheless,
we have purchased a wavelet Galerkin method which is able to produce a system matrix withO(N log3N) relevant matrix coefficients
for the radiosity equation on a reasonable geometry.
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1. The radiosity equation - Introduction

In the present paper we consider the radiosity equation on
the closed surfaceΓ of a 3-dimensional domainΩ ∈ R3 with
Γ =

S
l
Γl andΓl ∈ C1. The inner product inL2(Γ) on the

boundary shall be given by

〈u, v〉 :=

Z

Γ

v(x)u(x)dΓ. (1)

Furthermore, we will denote the Sobolev spaces byHs(Γ) as
well as the associated norm by‖ · ‖s for further considerations.

The radiosity equation represents a model for the brightness
of a surface when its reflectivity and emissivity is given. Itis
formulated by

B(x) = E(x)+

rd(x)

Z

Γ

〈ňx, x− y〉〈ňy, y − x〉
π‖x− y‖4

B(y)V is(x, y)∂Γy, x ∈ Γ,

with the radiosityB(x), the emitted radiationE(x), the diffuse
reflection coefficientrd(x), the inner normal vectoršnx, ňy and
the visibility function

V is(x, y) :=


1 if ∀t ∈ (0, 1) : (x+ t(y − x)) ∈ Ω
0 else .

Figure 1: Geometrical relation between two areas

Alternatively, we can write the radiosity equation in the
equivalent formulation

E(x) = R(B)(x) = B(x)−

rd(x)

Z

Γ

cos γ cos γ‘

π‖x− y‖4
B(y)V is(x, y)∂Γy, x ∈ Γ,

in whichγ andγ′ are the angles between the inner normalňx and−→xy or ňy and−→yx, resp., cp. figure 1. With it, we have a strictly
coercive operatorR : L2(Γ) → L2(Γ), whose kernel function

kr(x, y) =
〈ňx, x− y〉〈ňy, y − x〉

π‖x− y‖4
V is(x, y)

fulfills the decay property

|∂αx ∂βy k(x, y)| .
(α+ β)!

(s‖x− y‖)n+2q+|α|+|β|
, s > 0, (2)

uniformly in the3-dimensional multi-indicesα = (α1, α2, α3)
andβ = (β1, β2, β3) for the unoccluded case, i.e.V is(x, y) =
1, ∀x, y ∈ Γ.

Let be remarked that the numerical treatment of the radiosity
equation is completely similar to the treatment of the heat radia-
tion equation,

q0(x) = ǫ(x)σT 4(x)+

(1 − ǫ(x))

Z

Γ

〈ňx, x− y〉〈ňy, y − x〉
‖x− y‖4

q0(y)V is(x, y)dΓy,

with the rate of outgoing radiant energyq0(x), the temperature
T (x), the emissivity coefficientǫ, the Stefan-Boltzmann constant
σ and the visibility functionV is(x, y).
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2. Galerkin scheme - discretization

Due to the following Galerkin discretization with piecewise
constant ansatz functions we assume that the boundaryΓ is only
provided by its polygonial approximationΓN , i.e. by a set of
2-dimensional plane simplices inR3 such thatΓN =

SN

i=1 πi
andπi ∩ πj (i 6= j) is either empty or a lower dimensional face.
Furthermore, this triangulation should be quasi uniform, i.e.

N

min
i=1

ρi ∼ hN ∼ N
− 1

2

is valid withρi as the inscribed circle of the trianglesπi and the
step widthhN := maxNi=1 diam(πi).

On this triangulation we define the spaces of piecewise con-
stant ansatzfunctions

VN := span{φi : i = 1, 2, . . . , N},

in which the support of every single piecewise constant ansatz-
function is restricted to a simplexπi, i.e.

φi =

(
1√
|πi|

, x ∈ πi,

0, else.

With the notationsf(x) = E(x), u(x) = B(x) as well as
R(x) = A(x) we can easily develop the Galerkin scheme for the
resulting operator equationAu = f onΓN , which reads as:

seekuN ∈ VN such that〈AuN , vN 〉 = 〈f, vN 〉 ∀ vN ∈ VN .

Making the ansatzuN =
PN

i=1 uiφi, we have to solve the linear
system of equations

A
φ
u
φ = f

φ

with the solution vectoruφ = [ui]
N
i=1, the right hand side

vector f
φ = [〈f, φi〉]Ni=1 and the system matrixAφ =

[〈Aφi′ , φi〉]Ni,i′=1.

The last one represents the core of our problem, since it
is usually densely populated and would produce unacceptable
O(N2) computing and memory costs. For the unoccluded case
there exist several fast methods to avoid these costs, such as
methods based on hierarchical matrices or multipole, e.g. in [1].
However, in the occluded case, i.e.∃x, y1, y2 : V is(x, y1) = 0,
V is(x, y2) = 1, the jump in the visibility function provides dis-
continuities in the kernel or in the derivatives of the kernel, which
prevent a reduction to linear-logarithmic memory and computing
time costs by standard approaches of these fast methods. We will
show that an approach by a multiscale basis, namely wavelets,
instead of the traditional singlescale basis{φi} will solve parts
of this problem. While the idea to use wavelets for the radiosity
equation is not essentially new, cf. [5], this paper presents in a
short overview the necessary compression and cut-off parame-
ters for the occluded case as well as it gives some ideas for the
computation of the system matrix. For a deeper consideration we
would refer to the upcoming papers [10] and [11].

3. The wavelet bases

Since the representation of our geometry automatically limits
the finest level of any finite consideration to a single simplex, we
cannot use refinement strategies. Instead, we apply the ideaof
coarsing procedure to the wavelet construction following [8, 14]
to obtain the multiscale hierarchy

V0 ⊂ V1 ⊂ · · · ⊂ VJ = VN . (3)

For that, we require a uniform hierarchical subdivision ofΓN ,
called cluster tree.

A clusterν is defined as the non-empty unionν = π1 ∪ · · · ∪
πi of a certain set of simplicesπi. For a set of clusters we define
the relation≺ by ν′ ≺ ν ⇐⇒ ν′ ( ν and 6 ∃ν′′ : ν′ ( ν′′ ( ν,
in which ν′ shall be a son cluster ofν andν shall be the father
cluster ofν′. If we order a set of clusters hierarchical concern-
ing this father-son relation, the resulting structure is called cluster
treeT , provided that the following properties are valid.

• The cluster which is equivalent toΓN is the only cluster
which has no father cluster and is denoted asroot of T .

• The pairwise intersectionν′∩ν′′ of son clusters of a cluster
ν is either empty or a lower dimensional face.

• The union of all son clustersνsoni of a clusterν holdsS
i
νsoni = ν.

A cluster ν of T should belong to thelevel j, if there existj
clusters{νi}j−1

i=0 with

ν ≺ νj−1 ≺ ... ≺ ν0 = Γ,

but notj + 1 clusters with the same property. Consequently, the
root ΓN of T is on level0 and there exists a maximum levelJ ,
which is also denoted asdepthof the cluster tree. Furthermore,
clusters which have no son clusters are calledleaves.

Moreover, we call the cluster tree a balanced quad tree, if it
additionally fulfills the following properties.

• A cluster has either0 or 4 sons.

• The diameter diam(ν) of a clusterν on the levelj scales
approximately like2−j .

• The number#ν of simplices of a clusterν on level j,
which we denote ascardinality of the cluster, behaves like
22(J−j).

The balanced quad tree with the mentioned properties shouldbe
given for our further consideration. There are several methods to
obtain such a cluster tree or asymptotically similar strutures. For
more details we refer to [7] for example.

With the hierarchical struture of the quad-tree at hand we are
in the position to construct the wavelet basis. It should realize a
hierarchical structure, which means that the support of a wavelet
ψ
µ
j,k on levelj should be restricted to a single clusterµ on the

level j to ensure the locality of the wavelets. Moreover, for ma-
trix compression the wavelets should providevanishing moments
of order ed, that is
Z

Γ

x
α
ψ
µ
j,k(x)dΓ = 0, |α| < ed. (4)

Let be remarked thatxα is considered as a spatial polynomial in
R3 and only their traces onΓ enter in definition (4).

We consider a clusterµ on the levelj. The scaling func-
tionsΦµj = {ϕµj,k} and waveletsΨµ

j = {ψµj,k} supported in this
cluster shall be defined as a linear combinations from the scaling

functionsΦµj+1 = {Φµ
son
1
j+1 , ...,Φ

µson
4
j+1 } of µ’s son clustersµsoni

on the finer levelj + 1
ˆ
Φ
µ
j ,Ψ

µ
j

˜
= Φ

µ
j+1

ˆ
Q
µ
j,Φ, Q

µ
j,Ψ

˜
, (5)

in which the matrix[Qµj,Φ, Q
µ
j,Ψ] is supposed to be orthogonal

and the matricesΦµ
j , Ψ

µ
j andΦ

µ
j+1 are an ordered representa-

tion of the function setsΦµj , Ψµ
j andΦµj+1. The beginning of the



recursion on the finest levelJ are initiated by the piecewise con-
stant ansatz functions supported in a clusterµ, ΦµJ+1 := {φi :
supp(φi) ⊂ µ}. That way, we obtain the wanted multiscale hi-
erarchy (3) via

Vj := span{Φµj : µ is a cluster from the levelj}. (6)

Besides, the spaces

Wj := span{Ψµ
j : µ is a cluster from the levelj}

satisfy

Vj+1 = Vj
⊥
⊕Wj

due to the orthogonality of the matrices[Qµj,Φ, Q
µ
j,Ψ].

In order to realize (4) we determine the moment matrix

M
µ
j :=

»Z

Γ

x
αΦµj+1(x)dΓ

–

|α|<ed

(7)

of the clusterµ on the levelj, employ the singular value decom-
position

M
µ
j = UΣV ⊤ = U [S, 0]

ˆ
Q
µ
j,Φ, Q

µ
j,Ψ

˜⊤
(8)

and obtain the coefficient matricesQµj,Φ andQµj,Ψ, cf. [14].

This algorithm provides recursively defined wavelet func-
tions. For a complete basis we have to add the scaling functions
on the coarsest level to the wavelet functions. Hence, the wavelet
basis is defined by

ΨN := ΦΓ
0 ∪ {Ψν

j : ν ∈ T}.

The following theorem provides the most important properties of
the wavelet basis, cp. [8, 14].

Theorem 3.1 The wavelets{ΨN} define an orthonormal basis
with respect to the inner product(1). The amount of wavelets on
the levelj is approximately2jn while the diameter of their sup-
port scales like2−j . The wavelets provide vanishing moments in
terms of(4) of order ed.

Figure 2: Wavelet with three vanishing moments

Figure 3: Wavelet with three vanishing moments

The wavelet basis can be recursively computed withinO(N)
operations. One wavelet with three vanishing moments is shown
in figure 2 and 3 from two different angles.

For the application of the wavelets to the Galerkin scheme it
will be necessary to switch between the wavelet and the single-
scale representations
X

j,k

〈f, ψj,k〉ψj,k =
X

i

〈f, φi〉φi

for the determination of the right hand side vector as well asof
the solution vector. Similar to the wavelet construction, we can
determine the coefficients recursively via the fast wavelettrans-
form
ˆ
〈f,Φν

j 〉, 〈f,Ψν
j 〉

˜
= 〈f,Φν

j+1〉
ˆ
Q
ν
j,Φ, Q

ν
j,Ψ

˜
,

j = J, J-1,. . . ,0, with linear efforts. Since[Qνj,Φ, Q
ν
j,Ψ] is or-

thogonal, we can pass backwards through this algorithm to gain
the inverse wavelet transform. For further details we referto
[12, 14, 2].

4. Wavelet compression

The idea of the wavelet method is the replacing of the tra-
ditional singlescale basis{φi} by the wavelet basisΨN within
the Galerkin scheme. That means, that we make the ansatz
uN =

P
j,k uj,kψj,k and set up the Galerkin scheme

A
Ψ
u

Ψ = f
Ψ
. (9)

within the wavelet basis withAΨ = [〈Aψj′,k′ , ψj,k〉](j,k),(j′,k′),
u

Ψ = [uj,k](j,k) andf
Ψ = [〈f, ψj,k〉](j,k). In general, for co-

ercive operators whose kernel functions provides the decaypor-
perty (2) the matrixAψ is a quasi sparse matrix. That means, it
can be compressed to a sparse matrix without compromising the
stability and accuracy of the underlying Galerkin scheme. How-
ever, the standard compression requires a certain smoothness of
the kernel function, which is partly prevented by the visibility
function in the case of the radiosity equation.

Let us start with the unoccluded case, in which the visibil-
ity function is not apparent due toV is(x, y) = 1. In this case
we can use the standard compression. Following [6, 8, 13] we
receive the following important proposition for the unoccluded
case.



Proposition 4.1 Let the cut-off parameterBj,j′ be defined by

Bj,j′ := amax


2−min{j,j′}

, 2
2J(d′)−(j+j′)(d′+ ed)

2( ed)

ff
. (10)

with a > 1, 1 < d′ < ed. Furthermore, letΘj,k = µ be the sup-
port of the wavelet functionψµj,k. Then, the system matrixAΨ of
the radiosity equation in the unoccluded case can be compressed
in accordance with

A
Ψ
c (j,k),(j′,k′)

:=


0, if dist(Θj,k,Θj′,k′) > Bj,j′ ,
〈Aψj′,k′ , ψj,k〉 otherwise, (11)

to only O(N logN) nonzero matrix coefficients without com-
promising the stability and accuracy of the underlying Galerkin
scheme.

In the occluded case the visibility function takes effect and
we have to distinct between three different cases. Letµ andν be
two clusters. We say that these clusters are

• completely visibleor µ ⇔ ν, if V is(x, y) = 1 ∀x ∈
µ, y ∈ ν is valid,

• partly visibleor µ↔ ν, if the pair holds∃x ∈ µ, y1, y2 ∈
ν : V is(x, y1) = 0, V is(x, y1) = 1 is valid, and

• non-visibleor µ 6↔ ν, if V is(x, y) = 0 ∀x ∈ µ, y ∈ ν
is fulfilled.

If µ andν are are completely visible, the visibility function
takes no effect, again. So, we can apply the standard wavelet
compression (11) to these cluster pairs. For a non-visible cluster
pair (µ, ν) we can formulate the simple compression

A
Ψ
c (j,k),(j′,k′) = 0

due to the resulting zero kernel.

The difficulties appear in the consideration of partly visible
clusters. For that, it is necessary to make certain assumptions and
specifications to the geometry. A partly visible cluster pair (µ, ν)
appears, if we have a jump in the visibility functionV is(x, y) on
µ×ν. The jumps can be identified by the shadowlines depending
on the view pointx0. This is the part ofΓN , which contains the
jumps inV is(x0, y). Due to the idea that this shadowline is a
manifold of lower dimension, which means, that it can be one-
dimensional at most, we formulate the following assumption.

Assumption 4.2 (Size of shadowlines)Let ΓN be the given
polygonial approximation of the surface. Then, it holds

∀x ∈ ΓN : #{πi : ∃y1, y2 ∈ πi with V is(x, y1) = 1 and

V is(x, y2) = 0} ∼ O(
p

(N)).

Assumption 4.2 is kept in a very general way. So, we want
to specify the cases of partial visibility in the following.All the
cases are connected to the asymptotical considerations, since the
special properties of the macro structure of the geometry vanish
for a sufficient largeN .

Figure 4: Partly visible case A

Figure 5: Partly visible case B

Case A:Letµ andν be two clusters on different planes. They
should be partly visible due to a barrierB between the two planes.
In this context we demand, that the distance between the clusters
and the barrierdµ anddν holdsdµ, dν > 0, cp. figure 4, and the
angles fulfillγ, γ′ < Π

2
.

Case B:Let µ andν be two clusters on different planes in
such a kind that the hyperplane spanned by one cluster and the
other cluster intersect in a one dimensional manifold, cp. figure
5. This case includes the degenerations of case A.

Case C:Let µ be a cluster in a plane andν be a cluster on
a curved plane such that surface partΓν ⊂ Γ, which is approx-
imated byν, holdsΓν ∈ C1 and the intersection ofµ and a
tangential plane onν is not empty. The partial visibility appears
due to the curve ofν, cp. figure 6.

Case D:Let µ be a cluster in a plane andν be a cluster on
an edge such that parts ofν are completely visible byµ and parts
are non-visible byµ, cp. figure 7.

Figure 6: Partly visible case C



Figure 7: Partly visible case D

To find a suitable compression for the presented cases of par-
tial visibility we use the next proposition, following [13], which
is based on the multiscale structure of the wavelet basis.

Proposition 4.3 Let AΨ be the exact andeAΨ be the disturbed
system matrix. Furthermore, letAΨ

Ij ,Ij′
be the submatrix of all

scalar products〈Aψµj,k, ψνj′,k′〉 with fixed levelsj and j′. Sim-

ilarly, we define the submatrixeAΨ
Ij ,Ij′

of the disturbed system
matrix. If the estimate

‖AΨ
Ij ,Ij′

− eAΨ
Ij ,Ij′

‖2 . 2−2Jq2−2(J−
j+j′

2
)
J
−1

is valid for wavelets based on piecewise constant ansatz func-
tions, the wavelet Galerkin scheme is stable and the error esti-
mate holds

‖u− uN‖s . h
(t−s)‖u‖t

with −1 ≤ s < 1
2

and 0 ≤ t ≤ 1, in whichu ∈ H1 denotes
the exact solution of the boundary integral equationAu = f and
uN is the solution derived from the disturbed system matrixeAΨ.

This allows us to formulate the new cut-off parameter

B
Rad
j,j′ = a22

J− j
2
− j′

2
−

max(j,j′)
2 J

1
2 (12)

with the compression

A
Ψ
(j,k),(j′,k′) = 0 if dist(Θj,k,Θj′,k′) > BRadj,j′

for the casesA, B andC of partial visibility. The compression
by the cut-off parameterBRadj,j′ does not cover the caseD. How-
ever, our geometry is a union of a fixed number of surface parts
Γl ∈ C1. This allows us to adapt the part of the cluster tree for
coarser levels in such a way that from a certain level the edges
in the caseD merge with the boundaries of the clusters. With it,
the caseD of partial visibility takes only effect up to fixed level
j0. This has influence on constants in certain estimates but no
influence on the general assymptical behaviour.

With this considerations we can finally formulate the follow-
ing theorem for the occluded case of the radiosity equation.

Theorem 4.4 Let the cut-off parameterBj,j′ be from(10) and
BRadj,j′ from (12). Furthermore, the assumption 4.2 shall be valid
and the cases of partial visibility shall be restricted to the men-
tioned ones. Then, the system matrixA

Ψ of the radiosity equa-
tion in the occluded case can be compressed in accordance with

A
Ψ
c (j,k),(j′,k′)

:=

8
>>>>>>><
>>>>>>>:

0, if dist(Θj,k,Θj′,k′) > Bj,j′
andΘj,k ⇔ Θj′,k′ ,

0, if dist(Θj,k,Θj′,k′) > BRadj,j′

andΘj,k ↔ Θj′,k′ ,

0, if Θj,k 6↔ Θj′,k′ ,

〈Aψj′,k′ , ψj,k〉 otherwise,

to only O(N log3N) nonzero matrix coefficients without com-
promising the stability and accuracy of the underlying Galerkin
scheme.

The final compression unites the three different compression
techniques for the system matrix of the radiosity equation.For
its illustration let us consider the system matrix of the radiosity
equation on theL-block, cp. figure 8. In the following illustra-
tions of the system matrix dark points show non-zero entries,
while light points describe zero entries.

Figure 8: L-Block with 1792 surface triangles

In figure 9 we have the quasi sparse system matrix in the
wavelet basis. The matrix has a3 × 3 block structure, which
corresponds to the lower left part, the upper right and the upper
left part of theL-block. The only compression which has been
performed was made for entries concerning wavelets whose sup-
ports are non-visible.

Figure 9: Quasi sparse system matrix of the radiosity equation in
the wavelet basis on theL-block forN = 1792



Figure 10 shows the system matrix, in which the compression
for non-visible cluster pairs are performed as well as the standard
compression for completely visible cluster pairs. We can see, that
the matrix blocks concerning the interactions between the lower
left part and the upper right part of theL-block, which represent
the cases of partial visibility, are hardly compressed.

Figure 10: Partly compressed system matrix of the radiosity
equation in the wavelet basis on theL-block forN = 1792

Finally, in figure 11 we see the result of the complete com-
pression and the necessity of the compression for the case of
partial visibility.

Figure 11: Compressed system matrix of the radiosity equation
in the wavelet basis on theL-block forN = 1792

Remark 4.5 Let us remark that it would be possible to intensify
the cut-off parameterBRadj,j′ to

B
Rad
j,j′ = a22

J− j
2
− j′

2
−

max(j,j′)
2 ,

which would result in the reduction of the sparse matrix to
O(N log2N) entries. However, the error estimate in the propo-
sition 4.3 would increase to

‖u− uN‖s . log(
1

h
)h(t−s)‖ρ‖t

with−1 ≤ s < 1
2

and0 ≤ t ≤ 1.

For further details as well as for the proofs of the presented
results we would refer to [10].

5. Determination of the system matrix and numerical re-
sults

In the previous section we saw the possibility to obtain a
sparse system matrix. In this section we will shortly indicate how
we achieve the sparse system matrix.

To establish the system matrix we use the a priori information
which are provided by the cut-off parameters. We only compute
such entries which are indicated by the cut-off parameter tobe
relevant.

For the computation of a single entry we use the fol-
lowing two ideas. Let AΨ

µ,ν := [〈Aψνj′,k′ , ψµj,k〉]k,k′ ,
A

Φ
µ,ν := [〈Aϕνj′,k′ , ϕµj,k〉]k,k′ , A

Φ,Ψ
µ,ν := [〈Aψνj′,k′ , ϕµj,k〉]k,k′

andA
Ψ,Φ
µ,ν := [〈Aϕνj′,k′ , ψµj,k〉]k,k′ be the submatrices of scalar

products between waveletsψµj,k or scaling functionsϕµj,k from
clustersµ andν. We can apply the idea of the recursive defini-
tion of the wavelets (5) to the determination of submatricesby
»

A
Φ
µ,ν A

Φ,Ψ
µ,ν

A
Ψ,Φ
µ,ν A

Ψ
µ,ν

–

=

»
Q
µ
Φ
⊤

Q
µ
Ψ

⊤

–
2
664

A
Φ
µson
1 ,νson

1
· · · A

Φ
µson
1 ,νson

4

...
. . .

...
A

Φ
µson
4 ,νson

1
· · · A

Φ
µson
4 ,νson

4

3
775 [QνΦ, Q

ν
Ψ] .

This recursion allows us to compute from the submatrices con-
cerning the scaling functions of the son clustersA

Φ
µson

i
,νson

i′
the

wanted entries of the system matrixAΨ
µ,ν as well as the sub-

matrices concerning the scaling functions of the present cluster
for further recursions. This approach is very useful, if theentries
of the system matrix concerning the son clusters are relevant, too.

In other cases we apply the idea of hierarchical matrices, in
particular the idea of theH2-matrices [3, 4, 9], to the wavelet
method. For two clustersµ andν which are completely visible
and fulfill the admissibility condition

max{diam(ν),diam(µ)} < η dist(ν, µ)

with the admissibility constantη an entry A
Ψ
k,k′ =

〈Aψνj′,k′ , ψµj,k〉 can be approximated by interpolation by

〈Aψνk′ , ψµk 〉L2 ≈
X

s∈K

X

t∈K

k(xµs , y
ν
t )| {z }

S
µ,µ
s,t

„Z

ΓN

ψ
µ
k (x)Lµs (x)∂Γx

«

| {z }
VΨ

µ k,s

„Z

ΓN

ψ
ν
k′(y)Lνt (y)∂Γy

«

| {z }
VΨ

ν k′,s

with the Lagrange polynomialsLµs and the interpolation points
xµs . This approximation can be applied to whole submatrices,
which reads

A
Ψ
µ,ν ≈ V

µ
ΨS

µ,ν
V
ν
Ψ

⊤
,



Table 1: Overall computing time,L2- as well asL∞-error and storage requirements for the system matrixA
Ψ

N computing time ‖u− uN‖L2 ‖u− uN‖L∞
Kbytes/N

112 2.1 0.82e-02 1.72e-02 0.66
448 15.7 0.42e-02 1.04e-02 2.29

1792 119.5 0.19e-02 0.71e-02 4.42
7168 838.8 0.83e-03 0.49e-02 6.50

28672 7058 0.38e-03 0.35e-02 8.54

as well as

A
Φ
µ,ν ≈ V

µ
Φ S

µ,ν
V
ν
Φ

⊤
,

with the corresponding matrix entries

V
Φ
µ k,s

:=

Z

ΓN

ϕ
µ
k (x)L

µ
s (x)∂Γx.

The combination of both ideas provides the next theorem.

Theorem 5.1 The system matrixAΨ of the radiosity equation
can be established withinO(N

3
2 #K) operations, in which#K

describes the amount of interpolation points of the Lagrange
interpolation and depends on the necessaray accuracy. Fur-
thermore, the determination of the system matrix only requires
temporary memory in the size ofO(N log3N).

For the details of the computation method as well as for the
proof of the theorem we refer to [11].

The theorem 5.1 shows that we require almostO(N
3
2 ) op-

erations to set up the system matrix. However, once we have
the sparse system matrix all matrix-vector multiplications, which
are necessary for iterative solvers, have only linear-logarithmic
costs in computing time. This provides a great advantage forthe
solution of the radiosity equation for different right handsides,
which can appear in form of different light sources for a fixed
geometry.

Finally, we want to present in table 1 some numerical results
for the L-block. Forrd(x) = 0.5 andf(x) = E(x) = 0.5
∀x ∈ Γ we know the exact solutionu(x) = B(x) = 1. So, we
can consider the errors in theL2- as well as in theL∞-norm.
The computing times in the table 1 shows the predictedO(N

3
2 )

behaviour. Besides, the quotient of used memory per degree of
freedom shows that we have achieved a sparse system matrix.
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