Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

A nonlocal inhomogeneous dispersal process

by
Carmen Cortazar, Jerome Coville, Manuel Elgueta, and Salome Martinez

A NON LOCAL INHOMOGENEOUS DISPERSAL PROCESS

C. CORTÁZAR, J. COVILLE, M. ELGUETA, AND S. MARTÍNEZ

Abstract. This article in devoted to the the study of the nonlocal dispersal equation

$$
u_{t}(x, t)=\int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y-u(x, t) \text { in } \mathbb{R} \times[0, \infty)
$$

and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as $t \rightarrow \infty$, showing that they converge locally to zero.

1. Introduction

Let $K: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a nonnegative smooth function such that $\int_{\mathbb{R}^{N}} K(x, y) d x=1$ for all $y \in \mathbb{R}^{N}$. Equations of the form

$$
\begin{equation*}
u_{t}(x, t)=\int_{\mathbb{R}^{N}} K(x, y) u(y, t) d y-u(x, t) \tag{1.1}
\end{equation*}
$$

have been widely used to model diffusion processes in the following sense. As stated in $[11,12]$ if $u(y, t)$ is thought of as a density at location y at time t and $K(x, y)$ as the probability distribution of jumping from location y to location x, then the rate at which individuals from all other places are arriving to location x is

$$
\int_{\mathbb{R}^{N}} K(x, y) u(y, t) d y .
$$

On the other hand the rate at which individuals are leaving location x to travel to all other places is

$$
-\int_{\mathbb{R}^{N}} K(y, x) u(x, t) d y=-u(x, t)
$$

In the absence of external sources this implies that the density u must satisfy equation (1.1).

[^0]A more specific dispersal model that has been treated by several authors in different contexts, is the case when K is a convolution kernel. More precisely they consider

$$
K(x, y)=J(x-y)
$$

where $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative function such that $\int_{\mathbb{R}^{N}} J(y) d y=1$. See for example [$2,6,4,9,10$] for the study of travelling waves, [5] for asymptotic behavior and [7] and [8] for the case of bounded domains. If in the above model we assume that the support of J is the unit ball of \mathbb{R}^{N} centered at the origin, we have that individuals at location x are not allowed to jump, up to probability 0 , off the unit ball centered at x. We will say in such a case that we are dealing with a process of step size one.

The purpose of this paper is to study the one dimensional spacial case with kernels of the form

$$
K(x, y)=J\left(\frac{x-y}{g(y)}\right) \frac{1}{g(y)} .
$$

In this case the dispersal is inhomogeneous and the step size, $g(y)$, of the dispersal depends on the position y. Therefore in this paper we will deal with the following problem:

$$
\begin{equation*}
u_{t}(x, t)=\int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y-u(x, t) \text { in } \mathbb{R} \times[0, \infty) \tag{1.2}
\end{equation*}
$$

with a prescribed initial data

$$
u(x, 0)=u_{0}(x) \text { on } \mathbb{R}
$$

An important role in the study of the behavior of solutions of (1.2) is played by the solutions of the corresponding stationary problem, namely

$$
\begin{equation*}
p(x)=\int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d y \text { in } \mathbb{R} . \tag{1.3}
\end{equation*}
$$

The existence and properties of solutions of problems (1.2) and (1.3) depend strongly on the function g, specially in the case where g vanishes at some places. Actually the dependence is rather on how g vanishes than on the plain fact that it vanishes.

Throughout all of this paper we will make the following assumptions on J and g.
The function $J: \mathbb{R} \rightarrow \mathbb{R}$ will be a nonnegative, smooth, even function with $\int_{\mathbb{R}} J(r) d r=$ 1. We shall assume also that the support of J is $[-1,1]$ which means $J(x)>0$ if and only if $x \in(-1,1)$.

For the function g we assume:
(g1) $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $0 \leq g \leq b<\infty$ in \mathbb{R}.
(g2) The set $\{x \in \mathbb{R} / g(x)=0\}$ is discrete. If $g(\bar{x})=0$ then there exist $r>0, C>0$ and $0<\alpha<1$ such that $g(x) \geq C|x-\bar{x}|^{\alpha}$ for all $x \in[\bar{x}-r, \bar{x}+r]$.

Under these basic hypotheses we prove that (1.2) has a globally defined mass preserving solution for any given $u_{0} \in L^{1}$. Moreover even though g can vanish at some
points, these solutions have an infinite speed of propagation in the sense that if $u_{0} \geq 0$ and $u_{0} \neq 0$, then $u(x, 0)>0$ for all x and all $t>0$.

In order to study the asymptotic behavior of solutions of (1.2) we are lead to the analysis of equation (1.3). In this direction we seek non negative solutions that play the role of the constant solutions when $g \equiv C$. We will prove, under a slightly strengthened version of (g2), the existence of bounded positive solutions that are also bounded away from 0 . These stationary solutions permit us to define, following ideas of [15], a Liapunov's functional that allow us to prove the local convergence to zero of solutions of (1.2).

Solutions of (1.3) will be obtained as the limit as $K \rightarrow \infty$ of solutions of the following, so called, Neumann stationary problem:

$$
\begin{equation*}
\int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d y=\int_{-K}^{K} J\left(\frac{x-y}{g(x)}\right) \frac{p(x)}{g(x)} d y, \quad x \in[-K, K] . \tag{1.4}
\end{equation*}
$$

A key tool in the passage to the limit is the surprising fact that if p is a bounded solution of (1.3) then the quantity

$$
W(x)=\int_{0}^{b} \int_{x-w}^{x+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w
$$

is constant. This identity implies a Harnack's type inequality which provides some estimates needed in the proof.

For the sake of completeness we also study the corresponding evolution Neumann problem namely, for $x \in[-K, K]$ and $t \geq 0$ we consider

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y-\int_{-K}^{K} J\left(\frac{x-y}{g(x)}\right) \frac{u(x, t)}{g(x)} d y, \tag{1.5}\\
u(0, x)=u_{0}(x),
\end{array}\right.
$$

and its relation with (1.4).
We should mention that the results we are obtaining, such as the infinite speed of propagation and the existence of bounded steady states, are strongly dependent on the vanishing profile of g, which is expressed in hypothesis (g2). For example, if we change (g2) by $g(y) \leq C|y|^{\alpha}$ with $\alpha>1$, then the existence of a barrier prevents an infinite speed of propagation. We will pursue the study of (1.2) with g with this profile in a future work.

This paper is organized as follows. Section 2 is devoted to the Neumann type problems, that is (1.5) and (1.4). In section 3 we study problem (1.2). Problem (1.3) is studied in section 4 and in section 5 we deal with the asymptotic behavior of solutions of (1.2).

2. The Neumann Problem

We note that for $x \in[-K, K]$ and $t \geq 0$, problem (1.5) can be written as

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\left(T_{0} u\right)(x, t)-\alpha(x) u(x, t) \tag{2.6}\\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where

$$
T_{0} u(x)=\int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u(y)}{g(y)} d y
$$

and

$$
\alpha(x)= \begin{cases}\int_{-K}^{K} J\left(\frac{x-y}{g(x)}\right) \frac{1}{g(x)} d y & \text { if } g(x) \neq 0, \\ 1 & \text { if } g(x)=0 \text { and } x \neq-K, K, \\ \frac{1}{2} & \text { if } g(x)=0 \text { and } x=-K \text { or } x=K\end{cases}
$$

It is easy to check that there exists $c_{0}>0$ such that $\alpha(x)>c_{0}$ for all $x \in[-K, K]$ and, according to our assumptions, α is continuous in $[-K, K]$. Moreover by (g2)

$$
\begin{equation*}
\int_{-K}^{K} \frac{1}{g(y)} d y<\infty \tag{2.7}
\end{equation*}
$$

For existence and uniqueness of solutions of (2.6) we have the following theorem whose proof is standard and will be only sketched.

Theorem 2.1. Given $u_{0} \in L^{1}[-K, K]$ there exists a unique solution $u \in C^{1}\left(\mathbb{R}, L^{1}[-K, K]\right)$ of (2.6). The solution u is mass preserving, that is

$$
\int_{-K}^{K} u(x, t) d x=\int_{-K}^{K} u_{0}(x) d x
$$

for all $t>0$. Moreover, if $u_{0} \in C([-K, K])$ then $u \in C^{1}(\mathbb{R}, C([-K, K]))$.
Proof. The operator T_{0} maps $L^{1}[-K, K]$ into $L^{1}[-K, K]$ and is continuous. By standard semigroup theory, for any $u_{0} \in L^{1}[-K, K]$ the initial value problem has a unique solution $u \in C^{1}\left(\mathbb{R}, L^{1}[-K, K]\right)$ which satisfies the following integral equation

$$
\begin{equation*}
u(x, t)=u\left(x, t_{0}\right) e^{\alpha(x)\left(t_{0}-t\right)}+\int_{t_{0}}^{t} e^{\alpha(x)(s-t)} \int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, s)}{g(y)} d y d s \tag{2.8}
\end{equation*}
$$

a.e., for all $t_{0} \leq t$. The fact that the integral is preserved follows by integration in the equation and the last statement about continuity is a consequence of (2.8).

Our next result shows that, even if g vanishes at some points, hypothesis (g2) guarantees that the process has infinite speed of propagation.

Proposition 2.1. If $u_{0} \in L^{1}[-K, K]$ is nonnegative a.e. in $[-K, K]$, then $u(x, t) \geq 0$ a.e. in $[-K, K]$ for each $t \geq 0$. If in addition $u_{0} \not \equiv 0$, then $u(x, t)>0$ a.e. in $[-K, K]$ for all $t>0$.

Proof. To prove that $u(x, t)$ is nonnegative we observe that, according to (2.8), for a small interval $[0, t]$ the solution u can be obtained as the unique fixed point of a map which leaves invariant the positive cone in $L^{1}[-K, K]$.

Suppose now that $u_{0} \geq 0$ a.e. with $u_{0}>0$ in a set of positive measure. Observe that by (2.8) if $u(x, s)>0$ in $E_{0} \subset[-K, K]$ with $\left|E_{0}\right|>0$ then $u(x, t)>0$ in E_{0} for $t \geq s$.

Let $x_{1}<\ldots<x_{N}$ be the ordered set of zeroes of g in $[-K, K]$. We set $r>0,0<\alpha<1$, $C>0$ such that $g(x) \geq C|x-\bar{x}|^{\alpha}$ for all $x \in\left[x_{i}-r, x_{i}+r\right]$. Redefining $r>0$ if necessary in (g2), we assume that $C(r / 2)^{\alpha}>3 r$ and that $\left|\left\{x \in Z / u_{0}(x)>0\right\}\right|>0$, where $Z=[-K, K] \backslash \cup_{i=1}^{N}\left(x_{i}-r, x_{i}+r\right)$. We denote $\delta=\min \left\{g(y) / y \in[-K, K] \backslash \cup_{i=1}^{N}\left(x_{i}-\right.\right.$ $\left.\left.r / 2, x_{i}+r / 2\right)\right\}$.

Consider an interval $I=[\tilde{a}, \tilde{b}] \subset Z$ such that $0<\tilde{b}-\tilde{a} \leq \delta / 2, \mid I \cap\left\{x \in[-K, K] u_{0}(x)>\right.$ $0\} \mid>0$ and $I \subset\left[x_{i}+r, x_{i+1}-r\right]$ for some i. By the definition of δ we have that

$$
\int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u_{0}(y)}{g(y)} d y>0 \text { a.e. in }[\tilde{a}-\delta / 2, \tilde{b}+\delta / 2]
$$

thus from (2.8) we have that $u(t, x)>0$ a.e. in $[\tilde{a}-\delta / 2, \tilde{b}+\delta / 2]$ for all $t>0$. Repeating this argument, we obtain that $u(t, x)>0$ a.e. in $\left[x_{i}+r / 2, x_{i+1}-r / 2\right]$ for all $t>0$. Observe that if $y \in\left[x_{i}+r / 2, x_{i}+r\right]$ then $g(y) \geq C\left|y-x_{i}\right|^{\alpha} \geq 3 r$. Then if $x_{i}-r \leq x \leq x_{i+1}+r$ we have that

$$
\int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y>0 \text { a.e. for } t>0
$$

thus $u(t, x)>0$ a.e. in $\left[x_{i}-2 r, x_{i+1}+2 r\right]$ for all $t>0$. Iterating the above procedure we obtain the desired result.

Remark 2.1. If $u_{0} \in C([-K, K])$ is non negative and nontrivial, then $u(x, t)>0$ for all $t>0$ and $x \in[-K, K]$.

In order to study the asymptotic behavior as $t \rightarrow \infty$ of the positive solutions of (1.5), we will first establish the existence of a positive continuous steady state, that is a solution of (1.4). This existence result will be a consequence of Krein-Rutman's theorem, see [17], applied to the operator $T: C([-K, K]) \rightarrow C([-K, K])$ defined by

$$
T u(x)=\frac{1}{\alpha(x)} T_{0} u(x) .
$$

The next lemmas will be used in the proof. The first one states the strong positivity of T and as its proof, which is similar to the one of Proposition 2.1, will be omitted .

Lemma 2.1. Let $u \in C([-K, K])$ be such that $u \geq 0$ and $u \neq 0$. Then there exists $n \in \mathbb{N}$ such that $\left(T^{n} u\right)(x)>0$ in $[-K, K]$.

Lemma 2.2. The family

$$
\left\{T_{0} f(x) / f:[-K, K] \rightarrow \mathbb{R}, \quad\|f\|_{\infty} \leq 1\right\}
$$

is equicontinuous.

Proof. Let $\varepsilon>0$. By condition (g2) we get that there exists $\delta>0$ such that

$$
\int_{\substack{[-K, K] \\ g(y)<\delta}} \frac{1}{g(y)} d y<\frac{\varepsilon}{4\|J\|_{\infty}} .
$$

Since J is uniformly continuous in $[-1,1]$ there exists $\eta>0$ such that if $|w-\bar{w}|<\eta / \delta$ then $|J(w)-J(\bar{w})|<\varepsilon \delta / 2(b-a)$. Then, if $|x-z|<\eta$ we have that

$$
\begin{aligned}
\left|T_{0} f(x)-T_{0} f(z)\right| \leq & 2 \int_{\substack{[-K, K \\
g(y)<\delta}} \frac{\|J\|_{\infty}}{g(y)} d y \\
& +\frac{1}{\delta} \int_{\substack{[-K, K] \\
g(y) \geq \delta}}\left|J\left(\frac{x-y}{g(y)}\right)-J\left(\frac{z-y}{g(y)}\right)\right| d y \\
\leq & \varepsilon
\end{aligned}
$$

hence, $T_{0}(B(0,1))$ is equicontinuous.
As a consequence of this lemma we have:
Lemma 2.3. $T: C([-K, K]) \rightarrow C([-K, K])$ is a compact operator.
Now we are ready to give our existence result for steady states.
Theorem 2.2. There exists a unique positive solution u^{*} of (1.4) with $\int_{-K}^{K} u^{*} d x=1$.
Proof. Lemma 2.1 and Lemma 2.3 guarantee, via Krein-Rutman's Theorem, that there exists $\lambda>0$ and a unique positive solution u^{*} of $T u^{*}=\lambda u^{*}$, with $\int_{-K}^{K} u^{*} d x=1$. Note that u^{*} satisfies

$$
\lambda \int_{-K}^{K} \alpha(x) u(x) d x=\int_{-K}^{K} \int_{-K}^{K} J\left(\frac{x-y}{g(y)}\right) \frac{u(y)}{g(y)} d y d x=\int_{-K}^{K} \alpha(y) u(y) d y
$$

hence $\lambda=1$ and u^{*} is the desired solution.
We will study the asymptotic behavior of the solutions of (1.5) as $t \rightarrow \infty$. We start with the case $u_{0} \in C([-K, K])$.
Theorem 2.3. There exists $\gamma>0$ such that if $u_{0} \in C([-K, K]), u_{0} \geq 0$ and $\int_{-K}^{K} u_{0}(x) d x=C$, then the solution $u(x, t)$ of (1.5) with initial condition $u_{0}(x)$ satisfies

$$
\left\|u(\cdot, t)-C u^{*}(\cdot)\right\|_{\infty} \leq e^{-\gamma t}\left\|u_{0}-C u^{*}\right\|_{\infty} \text { for } t>0
$$

Proof. Let $v_{0} \in C([-K, K])$ with $\int_{-K}^{K} v_{0} d x=0$ and denote $v(x, t)$ the solution of (1.5) with initial data v_{0}. By direct integration in the equation of (1.5) we obtain that $\int_{-K}^{K} v(t, x) d x=\int_{-K}^{K} v_{0} d x=0$ for all $t>0$. Set $X=\left\{f \in C([-K, K]) / \int_{-K}^{K} f d x=0\right\}$, then $T_{0}-\alpha(x) I: X \rightarrow X$, and by standard semigroup theory our result will be proved if we show that the spectrum $\sigma_{X}\left(T_{0}-\alpha(x) I\right)$ is contained in the open half plane $\{\operatorname{Re} z<0\}$.

Suppose that $\mu=\tilde{\alpha}+i \tilde{\beta}$, with $\tilde{\alpha} \geq 0$, belongs to $\sigma_{X}\left(T_{0}-\alpha(x) I\right)$. By Fredholm's Alternative theorem μ is an eigenvalue, thus there exists a nontrivial $v \in X$ such that $T_{0} v-\alpha(x) v=\mu v$. Using Krein-Rutman's theorem we obtain that $\mu \neq 0$, since 1 is a simple eigenvalue of T with positive eigenfunction.

Let $w=w_{1}+i w_{2} \in X$ be an eigenfunction associated to μ. Then for some $\gamma>0$ we have that $\gamma u^{*}+w_{1} \geq 0$ in $[-K, K], \gamma u^{*}+w_{1} \not \equiv 0$ and $\gamma u^{*}\left(x_{0}\right)+w_{1}\left(x_{0}\right)=0$ for some $x_{0} \in[-K, K]$. Set $u(t)$ the solution of (1.5) with initial value $\gamma u^{*}+w_{1}$ which is given by $u(t)=\gamma u^{*}+e^{\tilde{\alpha} t} R e\left(e^{i \tilde{\beta} t} w\right)$. If $\tilde{\alpha}>0$, then for large $t>0$ we have that there exists $x \in[-K, K]$ such that $u(x, t)<0$ contradicting Proposition 2.1. When $\tilde{\alpha}=0$ we have that $u\left(x_{0}, \frac{2 \pi}{\tilde{\beta}}\right)=0$ which also contradicts Proposition 2.1.

In the case $u_{0} \in L^{1}[-K, K]$ with $u_{0} \geq 0$ a.e. the asymptotic behavior of $u(\cdot, t)$ is a consequence of Theorem 2.3 and the following lemma.

Lemma 2.4. Let u be a solution of (1.5), then

$$
\|u(\cdot, t)\|_{L^{1}[-K, K]}=\left\|u_{0}\right\|_{L^{1}[-K, K]} \text { for all } t \geq 0
$$

Proof. Write $u_{0}=h_{0}^{+}-h_{0}^{-}$where $h_{0}^{+}=\max \left(u_{0}, 0\right)$ and $h_{0}^{-}=-\min \left(u_{0}, 0\right)$ and let h^{+} and h^{-}be the solutions of (1.5) with initial conditions h_{0}^{+}and h_{0}^{-}respectively. Now by linearity we have

$$
u(x, t)=h^{+}(x, t)-h^{-}(x, t)
$$

Hence

$$
|u(x, t)|=h^{+}(x, t)+h^{-}(x, t),
$$

and then

$$
\begin{aligned}
& \int_{-K}^{K}|u(x, t)| d x=\int_{-K}^{K} h^{+}(x, t) d x+\int_{-K}^{K} h^{-}(x, t) d x \\
& =\int_{-K}^{K} h_{0}^{+}(x) d x+\int_{-K}^{K} h_{0}^{-}(x) d x=\int_{-K}^{K}\left|u_{0}(x)\right| d x . \square
\end{aligned}
$$

Theorem 2.4. Let $u_{0} \in L^{1}(-K, K)$ with $u_{0} \geq 0$ a.e. and let $u(x, t)$ be the solution of (1.5) with initial data u_{0}, then

$$
\left\|u(\cdot, t)-C u^{*}(\cdot)\right\|_{L^{1}[-K, K]} \rightarrow 0
$$

as $t \rightarrow \infty$, where $C=\int_{-K}^{K} u_{0}(x) d x$.
Proof. Let $\varepsilon>0$. Pick $u_{0}^{\varepsilon} \in C([-K, K])$ such that $u_{0}^{\varepsilon} \geq 0, \int_{-K}^{K} u_{0}^{\varepsilon}(x) d x=C$ and $\left\|u_{0}-u_{0}^{\varepsilon}\right\|_{L^{1}[-K, K]} \leq \varepsilon$. Let u^{ε} be the solution of (1.5) with initial condition u_{0}^{ε}. One has

$$
\left\|u(\cdot, t)-C u^{*}(\cdot)\right\|_{L^{1}} \leq\left\|u(\cdot, t)-u^{\varepsilon}(\cdot)\right\|_{L^{1}}+\left\|u^{\varepsilon}(\cdot, t)-C u^{*}(\cdot)\right\|_{L^{1}}
$$

and the proposition follows from Lemma 2.4 and Theorem 2.3.

3. The CaUchy problem

In this section we establish some basic facts about solutions of (1.2).
We start by defining the operator

$$
\mathcal{L} u(x, t)=\int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y .
$$

Proposition 3.1. The operator \mathcal{L} maps continuously $L^{1}(\mathbb{R})$ into $L^{1}(\mathbb{R})$ and

$$
\int_{\mathbb{R}} \mathcal{L} v=\int_{\mathbb{R}} v
$$

Moreover, if in addition
(g3) there is $a_{3}>0$ and $0<\beta<1$ such that

$$
\int_{g(y)<\alpha} J\left(\frac{x-y}{g(y)}\right) \frac{1}{g(y)} d y<\beta
$$

holds, then \mathcal{L} is a continuous map from $L^{\infty}(\mathbb{R})$ to $L^{\infty}(\mathbb{R})$.
Proof. Observe that by Fubini's theorem we have

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{v(y)}{g(y)} d y d x=\int_{\mathbb{R}} v(y) d y
$$

This implies that \mathcal{L} is a continuous operator from $L^{1}(\mathbb{R})$ to $L^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} \mathcal{L} v=\int_{\mathbb{R}} v$. Now, if $v \in L^{\infty}$ and (g3) holds we have

$$
\begin{aligned}
|\mathcal{L} v(x)| & \leq \int_{g(y)<a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{|v(y)|}{g(y)} d y+\int_{g(y) \geq a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{|v(y)|}{g(y)} d y \\
& \leq\|v\|_{\infty} \beta+\frac{\|v\|_{\infty}}{a_{3}} \int_{\left\{g(y) \geq a_{3}\right\} \cap[x-b, x+b]} J\left(\frac{x-y}{g(y)}\right) d y \\
& \leq\|v\|_{\infty} \beta+\frac{2 b\|J\|_{\infty}}{a_{3}}\|v\|_{\infty} .
\end{aligned}
$$

Theorem 3.1. Given $u_{0} \in L^{1}(\mathbb{R})$ there exists a unique solution $u \in C^{1}\left(\mathbb{R}, L^{1}(\mathbb{R})\right)$ of (1.2). The solution u conserves the total mass, that is

$$
\int_{\mathbb{R}} u(x, t) d x=\int_{\mathbb{R}} u_{0}(x) d x
$$

for all $t>0$. Moreover, if $(\mathrm{g} 3)$ holds and $u_{0} \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ then $u(\cdot, t) \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$.

Proof. The result is a direct consequence of Proposition 3.1 and standard results from semigroup theory.

It is convenient at this point to introduce the integral form of the initial value problem (1.2),

$$
\begin{equation*}
u(x, t)=u\left(x, t_{0}\right) e^{-\left(t-t_{0}\right)}+\int_{t_{0}}^{t} e^{-(t-s)} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, s)}{g(y)} d y d s \tag{3.1}
\end{equation*}
$$

Our next result states that this problem has infinite speed of propagation.
Proposition 3.2. If $u_{0} \in L^{1}(\mathbb{R})$ is nonnegative a.e., then $u(x, t) \geq 0$ a.e. in \mathbb{R} for each $t \geq 0$. If in addition $u_{0} \not \equiv 0$, then $u(x, t)>0$ a.e. in \mathbb{R} for all $t>0$.

Proof. It follows by the same arguments as the proof of Proposition 2.1.
Proposition 3.3. Suppose that (g3) holds and $u_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then
(i) There exists a constant $K_{\infty}\left(u_{0}\right)$ such that for all $t \in \mathbb{R}^{+}$,

$$
\|u(\cdot, t)\|_{\infty} \leq K_{\infty}
$$

(ii) For any $p \geq 1$, there exists a constant $K_{p}\left(u_{0}\right)$, such that $\|u\|_{L^{p}(\mathbb{R})} \leq K_{p}$.
(iii) $u(x, t)$ is globally Lipschitz in time, uniformly in space that is, there exists a constant $\kappa\left(u_{0}\right)$ such that

$$
\|u(\cdot, t)-u(\cdot, s)\|_{\infty} \leq \kappa|t-s|
$$

for all $t, s \geq 0$.
Proof. Suppose that for some sequence $t_{n} \rightarrow \infty$ we have $\left\|u\left(\cdot, t_{n}\right)\right\|_{\infty} \rightarrow \infty$. Then we can find a sequence $T_{n} \rightarrow \infty$ such that $\left\|u\left(\cdot, T_{n}\right)\right\|_{\infty} \rightarrow \infty$ and

$$
\begin{equation*}
\sup _{0 \leq t \leq T_{n}}\|u(\cdot, t)\|_{\infty}=\left\|u\left(\cdot, T_{n}\right)\right\|_{\infty} \tag{3.2}
\end{equation*}
$$

Observe that the solution u satisfies

$$
\begin{align*}
\left(e^{t} u\right)_{t}(x, t)= & e^{t} \int_{g(y)<a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y \tag{3.3}\\
& +e^{t} \int_{g(y) \geq a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} d y .
\end{align*}
$$

Integrating this equality between 0 and T_{n}, and using (3.2) we obtain

$$
\left|u\left(x, T_{n}\right)\right| \leq e^{-T_{n}}\left\|u_{0}\right\|_{\infty}+\beta\left\|u\left(\cdot, T_{n}\right)\right\|_{\infty}+\frac{1}{a_{3}}\|J\|_{\infty}\left\|u_{0}\right\|_{L^{1}} \text {, a.e., }
$$

which contradicts the fact that $\left\|u\left(\cdot, T_{n}\right)\right\|_{\infty} \rightarrow \infty$ and proves (i).
Since $\|u(\cdot, t)\|_{\infty} \leq K_{\infty}$ and (1.2) is mass preserving (ii) follows easily by interpolation.

To prove (iii) we integrate equation (1.2) to obtain

$$
\begin{aligned}
\left|u\left(x, t_{2}\right)-u\left(x, t_{1}\right)\right| \leq & \int_{t_{1}}^{t_{2}}[\\
& \int_{g(y)<a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{K_{\infty}}{g(y)} d y \\
& \left.+\int_{g(y) \geq a_{3}} J\left(\frac{x-y}{g(y)}\right) \frac{K_{\infty}}{g(y)} d y+K_{\infty}\right] d t \\
\leq & \left|t_{1}-t_{2}\right| K_{\infty}\left(\beta+\frac{\|J\|_{\infty}}{a_{3}}+1\right)
\end{aligned}
$$

which concludes the proof.

4. Steady states for the whole real line.

In this section we will establish the existence of positive solutions of (1.3). As a first step we will construct a bounded positive solution of (1.3) under the extra assumption that g is constant near infinity.
Lemma 4.1. Assume there exists $N>0$ and positive constants c_{1} and c_{2} such that $g(x) \equiv c_{1}$ if $x \geq N$ and $g(x) \equiv c_{2}$ if $x \leq-N$. Then (1.3) has a non trivial bounded solution.
Proof. We will obtain the solution as the limit of a sequence of solutions of problem (1.4) as $K \rightarrow \infty$. To do this fix $K>N+b$, where b is an upper bound for the function g, and let p_{K} be a solution of (1.5) in the interval $[-K, K]$ normalized such that $\left\|p_{K}\right\|_{\infty}=1$.

We claim that each $p_{K}:[-K, K] \rightarrow \mathbb{R}$ attains its maximum in the sub interval $[-(N+$ $b), N+b]$. Indeed, let $x_{0} \in[-K, K]$ be such that

$$
p_{K}\left(x_{0}\right)=\max _{x \in[-K, K]} p_{K}(x)=1
$$

Assume that $x_{0} \in[N+b, K]$ and consider the set

$$
A=\left\{x \in[N+b, K] / p_{k}(x)=1\right\} .
$$

The set A is clearly closed. On the other hand if $x_{1} \in A$ one has

$$
\begin{equation*}
p_{K}\left(x_{1}\right)=\frac{1}{H\left(x_{1}\right)} \int_{-K}^{K} J\left(\frac{x_{1}-y}{c_{1}}\right) \frac{p_{K}(y)}{c_{1}} d y \tag{4.1}
\end{equation*}
$$

where

$$
H\left(x_{1}\right)=\int_{-K}^{K} J\left(\frac{x_{1}-y}{c_{1}}\right) \frac{1}{c_{1}} d y
$$

Since the operator on the right hand side of (4.1) is an average operator we obtain that $p_{K}(y)=1$ for all $y \in\left[x_{1}-c_{1}, x_{1}+c_{1}\right] \cap[N+b, K]$. Hence A is also open in $[N+b, K]$. Since it is not empty we have $A=[N+b, K]$. In particular $M=p_{K}(N+b)$ and the maximum is also attained at $[-(N+b), N+b]$. A similar argument proves that if the maximum is attained at a point in $[-K,-(N+b)]$ then it is also attained at the point $-(N+b)$. Hence we have proved that p_{K} always attains its maximum in the sub interval $[-(N+b), N+b]$ as desired.

Arguing as in Lemma 2.2, the family p_{K} is equicontinuous in any fixed bounded interval. Thus, using Ascoli-Arzela's theorem and a standard diagonal procedure we can construct a sequence K_{n} with $K_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and such that $p_{K_{n}}$ converges uniformly, to a continuous function p, in compact subsets of \mathbb{R} as $n \rightarrow \infty$. It is clear that p is a nonnegative solution of (1.3).

Finally since $p_{K_{n}}\left(x_{K_{n}}\right)=1$ for some $x_{K_{n}} \in[-(N+b), N+b]$ it follows that p is non trivial.

The following lemma, that will be used later, is of interest on itself.
Lemma 4.2. For any bounded solution of pof (1.3) one has

$$
\begin{aligned}
& \int_{0}^{b} \int_{D-w}^{D+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \\
= & \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w
\end{aligned}
$$

for any $C, D \in \mathbb{R}$.
Proof. Let p be a bounded solution of (1.3). Pick M and N such that

$$
M+2 b \leq N
$$

Integrating (1.3) we get

$$
\begin{aligned}
\int_{M}^{N} p(x) d x= & \int_{M}^{N} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d y d x \\
= & \int_{M-b}^{N+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
= & \int_{M-b}^{M+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
& +\int_{M+b}^{N-b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
& +\int_{N-b}^{N+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y
\end{aligned}
$$

But since $g \leq b$ and $\int_{\mathbb{R}} J(z) d z=1$ one has

$$
\int_{M+b}^{N-b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y=\int_{M+b}^{N-b} p(y) d y
$$

and hence

$$
\begin{gathered}
\int_{M}^{M+b} p(x) d x+\int_{N-b}^{N} p(x) d x \\
=\int_{M-b}^{M+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y+\int_{N-b}^{N+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y .
\end{gathered}
$$

Making, for fixed y, the change of variables $z=\frac{x-y}{g(y)}$ and using the fact that $M+2 b \leq N$ we have

$$
\begin{aligned}
& \int_{N-b}^{N+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
& =\int_{N-b}^{N+b} p(y) \int_{\frac{M-y}{g(y)}}^{\frac{N-y}{g(y)}} J(z) d z d y \\
& =\int_{N-b}^{N+b} p(y) \int_{-1}^{\frac{N-y}{g(y)}} J(z) d z d y
\end{aligned}
$$

which can be written as

$$
\begin{gathered}
\int_{N-b}^{N+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
=\int_{N-b}^{N} p(y) \int_{-1}^{\frac{N-y}{g(y)}} J(z) d z d y+\int_{N}^{N+b} p(y) \int_{-1}^{\frac{N-y}{g(y)}} J(z) d z d y .
\end{gathered}
$$

Similarly we have

$$
\begin{gathered}
\int_{M-b}^{M+b} \int_{M}^{N} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} d x d y \\
=\int_{M-b}^{M} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y+\int_{M}^{M+b} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y .
\end{gathered}
$$

Setting

$$
\begin{align*}
A_{M}= & \int_{M}^{M+b} p(y) d y-\int_{M-b}^{M} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y \tag{4.2}\\
& -\int_{M}^{M+b} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y
\end{align*}
$$

and

$$
\begin{aligned}
B_{N}= & -\int_{N-b}^{N} p(y) d y+\int_{N-b}^{N} p(y) \int_{-1}^{\frac{N-y}{g(y)}} J(z) d z d y \\
& +\int_{N}^{N+b} p(y) \int_{-1}^{\frac{N-y}{g(y)}} J(z) d z d y
\end{aligned}
$$

we have that $A_{M}=B_{N}$ provided that $M+2 b \leq N$. This implies $A_{M}=B_{N} \equiv K$ for all $M, N \in$ R.

Let $C, D \in \mathbb{R}$ with $C<D$. Integrating (4.2) with respect to M from C to D we have

$$
\begin{align*}
(D-C) K= & \int_{C}^{D} \int_{M}^{M+b} p(y) d y d M \tag{4.3}\\
& -\int_{C}^{D} \int_{M-b}^{M} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y d M \\
& -\int_{C}^{D} \int_{M}^{M+b} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y d M
\end{align*}
$$

But

$$
\begin{align*}
\int_{C}^{D} \int_{M}^{M+b} p(y) d y d M= & \int_{0}^{b} \int_{C}^{D} p(w+M) d M d w \tag{4.4}\\
= & \int_{0}^{b} \int_{C}^{D-2 w} p(w+M) d M d w \\
& +\int_{0}^{b} \int_{D-2 w}^{D} p(w+M) d M d w
\end{align*}
$$

also

$$
\begin{align*}
& \int_{C}^{D} \int_{M}^{M+b} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y d M \tag{4.5}\\
= & \int_{C}^{D} \int_{0}^{b} p(M+w) \int_{\frac{-w}{g(M+s)}}^{1} J(z) d z d w d M \\
= & \int_{0}^{b} \int_{C}^{D} p(M+w) \int_{\frac{-w}{g(M+w)}}^{1} J(z) d z d M d w \\
= & \int_{0}^{b} \int_{C}^{D-2 w} p(M+w) \int_{\frac{-w}{g(M+w)}}^{1} J(z) d z d M d w \\
+ & \int_{0}^{b} \int_{D-2 w}^{D} p(M+w) \int_{\frac{-w}{g(M+w)}}^{1} J(z) d z d M d w
\end{align*}
$$

and

$$
\begin{align*}
& \int_{C}^{D} \int_{M-b}^{M} p(y) \int_{\frac{M-y}{g(y)}}^{1} J(z) d z d y d M \tag{4.6}\\
& =\int_{C}^{D} \int_{0}^{b} p(M-b+s) \int_{\frac{b-s}{g(M-b+s)}}^{1} J(z) d z d s d M \\
& =\int_{0}^{b} \int_{C}^{D} p(M-b+s) \int_{\frac{b-s}{g(M-b+s)}}^{1} J(z) d z d M d s \\
& =\int_{0}^{b} \int_{C}^{D} p(M-w) \int_{\frac{w}{g(M-w)}}^{1} J(z) d z d M d w \\
& =\quad \int_{0}^{b} \int_{C-2 w}^{D-2 w} p(R+w) \int_{\frac{w}{g(R+w)}}^{1} J(z) d z d R d w \\
& =\quad \int_{0}^{b} \int_{C-2 w}^{C} p(R+w) \int_{\frac{w}{g(R+w)}}^{\frac{g}{g}(R+w)} J(z) d z d R d w \\
& +\int_{0}^{b} \int_{C}^{D-2 w} p(R+w) \int_{\frac{w}{g(R+w)}}^{1(R+w)} J(z) d z d R d w .
\end{align*}
$$

Since by the symmetry of J one has

$$
\int_{\overline{g(M+w)}}^{1} J(z) d z+\int_{\overline{g(M+w)}}^{1} J(z) d z=1,
$$

substituting the result of (4.4), (4.5) and (4.6) in (4.3) one gets

$$
\begin{align*}
(D-C) K= & \int_{0}^{b} \int_{D-2 w}^{D} p(M+w) \int_{-1}^{\frac{-w}{g(M+w)}} J(z) d z d M d w \tag{4.7}\\
& -\int_{0}^{b} \int_{C-2 w}^{C} p(M+w) \int_{\frac{w}{g(M+w)}}^{1} J(z) d z d M d w
\end{align*}
$$

Because we have assumed p bounded, the right hand side of (4.7) is bounded independently of the choice of C and D. This implies $K=0$ and hence

$$
\begin{align*}
& \int_{0}^{b} \int_{D-2 w}^{D} p(M+w) \int_{-1}^{\frac{-w}{g(M+w)}} J(z) d z d M d w \tag{4.8}\\
= & \int_{0}^{b} \int_{C-2 w}^{C} p(M+w) \int_{\frac{w}{g(M+w)}}^{1} J(z) d z d M d w
\end{align*}
$$

for all C and D provided that $C \leq D$. Or, what is the same,

$$
\begin{align*}
& \int_{0}^{b} \int_{D-w}^{D+w} p(s) \int_{-1}^{\frac{-w}{g(s)}} J(z) d z d s d w \tag{4.9}\\
= & \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w
\end{align*}
$$

for all C and D provided that $C \leq D$.
The lemma follows since the symmetry of J implies that $\int_{-1}^{\frac{-w}{g(s)}} J(z) d z=\int_{\frac{w}{g(s)}}^{1} J(z) d z$.

As a consequence of Lemma 4.2 we have the following Harnack's type inequality.
Lemma 4.3. Let p be a nonnegative bounded solution of (1.3) and $M>0$ be so that $g(-M) \neq 0$ and $g(M) \neq 0$. Then there exists a constant $A>0$, depending on M, J, b and g in $[-M-$ $b, M+b]$, such that for any $x \in[-M, M]$ and any $D \in \mathbb{R}$ we have

$$
p(x) \leq A \int_{D-b}^{D+b} p(s) d s
$$

Proof. During this proof A will denote a constant depending on M, J and b that can change from step to step.

Let $x_{0} \in[-M, M]$ be such that

$$
p\left(x_{0}\right)=\max _{x \in[-M, M]} p(x) .
$$

For a fixed a such that $0<a<b$ define

$$
Z=\left\{y \in[-M-b, M+b] / g(y)<a \text { and }\left|x_{0}-y\right| \leq g(y)\right\}
$$

and

$$
W=\left\{y \in[-M-b, M+b] / g(y) \geq a \text { and }\left|x_{0}-y\right| \leq g(y)\right\} .
$$

Then

$$
p\left(x_{0}\right)=\int_{Z} J\left(\frac{x_{0}-y}{g(y)}\right) \frac{p(y)}{g(y)} d y+\int_{W} J\left(\frac{x_{0}-y}{g(y)}\right) \frac{p(y)}{g(y)} d y .
$$

Since $g(-M) \neq 0$ and $g(M) \neq 0$ we can make a smaller if necessary to guarantee that

$$
Z \subset[-M, M] .
$$

In this case we have

$$
p\left(x_{0}\right) \leq p\left(x_{0}\right) \int_{Z} J\left(\frac{x_{0}-y}{g(y)}\right) \frac{1}{g(y)} d y+\frac{\|J\|_{\infty}}{a} \int_{W} p(y) d y
$$

and, according to our hypotheses on g, we can take a smaller if necessary to have the existence of $\bar{\beta}<1$ such that

$$
\int_{Z} J\left(\frac{x_{0}-y}{g(y)}\right) \frac{1}{g(y)} d y<\bar{\beta} .
$$

So

$$
(1-\bar{\beta}) p\left(x_{0}\right) \leq \frac{\|J\|_{\infty}}{a} \int_{W} p(y) d y
$$

from where

$$
\begin{equation*}
p\left(x_{0}\right) \leq A \int_{W} p(y) d y \tag{4.10}
\end{equation*}
$$

Now fix $x_{1} \in[-M, M]$. Using Lemma 4.2 for any $C \in[-M, M]$ we obtain

$$
\begin{align*}
& \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \tag{4.11}\\
\geq & \int_{\frac{a}{4}}^{\frac{a}{2}} \int_{x_{1}-w}^{x_{1}+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \\
\geq & \int_{\frac{a}{4}}^{\frac{a}{2}} \int_{\left[x_{1}-w, x_{1}+w\right] \cap W} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \\
\geq & \int_{\frac{a}{4}}^{\frac{a}{2}} \int_{\left[x_{1}-w, x_{1}+w\right] \cap W} p(s) \int_{\frac{1}{2}}^{1} J(z) d z d s d w \\
\geq & A \int_{\frac{a}{4}}^{\frac{a}{2}} \int_{\left[x_{1}-w, x_{1}+w\right] \cap W} p(s) d s d w \\
\geq & A \frac{a}{4} \int_{\left[x_{1}-\frac{a}{4}, x_{1}+\frac{a}{4}\right] \cap W} p(s) d s .
\end{align*}
$$

Observe that there exists an integer N, depending on a and b, such that W can be covered by N intervals of length $\frac{a}{2}$ in the form

$$
W \subset \cup_{i=1}^{N}\left[x_{i}-\frac{a}{4}, x_{i}+\frac{a}{4}\right] .
$$

This fact implies the existence of A such that

$$
\begin{equation*}
\int_{W} p(s) d s \leq A \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \tag{4.12}
\end{equation*}
$$

and using (4.10) we have

$$
\begin{equation*}
p\left(x_{0}\right) \leq A \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \tag{4.13}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \int_{0}^{b} \int_{C-w}^{C+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \\
\leq & \int_{0}^{b} \int_{C-w}^{C+w} p(s) d s d w \tag{4.14}\\
\leq & b \int_{C-b}^{C+b} p(s) d s
\end{align*}
$$

which together with (4.13) proves the lemma.
We are now in a position to prove the existence of nontrivial solutions of (1.3). Namely

Theorem 4.1. Problem (1.3) has a non trivial non negative solution.
Proof. Let R_{n}, S_{n} be sequences such that $g\left(R_{n}\right) \neq 0, g\left(S_{n}\right) \neq 0$ and $\lim _{n \rightarrow \infty} R_{n}=\infty$, $\lim _{n \rightarrow \infty} S_{n}=-\infty$. Define $g_{n}(x)=g(x)$ if $x \in\left[S_{n}, R_{n}\right], g_{n}(x)=g\left(R_{n}\right)$ if $x \in\left[R_{n}, \infty\right)$ and $g_{n}(x)=g\left(S_{n}\right)$ if $x \in\left(-\infty, S_{n}\right]$.

Denote by p_{n} the bounded solution of (1.3), with $g \equiv g_{n}$, provided by Lemma 4.1 satisfying

$$
\int_{-b}^{b} p_{n}(t) d t=1
$$

Fix $M>0$ such that $g(M)>0$ and $g(-M)>0$. By Lemma 4.3 there exists a constant A, independent of n, such that

$$
\max _{x \in[-M, M]} p_{n} \leq A \text { for all } n
$$

Proceeding as in Lemma 2.2 this bound implies that $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ restricted to $[-M, M]$ is equicontinuous. A standard diagonalization argument provides a subsequence, still denoted by p_{n}, which converges uniformly on compact subsets of \mathbb{R} to a nontrivial continuous function p.

Letting $n \rightarrow \infty$ in the equation

$$
p_{n}(x)=\int_{\mathbb{R}} J\left(\frac{x-y}{g_{n}(y)}\right) \frac{p_{n}(y)}{g_{n}(y)} d y
$$

we obtain that p solves (1.3) as desired.
In the next result we show that a necessary condition to have bounded solutions of (1.3) is that $g(x)$ cannot converge to zero when $x \rightarrow \infty$ or $x \rightarrow-\infty$.

Theorem 4.2. Suppose that $g(x) \rightarrow 0$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Then all nontrivial non negative solutions of (1.3) are unbounded.

Proof. We proceed by contradiction. Suppose that p is a nontrivial nonnegative bounded solution of (1.3) and, without loss of generality, $g(x) \rightarrow 0$ as $x \rightarrow \infty$.

Since p is nontrivial, it is easy to see that there exists $c_{1}>0, x_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{0}^{b} \int_{x_{0}-w}^{x_{0}+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w>c_{1}>0 \tag{4.15}
\end{equation*}
$$

As $g(x) \rightarrow 0$ as $x \rightarrow \infty$ we have that for any $\delta>0$ there exists $M>0$ such that $g(x)<\delta$ for all $x \geq M$, thus if $x \geq M+\delta$ we have

$$
\int_{0}^{b} \int_{x-w}^{x+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \leq \int_{0}^{\delta} \int_{x-\delta}^{x+\delta} p(s) d s d w \leq 2\|p\|_{\infty} \delta^{2} .
$$

By virtue of Lemma 4.2, it follows that

$$
c_{1}<\int_{0}^{b} \int_{x_{0}-w}^{x_{0}+w} p(s) \int_{\frac{w}{g(s)}}^{1} J(z) d z d s d w \leq 2\|p\|_{\infty} \delta^{2} .
$$

Hence, we contradict (4.15) by taking $\delta \rightarrow 0$.
The following two theorems provide sufficient conditions on g that guarantee upper and lower bounds for the solutions of (1.3).

Theorem 4.3. Assume that g satisfies (g3) and
$(g 4) \lim \sup _{x \rightarrow \infty} g(x)>0, \lim \sup _{x \rightarrow-\infty} g(x)>0$.
Then equation (1.3) admits a positive bounded solution.
Proof. By hypothesis there exists a constant $a_{4}>0$ and sequences $R_{n} \rightarrow \infty$ and $S_{n} \rightarrow$ $-\infty$ such that $g\left(S_{n}\right)>a_{4}$ and $g\left(R_{n}\right)>a_{4}$ for all n. As in the proof of Theorem 4.1, we define $g_{n}(x)=g(x)$ if $x \in\left[S_{n}, R_{n}\right], g_{n}(x)=g\left(R_{n}\right)$ if $x \in\left[R_{n}, \infty\right)$ and $g_{n}(x)=g\left(S_{n}\right)$ if $x \in\left(-\infty, S_{n}\right]$, and we let p_{n} be the bounded solution of (1.3) with $g \equiv g_{n}$ satisfying

$$
\int_{-b}^{b} p_{n}(t) d t=1
$$

Arguing exactly as in the proof of Theorem 4.1, the result will be proved if we show that there exists $C>0$ such that $\left\|p_{n}\right\|_{\infty} \leq C$ for all n. To do this, choose $a<\min \left\{a_{3}, a_{4}\right\}$. For any $x_{0} \in \mathbb{R}$ we have

$$
p_{n}\left(x_{0}\right)=\int_{g_{n}(y)<a} J\left(\frac{x_{0}-y}{g_{n}(y)}\right) \frac{p_{n}(y)}{g_{n}(y)} d y+\int_{g_{n}(y) \geq a} J\left(\frac{x_{0}-y}{g_{n}(y)}\right) \frac{p_{n}(y)}{g_{n}(y)} d y,
$$

therefore

$$
\begin{equation*}
p\left(x_{0}\right) \leq\left\|p_{n}\right\|_{\infty} \beta+\frac{\|J\|_{\infty}}{a} \int_{\substack{\left[x_{0}-b, x_{0}+b\right] \\ g(y) \geq a}} p_{n}(y) d y \tag{4.16}
\end{equation*}
$$

since $g_{n}(y)=g(y)$ whenever $g_{n}(y) \leq a$. Proceeding as in (4.11) we have that for any $x_{1} \in \mathbb{R}$

$$
\int_{0}^{b} \int_{-w}^{w} p_{n}(s) \int_{\substack{\frac{w}{g_{n}(s)}}}^{1} J(z) d z d s d w \geq \frac{a}{4} \int_{\frac{1}{2}}^{1} J(z) d z \int_{\substack{\left[x_{1}-\frac{a}{4}, x_{1}+\frac{a}{q}(y) \geq a\right.}} p_{n}(s) d s
$$

Since $\int_{-b}^{b} p_{n}(s) d s=1$ and the interval $\left[x_{0}-b, x_{0}+b\right]$ can be covered by a finite number of intervals of the form $\left[x_{1}-a, x_{1}+a\right]$, we can use the above inequality and (4.16) to obtain

$$
p_{n}\left(x_{0}\right) \leq \beta\left\|p_{n}\right\|_{\infty}+C(a, b), \text { for all } n .
$$

Recalling that $\beta<1$, this inequality gives the desired result.
Theorem 4.4. Assume that g satisfies:
(g5) There exists constants $0<\gamma<1$ and $C_{5}>0$ such that

$$
|\{x \in I / g(x) \leq a\}| \leq C_{5} a^{\frac{1}{\gamma}}
$$

for any interval I with $|I| \leq 2 b$.
Then for any non negative nontrivial bounded solution p of (1.3) there exists $d>0$ such that

$$
p(x) \geq d \text { for all } x \in \mathbb{R}
$$

Remark 4.1. We observe that the hypothesis (g5) implies (g3) and (g4). Therefore if p is the solution of (1.3) constructed in Theorem 4.3 we have that $\|p\|_{\infty}<\infty$.

Proof of Theorem 4.4. By Lemma 4.2 there exists a positive constant P such that

$$
\int_{0}^{b} \int_{D-b}^{D+b} p(s) \int_{\frac{w}{g(s)}} J(z) d z d s d w=P \text { for all } D \in \mathbb{R}
$$

Hence for a fixed $0<a_{0}<b$ we have

$$
\begin{aligned}
P= & \int_{0}^{b} \int_{\substack{[D-b, D+b] \\
g(y)<a_{0}}} p(s) \int_{\frac{w}{g(s)}} J(z) d z d s d w \\
& +\int_{0}^{b} \int_{\substack{[D-b, D+b] \\
g(y) \geq a_{0}}} p(s) \int_{\substack{\frac{w}{g(s)}}} J(z) d z d s d w \\
= & I_{1}+I_{2} .
\end{aligned}
$$

If $g(s)<a_{0}$ and $w \geq a_{0}$ then $w / g(s)>1$ from where we obtain

$$
I_{1} \leq \int_{0}^{a_{0}} \int_{D-a_{0}}^{D+a_{0}} p(s) d s d w \leq 2 a_{0}^{2}\|p\|_{\infty}
$$

Therefore if $a_{0} \leq\left(\frac{P}{4\|p\|_{\infty}}\right)^{1 / 2}$ we have

$$
\begin{equation*}
\int_{\substack{[D-b, D+b] \\ g(y) \geq a_{0}}} p(s) d s \geq \frac{P}{2 b} . \tag{4.17}
\end{equation*}
$$

On the other hand, if $x_{1} \in \mathbb{R}$ and $a_{1}>0$ then

$$
\begin{aligned}
p\left(x_{1}\right) & \geq \int_{g(y) \geq a_{1}} J\left(\frac{x_{1}-y}{g(y)}\right) \frac{p(y)}{g(y)} d y \\
& \geq \int_{\substack{\left[x_{1}-\frac{a_{1}}{2}, x_{1}+\frac{a_{1}}{2(y)}\right]}} J\left(\frac{x_{1}-y}{g(y)}\right) \frac{p(y)}{g(y)} d y \\
& \geq \frac{m}{b} \int_{\substack{\left[x_{1}-\frac{a_{1}}{2}, x_{1}+\frac{a_{1}}{2(y) \geq a_{1}}\right.}} p(y) d y,
\end{aligned}
$$

where $m=\min _{|z| \leq 1 / 2} J(z)$. Thus we obtain

$$
\begin{equation*}
\int_{\substack{\left[x_{1}-\frac{a_{1}}{2}, x_{1}+\frac{a_{1}}{g(y) \geq a_{1}}\right.}} p(y) d y \leq \frac{b}{m} p\left(x_{1}\right), \tag{4.18}
\end{equation*}
$$

from where in particular

$$
\begin{equation*}
\int_{\substack{\left[x_{1}+\frac{a_{1}}{1}, x_{1}+\frac{a_{1}}{g}\right] \\ g(y) \geq a_{1}}} p(y) d y \leq \frac{b}{m} p\left(x_{1}\right) . \tag{4.19}
\end{equation*}
$$

By hypothesis (g5) we have that

$$
\left|\left\{x \in\left[x_{1}+\frac{a_{1}}{4}, x_{1}+\frac{a_{1}}{2}\right] / g(y)<a_{1}\right\}\right| \leq C_{5} a_{1}^{\frac{1}{\gamma}}
$$

thus, we can choose a_{1} such that

$$
C_{5} a_{1}^{\frac{1}{\gamma}} \leq \frac{a_{1}}{8}, \quad a_{1} \leq\left(\frac{P}{4\|p\|_{\infty}}\right)^{1 / 2}
$$

for which

$$
\left|\left\{x \in\left[x_{1}+\frac{a_{1}}{4}, x_{1}+\frac{a_{1}}{2}\right] / g(y) \geq a_{1}\right\}\right| \geq \frac{a_{1}}{8}
$$

and then by (4.19) there exists $x_{2} \in\left[x_{1}+a / 4, x_{1}+a / 2\right]$ with

$$
p\left(x_{2}\right) \leq \frac{b}{m} \frac{8}{a_{1}} p\left(x_{1}\right) .
$$

Repeating the above procedure with $p\left(x_{2}\right)$ instead of $p\left(x_{1}\right)$ we obtain

$$
\int_{\substack{\left[x_{2}-\frac{a_{1}}{g}\left(x_{2}+\frac{a_{1}}{2(y)}\right] \\\left(y a_{1}\right.\right.}} p(y) d y \leq \frac{b}{m} p\left(x_{2}\right) \leq\left(\frac{b}{m}\right)^{2} \frac{8}{a_{1}} p\left(x_{1}\right) .
$$

As $x_{1}+a_{1} / 4 \leq x_{2} \leq x_{1}+a_{1} / 2$ from the above inequality we have

$$
\int_{\substack{\left[x_{1}, x_{2}+\frac{3 a_{1}}{[1]} \\ g(y) \geq a_{1}\right.}} p(y) d y \leq\left(\frac{b}{m}\right)^{2} \frac{8}{a_{1}} p\left(x_{1}\right),
$$

and then from (4.18)

$$
\left.\int_{\substack{\left[x_{1}-\frac{a_{1}}{2}\left(x_{1}+\frac{\left.3 a_{1}\right]}{4}\right]\right.}} p(y) \geq a_{1}\right]\left[\left(a_{1} \leq\right)^{2} \frac{8}{a_{1}}+\frac{b}{m}\right] .
$$

Since a_{1} is fixed, we can use the same procedure a finite number of times to show that there exists a positive constant $C\left(b, m, a_{1}\right)$ such that

$$
\int_{\substack{\left[x_{1}-b, x_{1}+b\right] \\ g(y) a_{1}}} p(y) d y \leq p\left(x_{1}\right) C\left(b, m, a_{1}\right),
$$

and then using (4.17) we conclude that

$$
p\left(x_{1}\right) \geq \frac{P}{2 b C\left(b, m, a_{1}\right)} .
$$

5. ASYMPTOTIC BEHAVIOR

In this section we study the asymptotic behavior of solutions of (1.2) under the additional assumption that (1.3) possesses a solution p such that $p \geq c$ in \mathbb{R} for some $c>0$. Observe that by Theorem 4.4 hypothesis (g5) implies the existence of such a p. Throughout this section we shall assume that such a solution exists and it will be denoted by p.

An important tool that will be used is Liapunov functional, that is defined following the ideas introduced by Michel, Mischler and Perthame in [15].

Theorem 5.1.

Let u be a solution of (1.2) with initial value $u_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Then the following identity holds

$$
\begin{equation*}
E^{\prime}(t)=-\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u}{p}(t, x)-\frac{u}{p}(t, y)\right]^{2} d y d x, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
E(t)=\int_{\mathbb{R}} \frac{u^{2}}{p} d x \tag{5.2}
\end{equation*}
$$

Proof. Under our assumptions E is well defined and differentiable. Moreover, its derivative is given by

$$
\begin{equation*}
E^{\prime}(t)=2 \int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, t)}{g(y)} \frac{u(x, t)}{p(x)} d y d x-2 \int_{\mathbb{R}} \frac{u^{2}(x, t)}{p(x)} d x . \tag{5.3}
\end{equation*}
$$

Using the mass conservation and that p is steady state (i.e a solution of (1.3)), we easily show that

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} \frac{u^{2}(x, t)}{p^{2}(x)} d y d x=\int_{\mathbb{R}} \frac{u^{2}(x, t)}{p(x)} d x
$$

and

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} \frac{u^{2}(y, t)}{p^{2}(y)} d y d x=\int_{\mathbb{R}} \frac{u^{2}(y, t)}{p(y)} d y .
$$

Therefore from (5.3), we obtain the desired result

$$
\begin{aligned}
\frac{d E}{d t} & =\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u(y, t)}{p(y)} \frac{u(x, t)}{p(x)}-\frac{u^{2}(x, t)}{p^{2}(x)}-\frac{u^{2}(y, t)}{p^{2}(y)}\right] d y d x \\
& =-\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u(x, t)}{p(x)}-\frac{u(y, t)}{p(y)}\right]^{2} d y d x .
\end{aligned}
$$

Let us now prove some regularity properties of this energy.
Lemma 5.1. Suppose that the hypothesis of Theorem 5.1 holds. Then $E(t) \in C^{1,1}\left(\mathbb{R}^{+}\right)$.
Proof. Let t_{1} and t_{2} be in \mathbb{R}^{+}. Using formula (5.1) we have

$$
\begin{equation*}
\left|E^{\prime}\left(t_{1}\right)-E^{\prime}\left(t_{2}\right)\right| \leq \int_{\mathbb{R}^{2}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} \Gamma\left(t_{1}, t_{2}, x, y\right) d y d x \tag{5.4}
\end{equation*}
$$

where

$$
\Gamma\left(t_{1}, t_{2}, x, y\right)=\left|\left[\frac{u}{p}\left(y, t_{2}\right)-\frac{u}{p}\left(x, t_{2}\right)\right]^{2}-\left[\frac{u}{p}\left(y, t_{1}\right)-\frac{u}{p}\left(x, t_{1}\right)\right]^{2}\right|
$$

By Proposition 3.3 the function $u(x, t)$ is Lipschitz in time uniformly in x, thus there exists a constant κ such that

$$
\Gamma \leq 2 \kappa\left|t_{1}-t_{2}\right|\left(\frac{|u|}{p}\left(y, t_{2}\right)+\frac{|u|}{p}\left(x, t_{2}\right)+\frac{|u|}{p}\left(y, t_{1}\right)+\frac{|u|}{p}\left(x, t_{1}\right)\right) .
$$

Again using the mass conservation and the fact that p is a steady states, one have that

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} \frac{|u(y, t)|}{v(y)} d y d x=\int_{\mathbb{R}}|u(x, t)| d x \leq \int_{\mathbb{R}}\left|u_{0}(x)\right| d x,
$$

and

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)} \frac{|u(x, t)|}{v(x)} d y d x=\int_{\mathbb{R}}|u(x, t)| d x \leq \int_{\mathbb{R}}\left|u_{0}(x)\right| d x .
$$

We then deduce from (5.4) that

$$
\left|E^{\prime}\left(t_{1}\right)-E^{\prime}\left(t_{2}\right)\right| \leq \frac{8 \kappa}{c}\left|t_{1}-t_{2}\right| \int_{\mathbb{R}}\left|u_{0}(x)\right| d x
$$

Before giving the result concerning the asymptotic behavior of the solutions of (1.2), we first prove a technical lemma.

Lemma 5.2. Suppose that $w \in L^{2}(\mathbb{R})$ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{1}{g(y)}[w(x)-w(y)]^{2} d y d x=0 \tag{5.5}
\end{equation*}
$$

then there exists $\lambda \in \mathbb{R}$ such that $w(x)=\lambda$ a.e.
Proof. If (5.5) holds we have

$$
\begin{equation*}
J\left(\frac{x-y}{g(y)}\right) \frac{1}{g(y)}[w(x)-w(y)]^{2}=0 \text { a.e. in } \mathbb{R}^{2} \tag{5.6}
\end{equation*}
$$

Let I be an open interval where $g>0$.
We claim that there exists λ such that $w(x)=\lambda$ a.e. in I. Indeed, let $D=\{(x, x) / x \in$ $I\}$ note that there exist sequences $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ and $\left\{\delta_{i}\right\}_{i \in \mathbb{Z}}$ such that $x_{i}<x_{i+1}<x_{i}+\delta_{i}$,

$$
\begin{equation*}
J\left(\frac{x-y}{g(y)}\right) \frac{1}{g(y)}>0 \text { in } R_{i} \tag{5.7}
\end{equation*}
$$

where $R_{i}=\left[x_{i}-\delta_{i}, x_{i}+\delta_{i}\right]^{2}$, and $D \subset \bigcup_{i \in \mathbb{Z}} R_{i}$. By (5.7) and (5.6) we have that

$$
w(x)-w(y)=0 \text { a.e. in } R_{i},
$$

thus, for each $i \in \mathbb{Z}$ there exists λ_{i} such that $w(x)=\lambda_{i}$ in $\left[x_{i}-\delta_{i}, x_{i}+\delta_{i}\right]$. Since in the interval ($x_{i+1}-\delta_{i+1}, x_{i}+\delta_{i}$) we have

$$
\lambda_{i+1}=w(x)=\lambda_{i} \text { a.e., }
$$

the claim is proved.
Let $I_{1}=\left(z_{1}, z_{2}\right)$ and $I_{2}=\left(z_{2}, z_{3}\right)$ be two open intervals with $g>0$ in $I_{1} \cup I_{2}$ and $g\left(z_{2}\right)=0$. By the claim there exist λ_{1}, λ_{2} such that $w(x)=\lambda_{i}$ a.e. in I_{i} for $i=1,2$. The result will be proved if we show that $\lambda_{1}=\lambda_{2}$.

By (g2) there exist positive constants $C, r>0$ and $\alpha<1$ such that $g(y) \geq C\left|y-z_{2}\right|^{a}$ for all $y \in\left[z_{2}-r, z_{2}+r\right]$. We set $0<r_{0}<\min \left\{(r / 2)^{a} C / 2, r,(C / 2)^{1 / 1-\alpha}\right\}$ and $z_{2}-r_{0}<x<z_{2}$. If $y \in I_{2}$ satisfies

$$
\left(\frac{2\left(z_{2}-x\right)}{C}\right)^{\frac{1}{\alpha}}<y-z_{2}<r_{0}
$$

then

$$
z_{2}-x<C \frac{\left(y-z_{2}\right)^{\alpha}}{2}
$$

and using $r_{0}<(C / 2)^{1 / 1-\alpha}$ we obtain

$$
C \frac{\left(y-z_{2}\right)^{\alpha}}{2}<C\left(y-z_{2}\right)^{\alpha}-\left(y-z_{2}\right)<g(y)-\left(y-z_{2}\right)
$$

Hence, from the above inequalities, we have $y-x<g(y)$. Therefore, there exists $\eta>0$, $\tilde{x} \in I_{1}$ and $\tilde{y} \in I_{2}$ such that

$$
w(x)-w(y)=0 \text { a.e. for }(x, y) \in[\tilde{x}-\eta, \tilde{x}+\eta] \times[\tilde{y}-\eta, \tilde{y}+\eta] .
$$

Since $w(x)=\lambda_{1}$ a.e. in I_{1} and $w(y)=\lambda_{2}$ a.e. in I_{2} we have $\lambda_{1}=\lambda_{2}$.
We are now in position to prove the results about the asymptotic behavior of the solutions of (1.2).

Theorem 5.2.

Assume $u_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Then $u \rightarrow 0$ weakly in $L^{2}(\mathbb{R})$ as $t \rightarrow \infty$.
Proof. Let $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be a sequence such that $t_{n} \rightarrow+\infty$. We define the sequence of functions $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ by $u_{n}(x) \equiv u\left(x, t_{n}\right)$. From Proposition 3.3 the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{2}(\mathbb{R})$, therefore a subsequence, which we still call $\left\{u_{n}\right\}$, converges weakly in $L^{2}(\mathbb{R})$ to some \bar{u}.

Using Lemma 5.1 and the monotonicity of $E(t)$ we see that

$$
E^{\prime}(t) \rightarrow 0 \text { as } t \rightarrow \infty,
$$

hence

$$
E^{\prime}\left(t_{n}\right)=\int_{\mathbb{R}} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u_{n}}{p}(x)-\frac{u_{n}}{p}(y)\right]^{2} d y d x \rightarrow 0
$$

Let $\Pi_{R}:=[-R, R]^{2}$ for $R>0$, then

$$
\begin{aligned}
\int_{\Pi_{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{\bar{u}}{p}(x)-\frac{\bar{u}}{p}(y)\right]^{2} d y d x & \leq \liminf _{n \rightarrow \infty} \int_{\Pi_{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u_{n}}{p}(x)-\frac{u_{n}}{p}(y)\right]^{2} d y d x \\
& \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{2}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{u_{n}}{p}(x)-\frac{u_{n}}{p}(y)\right]^{2} d y d x \\
& \leq 0 .
\end{aligned}
$$

Whence, we have

$$
\lim _{\mathbb{R} \rightarrow+\infty} \int_{\Pi_{R}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{\bar{u}}{p}(x)-\frac{\bar{u}}{p}(y)\right]^{2} d y d x \leq 0
$$

which implies that

$$
\int_{\mathbb{R}^{2}} J\left(\frac{x-y}{g(y)}\right) \frac{p(y)}{g(y)}\left[\frac{\bar{u}}{p}(x)-\frac{\bar{u}}{p}(y)\right]^{2} d y d x=0
$$

Using Lemma 5.2 we have that $\bar{u}=\lambda p$ for some λ. Since \bar{u} is in $L^{2}(\mathbb{R})$ and p is bounded from below, we conclude that $\lambda=0$, that is $\bar{u} \equiv 0$. It follows that $u(\cdot, t)$ converges weakly to 0 in $L^{2}(\mathbb{R})$ as $t \rightarrow \infty$.

A consequence of Theorem 5.2 is the following result:

Theorem 5.3. Assume $u_{0} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, then $u(\cdot, t) \rightarrow 0$ in $L_{\text {loc }}^{q}(\mathbb{R})$ for any $1 \leq q \leq \infty$, as $t \rightarrow \infty$.

Proof: We first consider $1 \leq q<\infty$. Let Ω be a compact subset of \mathbb{R}. Using Proposition 3.3 and Theorem 5.2 we see that

$$
\begin{equation*}
0 \leq \int_{\Omega} u^{q}(t, x) \leq K_{q} \int_{\mathbb{R}} u(t, x) 1_{\Omega}(x) d x \rightarrow 0 . \tag{5.8}
\end{equation*}
$$

Consider now $q=\infty$. By hypothesis (g2), given $[-K, K]$ there exists $r>1$ and $M>0$ such that for all $x \in[-K, K]$

$$
\left\|J\left(\frac{x-\cdot}{g(\cdot)}\right) \frac{1}{g(\cdot)}\right\|_{L^{r}[-K-b, K+b]} \leq M .
$$

Define r^{*} such that $1 / r+1 / r^{*}=1$. By (5.8), given $\varepsilon>0$ there exists a $t_{0}>0$ such that

$$
\|u(\cdot, t)\|_{L^{r^{*}}[-K-b, K+b]} \leq \varepsilon \text { for } t \geq t_{0} .
$$

So if $x \in[-K, K]$ and $t \geq t_{0}$, we have

$$
\begin{aligned}
u(x, t) & =e^{-\left(t-t_{0}\right)} u\left(x, t_{0}\right)+\int_{t_{0}}^{t} e^{-(t-s)} \int_{\mathbb{R}} J\left(\frac{x-y}{g(y)}\right) \frac{u(y, s)}{g(y)} d y d s \\
& \leq e^{-\left(t-t_{0}\right)} u\left(x, t_{0}\right)+M \varepsilon .
\end{aligned}
$$

From where $\|u(\cdot, t)\|_{L^{\infty}[-K, K]} \rightarrow 0$ as $t \rightarrow \infty$.
When $u_{0} \in L^{1}(\mathbb{R})$ but not in $L^{\infty}(\mathbb{R})$ we still have the following convergence result:
Theorem 5.4. Assume $u_{0} \in L^{1}(\mathbb{R})$. Then $u(\cdot, t) \rightarrow 0$ in $L_{\text {loc }}^{1}(\mathbb{R})$.
Proof. Set Ω a compact subset of \mathbb{R}. For any $\epsilon>0$, one can always decompose $u_{0}=$ $w_{0}^{1}+w_{0}^{2}$ with $w_{0}^{1}, w_{0}^{2} \in L^{1}(\mathbb{R})$, such that $w_{0}^{1} \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and $\left\|w_{0}^{2}\right\|_{L^{1}(\mathbb{R})} \leq \varepsilon$. By linearity, $u=w^{1}+w^{2}$, where w^{1} and w^{2} are respectively the solution of (1.2) with initial condition w_{0}^{1} and w_{0}^{2}. By Theorem 5.3, $w^{1} \rightarrow 0$ in $L_{l o c}^{1}$. Therefore,

$$
\lim _{t \rightarrow+\infty} \int_{\Omega}|u| d x \leq \lim _{t \rightarrow+\infty} \int_{\Omega}\left(\left|w^{1}\right|+\left|w^{2}\right|\right) \leq\left\|w^{2}\right\|_{L^{1}(\mathbb{R})}=\left\|w_{0}^{2}\right\|_{L^{1}(\mathbb{R})}=\epsilon
$$

Acknowledgments. C. Cortázar and M. Elgueta were supported by Fondecyt Grant \# 1070944. J. Coville was supported by the Ecos-Conicyt Postdoc Program, Ecos-Conicyt \# C05E04C. S. Martínez was supported by Fondecyt Grant \# 1050754, Fondap de Matemáticas Aplicadas and Nucleus Millenium P04-069-F Information and Randomness.

REFERENCES

[1] T. Arens, S. Chandler-Wilde, K. Haseloh. Solvability and spectral properties of integral equations on the real line: II L^{p}-spaces and applications. J. Integral Equations Appl. Vol 15, no. 1, 2003.
[2] P. Bates, P. Fife, X. Ren and X. Wang. Travelling waves in a convolution model for phase transitions. Arch. Rat. Mech. Anal., 138, 105-136, (1997).
[3] P. Bates, X. Ren. Heteroclinic orbits for a higher order phase transition problem. European J. Appl. Math. 8 (1997), no. 2, 149-163.
[4] J. Carr, A. Chmaj. Uniqueness of travelling waves for nonlocal monostable equations. Proc. Amer. Math. Soc. 132 (2004), no. 8, 2433-2439
[5] E. Chasseigne, M. Chaves and J.D. Rossi. Asymptotic behavior for nonlocal diffusion equations. J. Math. Pures Appl. (9) 86 (2006), no. 3, 271-291.
[6] X Chen. Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations. Adv. Differential Equations, 2, 125-160, (1997).
[7] C. Cortázar, M. Elgueta, J. Rossi and N. Wolanski. Boundary fluxes for non-local diffusion. To appear in J. Differential Equations.
[8] C. Cortázar, M. Elgueta, J. Rossi and N. Wolanski. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems. To appear in Arch. Rat. Mech. Anal.
[9] J. Coville, L. Dupaigne. On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, To appear.
[10] J. Coville, J. Dávila, S. Martínez. Existence and uniqueness of solutions to a non-local equation with monostable nonlinearity. Preprint.
[11] P. Fife. Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in nonlinear analysis, 153-191, Springer, Berlin, 2003.
[12] V. Hutson, S. Martínez, K. Mischaikow, G. T. Vickers. The evolution of dispersal. J. Math. Biol. 47 (2003), no. 6, 483-517.
[13] M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G.T. Vickers. Non-Local Dispersal. Diff. Int. Eqns. 16 (2005), 1299-1320.
[14] C. Lederman, N. Wolanski. Singular perturbation in a nonlocal diffusion problem. Comm. Partial Differential Equations 31 (2006), no. 1-3, 195-241.
[15] M. Michel, S. Mischler, B. Perthame. General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl. (9), 84, (2005), no 9, 1235-1260.
[16] X. Wang. Metaestability and stability of patterns in a convolution model for phase transitions. Preprint.
[17] E. Zeidler. Nonlinear functional analysis and its applications I, Springer Verlag, New York, 1986.

```
    Carmen Cortázar and Manuel Elgueta
    Facultad de Matemáticas
    P. Universidad Católica DE Chile
    Vicuna Mackenna 4860
    Santiago, Chile
E-mail address: ccortaza@puc.cl,melgueta@mat.puc.cl
    JÉRÔME COVILLE
    MAx Planck InStitut FOR mathematical SCIENCE
    INSELSTRASSE 22
    D-04103 LEIPZIG
    DEUTSCHLAND
E-mail address: coville@mis.mpg.de
SALOMÉ MARTÍNEZ
    Departamento de IngenierÍa Matemática
    and Centro de Modelamiento Matemático, UMR2071 CNRS-UChile
    Universidad de Chile
    CASILla 170 Correo 3
    SANTIAGO, CHILE.
E-mail address: samartin@dim.uchile.cl
```


[^0]: Key words and phrases. integral equation, nonlocal dispersal, inhomogeneous dispersal.
 Support information for the first author.
 Support information for the second author.
 Support information for the first author.

