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A NON LOCAL INHOMOGENEOUS DISPERSAL PROCESS

C. CORTÁZAR, J. COVILLE, M. ELGUETA, AND S. MARTÍNEZ

ABSTRACT. This article in devoted to the the study of the nonlocal dispersal equation

ut(x, t) =

∫

R

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy − u(x, t) in R × [0,∞),

and its stationary counterpart. We prove global existence for the initial value problem,
and under suitable hypothesis on g and J , we prove that positive bounded stationary
solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as
t → ∞, showing that they converge locally to zero.

1. INTRODUCTION

Let K : R
N × R

N → R be a nonnegative smooth function such that
∫

RN K(x, y)dx = 1
for all y ∈ R

N . Equations of the form

(1.1) ut(x, t) =

∫

RN

K(x, y)u(y, t) dy − u(x, t),

have been widely used to model diffusion processes in the following sense. As stated
in [11, 12] if u(y, t) is thought of as a density at location y at time t and K(x, y) as the
probability distribution of jumping from location y to location x, then the rate at which
individuals from all other places are arriving to location x is

∫

RN

K(x, y)u(y, t) dy.

On the other hand the rate at which individuals are leaving location x to travel to all
other places is

−

∫

RN

K(y, x)u(x, t)dy = −u(x, t).

In the absence of external sources this implies that the density u must satisfy equation
(1.1).

Key words and phrases. integral equation, nonlocal dispersal, inhomogeneous dispersal.
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A more specific dispersal model that has been treated by several authors in different
contexts, is the case when K is a convolution kernel. More precisely they consider

K(x, y) = J(x − y)

where J : R
N → R is a nonnegative function such that

∫

RN J(y) dy = 1. See for example
[2, 6, 4, 9, 10] for the study of travelling waves, [5] for asymptotic behavior and [7] and
[8] for the case of bounded domains. If in the above model we assume that the support
of J is the unit ball of R

N centered at the origin, we have that individuals at location x
are not allowed to jump, up to probability 0, off the unit ball centered at x. We will say
in such a case that we are dealing with a process of step size one.

The purpose of this paper is to study the one dimensional spacial case with kernels
of the form

K(x, y) = J

(

x − y

g(y)

)

1

g(y)
.

In this case the dispersal is inhomogeneous and the step size, g(y), of the dispersal
depends on the position y. Therefore in this paper we will deal with the following
problem:

(1.2) ut(x, t) =

∫

R

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy − u(x, t) in R × [0,∞),

with a prescribed initial data

u(x, 0) = u0(x) on R.

An important role in the study of the behavior of solutions of (1.2) is played by the
solutions of the corresponding stationary problem, namely

(1.3) p(x) =

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)
dy in R.

The existence and properties of solutions of problems (1.2) and (1.3) depend strongly
on the function g, specially in the case where g vanishes at some places. Actually the
dependence is rather on how g vanishes than on the plain fact that it vanishes.

Throughout all of this paper we will make the following assumptions on J and g.

The function J : R → R will be a nonnegative, smooth, even function with
∫

R
J(r) dr =

1. We shall assume also that the support of J is [−1, 1] which means J(x) > 0 if and only
if x ∈ (−1, 1).

For the function g we assume:

(g1) g : R → R is continuous and 0 ≤ g ≤ b < ∞ in R.

(g2) The set {x ∈ R / g(x) = 0} is discrete. If g(x̄) = 0 then there exist r > 0, C > 0 and
0 < α < 1 such that g(x) ≥ C|x − x̄|α for all x ∈ [x̄ − r, x̄ + r].

Under these basic hypotheses we prove that (1.2) has a globally defined mass pre-
serving solution for any given u0 ∈ L1. Moreover even though g can vanish at some
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points, these solutions have an infinite speed of propagation in the sense that if u0 ≥ 0
and u0 6= 0, then u(x, 0) > 0 for all x and all t > 0.

In order to study the asymptotic behavior of solutions of (1.2) we are lead to the anal-
ysis of equation (1.3). In this direction we seek non negative solutions that play the role
of the constant solutions when g ≡ C. We will prove, under a slightly strengthened
version of (g2), the existence of bounded positive solutions that are also bounded away
from 0. These stationary solutions permit us to define, following ideas of [15], a Lia-
punov’s functional that allow us to prove the local convergence to zero of solutions of
(1.2).

Solutions of (1.3) will be obtained as the limit as K → ∞ of solutions of the following,
so called, Neumann stationary problem:

(1.4)
∫ K

−K
J

(

x−y
g(y)

)

p(y)
g(y)

dy =
∫ K

−K
J

(

x−y
g(x)

)

p(x)
g(x)

dy, x ∈ [−K, K].

A key tool in the passage to the limit is the surprising fact that if p is a bounded
solution of (1.3) then the quantity

W (x) =

∫ b

0

∫ x+w

x−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

is constant. This identity implies a Harnack’s type inequality which provides some
estimates needed in the proof.

For the sake of completeness we also study the corresponding evolution Neumann
problem namely, for x ∈ [−K, K] and t ≥ 0 we consider

(1.5)

{

ut(x, t) =
∫ K

−K
J

(

x−y
g(y)

)

u(y,t)
g(y)

dy −
∫ K

−K
J

(

x−y
g(x)

)

u(x,t)
g(x)

dy,

u(0, x) = u0(x),

and its relation with (1.4).
We should mention that the results we are obtaining, such as the infinite speed of

propagation and the existence of bounded steady states, are strongly dependent on the
vanishing profile of g, which is expressed in hypothesis (g2). For example, if we change
(g2) by g(y) ≤ C|y|α with α > 1, then the existence of a barrier prevents an infinite
speed of propagation. We will pursue the study of (1.2) with g with this profile in a
future work.

This paper is organized as follows. Section 2 is devoted to the Neumann type prob-
lems, that is (1.5) and (1.4). In section 3 we study problem (1.2). Problem (1.3) is studied
in section 4 and in section 5 we deal with the asymptotic behavior of solutions of (1.2).
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2. THE NEUMANN PROBLEM

We note that for x ∈ [−K,K] and t ≥ 0, problem (1.5) can be written as

(2.6)

{

ut(x, t) = (T0u)(x, t) − α(x)u(x, t),
u(x, 0) = u0(x),

where

T0u(x) =

∫ K

−K

J

(

x − y

g(y)

)

u(y)

g(y)
dy,

and

α(x) =











∫ K

−K
J

(

x−y
g(x)

)

1
g(x)

dy if g(x) 6= 0,

1 if g(x) = 0 and x 6= −K, K,
1
2

if g(x) = 0 and x = −K or x = K.

It is easy to check that there exists c0 > 0 such that α(x) > c0 for all x ∈ [−K,K] and,
according to our assumptions, α is continuous in [−K,K]. Moreover by (g2)

(2.7)

∫ K

−K

1

g(y)
dy < ∞.

For existence and uniqueness of solutions of (2.6) we have the following theorem
whose proof is standard and will be only sketched.

Theorem 2.1. Given u0 ∈ L1[−K, K] there exists a unique solution u ∈ C1(R, L1[−K, K]) of
(2.6). The solution u is mass preserving, that is

∫ K

−K

u(x, t) dx =

∫ K

−K

u0(x) dx,

for all t > 0. Moreover, if u0 ∈ C([−K, K]) then u ∈ C1(R, C([−K,K])).

Proof. The operator T0 maps L1[−K,K] into L1[−K,K] and is continuous. By stan-
dard semigroup theory, for any u0 ∈ L1[−K,K] the initial value problem has a unique
solution u ∈ C1(R, L1[−K,K]) which satisfies the following integral equation

(2.8) u(x, t) = u(x, t0)e
α(x)(t0−t) +

∫ t

t0

eα(x)(s−t)

∫ K

−K

J

(

x − y

g(y)

)

u(y, s)

g(y)
dy ds

a.e., for all t0 ≤ t. The fact that the integral is preserved follows by integration in the
equation and the last statement about continuity is a consequence of (2.8). ¤

Our next result shows that, even if g vanishes at some points, hypothesis (g2) guar-
antees that the process has infinite speed of propagation.

Proposition 2.1. If u0 ∈ L1[−K, K] is nonnegative a.e. in [−K, K], then u(x, t) ≥ 0 a.e. in
[−K,K] for each t ≥ 0. If in addition u0 6≡ 0, then u(x, t) > 0 a.e. in [−K,K] for all t > 0.
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Proof. To prove that u(x, t) is nonnegative we observe that, according to (2.8), for a
small interval [0, t] the solution u can be obtained as the unique fixed point of a map
which leaves invariant the positive cone in L1[−K, K] .

Suppose now that u0 ≥ 0 a.e. with u0 > 0 in a set of positive measure. Observe that
by (2.8) if u(x, s) > 0 in E0 ⊂ [−K, K] with |E0| > 0 then u(x, t) > 0 in E0 for t ≥ s.

Let x1 < ... < xN be the ordered set of zeroes of g in [−K, K]. We set r > 0, 0 < α < 1,
C > 0 such that g(x) ≥ C|x− x̄|α for all x ∈ [xi − r, xi + r]. Redefining r > 0 if necessary
in (g2), we assume that C(r/2)α > 3r and that |{x ∈ Z / u0(x) > 0}| > 0, where
Z = [−K,K] \ ∪N

i=1(xi − r, xi + r). We denote δ = min{g(y) / y ∈ [−K, K] \ ∪N
i=1(xi −

r/2, xi + r/2)}.
Consider an interval I = [ã, b̃] ⊂ Z such that 0 < b̃− ã ≤ δ/2, |I∩{x ∈ [−K,K] u0(x) >

0}| > 0 and I ⊂ [xi + r, xi+1 − r] for some i. By the definition of δ we have that
∫ K

−K

J

(

x − y

g(y)

)

u0(y)

g(y)
dy > 0 a.e. in [ã − δ/2, b̃ + δ/2],

thus from (2.8) we have that u(t, x) > 0 a.e. in [ã − δ/2, b̃ + δ/2] for all t > 0. Repeating
this argument, we obtain that u(t, x) > 0 a.e. in [xi+r/2, xi+1−r/2] for all t > 0. Observe
that if y ∈ [xi + r/2, xi + r] then g(y) ≥ C|y − xi|

α ≥ 3r. Then if xi − r ≤ x ≤ xi+1 + r we
have that

∫ K

−K

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy > 0 a.e. for t > 0,

thus u(t, x) > 0 a.e. in [xi − 2r, xi+1 + 2r] for all t > 0. Iterating the above procedure we
obtain the desired result. ¤

Remark 2.1. If u0 ∈ C([−K, K]) is non negative and nontrivial, then u(x, t) > 0 for all t > 0
and x ∈ [−K, K].

In order to study the asymptotic behavior as t → ∞ of the positive solutions of (1.5),
we will first establish the existence of a positive continuous steady state, that is a solu-
tion of (1.4). This existence result will be a consequence of Krein-Rutman’s theorem, see
[17], applied to the operator T : C([−K, K]) → C([−K, K]) defined by

Tu(x) =
1

α(x)
T0u(x).

The next lemmas will be used in the proof. The first one states the strong positivity of T
and as its proof, which is similar to the one of Proposition 2.1, will be omitted .

Lemma 2.1. Let u ∈ C([−K,K]) be such that u ≥ 0 and u 6= 0. Then there exists n ∈ N such
that (T nu)(x) > 0 in [−K,K].

Lemma 2.2. The family

{T0f(x) / f : [−K, K] → R, ||f ||∞ ≤ 1}

is equicontinuous.
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Proof. Let ε > 0. By condition (g2) we get that there exists δ > 0 such that
∫

[−K,K]
g(y)<δ

1

g(y)
dy <

ε

4||J ||∞
.

Since J is uniformly continuous in [−1, 1] there exists η > 0 such that if |w − w̄| < η/δ
then |J(w) − J(w̄)| < εδ/2(b − a). Then, if |x − z| < η we have that

|T0f(x) − T0f(z)| ≤ 2

∫

[−K,K]
g(y)<δ

||J ||∞
g(y)

dy

+
1

δ

∫

[−K,K]
g(y)≥δ

∣

∣

∣

∣

J

(

x − y

g(y)

)

− J

(

z − y

g(y)

)
∣

∣

∣

∣

dy

≤ ε,

hence, T0(B(0, 1)) is equicontinuous.¤
As a consequence of this lemma we have:

Lemma 2.3. T : C([−K, K]) → C([−K,K]) is a compact operator.

Now we are ready to give our existence result for steady states.

Theorem 2.2. There exists a unique positive solution u∗ of (1.4) with
∫ K

−K
u∗dx = 1.

Proof. Lemma 2.1 and Lemma 2.3 guarantee, via Krein-Rutman’s Theorem, that there

exists λ > 0 and a unique positive solution u∗ of Tu∗ = λu∗, with
∫ K

−K
u∗dx = 1. Note

that u∗ satisfies

λ

∫ K

−K

α(x)u(x)dx =

∫ K

−K

∫ K

−K

J

(

x − y

g(y)

)

u(y)

g(y)
dydx =

∫ K

−K

α(y)u(y)dy,

hence λ = 1 and u∗ is the desired solution. ¤

We will study the asymptotic behavior of the solutions of (1.5) as t → ∞. We start
with the case u0 ∈ C([−K, K]).

Theorem 2.3. There exists γ > 0 such that if u0 ∈ C([−K,K]), u0 ≥ 0 and
∫ K

−K
u0(x)dx = C,

then the solution u(x, t) of (1.5) with initial condition u0(x) satisfies

||u(·, t) − Cu∗(·)||∞ ≤ e−γt||u0 − Cu∗||∞ for t > 0.

Proof. Let v0 ∈ C([−K,K]) with
∫ K

−K
v0dx = 0 and denote v(x, t) the solution of

(1.5) with initial data v0. By direct integration in the equation of (1.5) we obtain that
∫ K

−K
v(t, x)dx =

∫ K

−K
v0dx = 0 for all t > 0. Set X = {f ∈ C([−K, K]) /

∫ K

−K
fdx = 0},

then T0−α(x)I : X → X , and by standard semigroup theory our result will be proved if
we show that the spectrum σX(T0−α(x)I) is contained in the open half plane {Re z < 0}.



A NON LOCAL INHOMOGENEOUS DISPERSAL PROCESS 7

Suppose that µ = α̃ + iβ̃, with α̃ ≥ 0, belongs to σX(T0 − α(x)I). By Fredholm’s Al-
ternative theorem µ is an eigenvalue, thus there exists a nontrivial v ∈ X such that
T0v − α(x)v = µv. Using Krein-Rutman’s theorem we obtain that µ 6= 0, since 1 is a
simple eigenvalue of T with positive eigenfunction.

Let w = w1 + iw2 ∈ X be an eigenfunction associated to µ. Then for some γ > 0 we
have that γu∗ + w1 ≥ 0 in [−K, K], γu∗ + w1 6≡ 0 and γu∗(x0) + w1(x0) = 0 for some
x0 ∈ [−K,K]. Set u(t) the solution of (1.5) with initial value γu∗ + w1 which is given

by u(t) = γu∗ + eα̃t Re (eiβ̃tw). If α̃ > 0, then for large t > 0 we have that there exists
x ∈ [−K, K] such that u(x, t) < 0 contradicting Proposition 2.1. When α̃ = 0 we have
that u(x0,

2π
β̃

) = 0 which also contradicts Proposition 2.1. ¤

In the case u0 ∈ L1[−K,K] with u0 ≥ 0 a.e. the asymptotic behavior of u(·, t) is a
consequence of Theorem 2.3 and the following lemma.

Lemma 2.4. Let u be a solution of (1.5), then

||u(·, t)||L1[−K,K] = ||u0||L1[−K,K] for all t ≥ 0.

Proof. Write u0 = h+
0 − h−

0 where h+
0 = max(u0, 0) and h−

0 = −min(u0, 0) and let h+

and h− be the solutions of (1.5) with initial conditions h+
0 and h−

0 respectively. Now by
linearity we have

u(x, t) = h+(x, t) − h−(x, t).

Hence

|u(x, t)| = h+(x, t) + h−(x, t),

and then
∫ K

−K

|u(x, t)|dx =

∫ K

−K

h+(x, t)dx +

∫ K

−K

h−(x, t)dx

=

∫ K

−K

h+
0 (x)dx +

∫ K

−K

h−
0 (x)dx =

∫ K

−K

|u0(x)|dx. ¤

Theorem 2.4. Let u0 ∈ L1(−K, K) with u0 ≥ 0 a.e. and let u(x, t) be the solution of (1.5)
with initial data u0, then

||u(·, t) − Cu∗(·)||L1[−K,K] → 0,

as t → ∞, where C =
∫ K

−K
u0(x)dx.

Proof. Let ε > 0. Pick uε
0 ∈ C([−K, K]) such that uε

0 ≥ 0,
∫ K

−K
uε

0(x)dx = C and
||u0 − uε

0||L1[−K,K] ≤ ε. Let uε be the solution of (1.5) with initial condition uε
0. One has

||u(·, t) − Cu∗(·)||L1 ≤ ||u(·, t) − uε(·)||L1 + ||uε(·, t) − Cu∗(·)||L1 ,

and the proposition follows from Lemma 2.4 and Theorem 2.3. ¤
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3. THE CAUCHY PROBLEM

In this section we establish some basic facts about solutions of (1.2).

We start by defining the operator

Lu(x, t) =

∫

R

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy.

Proposition 3.1. The operator L maps continuously L1(R) into L1(R) and
∫

R

Lv =

∫

R

v.

Moreover, if in addition

(g3) there is a3 > 0 and 0 < β < 1 such that
∫

g(y)<α

J

(

x − y

g(y)

)

1

g(y)
dy < β,

holds, then L is a continuous map from L∞(R) to L∞(R).

Proof. Observe that by Fubini’s theorem we have
∫

R

∫

R

J

(

x − y

g(y)

)

v(y)

g(y)
dy dx =

∫

R

v(y) dy.

This implies that L is a continuous operator from L1(R) to L1(R) and
∫

R
Lv =

∫

R
v.

Now, if v ∈ L∞ and (g3) holds we have

|Lv(x)| ≤

∫

g(y)<a3

J

(

x − y

g(y)

)

|v(y)|

g(y)
dy +

∫

g(y)≥a3

J

(

x − y

g(y)

)

|v(y)|

g(y)
dy

≤ ||v||∞β +
||v||∞

a3

∫

{g(y)≥a3}∩[x−b,x+b]

J

(

x − y

g(y)

)

dy

≤ ||v||∞β +
2b||J ||∞

a3

||v||∞.

¤

Theorem 3.1. Given u0 ∈ L1(R) there exists a unique solution u ∈ C1(R, L1(R)) of (1.2). The
solution u conserves the total mass, that is

∫

R

u(x, t)dx =

∫

R

u0(x)dx

for all t > 0. Moreover, if (g3) holds and u0 ∈ L∞(R) ∩ L1(R) then u(·, t) ∈ L∞(R) ∩ L1(R).
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Proof. The result is a direct consequence of Proposition 3.1 and standard results from
semigroup theory.¤

It is convenient at this point to introduce the integral form of the initial value problem
(1.2),

(3.1) u(x, t) = u(x, t0)e
−(t−t0) +

∫ t

t0

e−(t−s)

∫

R

J

(

x − y

g(y)

)

u(y, s)

g(y)
dy ds.

Our next result states that this problem has infinite speed of propagation.

Proposition 3.2. If u0 ∈ L1(R) is nonnegative a.e., then u(x, t) ≥ 0 a.e. in R for each t ≥ 0. If
in addition u0 6≡ 0, then u(x, t) > 0 a.e. in R for all t > 0.

Proof. It follows by the same arguments as the proof of Proposition 2.1. ¤

Proposition 3.3. Suppose that (g3) holds and u0 ∈ L1(R) ∩ L∞(R), then

(i) There exists a constant K∞(u0) such that for all t ∈ R
+,

||u(·, t)||∞ ≤ K∞.

(ii) For any p ≥ 1, there exists a constant Kp(u0), such that ‖u‖Lp(R) ≤ Kp.
(iii) u(x, t) is globally Lipschitz in time, uniformly in space that is, there exists a constant

κ(u0) such that

||u(·, t) − u(·, s)||∞ ≤ κ|t − s|,

for all t, s ≥ 0.

Proof. Suppose that for some sequence tn → ∞ we have ||u(·, tn)||∞ → ∞. Then we can
find a sequence Tn → ∞ such that ||u(·, Tn)||∞ → ∞ and

(3.2) sup
0≤t≤Tn

||u(·, t)||∞ = ||u(·, Tn)||∞.

Observe that the solution u satisfies

(3.3)

(etu)t(x, t) = et

∫

g(y)<a3

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy

+et

∫

g(y)≥a3

J

(

x − y

g(y)

)

u(y, t)

g(y)
dy.

Integrating this equality between 0 and Tn, and using (3.2) we obtain

|u(x, Tn)| ≤ e−Tn||u0||∞ + β||u(·, Tn)||∞ +
1

a3

||J ||∞||u0||L1 , a.e.,

which contradicts the fact that ||u(·, Tn)||∞ → ∞ and proves (i).
Since ||u(·, t)||∞ ≤ K∞ and (1.2) is mass preserving (ii) follows easily by interpolation.
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To prove (iii) we integrate equation (1.2) to obtain

|u(x, t2) − u(x, t1)| ≤

∫ t2

t1

[
∫

g(y)<a3

J

(

x − y

g(y)

)

K∞

g(y)
dy

+

∫

g(y)≥a3

J

(

x − y

g(y)

)

K∞

g(y)
dy + K∞

]

dt,

≤ |t1 − t2|K∞

(

β +
||J ||∞

a3

+ 1

)

,

which concludes the proof. ¤

4. STEADY STATES FOR THE WHOLE REAL LINE.

In this section we will establish the existence of positive solutions of (1.3). As a first
step we will construct a bounded positive solution of (1.3) under the extra assumption
that g is constant near infinity.

Lemma 4.1. Assume there exists N > 0 and positive constants c1 and c2 such that g(x) ≡ c1 if
x ≥ N and g(x) ≡ c2 if x ≤ −N . Then (1.3) has a non trivial bounded solution.

Proof. We will obtain the solution as the limit of a sequence of solutions of problem (1.4)
as K → ∞. To do this fix K > N + b, where b is an upper bound for the function g, and
let pK be a solution of (1.5) in the interval [−K, K] normalized such that ||pK ||∞ = 1.

We claim that each pK : [−K,K] → R attains its maximum in the sub interval [−(N +
b), N + b]. Indeed, let x0 ∈ [−K, K] be such that

pK(x0) = max
x∈[−K,K]

pK(x) = 1.

Assume that x0 ∈ [N + b, K] and consider the set

A = {x ∈ [N + b,K] / pk(x) = 1}.

The set A is clearly closed. On the other hand if x1 ∈ A one has

(4.1) pK(x1) =
1

H(x1)

∫ K

−K

J

(

x1 − y

c1

)

pK(y)

c1

dy

where

H(x1) =

∫ K

−K

J

(

x1 − y

c1

)

1

c1

dy.

Since the operator on the right hand side of (4.1) is an average operator we obtain that
pK(y) = 1 for all y ∈ [x1−c1, x1+c1]∩ [N +b,K]. Hence A is also open in [N +b,K]. Since
it is not empty we have A = [N + b,K]. In particular M = pK(N + b) and the maximum
is also attained at [−(N + b), N + b]. A similar argument proves that if the maximum is
attained at a point in [−K,−(N + b)] then it is also attained at the point −(N + b). Hence
we have proved that pK always attains its maximum in the sub interval [−(N +b), N +b]
as desired.
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Arguing as in Lemma 2.2, the family pK is equicontinuous in any fixed bounded in-
terval. Thus, using Ascoli-Arzela’s theorem and a standard diagonal procedure we can
construct a sequence Kn with Kn → ∞ as n → ∞ and such that pKn

converges uni-
formly, to a continuous function p, in compact subsets of R as n → ∞. It is clear that p
is a nonnegative solution of (1.3).

Finally since pKn
(xKn

) = 1 for some xKn
∈ [−(N + b), N + b] it follows that p is non

trivial. ¤

The following lemma, that will be used later, is of interest on itself.

Lemma 4.2. For any bounded solution of p of (1.3) one has
∫ b

0

∫ D+w

D−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

=

∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

for any C, D ∈ R.

Proof. Let p be a bounded solution of (1.3). Pick M and N such that

M + 2b ≤ N.

Integrating (1.3) we get

∫ N

M

p(x)dx =

∫ N

M

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)
dy dx

=

∫ N+b

M−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

=

∫ M+b

M−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

+

∫ N−b

M+b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

+

∫ N+b

N−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy.

But since g ≤ b and
∫

R
J(z)dz = 1 one has

∫ N−b

M+b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy =

∫ N−b

M+b

p(y)dy

and hence
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∫ M+b

M

p(x)dx +

∫ N

N−b

p(x)dx

=

∫ M+b

M−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dxdy +

∫ N+b

N−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dxdy.

Making, for fixed y, the change of variables z = x−y
g(y)

and using the fact that M+2b ≤ N

we have
∫ N+b

N−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

=

∫ N+b

N−b

p(y)

∫
N−y
g(y)

M−y
g(y)

J (z) dz dy

=

∫ N+b

N−b

p(y)

∫
N−y
g(y)

−1

J (z) dz dy,

which can be written as

∫ N+b

N−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

=

∫ N

N−b

p(y)

∫
N−y
g(y)

−1

J (z) dzdy +

∫ N+b

N

p(y)

∫
N−y
g(y)

−1

J (z) dz dy.

Similarly we have

∫ M+b

M−b

∫ N

M

J

(

x − y

g(y)

)

p(y)

g(y)
dx dy

=

∫ M

M−b

p(y)

∫ 1

M−y
g(y)

J (z) dz dy +

∫ M+b

M

p(y)

∫ 1

M−y
g(y)

J (z) dz dy.

Setting

AM =

∫ M+b

M

p(y)dy −

∫ M

M−b

p(y)

∫ 1

M−y
g(y)

J (z) dz dy(4.2)

−

∫ M+b

M

p(y)

∫ 1

M−y
g(y)

J (z) dz dy,

and
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BN = −

∫ N

N−b

p(y)dy +

∫ N

N−b

p(y)

∫
N−y
g(y)

−1

J (z) dz dy

+

∫ N+b

N

p(y)

∫
N−y
g(y)

−1

J (z) dz dy,

we have that AM = BN provided that M+2b ≤ N . This implies AM = BN ≡ K for all M, N ∈
R.

Let C, D ∈ R with C < D. Integrating (4.2) with respect to M from C to D we have

(D − C)K =

∫ D

C

∫ M+b

M

p(y) dy dM(4.3)

−

∫ D

C

∫ M

M−b

p(y)

∫ 1

M−y
g(y)

J (z) dz dy dM

−

∫ D

C

∫ M+b

M

p(y)

∫ 1

M−y
g(y)

J (z) dz dy dM.

But
∫ D

C

∫ M+b

M

p(y) dy dM =

∫ b

0

∫ D

C

p(w + M) dM dw(4.4)

=

∫ b

0

∫ D−2w

C

p(w + M) dM dw

+

∫ b

0

∫ D

D−2w

p(w + M) dM dw

also
∫ D

C

∫ M+b

M

p(y)

∫ 1

M−y
g(y)

J (z) dz dy dM(4.5)

=

∫ D

C

∫ b

0

p(M + w)

∫ 1

−w
g(M+s)

J (z) dz dw dM

=

∫ b

0

∫ D

C

p(M + w)

∫ 1

−w
g(M+w)

J (z) dz dM dw

=

∫ b

0

∫ D−2w

C

p(M + w)

∫ 1

−w
g(M+w)

J (z) dz dM dw

+

∫ b

0

∫ D

D−2w

p(M + w)

∫ 1

−w
g(M+w)

J (z) dz dM dw

and
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∫ D

C

∫ M

M−b

p(y)

∫ 1

M−y
g(y)

J (z) dz dy dM(4.6)

=

∫ D

C

∫ b

0

p(M − b + s)

∫ 1

b−s
g(M−b+s)

J (z) dz ds dM

=

∫ b

0

∫ D

C

p(M − b + s)

∫ 1

b−s
g(M−b+s)

J (z) dz dM ds

=

∫ b

0

∫ D

C

p(M − w)

∫ 1

w
g(M−w)

J (z) dz dM dw

=

∫ b

0

∫ D−2w

C−2w

p(R + w)

∫ 1

w
g(R+w)

J (z) dz dR dw

=

∫ b

0

∫ C

C−2w

p(R + w)

∫ 1

w
g(R+w)

J (z) dz dR dw

+

∫ b

0

∫ D−2w

C

p(R + w)

∫ 1

w
g(R+w)

J (z) dz dR dw.

Since by the symmetry of J one has

∫ 1

−w
g(M+w)

J (z) dz +

∫ 1

w
g(M+w)

J (z) dz = 1,

substituting the result of (4.4), (4.5) and (4.6) in (4.3) one gets

(D − C)K =

∫ b

0

∫ D

D−2w

p(M + w)

∫ −w
g(M+w)

−1

J (z) dz dM dw(4.7)

−

∫ b

0

∫ C

C−2w

p(M + w)

∫ 1

w
g(M+w)

J (z) dz dM dw.

Because we have assumed p bounded, the right hand side of (4.7) is bounded inde-
pendently of the choice of C and D. This implies K = 0 and hence

∫ b

0

∫ D

D−2w

p(M + w)

∫ −w
g(M+w)

−1

J (z) dz dM dw(4.8)

=

∫ b

0

∫ C

C−2w

p(M + w)

∫ 1

w
g(M+w)

J (z) dz dM dw
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for all C and D provided that C ≤ D. Or, what is the same,
∫ b

0

∫ D+w

D−w

p(s)

∫ −w
g(s)

−1

J (z) dz ds dw(4.9)

=

∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

for all C and D provided that C ≤ D.

The lemma follows since the symmetry of J implies that
∫

−w
g(s)

−1 J (z) dz =
∫ 1

w
g(s)

J (z) dz.

¤

As a consequence of Lemma 4.2 we have the following Harnack’s type inequality.

Lemma 4.3. Let p be a nonnegative bounded solution of (1.3) and M > 0 be so that g(−M) 6= 0
and g(M) 6= 0. Then there exists a constant A > 0, depending on M , J , b and g in [−M −
b,M + b], such that for any x ∈ [−M, M ] and any D ∈ R we have

p(x) ≤ A

∫ D+b

D−b

p(s)ds.

Proof. During this proof A will denote a constant depending on M , J and b that can
change from step to step.

Let x0 ∈ [−M, M ] be such that

p(x0) = max
x∈[−M,M ]

p(x).

For a fixed a such that 0 < a < b define

Z = {y ∈ [−M − b,M + b] / g(y) < a and |x0 − y| ≤ g(y)}

and
W = {y ∈ [−M − b,M + b] / g(y) ≥ a and |x0 − y| ≤ g(y)}.

Then

p(x0) =

∫

Z

J

(

x0 − y

g(y)

)

p(y)

g(y)
dy +

∫

W

J

(

x0 − y

g(y)

)

p(y)

g(y)
dy.

Since g(−M) 6= 0 and g(M) 6= 0 we can make a smaller if necessary to guarantee that

Z ⊂ [−M, M ].

In this case we have

p(x0) ≤ p(x0)

∫

Z

J

(

x0 − y

g(y)

)

1

g(y)
dy +

||J ||∞
a

∫

W

p(y)dy,

and, according to our hypotheses on g, we can take a smaller if necessary to have the
existence of β̄ < 1 such that

∫

Z

J

(

x0 − y

g(y)

)

1

g(y)
dy < β̄.
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So

(1 − β̄) p(x0) ≤
||J ||∞

a

∫

W

p(y)dy

from where

(4.10) p(x0) ≤ A

∫

W

p(y)dy.

Now fix x1 ∈ [−M, M ]. Using Lemma 4.2 for any C ∈ [−M, M ] we obtain

∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw(4.11)

≥

∫ a
2

a
4

∫ x1+w

x1−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

≥

∫ a
2

a
4

∫

[x1−w, x1+w]∩W

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

≥

∫ a
2

a
4

∫

[x1−w, x1+w]∩W

p(s)

∫ 1

1
2

J (z) dz ds dw

≥ A

∫ a
2

a
4

∫

[x1−w, x1+w]∩W

p(s) ds dw

≥ A
a

4

∫

[x1−
a
4
, x1+a

4
]∩W

p(s)ds.

Observe that there exists an integer N , depending on a and b, such that W can be
covered by N intervals of length a

2
in the form

W ⊂ ∪N
i=1

[

xi −
a

4
, xi +

a

4

]

.

This fact implies the existence of A such that

∫

W

p(s)ds ≤ A

∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw,(4.12)

and using (4.10) we have

p(x0) ≤ A

∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw.(4.13)
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On the other hand,
∫ b

0

∫ C+w

C−w

p(s)

∫ 1

w
g(s)

J (z) dz ds dw

≤

∫ b

0

∫ C+w

C−w

p(s) ds dw(4.14)

≤ b

∫ C+b

C−b

p(s)ds

which together with (4.13) proves the lemma. ¤

We are now in a position to prove the existence of nontrivial solutions of (1.3). Namely

Theorem 4.1. Problem (1.3) has a non trivial non negative solution.

Proof. Let Rn, Sn be sequences such that g(Rn) 6= 0, g(Sn) 6= 0 and lim
n→∞

Rn = ∞,

lim
n→∞

Sn = −∞. Define gn(x) = g(x) if x ∈ [Sn, Rn], gn(x) = g(Rn) if x ∈ [Rn,∞) and

gn(x) = g(Sn) if x ∈ (−∞, Sn].
Denote by pn the bounded solution of (1.3), with g ≡ gn, provided by Lemma 4.1

satisfying
∫ b

−b

pn(t)dt = 1.

Fix M > 0 such that g(M) > 0 and g(−M) > 0. By Lemma 4.3 there exists a constant
A, independent of n, such that

max
x∈[−M,M ]

pn ≤ A for all n.

Proceeding as in Lemma 2.2 this bound implies that {pn}n∈N restricted to [−M,M ]
is equicontinuous. A standard diagonalization argument provides a subsequence, still
denoted by pn, which converges uniformly on compact subsets of R to a nontrivial con-
tinuous function p.

Letting n → ∞ in the equation

pn(x) =

∫

R

J

(

x − y

gn(y)

)

pn(y)

gn(y)
dy,

we obtain that p solves (1.3) as desired. ¤

In the next result we show that a necessary condition to have bounded solutions of
(1.3) is that g(x) cannot converge to zero when x → ∞ or x → −∞.

Theorem 4.2. Suppose that g(x) → 0 as x → ∞ or x → −∞. Then all nontrivial non negative
solutions of (1.3) are unbounded.
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Proof. We proceed by contradiction. Suppose that p is a nontrivial nonnegative bounded
solution of (1.3) and, without loss of generality, g(x) → 0 as x → ∞.

Since p is nontrivial, it is easy to see that there exists c1 > 0, x0 ∈ R such that

(4.15)

∫ b

0

∫ x0+w

x0−w

p(s)

∫ 1

w
g(s)

J(z) dz ds dw > c1 > 0.

As g(x) → 0 as x → ∞ we have that for any δ > 0 there exists M > 0 such that g(x) < δ
for all x ≥ M , thus if x ≥ M + δ we have

∫ b

0

∫ x+w

x−w

p(s)

∫ 1

w
g(s)

J(z)dzdsdw ≤

∫ δ

0

∫ x+δ

x−δ

p(s)dsdw ≤ 2||p||∞δ2.

By virtue of Lemma 4.2, it follows that

c1 <

∫ b

0

∫ x0+w

x0−w

p(s)

∫ 1

w
g(s)

J(z) dz ds dw ≤ 2‖p‖∞δ2.

Hence, we contradict (4.15) by taking δ → 0. ¤

The following two theorems provide sufficient conditions on g that guarantee upper
and lower bounds for the solutions of (1.3).

Theorem 4.3. Assume that g satisfies (g3) and

(g4) lim supx→∞ g(x) > 0, lim supx→−∞ g(x) > 0.

Then equation (1.3) admits a positive bounded solution.

Proof. By hypothesis there exists a constant a4 > 0 and sequences Rn → ∞ and Sn →
−∞ such that g(Sn) > a4 and g(Rn) > a4 for all n. As in the proof of Theorem 4.1, we
define gn(x) = g(x) if x ∈ [Sn, Rn], gn(x) = g(Rn) if x ∈ [Rn,∞) and gn(x) = g(Sn) if
x ∈ (−∞, Sn], and we let pn be the bounded solution of (1.3) with g ≡ gn satisfying

∫ b

−b

pn(t)dt = 1.

Arguing exactly as in the proof of Theorem 4.1, the result will be proved if we show that
there exists C > 0 such that ||pn||∞ ≤ C for all n. To do this, choose a < min{a3, a4}. For
any x0 ∈ R we have

pn(x0) =

∫

gn(y)<a

J

(

x0 − y

gn(y)

)

pn(y)

gn(y)
dy +

∫

gn(y)≥a

J

(

x0 − y

gn(y)

)

pn(y)

gn(y)
dy,

therefore

(4.16) p(x0) ≤ ||pn||∞β +
||J ||∞

a

∫

[x0−b, x0+b]
g(y)≥a

pn(y)dy,
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since gn(y) = g(y) whenever gn(y) ≤ a. Proceeding as in (4.11) we have that for any
x1 ∈ R

∫ b

0

∫ w

−w

pn(s)

∫ 1

w
gn(s)

J(z) dz ds dw ≥
a

4

∫ 1

1
2

J(z)dz

∫

[x1−
a
4 , x1+ a

4 ]

g(y)≥a

pn(s)ds.

Since
∫ b

−b
pn(s)ds = 1 and the interval [x0− b, x0 + b] can be covered by a finite number of

intervals of the form [x1 −a, x1 +a], we can use the above inequality and (4.16) to obtain

pn(x0) ≤ β||pn||∞ + C(a, b), for all n.

Recalling that β < 1, this inequality gives the desired result.¤

Theorem 4.4. Assume that g satisfies:

(g5) There exists constants 0 < γ < 1 and C5 > 0 such that

|{x ∈ I / g(x) ≤ a}| ≤ C5a
1
γ

for any interval I with |I| ≤ 2b.

Then for any non negative nontrivial bounded solution p of (1.3) there exists d > 0 such that

p(x) ≥ d for all x ∈ R.

Remark 4.1. We observe that the hypothesis (g5) implies (g3) and (g4). Therefore if p is the
solution of (1.3) constructed in Theorem 4.3 we have that ||p||∞ < ∞.

Proof of Theorem 4.4. By Lemma 4.2 there exists a positive constant P such that
∫ b

0

∫ D+b

D−b

p(s)

∫

w
g(s)

J(z) dz ds dw = P for all D ∈ R.

Hence for a fixed 0 < a0 < b we have

P =

∫ b

0

∫

[D−b, D+b]
g(y)<a0

p(s)

∫

w
g(s)

J(z) dz ds dw

+

∫ b

0

∫

[D−b, D+b]
g(y)≥a0

p(s)

∫

w
g(s)

J(z) dz ds dw

= I1 + I2.

If g(s) < a0 and w ≥ a0 then w/g(s) > 1 from where we obtain

I1 ≤

∫ a0

0

∫ D+a0

D−a0

p(s) ds dw ≤ 2a2
0||p||∞.
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Therefore if a0 ≤
(

P
4||p||∞

)1/2

we have

(4.17)

∫

[D−b, D+b]
g(y)≥a0

p(s)ds ≥
P

2b
.

On the other hand, if x1 ∈ R and a1 > 0 then

p(x1) ≥

∫

g(y)≥a1

J

(

x1 − y

g(y)

)

p(y)

g(y)
dy

≥

∫

[x1−
a1
2 , x1+

a1
2 ]

g(y)≥a1

J

(

x1 − y

g(y)

)

p(y)

g(y)
dy

≥
m

b

∫

[x1−
a1
2 , x1+

a1
2 ]

g(y)≥a1

p(y)dy,

where m = min|z|≤1/2 J(z). Thus we obtain

(4.18)

∫

[x1−
a1
2 , x1+

a1
2 ]

g(y)≥a1

p(y)dy ≤
b

m
p(x1),

from where in particular

(4.19)

∫

[x1+
a1
4 , x1+

a1
2 ]

g(y)≥a1

p(y)dy ≤
b

m
p(x1).

By hypothesis (g5) we have that

|{x ∈ [x1 +
a1

4
, x1 +

a1

2
] / g(y) < a1}| ≤ C5a

1
γ

1 ,

thus, we can choose a1 such that

C5a
1
γ

1 ≤
a1

8
, a1 ≤

(

P

4||p||∞

)1/2

,

for which

|{x ∈ [x1 +
a1

4
, x1 +

a1

2
] / g(y) ≥ a1}| ≥

a1

8
,

and then by (4.19) there exists x2 ∈ [x1 + a/4, x1 + a/2] with

p(x2) ≤
b

m

8

a1

p(x1).
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Repeating the above procedure with p(x2) instead of p(x1) we obtain
∫

[x2−
a1
2 , x2+

a1
2 ]

g(y)≥a1

p(y)dy ≤
b

m
p(x2) ≤

(

b

m

)2
8

a1

p(x1).

As x1 + a1/4 ≤ x2 ≤ x1 + a1/2 from the above inequality we have
∫

[x1, x2+
3a1
4 ]

g(y)≥a1

p(y)dy ≤

(

b

m

)2
8

a1

p(x1),

and then from (4.18)
∫

[x1−
a1
2 , x1+

3a1
4 ]

g(y)≥a1

p(y)dy ≤ p(x1)

[

(

b

m

)2
8

a1

+
b

m

]

.

Since a1 is fixed, we can use the same procedure a finite number of times to show that
there exists a positive constant C(b,m, a1) such that

∫

[x1−b, x1+b]
g(y)≥a1

p(y)dy ≤ p(x1) C(b,m, a1),

and then using (4.17) we conclude that

p(x1) ≥
P

2bC(b,m, a1)
.

¤

5. ASYMPTOTIC BEHAVIOR.

In this section we study the asymptotic behavior of solutions of (1.2) under the addi-
tional assumption that (1.3) possesses a solution p such that p ≥ c in R for some c > 0.
Observe that by Theorem 4.4 hypothesis (g5) implies the existence of such a p. Through-
out this section we shall assume that such a solution exists and it will be denoted by p.

An important tool that will be used is Liapunov functional, that is defined following
the ideas introduced by Michel, Mischler and Perthame in [15].
Theorem 5.1.
Let u be a solution of (1.2) with initial value u0 ∈ L1(R) ∩ L∞(R). Then the following identity
holds

(5.1) E ′(t) = −

∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

[

u

p
(t, x) −

u

p
(t, y)

]2

dy dx,

where

(5.2) E(t) =

∫

R

u2

p
dx.
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Proof. Under our assumptions E is well defined and differentiable. Moreover, its de-
rivative is given by

(5.3) E ′(t) = 2

∫

R

∫

R

J

(

x − y

g(y)

)

u(y, t)

g(y)

u(x, t)

p(x)
dydx − 2

∫

R

u2(x, t)

p(x)
dx.

Using the mass conservation and that p is steady state (i.e a solution of (1.3)), we easily
show that

∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

u2(x, t)

p2(x)
dydx =

∫

R

u2(x, t)

p(x)
dx,

and
∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

u2(y, t)

p2(y)
dydx =

∫

R

u2(y, t)

p(y)
dy.

Therefore from (5.3), we obtain the desired result

dE

dt
=

∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

[

u(y, t)

p(y)

u(x, t)

p(x)
−

u2(x, t)

p2(x)
−

u2(y, t)

p2(y)

]

dy dx

= −

∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

[

u(x, t)

p(x)
−

u(y, t)

p(y)

]2

dy dx.

¤

Let us now prove some regularity properties of this energy.

Lemma 5.1. Suppose that the hypothesis of Theorem 5.1 holds. Then E(t) ∈ C1,1(R+).

Proof. Let t1 and t2 be in R
+. Using formula (5.1) we have

(5.4) |E ′(t1) − E ′(t2)| ≤

∫

R2

J

(

x − y

g(y)

)

p(y)

g(y)
Γ(t1, t2, x, y) dy dx,

where

Γ(t1, t2, x, y) =

∣

∣

∣

∣

∣

[

u

p
(y, t2) −

u

p
(x, t2)

]2

−

[

u

p
(y, t1) −

u

p
(x, t1)

]2
∣

∣

∣

∣

∣

By Proposition 3.3 the function u(x, t) is Lipschitz in time uniformly in x, thus there
exists a constant κ such that

Γ ≤ 2κ|t1 − t2|

(

|u|

p
(y, t2) +

|u|

p
(x, t2) +

|u|

p
(y, t1) +

|u|

p
(x, t1)

)

.

Again using the mass conservation and the fact that p is a steady states, one have that
∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

|u(y, t)|

v(y)
dydx =

∫

R

|u(x, t)|dx ≤

∫

R

|u0(x)|dx,

and
∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

|u(x, t)|

v(x)
dydx =

∫

R

|u(x, t)|dx ≤

∫

R

|u0(x)|dx.
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We then deduce from (5.4) that

|E ′(t1) − E ′(t2)| ≤
8κ

c
|t1 − t2|

∫

R

|u0(x)|dx.

¤

Before giving the result concerning the asymptotic behavior of the solutions of (1.2),
we first prove a technical lemma.

Lemma 5.2. Suppose that w ∈ L2(R) satisfies

(5.5)

∫

R

∫

R

J

(

x − y

g(y)

)

1

g(y)
[w(x) − w(y)]2 dy dx = 0,

then there exists λ ∈ R such that w(x) = λ a.e.

Proof. If (5.5) holds we have

(5.6) J

(

x − y

g(y)

)

1

g(y)
[w(x) − w(y)]2 = 0 a.e. in R

2,

Let I be an open interval where g > 0.
We claim that there exists λ such that w(x) = λ a.e. in I . Indeed, let D = {(x, x) / x ∈

I} note that there exist sequences {xi}i∈Z and {δi}i∈Z such that xi < xi+1 < xi + δi,

(5.7) J

(

x − y

g(y)

)

1

g(y)
> 0 in Ri,

where Ri = [xi − δi, xi + δi]
2, and D ⊂

⋃

i∈Z
Ri. By (5.7) and (5.6) we have that

w(x) − w(y) = 0 a.e. in Ri,

thus, for each i ∈ Z there exists λi such that w(x) = λi in [xi − δi, xi + δi]. Since in the
interval (xi+1 − δi+1, xi + δi) we have

λi+1 = w(x) = λi a.e.,

the claim is proved.
Let I1 = (z1, z2) and I2 = (z2, z3) be two open intervals with g > 0 in I1 ∪ I2 and

g(z2) = 0. By the claim there exist λ1, λ2 such that w(x) = λi a.e. in Ii for i = 1, 2. The
result will be proved if we show that λ1 = λ2.

By (g2) there exist positive constants C, r > 0 and α < 1 such that g(y) ≥ C|y−z2|
a for

all y ∈ [z2 − r, z2 + r]. We set 0 < r0 < min{(r/2)aC/2, r, (C/2)1/1−α} and z2 − r0 < x < z2.
If y ∈ I2 satisfies

(

2(z2 − x)

C

)
1
α

< y − z2 < r0,

then

z2 − x < C
(y − z2)

α

2
,
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and using r0 < (C/2)1/1−α we obtain

C
(y − z2)

α

2
< C(y − z2)

α − (y − z2) < g(y) − (y − z2).

Hence, from the above inequalities, we have y − x < g(y). Therefore, there exists η > 0,
x̃ ∈ I1 and ỹ ∈ I2 such that

w(x) − w(y) = 0 a.e. for (x, y) ∈ [x̃ − η, x̃ + η] × [ỹ − η, ỹ + η].

Since w(x) = λ1 a.e. in I1 and w(y) = λ2 a.e. in I2 we have λ1 = λ2. ¤

We are now in position to prove the results about the asymptotic behavior of the
solutions of (1.2).
Theorem 5.2.
Assume u0 ∈ L1(R) ∩ L∞(R). Then u → 0 weakly in L2(R) as t → ∞.

Proof. Let {tn}n∈N be a sequence such that tn → +∞. We define the sequence of func-
tions {un}n∈N by un(x) ≡ u(x, tn). From Proposition 3.3 the sequence {un}n∈N is bounded
in L2(R), therefore a subsequence, which we still call {un}, converges weakly in L2(R)
to some ū.

Using Lemma 5.1 and the monotonicity of E(t) we see that

E ′(t) → 0 as t → ∞,

hence

E ′(tn) =

∫

R

∫

R

J

(

x − y

g(y)

)

p(y)

g(y)

[

un

p
(x) −

un

p
(y)

]2

dy dx → 0.

Let ΠR := [−R,R]2 for R > 0, then
∫

ΠR

J

(

x − y

g(y)

)

p(y)

g(y)

[

ū

p
(x) −

ū

p
(y)

]2

dy dx ≤ lim inf
n→∞

∫

ΠR

J

(

x − y

g(y)

)

p(y)

g(y)

[

un

p
(x) −

un

p
(y)

]2

dy dx

≤ lim inf
n→∞

∫

R2

J

(

x − y

g(y)

)

p(y)

g(y)

[

un

p
(x) −

un

p
(y)

]2

dy dx

≤ 0.

Whence, we have

lim
R→+∞

∫

ΠR

J

(

x − y

g(y)

)

p(y)

g(y)

[

ū

p
(x) −

ū

p
(y)

]2

dy dx ≤ 0,

which implies that
∫

R2

J

(

x − y

g(y)

)

p(y)

g(y)

[

ū

p
(x) −

ū

p
(y)

]2

dy dx = 0.

Using Lemma 5.2 we have that ū = λp for some λ. Since ū is in L2(R) and p is bounded
from below, we conclude that λ = 0, that is ū ≡ 0. It follows that u(·, t) converges weakly
to 0 in L2(R) as t → ∞. ¤

A consequence of Theorem 5.2 is the following result:
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Theorem 5.3. Assume u0 ∈ L1(R) ∩ L∞(R), then u(·, t) → 0 in Lq
loc(R) for any 1 ≤ q ≤ ∞,

as t → ∞.

Proof: We first consider 1 ≤ q < ∞. Let Ω be a compact subset of R. Using Proposition
3.3 and Theorem 5.2 we see that

(5.8) 0 ≤

∫

Ω

uq(t, x) ≤ Kq

∫

R

u(t, x)1Ω(x) dx → 0.

Consider now q = ∞. By hypothesis (g2), given [−K,K] there exists r > 1 and M > 0
such that for all x ∈ [−K,K]

∣

∣

∣

∣

∣

∣

∣

∣

J

(

x − ·

g(·)

)

1

g(·)

∣

∣

∣

∣

∣

∣

∣

∣

Lr[−K−b,K+b]

≤ M.

Define r∗ such that 1/r + 1/r∗ = 1. By (5.8), given ε > 0 there exists a t0 > 0 such that

||u(·, t)||Lr∗ [−K−b,K+b] ≤ ε for t ≥ t0.

So if x ∈ [−K, K] and t ≥ t0, we have

u(x, t) = e−(t−t0)u(x, t0) +

∫ t

t0

e−(t−s)

∫

R

J

(

x − y

g(y)

)

u(y, s)

g(y)
dy ds

≤ e−(t−t0)u(x, t0) + Mε.

From where ||u(·, t)||L∞[−K,K] → 0 as t → ∞. ¤

When u0 ∈ L1(R) but not in L∞(R) we still have the following convergence result:

Theorem 5.4. Assume u0 ∈ L1(R). Then u(·, t) → 0 in L1
loc(R).

Proof. Set Ω a compact subset of R. For any ǫ > 0, one can always decompose u0 =
w1

0 + w2
0 with w1

0, w
2
0 ∈ L1(R), such that w1

0 ∈ L1(R) ∩ L∞(R) and ||w2
0||L1(R) ≤ ε. By

linearity, u = w1 + w2, where w1 and w2 are respectively the solution of (1.2) with initial
condition w1

0 and w2
0. By Theorem 5.3, w1 → 0 in L1

loc. Therefore,

lim
t→+∞

∫

Ω

|u| dx ≤ lim
t→+∞

∫

Ω

(|w1| + |w2|) ≤ ‖w2‖L1(R) = ‖w2
0‖L1(R) = ǫ

¤
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[8] C. Cortázar, M. Elgueta, J. Rossi and N. Wolanski. How to approximate the heat equation with Neu-
mann boundary conditions by nonlocal diffusion problems. To appear in Arch. Rat. Mech. Anal.

[9] J. Coville, L. Dupaigne.On a nonlocal reaction diffusion equation arising in population dynamics, Proc.
Roy. Soc. Edinburgh Sect. A, To appear.

[10] J. Coville, J. Dávila, S. Martı́nez. Existence and uniqueness of solutions to a non-local equation with
monostable nonlinearity. Preprint.

[11] P. Fife. Some nonclassical trends in parabolic and parabolic-like evolutions. Trends in nonlinear analy-
sis, 153–191, Springer, Berlin, 2003.

[12] V. Hutson, S. Martı́nez, K. Mischaikow, G. T. Vickers. The evolution of dispersal. J. Math. Biol. 47
(2003), no. 6, 483–517.

[13] M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, G.T. Vickers. Non-Local Dispersal. Diff. Int.
Eqns. 16 (2005), 1299–1320.

[14] C. Lederman, N. Wolanski. Singular perturbation in a nonlocal diffusion problem. Comm. Partial
Differential Equations 31 (2006), no. 1-3, 195–241.

[15] M. Michel, S. Mischler, B. Perthame. General relative entropy inequality: an illustration on growth
models, J. Math. Pures Appl. (9), 84, (2005), no 9, 1235–1260.

[16] X. Wang. Metaestability and stability of patterns in a convolution model for phase transitions. Preprint.
[17] E. Zeidler. Nonlinear functional analysis and its applications I, Springer Verlag, New York, 1986.



A NON LOCAL INHOMOGENEOUS DISPERSAL PROCESS 27
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