
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Differential Geometry of Bipartite Quantum

States

by

Zuhuan Yu, Xianqing Li-Jost, Qingzhong Li, Jintao Lv, and
Shao-Ming Fei

Preprint no.: 35 2007





Differential Geometry of Bipartite Quantum States

Zuhuan Yua∗, Xianqing Li-Jostb†, Qingzhong Lia‡, Jintao Lva§, and Shao-Ming Feia,b¶

a Department of Mathematics, Capital Normal University, Beijing 100037, China

b Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany

Abstract

We investigate the differential geometry of bipartite quantum states. In particular the manifold

structures of pure bipartite states are studied in detail. The manifolds with respect to all normalized

pure states of arbitrarily given Schmidt ranks or Schmidt coefficients are explicitly presented. The

dimensions of the related manifolds are calculated.

PACS numbers: 03.67.-a, 03.65.Ud, 02.40.-k

Keywords: Differential geometry, Bipartite states, Manifold

∗ e-mail: yuzh@mail.cnu.edu.cn
† e-mail: Xianqing.Li-Jost@mis.mpg.de
‡ e-mail: liqzh@mail.cnu.edu.cn
§ e-mail: lvjintao@sohu.com
¶ e-mail: fei@wiener.iam.uni-bonn.de

1



Quantum entanglement constitutes the most important resource in quantum information

processing such as quantum teleportation, dense coding, quantum cryptography, quantum

error correction and quantum repeater [? ]. The marvelous properties of quantum entangle-

ment are from the special structures of the multipartite quantum states. Great efforts have

been focused on the proper description and quantification of quantum entanglement [? ],

the separability [? ], the equivalence of quantum states under local unitary transformations

or under stochastic local operations and classical communication (SLOCC) for multipartite

quantum systems [? ].

The geometry of quantum states on a single vector space has been discussed in [? ? ]

recently. Let H be an n-dimensional complex Hilbert space. The space of density matrices

on H, D(H), is naturally a manifold stratified space with the stratification induced by the

rank of the state. The space of all density matrices with rank r, Dr(H), r = 1, 2, · · · , n, is a

smooth and connected manifold of real dimension 2nr − r2 − 1. In particular, D1(H) is the

set of pure states. Every element of D(H) is a convex combination of points from D1(H).

It is shown that D1(H) is a complex manifold which is isomorphic to the n− 1 dimensional

complex projective space, D1(H) � CP n−1, with a metric g determined by the inner product

〈M, N〉 = 1
2
TrMN for density matrices M and N . One can define the Hermitian structure

h on D1(H) by g. In fact, by straightforward calculation, we have

h(α) =
∑
k,j

h
(α)
kj dzk ⊗ dzj , h(α) = h|Dα, α = 1, ..., n,

where

h
(α)
kj =

(1 +

n∑
l=1,l �=α

|zl|2)δkj − zjzk

(1 +

n∑
l=1,l �=α

|zl|2)
,

Dα is the α-th coordinate chart with local complex coordinates z and z. Hence it is clear

that h differs from the Fubini-Study metric on CP n−1 by a constant multiple.

The quantum entanglement concerns composite systems. In [? ] the entanglement has

been discussed in the view of geometry. In this paper we investigate the manifold structures

and classification of pure bipartite states. We consider quantum states on H = H1 ⊗ H2,

where H1 and H2 are respectively n and m (n ≤ m) dimensional complex Hilbert spaces.

We present the explicit manifold constituted by the states with certain Schmidt ranks or

with given Schmidt coefficients, and calculate the dimensions of the related manifolds.
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For the convenience, in the following in stead of |x〉, we simply denote x as a vector in

H and denote D1(H) as the set of all x ∈ H. For any x ∈ H, x can be written as the

summation of tensor products,

x = x1 ⊗ y1 + x2 ⊗ y2 + · · ·+ xk ⊗ yk, k ∈ IN, (1)

where xi ∈ H1, yi ∈ H2. We call the expression (??) linearly independent if x1, x2, · · · , xk;

y1, y2, · · · , yk are linearly independent vectors respectively. We say the length of x is k if

(??) is a linearly independent expression. In fact one can easily prove that the length is

just the Schmidt rank and the Schmidt decomposition is a special expression of a linearly

independent one. Therefore the length of x in all linearly independent expressions is the

same and the terms of tensor products contained in the linearly independent expression of

x are the least in all other possible expressions of x.

[Lemma] If x ∈ H = H1 ⊗H2 has the following two linearly independent expressions

x = x1 ⊗ y1 + x2 ⊗ y2 + · · ·+ xk ⊗ yk, x = w1 ⊗ z1 + w2 ⊗ z2 + · · ·+ wk ⊗ zk, (2)

then there exists a non-degenerate k × k matrix C such that

(z1, · · · , zk) = (y1, · · · , yk)C, (w1, · · · , wk) = (x1, · · · , xk)(C
t)−1. (3)

[Proof] Expanding x1, x2, · · · , xk to be the basis x1, · · · , xk, xk+1, · · · , xn in H1 and

y1, y2, · · · , yk to be the basis y1, · · · , yk, yk+1, · · · , ym in H2, we have

wj =

n∑
i=1

ajixi , zj =

m∑
i=1

bjiyi

for some aji, bji ∈ C. Then from (??) we have

n∑
i=1

m∑
s=1

(

k∑
j=1

ajibjs)xi ⊗ ys =

k∑
j=1

xj ⊗ yj. (4)

Denote A (resp. B) the matrix with entries aij (resp. bij). As {xi ⊗ ys : j =

1, 2, · · · , n; s = 1, 2, · · · , m} is a basis of H1

⊗H2, from (??) we have

AtB =

⎛
⎝ Ek 0

0 0

⎞
⎠

n×m

, (5)

where Ek is the identity matrix of order k. If we rewrite A and B as block matrices

A = (Akk Ak,n−k), B = (Bkk Bk,m−k), then (??) gives rise to At
kkBkk = Ek, Bk,m−k = 0,
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Ak,n−k = 0. Namely, A = (Akk 0), B = (Bkk 0). Set C = A−1
kk , we obtain Bkk = (At

kk)
−1

and (w1, · · · , wk) = (x1, · · · , xk)(C
t)−1, (z1, · · · , zk) = (y1, · · · , yk)B

t
kk = (y1, · · · , yk)C. �

[Theorem 1] Let D1
k(H), a submanifold of D1(H), be the set of all normalized pure states

with length k, D1
k(H) = {x ∈ H, the length of x is k, ‖x‖2 = 1}. We have

D1
k(H) � G(n, k) × (CP k2−1\M) × G(m, k),

where M is a hypersurface of CP k2−1, G(n, k) is the Grassmannian manifold.

[Proof] We first prove that there is a one-to-one correspondence between D1
k(H) and

G(n, k) × (CP k2−1\M) × G(m, k).

For x ∈ D1
k(H), suppose x = x1 ⊗ y1 + x2 ⊗ y2 + · · · + xk ⊗ yk is a linearly inde-

pendent expression of x. Because y1, · · · , yk are linearly independent, y1, · · · , yk span a

k-dimensional subspace Dk of H2. We fix an orthonormal basis y0
1, · · · , y0

k in Dk and as-

sume (y0
1 · · · y0

k) = (y1 · · · yk)A, where A is a non-degenerate complex k × k matrix. If we

keep x unchanged, from Lemma x1, · · · , xk are transformed correspondingly to x′
1, · · · , x′

k,

(x′
1 · · ·x′

k) = (x1 · · ·xk)(A
t)−1.

A k-dimensional subspace of H2 just corresponds to a point in a Grassmannian man-

ifold G(m, k). As x′
1, · · · , x′

k in the expression x = x′
1 ⊗ y0

1 + · · · + x′
k ⊗ y0

k are linearly

independent, they span a k-dimensional subspace Ck of H1. If we fix an orthonormal ba-

sis x0
1, · · · , x0

k in Ck, then there exists a unique non-degenerate k × k matrix G such that

(x1, · · · , xk) = (x0
1, · · · , x0

k)G. A k-dimensional subspace of H1 just corresponds to a point in

a Grassmannian manifold G(n, k). Suppose (x′
1, · · · , x′

k) = (x0
1, · · · , x0

k)B, where B is a k×k

complex matrix with entries bij satisfying

k∑
i,j=1

|bij|2 = 1, det(B) �= 0. Then all B = (bij)
k
i,j=1

constitute a set D which can be viewed as a subset of the identity ball Sk2−1 in Ck2
, where

Sk2−1 = {(b11, b21, · · · , bk1, b12, · · · , bk2, · · · , bkk) :
k∑

i,j=1

|bij |2 = 1, bij ∈ C}.

Moreover, D is an open subset in Sk2−1.

In summary, to determine x′
1, · · · , x′

k, we need to determine the k-dimensional subspace

Ck which is spanned by x′
1, · · · , x′

k and the nondegenerate k × k matrix B associated with

x′
1, · · · , x′

k, i.e. a point of Grassmannian manifold G(n, k) and a point of D are determined.

We define A ∼ B iff there exists θ ∈ IR such that A = eiθB and denote the equivalence

class containing A by [A], then

Sk2−1/ ∼= CP k2−1.

4



Define

π : Sk2−1 −→ CP k2−1

A −→ [A].

Then π is an open map. Suppose the image of D under π is D which is an open subset of

CP k2−1, so it is an open submanifold. Suppose M = CP k2−1\D, i.e. M is the image of the

set under the map π which consists of the points contained in Sk2−1 satisfying det(B) = 0

and M is a hypersurface of CP k2−1. So we have

D = CP k2−1\M.

As (eiθx′
1, · · · , eiθx′

k) = eiθ(x0
1, · · · , x0

k)B = (x0
1, · · · , x0

k)(e
iθB), the action of eiθ on x can be

viewed as on matrix B associated with x′
1, · · · , x′

k. So the equivalence class [x] containing x

corresponds to the equivalence class [B] which contains B, i.e. [x] corresponds a point in D.

Hence, a pure state x corresponds to a unique point p in G(n, k)× (CP k2−1\M)×G(m, k),

where the coordinates of p are determined uniquely by the k-dimensional subspace Dk in

H2 spanned by y1, · · · , yk, the k-dimensional subspace Ck in H1 spanned by x1, · · · , xk

and [B]. We denote this kind of correspondence as F . One can easily prove that F is

surjective and injective. So we get a one-to-one correspondence between D1
k(H) and G(n, k)×

(CP k2−1\M) × G(m, k). Moreover from the above proof we know that F is smooth.

We now imbed G(n, k)×(CP k2−1\M)×G(m, k) to CP mn−1 according to F . For arbitrary

p ∈ G(n, k) × (CP k2−1\M) × G(m, k), the coordinates of p have the form,

(x1,k+1, · · · , x2n, · · · , xkn, a12, · · · , akk, y1,k+1, · · · , ykm).

Let us write the coordinates (x1,k+1, x1,k+2, · · · , xkn) in G(n, k) in the matrix form

X =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 x1,k+1 · · · x1n

0 1 · · · 0 x2,k+1 · · · x2n

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 xk,k+1 · · · xkn

⎞
⎟⎟⎟⎟⎟⎠

,

and the coordinates (a12, · · · , a1k, · · · , akk) in CP k2−1 in the form

A =

⎛
⎜⎜⎜⎜⎜⎝

1 a12 · · · a1k

a21 a22 · · · a2k

· · · · · · · · · · · ·
ak1 ak2 · · · akk

⎞
⎟⎟⎟⎟⎟⎠

,

5



Set X tA = B. Then B = (bij) is an n × k matrix. Let e1, · · · , en (resp. d1, · · · , dm) be

an orthonormal basis in H1 (resp. H2). Take

x1 =
n∑

j=1

bj1ej , x2 =
n∑

j=1

bj2ej , · · · , xk =
n∑

j=1

bjkej ,

and

y1 =

m∑
j=1

y1jdj, y2 =

m∑
j=1

y2jdj, · · · , yk =

m∑
j=1

ykjdj ,

where yij are the entries of the matrix Y ,

Y =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 y1,k+1 · · · y1m

0 1 · · · 0 y2,k+1 · · · y2m

· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 yk,k+1 · · · ykm

⎞
⎟⎟⎟⎟⎟⎠

,

then both x1, · · · , xk and y1, · · · , yk are linearly independent respectively.

Let

x = x1 ⊗ y1 + · · ·+ xk ⊗ yk =
n∑

j=1

m∑
s=1

(
k∑

l=1

bjlyls)ej ⊗ ds.

Then x ∈ D1
k(H) is the image of p under F . Since H1 � Cn, H2 � Cm and D1(H) � CP nm−1,

we can define the imbedding:

f : G(n, k) × (CP k2−1\M) × G(m, k) −→ CP mn−1

p −→ q

where q = f(p) = x. The homogeneous coordinates of q are given by q =

(d11, d12, · · · , d1m, d21, · · · , d2m, · · · , dnm), where djs =
k∑

l=1

bjlyls =
k∑

l=1

k∑
t=1

xtjatlyls (j =

1, · · · , n, s = 1, · · · , m). Then the coordinate components of q are polynomial of the co-

ordinate components of p. Hence, the imbedding f is non-degenerate holomorphic mapping.

Moreover, we have

f(G(n, k) × (CP k2−1\M) × G(m, k)) = D1
k(H).

Therefore D1
k(H) is a complex submanifold of CP mn−1 ( i.e. D1(H)), and

D1
k(H) � G(n, k) × (CP k2−1\M) × G(m, k).

�
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Theorem 2 The subset D1
k(µ1, · · · , µk) of D1

k(H) of pure states with the Schmidt coeffi-

cients µ1 � µ2 � · · · � µk is a submanifold of real dimension 2k(m + n − k) − k − 1, which

is diffeomorphically equivalent to a manifold

(CP n−1 × CP m−1) × · · · × (CP n−k × CP m−k) × T k−1,

where T k−1 is a torus of real dimension k − 1.

[proof] For any pure state [e] of D1
k(H), the unit vector e has the following Schmidt

representation e = µ1a1 ⊗ b1 + · · · + µkak ⊗ bk, where a,
is and b,

is are orthonormal vectors

in H1 and H2 respectively, and µ,
is are Schmidt coefficients of e, we assume that µ1 �

µ2 � · · · � µk. Consider the element ẽ which has the same Schmidt coefficients as e,

ẽ = µ1ã1⊗ b̃1 + · · ·+µkãk ⊗ b̃k, and [ai] = [ãi] ∈ D1(H1), [bi] = [b̃i] ∈ D1(H2), i = 1, · · · , k.

Hence ẽ must have the form ẽ = µ1e
iθ1a1 ⊗ b1 + · · ·+ µke

iθkak ⊗ bk, and [ẽ] constitute a set

{([a1], [b1], · · · , [ak], [bk], e
iβ1 , · · · , eiβk−1) | β1, · · · , βk−1 ∈ IR} � T k−1.

Then all the pure states with the same Schmidt coefficients µ1 � µ2 � · · · � µk constitute a

set which is equivalent to a manifold (CP n−1 ×CP m−1)× · · · × (CP n−k ×CP m−k)× T k−1,

which is of real dimension 2k(m + n − k) − k − 1. �
As a simple example, let us first take dim(H1) = dim(H2) = 3, k = 1. For arbitrary

x ∈ D1(H1), y ∈ D1(H2), by the Segre imbedding we have Seg(x, y) = |x ⊗ y〉〈x ⊗ y|. As

w = x ⊗ y ∈ D1
1(H), one gets

Seg(D1(H1) × D1(H2)) ⊂ D1
1(H).

And for arbitrary w ∈ D1
1(H), there exist x ∈ H1, y ∈ H2 such that w = x⊗ y = Seg(x, y).

The Segre imbedding Seg : D1(H1) × D1(H2) → D1
1(H) is a surjective map to D1

1(H).

Hence, we have Seg(D1(H1)×D1(H2)) = D1
1(H). Therefore D1

1(H) ∼= D1(H1)×D1(H2) �
CP 2 × CP 2. From Theorem 1, in this case k2 − 1 = 0. We get D1

1(H) � CP 2 × CP 2.

As a more complicated case, we consider dim(H1) = 3, dim(H2) = 4, and k = 2. For

arbitrary p ∈ G(3, 2) × (CP 3\M) × G(4, 2) with coordinate p = (x13, x23, a12, a21, a22, y13,

y14, y23, y24), set

X =

⎛
⎝ 1 0 x13

0 1 x23

⎞
⎠ , A =

⎛
⎝ 1 a12

a21 a22

⎞
⎠ , Y =

⎛
⎝ 1 0 y13 y14

0 1 y23 y24

⎞
⎠ .
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Then

X tA =

⎛
⎜⎜⎜⎝

1 a12

a21 a22

x13 + a21x23 a12x13 + x23a22

⎞
⎟⎟⎟⎠ .

We take x1 = e1 + a21e2 + (x13 + a21x23)e3, x2 = a12e1 + a22e2 + (a12x13 + x23a22)e3, y1 =

d1 + y13d3 + y14d4, y2 = d2 + y23d3 + y24d4. Let x = x1 ⊗ y1 + x2 ⊗ y2. Since x1, x2; y1, y2 are

linearly independent respectively, we have x ∈ D1
2(H).

For arbitrary x ∈ D1
2(H), suppose x = x1 ⊗ y1 + x2 ⊗ y2, then y1, y2 span a unique

2-dimensional subspace D2 of H2. We fix an orthonormal basis y0
1, y0

2 in D2 and suppose

(y0
1, y

0
2) = (y1, y2)A, where A is a non-degenerate complex 2 × 2 matrix. At the same time,

suppose that x1, x2 are transformed correspondingly to x′
1, x′

2, (x′
1, x

′
2) = (x1, x2)(A

t)−1.

Then x = x′
1 ⊗ y0

1 + x′
2 ⊗ y0

2, and x′
1, x′

2 generate a unique 2-dimensional subspace C2 of H1.

We fix an orthonormal basis x0
1, x

0
2 in C2 and assume (x′

1, x
′
2) = (x0

1, x
0
2)B. Then (x′

1, x
′
2) are

determined uniquely by C2 and B. Moreover, [x′
1, x

′
2] correspond to [B], and [B] ∈ CP 3\M,

where M = {[A] : A are complex 2 × 2 matrices, det(A) = 0}. C2 is associated to a point of

Grassmannian manifold G(3, 2) and D2 is associated to a point of Grassmannian manifold

G(4, 2), i.e. x is associated to a point of G(3, 2) × (CP 3\M) × G(4, 2).

Furthermore, for arbitrary point in G(3, 2)×(CP 3\M)×G(4, 2), we can find correspond-

ingly a unique point in D1
2(H), and vice versa. In this case, the imbedding is

f : G(3, 2) × (CP 3\M) × G(4, 2) −→ CP 11

p −→ q

where q = f(p) = x and the homogeneous coordinates of q are assumed to be q =

(d11, d12, d13, d14, d21, d22, d23, d24, d31, d32, d33, d34), where d11 = 1, d12 = a12, d13 = a12y23 +

y13, d14 = a12y24 + y14, d21 = a21, d22 = a22, d23 = a21y13 + a22y23, d24 = a21y14 + a22y24, d31 =

x13 + a21x23, d32 = a12x13 + a22x23, d33 = y23(a12x13 + a22x23) + y13(x13 + a21x23), d34 =

y24(a12x13 + a22x23) + y14(x13 + a21x23).

The first example tests the theorem from the Segre imbedding point of view. In this

case the second factor of the product manifold generates a point. The second one is a lower

dimension case according to the Theorem 1.

We have investigated the complex manifold structure for bipartite pure states and the

Kähler metric of D1
k(H), by presenting explicitly the manifolds with respect to all pure states
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of arbitrarily given Schmidt ranks or Schmidt coefficients and calculating the dimensions of

the corresponding manifolds. In fact, we also can express the Kähler metric of D1
k(H) by

local coordinates, but the expressions are very complicated and it is difficult to compute the

geometrical objects such as holomorphic curvature, scalar curvature. It would be also nice

to describe the entanglement of quantum states according to some functions of metric or

geometrical objects. The results in this paper can be used to study the differential geometry

of bipartite mixed states.
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[] J. Grabowski, M. Kuś and G. Marmo, Open Sys. and Information Dyn. 13(2006)343-362.

10


