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Abstract

Usually, the fast evaluation of a convolution integral
R

R
f(y)g(x−y)dy requires that the functions f, g

have a simple structure based on an equidistant grid in order to apply the fast Fourier transform. Here
we discuss the efficient performance of the convolution of hp-functions in certain locally refined grids.
More precisely, the convolution result is projected into some given hp-space (Galerkin approximation).
The overall cost is O(p2N log N), where N is the sum of the dimensions of the subspaces containing f ,
g and the resulting function, while p is the maximal polynomial degree.

AMS Subject Classifications: 44A35, 42A55
Key words: convolution integral, hp-finite elements, non-uniform grids, local refinement

1 Introduction

We consider the convolution integral

ωexact (x) := (f ∗ g) (x) :=
∫

R

f(y)g(x− y)dy (1.1)

for hp-functions f, g of bounded support. We do not compute the exact result ωexact, but its L2-orthogonal
projection ω := Pωexact into a certain subspace of hp-functions.

Convolutions involving a kernel function f = k occur for instance when integral operators Kg(x) =∫
R
k(x − y)g(y)dy are to be evaluated. In [1] and [2] one finds applications where the convolutions are not

derived from integral operators. In the case of integral operators, the kernel function k is often assumed
to satisfy special (smoothness) conditions. This allows various approximations and various methods for its
efficient numerical treatment (e.g., [6], [7]). In the rest of the paper we make no assumptions about f, g
except that they belong to certain hp-subspaces.

The convolution of piecewise constant functions has been considered in [3]. There one finds further
comments on the nature of the problem which are not repeated here but also apply in the present case. A
variant of the method with “mass conservation” in the piecewise constant case can be found in [5]. The
mass conservation holds in general for approaches with polynomial degrees p ≥ 1. The particular case of
p = 1 is discussed in [4]. The present article concentrates on the algorithmic aspects when large polynomial
degrees appear as it is generally assumed in the hp-case, where coarser grid sizes are compensated by higher
polynomials degrees.
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Figure 1.1: Refined grid (first line) composed by local refinements at the levels 0-3 in the zones Ω�

The hp-structure is defined as follows. There are nested refinement zones

R ⊃ Ω0 ⊃ . . . ⊃ Ω�−1 ⊃ Ω� ⊃ . . . ⊃ ΩL (1.2)
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(cf. Figure 1.1) corresponding to step sizes
h� = 2−�h (1.3)

with a fixed (coarsest) step size h = h0. More precisely, Ω� must be a nonempty interval consistent with the
h�-mesh, i.e.,

Ω� = [ia,�h�, ib,�h�] for some ia,�, ib,� ∈ Z.

The nestedness (1.2) can be rewritten as ia,0h0 ≤ ia,1h1 ≤ . . . ≤ ia,LhL < ib,LhL ≤ . . . ≤ ib,1h1 ≤ ib,0h0.
The following definitions can be formulated more easily when we formally introduce the empty refinement
zone

ΩL+1 := ∅
of a fictitious level L+ 1, since then ΩL\ΩL+1 = ΩL.

Let M� be the infinite grid of level �,

M� :=
{
I�
ν : ν ∈ Z

}
for � ∈ N0, (1.4)

containing the intervals
I�
ν := [νh�, (ν + 1)h�) for ν ∈ Z, � ∈ N0.

The geometric mesh for the hp-functions consists of the intervals in the set

M :=
{
I�
ν ∈ M� : I�

ν ⊂ Ω�\Ω�+1, 0 ≤ � ≤ L
}
,

i.e., inside of Ω0\Ω1 the h0-mesh is used, inside of Ω1\Ω2 the h1-mesh, . . . and finally ΩL\ΩL+1 = ΩL is
filled with the hL-mesh.

Furthermore, we associate to each interval I�
ν ∈ M with a polynomial degree p�

ν ∈ N0 and define the
space S = S (M) of hp-functions by all functions ψ with

ψ|I�
ν

is a polynomial of degree ≤ p�
ν for all I�

ν ∈ M (1.5)

and ψ = 0 outside of Ω0. Note that no continuity of ψ is required.
In the standard hp-version smaller step sizes h� correlate with lower degree p�

ν . Hence the maximal degree
p� := max

{
p�

ν : I�
ν ∈ M∩M�

}
per level should decrease: p0 ≥ p1 ≥ . . . ≥ pL. For the sake of easier notation

we introduce
p := max

{
p�

ν : I�
ν ∈ M}

= max
0≤�≤L

p� (1.6)

and allow generally that ψ|I�
ν

is a polynomial of degree ≤ p.
We allow that the two factors f and g of the convolution belong to different hp-spaces characterised by

different refinement zones. For the resulting projection ω := Pωexact (ωexact from (1.1)) a third hp-space
may be defined. We denote these three spaces by the superscripts “f, g, ω”. Therefore, we have to replace
the sets Ω�, M, S by

Ωf
� , Ωg

� , Ωω
� , Mf , Mg, Mω, Sf , Sg, Sω, and p�,f

i , p�,g
i , p�,ω

i .

Now, the problem can be formulated.

Problem 1.1 Given f ∈ Sf and g ∈ Sg, we want to compute the (exact) projection ω = P (f ∗ g) , where
P is the L2-orthogonal projection onto the subspace Sω ⊂ L2(R).

The outline of the paper is as follows.
The hp-subspaces are defined in Section 2. For this purpose we introduce the basis functions in §2.1. An

essential detail is their refinement rule (2.3). §2.2 defines the decomposition of f , g into contributions f�,
g� at the various refinement levels �. After introducing notations for the projections onto certain subspaces
and for the coefficients, the terms f�, g� are used to represent the convolution f ∗ g in §2.5. The section is
finished by considerations about the discrete convolution of sequences in §2.6.

Section 3 defines the auxiliary coefficients γ�′′,�′,�
(i,α),(j,β),(k,κ), γ

�′′,�′,�
ν,(α,β,κ), Γ�′,�

i,(α,β), which play a key role in the
later algorithms. Also the prolongation operator P and the restriction operator R from §3.4 will appear in
the algorithm.
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The convolution algorithm is given in Section 4. Here three different cases appear which are to be treated
in different ways.

Section 5 describes how the discrete convolution of infinite sequences has to be handled to obtain an
efficient performance. The computational cost is only briefly discussed. The corresponding details can be
found in [3].

Section 6 discusses some modifications and extensions.
Appendices A-D contain details about how to compute the involved coefficients efficiently. Furthermore,

some identities are proved which are used in the algorithms.

2 Spaces

2.1 Basis functions

Functions from S may be discontinuous at the grid points of the mesh. This fact has the advantage that the
basis functions spanning S have minimal support (the support is just one interval of M). In the following we
discuss the basis derived from Legendre polynomials. Let Lα be the Legendre polynomial of degree α ∈ N0

defined in (−1, 1) and normalised such that
∫ 1

−1
(Lα(x))2 dx = 1 (for details about Legendre polynomials see

Appendix A). Then the affine transformation from (−1, 1) onto (0, h) leads to

Φ0
0,α(x) :=

{ √
2/hLα(−1 + 2x/h) if x ∈ (0, h) ,

0 otherwise.
(2.1a)

Translation of Φ0
0,α yields the basis functions of level � = 0 :

Φ0
i,α(x) := Φ0

0,α(x− ih) (i ∈ Z) . (2.1b)

For levels � > 0 we define

Φ�
0,α(x) := 2�/2Φ0

0,α(2�x), Φ�
i,α(x) := Φ�

0,α(x− ih�) = 2�/2Φ0
i,α(2�x) (α, � ∈ N0, i ∈ Z) . (2.1c)

Note that supp(Φ�
i,α) = I�

i .
The space S = S (M) introduced above has the representation

S (M) = span
{
Φ�

i,α : I�
i ∈ M, 0 ≤ α ≤ p�

i

}
.

With p from (1.6) we define S� as the space of piecewise polynomials of degree ≤ p of level � (on the
infinite mesh M� from (1.4)):

S� := span
{
Φ�

i,α : i ∈ Z, 0 ≤ α ≤ p
}

(� ∈ N0) . (2.2)

Remark 2.1 a) For each level �,
{
Φ�

i,α : i ∈ Z, α ∈ N0

}
is an orthonormal system of functions. Basis

functions of different level are not necessarily orthogonal as can be seen from (2.3) below.
b) The functions

{
Φ�

i,α : I�
i ∈ M, 0 ≤ α ≤ p�

i

}
spanning S (M) are orthonormal. In this case, basis

functions from different levels are orthogonal, since their supports are disjoint1: I�
i , I

�′
i′ ∈ M with � 	= �′

implies I�
i ∩ I�′

i′ = ∅.
The spaces S� are nested, i.e.,

S� ⊂ S�+1.

In particular, Φ�
i,κ can be represented by means of Φ�+1

j,α . Appendix B contains the representation formula
(B.3), which is

Φ�
i,κ =

κ∑
q=0

ξκ,q

(
(−1)κ+q Φ�+1

2i,q + Φ�+1
2i+1,q

)
. (2.3)

The coefficients ξκ,α are independent of i and � and can easily be computed as shown in the Appendix B.
There also concrete values are listed.

1The true supports are the closed intervals I�
i , I�′

i′ which are not necessarily disjoint. What we mean by “disjoint supports”
is that the intersection of the supports has measure zero.
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2.2 Representations of f ∈ Sf and g ∈ Sg

Following the definition of Sf , we have Sf = span{Φ�
i,κ : I�

i ∈ Mf , 0 ≤ κ ≤ p�
i}. We can decompose the set

Mf into different levels: Mf =
⋃Lf

�=0 Mf
� , where Mf

� := Mf ∩M�. This gives rise to the related index set

If
� :=

{
i ∈ Z : I�

i ∈ Mf
�

}
=

{
i ∈ Z : I�

i ⊂ Ω�\Ω�+1

}
and to the corresponding decomposition

Sf =
⋃Lf

�=0
Sf

� with Sf
� = span

{
Φ�

i,κ : i ∈ If
� , 0 ≤ κ ≤ p�

i

}
. (2.4)

Here, Lf is the largest level � with Mf
� 	= ∅.

The following computation uses the representation2

f =
Lf∑
�=0

f�, f� =
∑
i∈If

�

p∑
κ=0

f �
i,κ Φ�

i,κ ∈ Sf
� ⊂ S� , (2.5)

(p from (1.6)) and, similarly,

g =
Lg∑
�=0

g�, g� =
∑
i∈Ig

�

p∑
κ=0

g�
i,κ Φ�

i,κ ∈ Sg
� ⊂ S� , (2.6)

for the factors f, g of the convolution.

2.3 Projection P�

The L2-orthogonal projection P� onto S� from (2.2) is defined by

P� ψ :=
∑
i∈Z

p∑
κ=0

〈
ψ,Φ�

i,κ

〉
Φ�

i,κ (2.7)

where3

〈ϕ, ψ〉 :=
∫

R

ϕ(x)ψ(x)dx.

Here, the orthonormality of the system
{
Φ�

i,κ

}
is used. Hence, the projected function ψ� := P� ψ ∈ S� has

the representation
∑

i∈Z

∑p
κ=0 ψ

�
i,κΦ�

i,κ with the coefficients ψ�
i,κ =

〈
Φ�

i,κ , ψ
〉
.

The relation between the projections P� and P is given by

(Pϕ) |Ωω
�
\Ωω

�+1
= (P�ϕ) |Ωω

�
\Ωω

�+1
for 0 ≤ � ≤ Lω.

2.4 Compact notation of the coefficients

Functions ψ� ∈ S� are either explicitly given as functions in S� or are produced as projection ψ� = P� ψ ∈ S�

of a general function ψ ∈ L2(R). The coefficients ψ�
i,κ of ψ� =

∑
i∈Z

∑p
κ=0 ψ

�
i,κΦ�

i,κ have position indices
i ∈ Z and degree indices κ = 0, . . . , p. First we form the infinite sequences

ψ�,κ =
(
ψ�

i,κ

)
i∈Z

(0 ≤ κ ≤ p) (2.8a)

and next we build the (p+ 1)-tuples

ψ[�] :=
(
ψ�,α

)p

α=0
=

((
ψ�

i,α

)
i∈Z

)p

α=0
. (2.8b)

2For the sake of a simple notation, the summation over the polynomial degree is always from 0 to p. The definition of Sf
�

implies that f�
i,κ = 0 for κ > p�

i .
3Here, real-valued functions are assumed. Extensions to complex-valued ones are obvious.
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Depending on the name of the function, the letter ψ may change, but the collected data ψ�,κ and ψ[�] are
always written in bold face.

Particular examples of ψ� ∈ S� are the functions f�, g� from (2.5) and (2.6). They give rise to the data

f�,κ , f [�], g�,κ, g[�].

The representation (2.7) defines the mapping

P� : ψ ∈ L2(R) �→ P�(ψ) := ψ[�] =
((
ψ�

i,κ

)
i∈Z

)p

κ=0
with ψ�

i,κ =
〈
ψ,Φ�

i,κ

〉
, (2.8c)

i.e., P�(ψ) are the coefficients of P� ψ ∈ S� in the basis at level �. Note that P� : ψ �→ ψ[�] is bijective for all
ψ ∈ S�.

2.5 Decomposition into levels

We use the decomposition into scales expressed by f =
∑Lf

�′=0 f�′ and g =
∑Lg

�=0 g� (see (2.5) and (2.6)). The
convolution f ∗ g can be written as

f ∗ g =
Lf∑

�′=0

Lg∑
�=0

f�′ ∗ g� .

Since the convolution is symmetric, we can rewrite the sum as

f ∗ g =
∑
�′≤�

f�′ ∗ g� +
∑
�<�′

g� ∗ f�′ , (2.9)

where �′, � are restricted to the level intervals 0 ≤ �′ ≤ Lf , 0 ≤ � ≤ Lg.
The projection P (f ∗ g) onto the hp-space Sω has the representation

P (f ∗ g) =
Lω∑

�′′=0

∑
i∈Iω

�′′

p∑
α=0

ω�′′
i,αΦ�′′

i,α. (2.10)

Hence, we have to compute

ω�′′
i,α =

〈
f ∗ g,Φ�′′

i,α

〉
for all i ∈ Iω

�′′ , 0 ≤ �′′ ≤ Lω, 0 ≤ α ≤ p. (2.11)

In the following, we do not compute
〈
f ∗ g,Φ�′′

i,α

〉
directly, but

〈∑
�′≤� f�′ ∗ g�,Φ�′′

i,α

〉
involving the first

term in (2.9). Analogously, we can compute the second part
〈∑

�<�′ g� ∗ f�′ ,Φ�′′
i,α

〉
. Together we get the

values from (2.11). The reason for the decomposition is that we make use of the fact that the level index
of the first factor in the convolution is not exceeding the level index of the second factor (�′ ≤ � in the first
term and � < �′ in the second one). Note that for the treatment of

〈∑
�<�′ g� ∗ f�′ ,Φ�′′

i,α

〉
we only have to

interchange the roles of the symbols f and g and to omit the cases � = �′.

2.6 Discrete convolution

Let a = (ai)i∈Z
and b = (bi)i∈Z

be two infinite sequences. Then the discrete convolution is defined by

c := a ∗ b with ci =
∑
j∈Z

aj bi−j . (2.12)

In our applications, the supports4 of a,b are bounded. Furthermore, the resulting coefficients ci are only of
interest for i in a certain interval. Then the computation of (the interesting part of) c can be performed by
the Fast Fourier Transform (see the extensive discussion in [3]). The truncation of a ∗b to the desired range
of indices will be discussed again in §5.

In (3.6) we will define an extended version of the discrete convolution.
Before we present the solution algorithm in Section 4, we introduce some required quantities in the next

Section.
4The support of a sequence a = (ai)i∈Z

is the index subset {i ∈ Z : ai �= 0}.
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3 Auxiliary coefficients

3.1 γ-Coefficients

For level numbers �′′, �′, � ∈ N0, position indices i, j, k ∈ Z, and degrees 0 ≤ α, β,κ ≤ p we define

γ�′′,�′,�
(i,α),(j,β),(k,κ) :=

∫∫
Φ�′′

i,α(x)Φ�′
j,β(y)Φ�

k,κ(x− y)dxdy =
〈
Φ�′′

i,α,Φ
�′
j,β ∗ Φ�

k,κ

〉
(all integrations over R). The fundamental role of these coefficients can be seen from the next statement.

The coefficients ω�′′
i,α of the projected function

ω�′′ = P�′′ (f�′ ∗ g�) =
�∑

i∈Z

p∑
α=1

ω�′′
i,αΦ�′′

i,α (3.1a)

result from

ω�′′
i,α =

∑
j,k∈Z

p∑
β,κ=0

f �′
j,β g

�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ). (3.1b)

The proof of the basic identity (3.1a,b) follows by inserting the representations (2.5) and (2.6) of f�′ and
g� into ωexact := f�′ ∗ g� which yields

ωexact =
( ∑

j∈If

�′

p∑
β=0

f �′
j,β Φ�′

j,β

)
∗
( ∑

k∈Ig
�

p∑
κ=0

g�
k,κ Φ�

k,κ

)
=

∑
j,k∈Z

p∑
β,κ=0

f �′
j,β g

�
k,κ Φ�′

j,β ∗ Φ�
k,κ .

Here, f �′
j,β = g�

k,κ = 0 holds for all j, k not belonging to If
�′ or Ig

� respectively. Since the coefficients ω�′′
i,α of

P�′′(ωexact) are given by ω�′′
i,α =

〈
Φ�′′

i,α, ωexact

〉
, we obtain the result (3.1b).

3.2 Simplified γ-coefficients

For levels �, �′, �′′ with � ≥ max{�′, �′′} we define

γ�′′,�′,�
ν,(α,β,κ) :=

∫∫
Φ�′′

0,α(x)Φ�′
0,β(y)Φ�

ν,κ(x− y)dxdy (ν ∈ Z, 0 ≤ α, β,κ ≤ p) . (3.2)

Under the condition � ≥ max{�′, �′′}, it suffices to use the quantities γ�′′,�′,�
ν,(α,β,κ) from (3.2) as can be seen from

Lemma C.2:
γ�′′,�′,�
(i,α),(j,β),(k,κ) = γ�′′,�′,�

k−i2�−�′′+j2�−�′ ,(α,β,κ)
for � ≥ max{�′, �′′}. (3.3)

We will see that we need to determine the coefficients γ�′′,�′,�
ν,(α,β,κ) only for the cases �′′ = �′ = � = 0,

−1 ≤ ν ≤ 0, 0 ≤ α ≤ β ≤ κ ≤ p. All other index combinations can be derived from these data. Appendix C
shows how these coefficients can be determined. Furthermore, concrete values are given there.

3.3 Γ-coefficients

Consider the convolution f�′ ∗ g� for �′ < �. As long as the two factors belong to different step sizes, the Fast
Fourier Transform cannot be applied. The purpose of the following Γ-coefficients is to transport the g[�]
data into data at level �′ < � corresponding to a coarser step size in order to perform the discrete convolution
with f [�′] in Ω�′\Ω�. The key result will be given in Lemma 3.1.

The alternative would be to use the prolongation from §3.4 for transferring the f [�′] data to level � and
convolve with g[�]. This, however, would increase the data size of f [�′] (and the computational cost) by the
factor 2�−�′, although subsequently the results at level � must be restricted to much fewer data at level �′.

We define

Γ�′,�
i,(α,β) :=

∑
k∈Z

p∑
κ=0

g�
k,κ γ

�′,�′,�
k−i2�−�′ ,(α,β,κ)

. (3.4)
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Analogously to (2.8a,b) we collect the single coefficients Γ�′,�
i,(α,β) in sequences Γ�′,�,(α,β) and tuples Γ�[�′]:

Γ�′,�,(α,β) :=
(
Γ�′,�

i,(α,β)

)
i∈Z

, Γ�[�′] :=
(
Γ�′,�,(α,β)

)p

α,β=0
for � ≥ �′. (3.4*)

The contributions of g� in Γ�′,�
i,(α,β) for �′ ≤ � ≤ Lg are summed up in

Γ�′
i,(α,β) :=

Lg∑
�=�′

Γ�′,�
i,(α,β) for all 0 ≤ �′ ≤ Lg and 0 ≤ α, β ≤ p. (3.5)

Again these data are collected in

Γ�′,(α,β) :=
(
Γ�′

i,(α,β)

)
i∈Z

, Γ[�′] :=
(
Γ�,(α,β)

)p

α,β=0
=

Lg∑
�=�′

Γ�[�′] . (3.5*)

Let the coefficients ψ[�′] :=
(
ψ�′,β

)p

β=0
belong to a function ψ�′ ∈ S�′ , i.e., ψ[�′] = P�′(ψ�′). Then we

define an extended version of the discrete convolution by

ψ[�′] ∗ Γ[�′] :=

⎛
⎝ p∑

β=0

ψ�′,β ∗ Γ�′,(α,β)

⎞
⎠

p

α=0

and ψ[�′] ∗ Γ�[�′] :=

⎛
⎝ p∑

β=0

ψ�′,β ∗ Γ�′,�,(α,β)

⎞
⎠

p

α=0

. (3.6)

Lemma 3.1 Let ψ�′ ∈ S�′ and ψ[�′] = P�′(ψ�′), i.e., ψ�′ =
∑

i∈Z

∑p
β=0 ψ

�′
i,βΦ�′

i,β . Then5

ψ[�′] ∗ Γ�[�′] = P�′ (ψ�′ ∗ g�) for � ≥ �′,

while the convolution with Γ[�′] from (3.5*) yields

ψ[�′] ∗ Γ[�′] = P�′

(
ψ�′ ∗

Lg∑
�=�′

g�

)
.

Proof. a) The second statement follows from the first one together with the last identity in (3.5*).
b) Let c[�′] = ψ[�′] ∗ Γ�[�′]. Following definition (3.6), its coefficients are

c�
′

i,α =
∑
j∈Z

p∑
β=0

ψ�′
j,βΓ�′,�

i−j,(α,β) =
(3.4)

∑
j∈Z

p∑
β=0

ψ�′
j,β

∑
k∈Z

p∑
κ=0

g�
k,κ γ

�′,�′,�
k−(i−j)2�−�′ ,(α,β,κ)

=
(3.3)

=
∑

j,k∈Z

p∑
β,κ=0

ψ�′
j,β g

�
k,κ γ

�′,�′,�
(i,α),(j,β),(k,κ) .

(3.1a,b) shows that c�
′

i,α are the coefficients of the function P�′(ψ�′ ∗ g�) at level �′ (�′′ = �′ in (3.1a,b)), i.e.,
c[�′] = P�′ (ψ�′ ∗ g�).

The computation of the Γ-quantities is based on the following two identities which are proved in Appendix
D (Lemma D.2):

Γ�,�
i,(α,β) =

p∑
κ=0

(
g�

i,κ + (−1)α+β+κ
g�

i−1,κ

)
γ�,�,�
0,(α,β,κ) for all i ∈ Z, 0 ≤ α, β ≤ p, (3.7a)

Γ�′,�
i,(α,β) =

α∑
p=0

β∑
q=0

ξα,pξβ,q

(
(−1)α+p Γ�′+1,�

2i−1,(p,q) +
(
1 + (−1)α+β+p+q

)
Γ�′+1,�

2i,(p,q) + (−1)β+q Γ�′+1,�
2i+1,(p,q)

)
for 0 ≤ �′ < �. (3.7b)

5On the left-hand side ∗ is the discrete convolution of sequences, whereas on the right-hand side ∗ is the convolution of
functions.
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(3.7a,b) can be reformulated as

Γ�[�] = Λ�(g[�]), Γ�[�′] = Λ(Γ�[�′ + 1]), (3.7c)

with Λ� and Λ defined by

Λ�(g[�]) :=

(( p∑
κ=0

(
g�

i,κ + (−1)α+β+κ
g�

i−1,κ

)
γ�,�,�
0,(α,β,κ)

)
i∈Z

)p

α,β=0

(3.7a*)

and

Λ(Ξ[λ]) := (3.7b*)(( α∑
p=0

β∑
q=0

ξα,pξβ,q

(
(−1)α+p Ξλ

2i−1,(p,q) +
(
1 + (−1)α+β+p+q

)
Ξλ

2i,(p,q) + (−1)β+q Ξλ
2i+1,(p,q)

))
i∈Z

)p

α,β=0

for an argument Ξ[λ] =
(
(Ξλ

i,(α,β))i∈Z

)p

α,β=0
.

3.4 Prolongation P and restriction R
The mapping P : ψ[�] �→ ψ[� + 1] is defined as follows. The coefficients ψ[�] define the function ψ� =∑

j∈Z

∑p
β=0 ψ

�
j,βΦ�

j,β ∈ S� . Since S� ⊂ S�+1, the function ψ� belongs also to S�+1. The corresponding
coefficients at level �+ 1 are ψ[�+ 1] := P�+1(ψ�). A compact characterisation is given by

P (P�(ψ)) = P�+1(ψ) for all functions ψ ∈ S�. (3.8a)

For the concrete description one has to study the action of P (P�(ψ)) for the basis functions ψ = Φ�
j,β ∈ S�.

The answer is given by (2.3), from which one concludes that

P(ψ[�]) = ψ[�+ 1] with ψ�+1
2j,β :=

p∑
α=β

ψ�
j,αξα,β (−1)α+β and ψ�+1

2j+1,β :=
p∑

α=β

ψ�
j,αξα,β . (3.8b)

The adjoint operation is the coarsening operatorR which maps the coefficients ω[�] = P�(σ) of a projected
function σ into the coefficients ω[�− 1] = P�−1(σ) of the projection at the coarser level �− 1:

R (P�(σ)) = P�−1(σ) for any function σ ∈ L2(R). (3.9a)

Since ω�−1
i,α =

〈
Φ�−1

i,α , σ
〉
, the identity (2.3) proves

R(ω[�]) = ω[�− 1] with ω�−1
i,α :=

α∑
κ=0

ξα,κ

(
(−1)κ+α

ω�
2i,κ + ω�

2i+1,κ

)
. (3.9b)

4 Algorithm

In (3.1a) three level numbers �′′, �′, � appear. Without loss of generality �′ ≤ � holds. In the following we
have to distinguish the following three cases:

(A) �′′ ≤ �′ ≤ �,
(B) �′ < �′′ ≤ �,
(C) �′ ≤ � < �′′.

The reason is that the projection P�′′
(∑

�′≤� f�′ ∗ g�

)
(see first term in (2.9)) is split into three terms

P�′′

⎛
⎝ ∑

�′,� with �′′≤�′≤�

f�′ ∗ g�

⎞
⎠ + P�′′

⎛
⎝ ∑

�′,� with �′<�′′≤�

f�′ ∗ g�

⎞
⎠ + P�′′

⎛
⎝ ∑

�′,� with �′≤�<�′′
f�′ ∗ g�

⎞
⎠ , (4.1)
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which are computed separately as described below.
Formally, the coefficients ω�′′

i,α = P�′′(
∑

�′≤� f�′ ∗ g�) are computed for all levels 0 ≤ �′′ ≤ Lω and all i ∈ Z.

In particular, these data contain the coefficients {ω�′′
i,α : 0 ≤ �′′ ≤ Lω, i ∈ Iω

�′′ , 0 ≤ α ≤ p�′′,ω
i } which are the

only data required for the final result (2.10). The restriction to the necessary data will be discussed in §5.
In §§4.1-4.3 we describe the computation of the coefficients of each of the three terms in (4.1). The sum

yields ω[�′′] = P�′′(
∑

�′≤� f�′ ∗ g�). The treatment of the second term
∑

�<�′ g� ∗ f�′ in (2.9) is very similar as
explained in §4.4.

4.1 Case A: �′′ ≤ �′ ≤ �

Proposition 4.1 Algorithm (4.2) computes the quantities Γ�
i,(α,β) (0 ≤ � ≤ Lg) defined in (3.5):

for � := Lg downto 0 do Γ[�] :=
{

0 if � = Lg

Λ(Γ[�+ 1]) if � < Lg

}
+ Λ�(g[�]); (4.2)

Proof. The first step � = Lg in (4.2) produces Λ�(g[�]) = Γ�[�] =
�=Lg

∑Lg

λ=� Γλ[�] =
(3.5∗)

Γ[�].

By induction hypothesis, Γ[�′] are determined for �′ ≥ �+1. By definition, Λ(Γλ[�+1]) = Γλ[�] holds (cf.
(3.7c)). This proves Λ(Γ[� + 1]) = Λ(

∑Lg

λ=�+1 Γλ[� + 1]) =
∑Lg

λ=�+1 Λ(Γλ[� + 1]) =
∑Lg

λ=�+1 Γλ[�]. Together
with Λ�(g[�]) = Γ�[�] the data Γ[�] produced in (4.2) contains the coefficients Γ�

i,(α,β) from (3.5).

The algorithm for the coefficients ω�
i,α (encoded by ω[�]) is

for � := min{Lf , Lg} downto 0 do ω[�] :=
{

0 if � = min{Lf , Lg}
R(ω[�+ 1]) if � < min{Lf , Lg}

}
+ f [�] ∗ Γ[�] (4.3)

Proposition 4.2 Algorithm (4.3) yields the coefficients

ω[�′′] = P�′′

⎛
⎝ Lf∑

�′=�′′

Lg∑
�=�′

f�′ ∗ g�

⎞
⎠ = P�′′

⎛
⎝ ∑

0≤�′′≤�′≤�

f�′ ∗ g�

⎞
⎠ (

0 ≤ �′′ ≤ min{Lf , Lg}) (4.4)

involving all combinations of indices with �′′ ≤ �′ ≤ �. An equivalent notation of (4.4) is

ω[�′′] =
Lf∑

�′=�′′
ω�′ [�′′] with ω�′ [�′′] := P�′′

(
f�′ ∗

Lg∑
�=�′

g�

)
.

If Lω > min{Lf , Lg}, ω�
i,α = 0 holds for all min{Lf , Lg} < � ≤ Lω.

Proof. a) By Lemma 3.1 we have ω�[�] = P�(f� ∗ ∑Lg

λ=� gλ) = f [�] ∗ Γ[�]. Note that ω�′′ [�′′] = 0 for
�′′ > min{Lf , Lg}.

b) The first step of the loop yields f [�′′]∗Γ[�′′] =
a)
ω�′′ [�′′] =

a)

∑Lf

�′=�′′ ω�′′ [�′′] = ω[�′′] for �′′ = min{Lf , Lg}.
Hence, ω[�′′] is correctly computed.

c) By induction assume that (4.4) holds for �+ 1, i.e., ω[�+ 1] =
∑Lf

�′=�+1 ω�′ [�+ 1]. Then

R(ω[�+ 1]) =
Lf∑

�′=�+1

R(ω�′ [�+ 1]) =
(3.9b)

Lf∑
�′=�+1

ω�′ [�]

is the first term in step � of (4.3). The second term is f [�] ∗ Γ[�] = ω�[�]. Together we obtain the correct
value

∑Lf

�′=� ω�′ [�] = ω[�].
The coefficients ω�

i,α in (4.3) contain formally all i ∈ Z. In the practical performance, the index i is
restricted to a finite subset. Furthermore, the upper bound p from (1.6) can be replaced by a possibly
smaller degree. Both aspects are explained in the next remark.
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Remark 4.3 a) We recall that all intervals I�
i ∈ Mω are associated with a polynomial degree p�

i (cf. (1.5)).
For all intervals I�′

j ⊂ I�
i (�′ > �) define an associated degree p�′

j := p�
i .

b) Consider the right-hand side of (4.3) for fixed value of the loop variable �. Then for i ∈ Z the following
disjoint cases appear:

1. I�
i ⊂ R\Ωω

0 . Then no action is needed, since I�
i is outside of the support of ω = Pωexact.

2. I�
i ⊂ Ωω

�′′ for some 0 ≤ �′′ ≤ �. Then the computations have to be performed with the polynomial degree
p�

i associated to I�
i by part a) of the Remark. If �′′ = �, the values ω�

i,α

(
0 ≤ α ≤ p�

i

)
defined in (4.3)

are part of the projected result P (f ∗ g)|I�
i

since I�
i ∈ Mω.

3. I�
i ⊂ Ωω

�+1. No action needed, since the result is already determined in Ωω
�+1.

c) The convolution f [�]∗Γ[�] in (4.3) must be evaluated for all i with I�
i ⊂ Ωω

0 . The required degree indices
are 0 ≤ α ≤ max

{
p�

i : I�
i ⊂ Ωω

0

}
.

4.2 Case B: �′ < �′′ ≤ �

In the following we need the coefficients F �
j,α of the functions

F� :=
�−1∑
�′=0

f�′ ∈ S�−1 ⊂ S� for � = 1, . . . , Lω (4.5)

at level �, i.e.
∑

j∈Z

∑p
α=0 F

�
j,αΦ�

j,α = F�. All components F �
j,α are collected in F[�] = P�(F�) and computed

by
F[0] := 0;

for � := 1 to Lω do F[�] := P
({

F[�− 1] if � > Lf + 1
F[�− 1] + f [�− 1] if � ≤ Lf + 1

})
; (4.6)

with P from (3.8b).
Proof. The definition of P yields F[�] = P(F[�− 1] + f [�− 1]). If � > Lf + 1, f [�− 1] = 0 allows to avoid the
addition of f [�− 1].

Proposition 4.4 The algorithm

for � := 1 to min{Lω, Lg} do ω[�] := F[�] ∗ Γ[�]; (4.7)

computes ω[�′′] containing the coefficients ω�′′
i,α of

ω[�′′] = P�′′

⎛
⎝ Lg∑

�=�′′

�′′−1∑
�′=0

f�′ ∗ g�

⎞
⎠ = P�′′

⎛
⎝ ∑

�′,� with �′<�′′≤�

f�′ ∗ g�

⎞
⎠ (1 ≤ �′′ ≤ min{Lω, Lg}) (4.8)

involving all combinations of indices with �′ < �′′ ≤ �. For � = 0 and Lg < � ≤ Lω, ω[�] = 0 holds, while for
� > Lω the values ω[�] are not needed.

Proof. The convolution ω[�′′] := F[�′′] ∗ Γ[�′′] produces the coefficients

ω[�′′] = P�′′

(
F�′′ ∗

Lg∑
�=�′′

g�

)
= P�′′

⎛
⎝�′′−1∑

�′=0

f�′ ∗
Lg∑

�=�′′
g�

⎞
⎠

(cf. Lemma 3.1). This proves the assertion (4.8).
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4.3 Case C: �′ ≤ � < �′′

We recall that Γ�[�] = Λ�(g[�]) is already evaluated in (4.2). Furthermore, we use the data F[�] determined
by (4.6). Different from the previous setting, we define ω̂[�′′] as (2p+ 1)-tuple (ω̂�′′,α)2p+1

α=0 containing the
coefficients ω̂�′′

i,α of the function

ω�′′,exact :=
∑

0≤�′≤�<�′′
f�′ ∗ g� =

∑
i∈Z

2p+1∑
α=0

ω̂�′′
i,αΦ�′′

i,α.

Since for any interval I�′′
i the restriction ω�′′,exact|I�′′

ν
is a polynomial of degree ≤ 2p+1,

∑
i∈Z

∑2p+1
α=0 ω̂

�′′
i,αΦ�′′

i,α

is an exact representation of ω�′′,exact. The following algorithm for Case C uses the extended data ω̂[�′′] and
contains the standard data ω[�′′] = (ω̂�′′,α)p

α=0 as a subset of ω̂[�′′].

ω̂[0] := 0;
for � := 1 to Lω do
begin if � ≤ Lg + 1 then ω̂[�− 1] := ω̂[�− 1] + (F[�− 1] + f [�− 1]) ∗ Γ̂�−1[�− 1];

ω̂[�] := P̂(ω̂[�− 1])
end;

(4.9)

The coefficient vectors Γ̂� and the mapping P̂ is defined as Γ�, P but with degree indices in the range6

0, 1, . . . , 2p+ 1.

Proposition 4.5 Restricting the data ω̂[�′′] = (ω̂�′′,α)2p+1
α=0 produced by (4.9) to 0 ≤ α ≤ p, we obtain the

desired coefficients ω[�′′] = P�′′
( ∑

0≤�′≤�<�′′
f�′ ∗ g�

)
.

Proof. a) The first step yields ω̂[1] = P̂(f [0]∗ Γ̂0[0]) =
Lemma 3.1

P̂(P̂0 (f0 ∗ g0)) =
(3.8a)

P̂1 (f0 ∗ g0) , since ω̂[0] =

F[0] = 0. Again, P̂� is defined as P� but with extended range of the degree indices. Since ω1,exact = f0 ∗ g0,
the assertion holds for � = 1.

b) Let � > 1. Note that ω�,exact = ω�−1,exact +
∑�−1

�′=0 f�′ ∗ g�−1 = ω�−1,exact + (F�−1 + f�−1) ∗ g�−1 with
F�−1 from (4.5). Assume by induction hypothesis that (4.9) has produced ω̂[�−1] = P̂�−1(ω�−1,exact). Then
(4.9) produces in step �

P̂
(
ω̂[�− 1] + (F�−1 + f�−1) ∗ Γ̂�−1

)
=

Lemma 3.1
P̂

(
P̂�−1(ω�−1,exact) + P̂�−1 ((F�−1 + f�−1) ∗ g�−1)

)
=

(3.8a)

= P̂�(ω�−1,exact + (F�−1 + f�−1) ∗ g�−1) = P̂�(ω�,exact)

the correct value ω̂[�] = P̂�(ω�,exact). If � > Lg + 1, the factor Γ̂�−1 vanishes and the update of ω̂[� − 1] is
not necessary.

Remark 4.6 For fixed loop index �, the computations in (4.9) are to be performed for all i with I�
i ⊂ Ωω

� .

4.4 Treatment of the second sum in (2.9)

The treatment of the second sum∑
�<�′

g� ∗ f�′ =
notations of �,�′ interchanged

∑
�′<�

g�′ ∗ f� (4.10)

in (2.9) is almost analogous to the first sum
∑

�′≤� f�′ ∗ g�. Besides the trivial permutation of the letters f
and g one has to notice that the sum in (4.10) excludes the cases of �′, � with �′ = �.

Below we describe the changes in the algorithmic steps (4.2), (4.3), (4.6), (4.7), (4.9) from above.

6More precisely, the indices β, κ of γ�′,�′,�
k−i2�−�′ ,(α,β,κ)

and Γ�′,�
i,(α,β)

are still from 0 to p, whereas α varies from 0 to 2p + 1.
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Case A. First, g and Lg are replaced by f and Lf . Besides Γ[�] =
∑Lf

λ=� Γλ[�] (cf. (3.5*)) we also define
the sum

Γ′[�] =
Lf∑

λ=�+1

Γλ[�].

Then (4.2), (4.3) become

Γ′[Lf ] := 0;
for � := Lf downto 0 do
begin Γ�[�] := Λ�(f [�]);

if � < Lf then Γ′[�] := Λ(Γ′[�− 1] + Γ�−1[�− 1]);
Γ[�] := Γ′[�] + Γ�[�]

end;

L := min{Lf − 1, Lg};
for � := L downto 0 do ω[�] :=

{
0 if � = L
R(ω[�+ 1]) if � < L

}
+ g[�] ∗ Γ′[�]

Case B. In this case �′ = � cannot happen. There only the name f, g are to be interchanged. For a
consistent naming we also change F into G:

G[0] := 0;

for � := 1 to Lω do G[�] := P
({

G[�− 1] if � > Lg + 1
G[�− 1] + g[�− 1] if � ≤ Lg + 1

})
;

for � := 1 to min{Lω, Lf} do ω[�] := G[�] ∗ Γ[�];

Case C. Again �′ = � must be excluded:

ω̂[0] := ω̂[1] := 0;
for � := 2 to Lω do
begin if � ≤ Lf + 1 then ω̂[�− 1] := ω̂[�− 1] + G[�− 1] ∗ Γ̂�−1[�− 1];

ω̂[�] := P̂(ω̂[�− 1])
end;

5 Discrete convolution revisited and cost of the algorithm

The algorithms in §§4.1-4.4 involve the operation ∗ from (3.6) which is a sum of usual discrete convolutions of
infinite sequences as defined in (2.12). The sequences appearing in our applications have a bounded support,
i.e., almost all components are zero. To measure the size of the support, we say that a sequence a has length
N(a) ∈ N0 if there is an index ia so that ai = 0 for all i /∈ [ia, ia +N(a)−1]∩Z. Obviously, N(a) is a measure
for the storage needed for the coefficients of a. The convolution of two sequences of bounded support has
again bounded support with the length N(a ∗ b) = N(a) + N(b) − 1. The computational cost of the Fast
Fourier Transform is7 O((N(a) +N(b)) log (N(a) +N(b))).

With the foregoing comments the given algorithms have obviously a finite runtime. However, the restric-
tion to the essential support of the sequences is still insufficient. A critical example is algorithm (4.6), where
the quantities F[�] are computed. The difficulty arises from the fact that the prolongation mapping P has an
output length which is about twice the input length. This causes an exponential growth with respect to the
level number and makes the algorithm inefficient. The remedy is given by the following trivial observation.

Let c := a ∗ b, where N(b) < ∞, whereas a may have even an unbounded support. Assume that the
resulting coefficients ci are only of interest for i ∈ [ic, ic + Lc − 1] ∩ Z (Lc: output length). Then there is
a truncated version a′ of a with N(a′) = N(b) + Lc − 1 such that c′ := a′ ∗ b yields the same components
c′i = ci for i ∈ [ic, ic + Lc − 1]. By Remark 4.6, the length Lc is given by length(Ωω

� )/h�.
The application to algorithm (4.6) is as follows. In (4.7) the convolution ω[�] := F[�] ∗ Γ[�] appears.

The size of Γ[�] is bounded by the size of the input data g� from (2.6), while the necessary coefficients of
7In [3] improvements are discussed if N(a) and N(b) are of quite different size.
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ω[�] are characterised by i ∈ Iω
� (cf. (2.10)). This allows to shorten the sequences in F[�]. The remaining

size is bounded by the input sizes8 of the data
{
f� : 0 ≤ � ≤ Lf

}
, {g� : 0 ≤ � ≤ Lg} , and the output sizes

N(Iω
� ) := 1 + maxi∈Iω

�
i − mini∈Iω

�
i. Let N be the sum of these input and output sizes. The storage size

of these data is N · p. The data needed in the algorithms of §§4.1-4.4 require a storage of O(N · p2). The
number of operations is O(N log(N) · p2).

A detailed complexity analysis can be found in [3].

6 Modifications and Extensions

6.1 Nondisjoint supports of f� or g�

By definition of the index set If
� and the space Sf

� , the functions f0, f1, . . . arising in the decomposition
(2.5) have disjoint support (see footmark 1). In fact, supp(f�) ⊂ Ω�\Ω�+1 holds. This assumption makes
the decomposition (2.5) unique. However, neither the algorithms nor the discussion in §5 make use of the
fact that the support of supp(f�) has a “hole” in Ω�+1. Therefore, nondisjoint supports of f� can be allowed
without any change of the algorithm.

6.2 Other systems of basis functions

We started from the condition that the basis functions should be orthonormal (cf. Remark 2.1b) with
supp(Φ�

i,α) = I�
i . Then the described system of transformed Legendre polynomial is the optimal one.

Weakening the condition supp(Φ�
i,α) = I�

i we can ask for an orthonormal system with a support of O(1)
subintervals. An obvious candidate are orthogonal wavelet representations. In this case we make use of
nondisjoint supports as discussed above. Then the set of basis functions Φ�

i,α consists of generating functions
and wavelets at various levels.

For any orthonormal system one has to describe the refinement rule (2.3) which is obvious in the wavelet
case. Another requirement is that the values of γ�,�,�

ν,(α,β,κ) can be determined (see (3.2) and Appendix C),
since these quantities are used in (3.7a), i.e., in the definition of the mapping Λ� from (3.7c).

Even a generalisation to non-orthonormal systems of basis functions Φ�
i,α is possible, if there is an

associated bi-orthonormal system of functions Ψ�
i,α so that

〈
Φ�

i,α,Ψ
�
j,β

〉
= δijδαβ .

6.3 Multidimensional convolution

Generalisations to d-variate functions are straightforward, provided that the basis functions are tensor prod-
ucts of the one-dimensional basis functions Φ�

i,α used here.

6.4 Local refinements towards multiple subregions

The structure of the refinement is defined by means of the refinement zones Ω� = [ia,�h�, ib,�h�] . Note that
the description of an hp-function g in such a grid requires a storage9 N(g) = O(

∑Lg

�=0 length(Ω�)/h�) =
h−1O(

∑Lg

�=0 2�length(Ω�)). Therefore, the size of the refinement zones should decrease with �.

Ω0

Ω1,3Ω2,3
Ω3,3

Ω1,2
Ω2,2Ω3,2Ω3,1

Ω2,1

Ω1,1

Figure 6.1: Local grid refinements in three disjoint subregions

8For a function f� with support in Ωf
� = [ifa,�h�, i

f
b,�h�] we define the size N(f�) := ifb,� − ifa,� + 1 (number of involved

subintervals).

9Here, the maximal polynomial degree p is considered as a constant.
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Now we consider the situation of Figure 6.1, where the starting grid in Ω0 is refined in three disjoint
subregions Ω�,1,Ω�,2,Ω�,3. In principle, we can form the convex hulls Ω� := [a�, b�] with a� := minx∈Ω�,1 x
and b� := maxx∈Ω�,3 x to reach the situation assumed in the introduction (as in Figure 1.1). Then, however,
Ω� has the size O(1) and the storage of an hp-function g increases as O(2Lg

). Using the ideas of §6.1, the
storage can be reduced, since the functions g� (� ≥ 1) from (2.6) have a sparse representation: nonzero
components appear only for subintervals in Ω�,1 ∪ Ω�,2 ∪ Ω�,3, while zero components belongs to the holes
in between. However, this does not help for the convolutions at the levels � ≥ 1, since for this purpose the
discrete Fourier transform is to be applied and, unfortunately, the Fourier image of a sparse vector is not
sparse again.

A possible remedy is the division of all g� (0 ≤ � ≤ Lg) into three terms g(1)
� + g

(2)
� + g

(3)
� so that each

term is associated with only one refinement subregion and therefore satisfies the assumptions of §1. Provided
that also f satisfies these conditions, the convolutions f ∗ g(i) (1 ≤ i ≤ 3, g(i) :=

∑
� g

(i)
� ) can be computed

as usual. More or less, the computational cost is increased by the factor 3. This fact makes the proposed
remedy less attractive if f and/or g is refined in many subregions.

So far, the aim was to compute the projected convolution exactly. Finally, we discuss a case which is
quite typical. Let f be a function which is refined in the neighbourhood of 0 and increasingly smooth10 away
from 0, while g may be of the form like in Figure 6.1. Furthermore, we assume that the hp-structure of the
desired result ω is identical to that of g, i.e., Sω = Sg. Again we split g into

∑
i g

(i) so that each g(i) uses
a grid refinement as in Figure 1.1. Define Sω,i (i = 1, 2, 3) for instance as follows: Sω,i := Sg

0 +
∑

� Sg
� |Ω�,i

,
where Sg

� = Sg ∩S� (cf. (2.4)) is restricted to the ith subregion Ω�,i. Note that Sω =
∑

i Sω,i. The subspace
Sω,i is of the standard form and offers a good approximation of f ∗ g(i), since f ∗ g(i) is smoother than g(i).
The projection ω(i) of the convolution f ∗ g(i) to Sω,i is cheaper because Sω,i has a simpler structure than
Sω . In this case, the sum

∑
i ω

(i) ∈ Sω is not the exact projection of f ∗g to Sω but a perfect approximation.
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A Legendre polynomials

The standard definition of Legendre polynomials Pn of degree n is by the recursion formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x), P0(x) = 1, (A.1a)

which leads to the normalisation condition
Pn(1) = 1. (A.1b)

We recall some properties of Pn.

Lemma A.1 a) Pn is an even [odd] function, if n is even [odd].
b) The Legendre polynomials Pn are orthogonal, i.e.,

∫ 1

−1 Pn(x)Pm(x)dx = 0 for n 	= m.

c) The squared L2-norm is ∫ 1

−1

P 2
n(x)dx =

2
2n+ 1

. (A.1c)

In the proof of Lemma C.4 we will need the following representation of the antiderivative of Pn.

Lemma A.2 For any n ∈ N we have∫ x

−1

Pn(t)dt =
Pn+1(x) − Pn−1(x)

2n+ 1
. (A.1d)

Proof. a) Since Qn+1(x) :=
∫ x

−1
Pn(t)dt is a polynomial of degree n+ 1, it is of the form

Qn+1(x) =
n+1∑
ν=0

ανPν(x) with αν =
2ν + 1

2

∫ 1

−1

Qn+1(x)Pν (x)dx (cf. (A.1b)).

b) Let ν ≤ n− 2. We want to show that αν = 0. Partial integration yields

∫ 1

−1

Qn+1(x)Pν(x)dx =
∫ 1

−1

(∫ x

−1

Pn(t)dt
)
Pν(x)dx

=
(∫ x

−1

Pn(t)dt
)(∫ x

−1

Pν(t)dt
)∣∣∣∣

1

x=−1

−
∫ 1

−1

Pn(x)
(∫ x

−1

Pν(t)dt
)

dx

= Qn+1(1)Qν+1(1) −
∫ 1

−1

Pn(x)Qν+1(x)dx

since obviously Qn+1(0) = 0. By orthogonality, Qn+1(1) =
∫ 1

−1
Pn(x)P0(x)dx = 0 holds. Since the degree of

Qν+1 is ν + 1 ≤ n− 1, this polynomial is orthogonal to Pn proving
∫ 1

−1Qn+1(x)Pν (x)dx = 0, i.e., αν = 0.
c) Next we prove αn = 0. Let n be even [odd]. Lemma A.1a implies that Q̃n+1(x) =

∫ x

0 Pn(t)dt is odd
[even]. Qn+1 equals c + Q̃n+1 = cP0 + Q̃n+1 with c :=

∫ 1

0 Pn(t)dt. The integral
∫ 1

−1 Q̃n+1Pn(x)dx vanishes

since the integrand is even (product of an even and an odd function). Finally,
∫ 1

−1
P0Pn(x)dx = 0 shows

that
∫ 1

−1Qn+1(x)Pn(x)dx = 0, i.e., αn = 0.
d) Parts a-c yield the representation Qn+1(x) = αn+1Pn+1(x) + αn−1Pn−1(x). Evaluation at x = −1

shows 0 = αn+1 (−1)n+1 + αn−1 (−1)n−1 = ± (αn+1 + αn−1) , proving αn−1 = −αn+1, i.e.

Qn+1(x) = αn+1 (Pn+1(x) − Pn−1(x)) . (A.2)

e) To fix the value of αn+1, we consider the leading term. Pn(x) = cnx
n + . . . yields Qn+1(x) =

1
n+1cnx

n+1 + . . . , while the recursion formula (A.1a) implies that (n+ 1) cn+1 = (2n+ 1) cn. Equating
the leading coefficients on both sides in (A.2) yields 1

n+1cn = αn+1
2n+1
n+1 cn, i.e., αn+1 = 1

2n+1 proving the
assertion (A.1c).
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In order to obtain an orthonormal system of polynomials (i.e.,
∫ 1

−1 Ln(x)Lm(x)dx = δnm), we introduce
the scaled Legendre polynomials

Ln(x) :=

√
2n+ 1

2
Pn(x).

(A.1a) implies the recursion formula

Ln+1(x) = anxLn(x) − bnLn−1(x), an =
√

2n+ 3
√

2n+ 1
n+ 1

, bn =
√

2n+ 3√
2n− 1

n

n+ 1
. (A.3)

Remark A.3 The recursion formula (A.3) can also be used for n = 0. Then the term b0L−1(x) must be
ignored (L−1 undefined, but b0 = 0). Therefore, one needs only one starting value L0(x) = 1/

√
2 to obtain

all Ln from (A.3).

The basis functions Φ0
i,α defined in (2.1a-c) satisfy the related recursion formula

Φ0
0,n+1(x) = an (−1 + 2x/h)Φ0

0,n(x) − bnΦ0
0,n−1(x), (A.4a)

Φ�
i,n+1(x) = an (−1 − 2i+ 2x/h�)Φ�

i,n(x) − bnΦ�
i,n−1(x). (A.4b)

The first Φ0
0,α are Φ0

0,0(x) = 1/
√
h, Φ0

0,1(x) =
√

3/h (2x/h− 1), Φ0
0,2(x) =

√
5/h

(
6 (x/h)2 − 6x/h+ 1

)
for

0 ≤ x ≤ h and zero outside of [0, h] .

Remark A.4 The symmetry property Φ0
0,α(h

2 + x) = (−1)α Φ0
0,α(h

2 − x) holds for all α ∈ N0.

B Coefficients ξκ,α

We make the ansatz

Φ0
0,κ =

κ∑
α=0

(
ξκ,α,0Φ1

0,α + ξκ,α,1Φ1
1,α

)
. (B.1)

Note that (B.1) restricted to I1
0 = (0, h1) = (0, h0/2) reads Φ0

0,κ |(0,h1) =
∑

κ

α=0 ξκ,α,0Φ1
0,α|(0,h1), while

Φ0
0,κ|(h1,h0) =

∑
κ

α=0 ξκ,α,1Φ1
1,α|(h1,h0) on the second half of I0

0 . Outside of I0
0 both sides in (B.1) are zero.

Remark B.1 The coefficients from (B.1) also satisfy

Φ�
i,κ =

κ∑
α=0

(
ξκ,α,0Φ�+1

2i,α + ξκ,α,1Φ�+1
2i+1,α

)
.

Since
{
Φ1

0,α

}
is an orthonormal system, the coefficients ξκ,α,0, ξκ,α,1 are characterised by the scalar

products

ξκ,α,0 =
∫ h1

0

Φ0
0,κ(x)Φ1

0,α(x)dx, ξκ,α,1 =
∫ 2h1

h1

Φ0
0,κ(x)Φ1

1,α(x)dx. (B.2)

The symmetry property from Remark A.4 implies the following result.

Remark B.2 ξκ,α,0 = (−1)κ+α
ξκ,α,1 for all κ, α ∈ N0.

We rename ξκ,α,1 by ξκ,α and get

Φ�
i,κ =

κ∑
α=0

ξκ,α

(
(−1)κ+α Φ�+1

2i,α + Φ�+1
2i+1,α

)
. (B.3)

It remains to determine the coefficients ξκ,α. The answer is given in the next lemma.
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Lemma B.3 a) ξn,m = 0 for n < m.
b) The coefficients ξn,m can be computed from the recursion formula

ξn,m =
an−1

2am
ξn−1,m+1 +

an−1

2
bm
am

ξn−1,m−1 +
an−1

2
ξn−1,m − bn−1ξn−2,m

with aν , bµ from (A.3). The recursion leads to the following algorithm11:

ξ0,0 := 1/
√

2;
for q := 1 to 2p do for n := 0 to q do
begin m := q − n;

if n < m then ξn,m := 0 else
begin ξn,m := an−1

2 (ξn−1,m+1/am + ξn−1,m) ;
if m > 0 then ξn,m := ξn,m + an−1

2
bm

am
ξn−1,m−1;

if n ≥ 2 then ξn,m := ξn,m − bn−1ξn−2,m

end end;

Proof. a) The Legendre polynomial is orthogonal to any polynomial of lower degree. This shows part a).
b) We make use of the recursion formula (A.4). Remark B.1 shows that the scalar products (B.2) do not

depend on the choice of the step size h�. For convenience we take h = h0 = 2, h1 = 1 and obtain from (B.2)
that

ξn,m =
∫ 2

1

Φ0
0,n(x)Φ1

1,m(x)dx =
∫ 2

1

(
an−1 (x− 1)Φ0

0,n−1(x) − bn−1Φ0
0,n−2(x)

)
Φ1

1,m(x)dx

= an−1

∫ 2

1

(x− 1)Φ0
0,n−1(x)Φ

1
1,m(x)dx − bn−1ξn−2,m

=
an−1

2

(∫ 2

1

(2x− 3)Φ0
0,n−1(x)Φ

1
1,m(x)dx +

∫ 2

1

Φ0
0,n−1(x)Φ

1
1,m(x)dx

)
− bn−1ξn−2,m

=
an−1

2

∫ 2

1

Φ0
0,n−1(x)

[
(2x− 3)Φ1

1,m(x)
]
dx+

an−1

2
ξn−1,m − bn−1ξn−2,m

=
an−1

2

∫ 2

1

Φ0
0,n−1(x)

Φ1
1,m+1(x) + bmΦ1

1,m−1(x)
am

dx+
an−1

2
ξn−1,m − bn−1ξn−2,m

=
an−1

2am
(ξn−1,m+1 + bmξn−1,m−1) +

an−1

2
ξn−1,m − bn−1ξn−2,m.

From line 4 to 5 we used Φ1
1,m+1(x) = am (2x− 3)Φ1

1,m(x) − bmΦ1
1,m−1(x), which is (A.4b) for � = i = 1

and n replaced by m.
Table B.1 contains the scaled values

ξ∗n,m := 2n+1/2ξn,m/
√

(2n+ 1) (2m+ 1),

since they have a rather simple form (mostly small integers).

C Coefficients γ�,�,�k,(α,β,κ)

We recall the general γ-coefficients

γ�′′,�′,�
(i,α),(j,β),(k,κ) =

∫∫
Φ�′′

i,α(x)Φ�′
j,β(y)Φ�

k,κ(x− y)dxdy. (C.1)

and the simpler version

γ�′′,�′,�
ν,(α,β,κ) =

∫∫
Φ�′′

(0,α)(x)Φ�′
(0,β)(y)Φ�

(ν,κ)(x− y)dxdy.

Recursion formula (B.3) can be applied to all three basis functions in the integrand in (C.1). The resulting
formulae for γ�′′,�′,�

(i,α),(j,β),(k,κ) are given in the next Remark.

11This loop defines all ξn,m with n + m ≤ 2p, hence, in particular, all ξn,m for 0 ≤ n, m ≤ p.
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m\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 1 0 −1 0 2 0 −5 0 14 0 −42 0 132 0 −429 0
1 0 1

3 1 1 − 2
3 −2 1 5 −2 −14 14

3 42 −12 −132 33 429 − 286
3

2 0 0 1
5 1 2 1 −3 − 19

5 6 12 −14 −38 36 123 −99 −407 286
3 0 0 0 1

7 1 3 4 −1 −10 −4 176
7 22 −67 −87 188 319 −550

4 0 0 0 0 1
9 1 4 25

3 6 −12 −80
3 13 85 43

9 −260 −113 2398
3

5 0 0 0 0 0 1
11 1 5 14 20 −1 −53 −50 113 229 −215 − 9206

11
6 0 0 0 0 0 0 1

13 1 6 21 43 35 −58 −170 −7 509 406
7 0 0 0 0 0 0 0 1

15 1 7 88
3 77 556

5
14
3 −304 −397 1498

3
8 0 0 0 0 0 0 0 0 1

17 1 8 39 124 246 208 −321 −1090
9 0 0 0 0 0 0 0 0 0 1

19 1 9 50 186 461 657 46
10 0 0 0 0 0 0 0 0 0 0 1

21 1 10 187
3 265 781 1494

11 0 0 0 0 0 0 0 0 0 0 0 1
23 1 11 76 363 1234

12 0 0 0 0 0 0 0 0 0 0 0 0 1
25 1 12 91 482

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1
27 1 13 322

3
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

29 1 14
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

31 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

33

Table B.1: Exact values of ξ∗n,m from which ξn,m = 2−n−1/2ξ∗n,m

√
(2n+ 1) (2m+ 1) can be derived.

Remark C.1 For all �′′, �′, � ∈ N0, all i, j, k ∈ Z and all 0 ≤ α, β,κ ≤ p we have

γ�′′,�′,�
(i,α),(j,β),(k,κ) =

α∑
q=0

ξα,q

(
(−1)α+q γ�′′+1,�′,�

(2i,q),(j,β),(k,κ) + γ�′′+1,�′,�
(2i+1,q),(j,β),(k,κ)

)
(C.2a)

=
α∑

q=0

ξβ,q

(
(−1)β+q

γ�′′,�′+1,�
(i,α),(2j,q),(k,κ) + γ�′′,�′+1,�

(i,α),(2j+1,q),(k,κ)

)
(C.2b)

=
α∑

q=0

ξκ,q

(
(−1)κ+q

γ�′′,�′,�+1
(i,α),(j,β),(2k,q) + γ�′′,�′,�+1

(i,α),(j,β),(2k+1,q)

)
. (C.2c)

The basic relations of the γ-coefficients are gathered below.

Lemma C.2 a) Shift properties: Let � ≥ max{�′, �′′}. Then

γ�′′,�′,�
(i,α),(j,β),(k,κ) = γ�′′,�′,�

k−i2�−�′′+j2�−�′ ,(α,β,κ)
(i, j, k ∈ Z, α, β,κ ∈ N0) . (C.3)

b) Symmetries properties:

γ�,�,�
k,(α,β,κ) = γ�,�,�

k,(α,κ,β), (C.4a)

γ�,�,�
k,(α,β,κ) = (−1)α+β

γ�,�,�
k,(β,α,κ), (C.4b)

γ�,�,�
k,(α,β,κ) = (−1)α+β+κ

γ�,�,�
−k−1,(α,β,κ). (C.4c)

c) Level dependence:
γ�,�,�

k,(α,β,κ) = 2−�/2γ0,0,0
k,(α,β,κ). (C.5)

d) Support:
γ�,�,�

k,(α,β,κ) = 0 for all k /∈ {−1, 0}. (C.6)

Proof. a) (C.3) follows by substituting the integration variables x, y by shifted ones.
ba) Another writing of γ�,�,�

k,(α,β,κ) is γ�,�,�
(−k,α),(0,β),(0,κ) =

〈
Φ�

−k,α,Φ
�
0,β ∗ Φ�

0,κ

〉
. Since the convolution is

symmetric: Φ�
0,β ∗ Φ�

0,κ = Φ�
0,κ ∗ Φ�

0,β , (C.4a) follows.
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bb) Interchanging the notations of x and y yields

γ�,�,�
k,(α,β,κ) =

∫∫
Φ�

0,α(x)Φ�
0,β(y)Φ�

k,κ(x− y)dxdy =
∫∫

Φ�
0,β(x)Φ�

0,α(y)Φ�
k,κ(y − x)dxdy.

Due to Remark A.4, we have Φ�
0,β(x) = (−1)β Φ�

0,β(h� − x) and Φ�
0,α(y) = (−1)α Φ�

0,α(h� − y). Substituting
new variables x′ = h� − x, y′ = h� − y, we obtain the statement (C.4b):

γ�,�,�
k,(α,β,κ) = (−1)α+β

∫∫
Φ�

0,β(x′)Φ�
0,α(y′)Φ�

k,κ(x′ − y′)dx′dy′ = (−1)α+β
γ�,�,�

k,(β,α,κ).

bc) Part ba) shows γ�,�,�
ν,(α,β,κ) =

∫∫
Φ�

0,α(x)Φ�
0,β(x − y)Φ�

ν,κ(y)dxdy. The symmetry Φ�
0,β(t) =

(−1)β Φ�
0,β(h� − t) from Remark A.4 implies

γ�,�,�
ν,(α,β,κ) =

∫∫
Φ�

0,α(x)Φ�
0,β(x − y)Φ�

ν,κ(y)dxdy

= (−1)β
∫∫

Φ�
0,α(x)Φ�

0,β(h� − x+ y)Φ�
0,κ(y − νh�)dxdy =

substitute y′=y−νh�

= (−1)β
∫∫

Φ�
0,α(x)Φ�

0,β((ν + 1)h� − x+ y′)Φ�
0,κ(y′)dxdy′ =

rename y′ by y

= (−1)β
∫∫

Φ�
0,α(x)Φ�

−ν−1,β(−x+ y)Φ�
0,κ(y)dxdy.

Interchanging the notations of x and y yields

γ�,�,�
k,(α,β,κ) = (−1)β

∫∫
Φ�

0,α(y)Φ�
−k−1,β(x− y)Φ�

0,κ(x)dxdy

= (−1)β
∫∫

Φ�
0,κ(x)Φ�

0,α(y)Φ�
−k−1,β(x− y)dxdy = (−1)β

γ�,�,�
−k−1,(κ,α,β).

Together, γ�,�,�
−k−1,(κ,α,β) =

(C.4b)
(−1)κ+α γ�,�,�

−k−1,(α,κ,β) =
(C.4a)

(−1)κ+α γ�,�,�
−k−1,(α,β,κ) holds proving (C.4c).

c) Φ�
0,α(x) = 2�/2Φ0

0,α(2�x) yields γ�,�,�
k,(α,β,κ) = 23�/2

∫∫
Φ0

0,α(2�x)Φ0
0,β(2�y)Φ0

k,κ(2� (x− y))dxdy. Substi-
tution by x′ = 2�x, y′ = 2�y leads to the (C.5).

d) The supports of Φ�
0,β and Φ�

k,κ are [0, h�] and [kh�, (k + 1)h�] . Hence, Φ�
0,β ∗ Φ�

k,κ has its support in

[kh�, (k + 2)h�] . Since γ�,�,�
k,(α,β,κ) =

〈
Φ�

0,α,Φ
�
0,β ∗ Φ�

k,κ

〉
and supp(Φ�

0,α) = [0, h�] , nonzero values can only
result if [0, h�] ⊂ [kh�, (k + 2)h�] , i.e., k = −1 or k = 0.

Note that (C.4b) implies γ0,0,0
−1,(α,β,κ) = (−1)α+β+κ

γ0,0,0
0,(α,β,κ). Because of this identity, (C.5), and (C.6),

the values of γ0,0,0
0,(α,β,κ) suffice to determine all γ�,�,�

k,(α,β,κ). Due to the symmetry properties (C.4a,c), it is even

sufficient to know γ0,0,0
0,(α,β,κ) for 0 ≤ α ≤ β ≤ κ ≤ p.

Lemma C.3 a) γ0,0,0
0,(α,β,κ) = 0 for α > β + κ + 1 or κ > α+ β + 1 or β > α+ κ + 1.

b) For all α ≥ 1, β,κ ≥ 0, the γ-coefficients satisfy the relation

γ0,0,0
0,(α,β,κ) =

aα−1

aκ

γ0,0,0
0,(α−1,β,κ+1) +

aα−1

aβ
γ0,0,0
0,(α−1,β+1,κ) (C.7)

+ aα−1γ
0,0,0
0,(α−1,β,κ) + aα−1

bκ

aκ

γ0,0,0
0,(α−1,β,κ−1) + aα−1

bβ
aβ
γ0,0,0
0,(α−1,β−1,κ) − bα−1γ

0,0,0
0,(α−2,β,κ).

Proof. a) For instance for α > β+ κ + 1 use that Φ�
0,β ∗ Φ�

0,κ

∣∣∣
[0.h]

is a polynomial of degree ≤ β+ κ + 1 and

therefore orthogonal to Φ�
0,α. Hence, γ0,0,0

0,(α,β,κ) =
〈
Φ�

0,α,Φ
�
0,β ∗ Φ�

0,κ

〉
= 0.

b) For the proof of (C.7) we start from the definition

γ0,0,0
0,(α,β,κ) =

∫∫
Φ0

0,α(x)Φ0
0,β(y)Φ0

0,κ(x− y)dxdy.
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For α ≥ 1 we can make use of Φ0
0,α(x) = aα−1 (−1 + 2x/h)Φ0

0,α−1(x) − bα−1Φ0
0,α−2(x) (use Remark A.3 for

bα−1Φ0
0,α−2 if α = 1):

γ0,0,0
0,(α,β,κ) = aα−1

∫∫ (
2x
h

− 1
)

Φ0
0,α−1(x)Φ0

0,β(y)Φ0
0,κ(x− y)dxdy

− bα−1

∫∫
Φ0

0,α−2(x)Φ0
0,β(y)Φ0

0,κ(x − y)dxdy

= aα−1

∫∫ (
2x
h

− 1
)

Φ0
0,α−1(x)Φ0

0,β(y)Φ0
0,κ(x− y)dxdy − bα−1γ

0,0,0
0,(α−2,β,κ).

Split 2x
h − 1 into 2(x−y)

h − 1 and 2y
h :

γ0,0,0
0,(α,β,κ) = aα−1

∫∫
Φ0

0,α−1(x)Φ0
0,β(y)

(
2 (x− y)

h
− 1

)
Φ0

0,κ(x− y)dxdy

+ aα−1

∫∫
Φ0

0,α−1(x)
2y
h

Φ0
0,β(y)Φ0

0,κ(x− y)dxdy − bα−1γ
0,0,0
0,(α−2,β,κ).

The recursion Φ0
0,κ+1(t) = aκ (−1 + 2t/h)Φ0

0,κ(t) − bκΦ0
0,κ−1(t) from (A.4a) yields

(
2 (x− y)

h
− 1

)
Φ0

0,κ(x− y) =
Φ0

0,κ+1(x− y) + bκΦ0
0,κ−1(x− y)

aκ

,

so that

γ0,0,0
0,(α,β,κ) =

aα−1

aκ

∫∫
Φ0

0,α−1(x)Φ0
0,β(y)

[
Φ0

0,κ+1(x− y) + bκΦ0
0,κ−1(x − y)

]
dxdy

+ aα−1

∫∫
Φ0

0,α−1(x)
2y
h

Φ0
0,β(y)Φ0

0,κ(x− y)dxdy − bα−1γ
0,0,0
0,(α−2,β,κ)

=
aα−1

aκ

γ0,0,0
0,(α−1,β,κ+1) +

aα−1bκ

aκ

γ0,0,0
0,(α−1,β,κ−1)

+ aα−1

∫∫
Φ0

0,α−1(x)
2y
h

Φ0
0,β(y)Φ0

0,κ(x− y)dxdy − bα−1γ
0,0,0
0,(α−2,β,κ).

Similarly, we split 2y
h in 2y

h − 1 plus 1 and use
(

2y
h − 1

)
Φ0

0,β(y) = Φ0
0,β+1(y)+bβΦ0

0,β−1(y)

aβ
:

γ0,0,0
0,(α,β,κ) = aα−1

∫∫
Φ0

0,α−1(x)
2y
h

Φ0
0,β(y)Φ0

0,κ(x − y)dxdy

+ aα−1γ
0,0,0
0,(α−1,β,κ+1) + bκγ

0,0,0
0,(α−1,β,κ−1) − bα−1γ

0,0,0
0,(α−2,β,κ)

=
aα−1

aβ

∫∫
Φ0

0,α−1(x)
[
Φ0

0,β+1(y) + bβΦ0
0,β−1(y)

]
Φ0

0,κ(x− y)dxdy

+ aα−1

∫∫
Φ0

0,α−1(x)Φ0
0,β(y)Φ0

0,κ(x− y)dxdy

+
aα−1

aκ

γ0,0,0
0,(α−1,β,κ+1) +

aα−1bκ

aκ

γ0,0,0
0,(α−1,β,κ−1) − bα−1γ

0,0,0
0,(α−2,β,κ)

=
aα−1

aβ

(
γ0,0,0
0,(α−1,β+1,κ) + bβγ

0,0,0
0,(α−1,β−1,κ)

)
+ aα−1γ

0,0,0
0,(α−1,β,κ)

+
aα−1

aκ

γ0,0,0
0,(α−1,β,κ+1) +

aα−1bκ

aκ

γ0,0,0
0,(α−1,β,κ−1) − bα−1γ

0,0,0
0,(α−2,β,κ).

This proves (C.7).
To make use of the recursion (C.7), one need to know γ0,0,0

0,(0,β,κ) for α = 0. These values are easy to
describe.
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Lemma C.4 All coefficients γ0,0,0
0,(0,β,κ), 0 ≤ β ≤ κ, are zero except the following ones:

γ0,0,0
0,(0,0,0) =

1
2

√
h, (C.8)

γ0,0,0
0,(0,κ−1,κ) = (−1)κ 1

2
√

(2κ − 1) (2κ + 1)

√
h for κ ∈ N.

Proof. a) γ0,0,0
0,(0,0,0) = 1

2

√
h and γ0,0,0

0,(0,0,1) = − 1
2
√

3

√
h follow by direct calculation. In the following we consider

the case κ ≥ 2.
b) The symmetry properties (C.4a,b) show that the second statement is equivalent to

γ0,0,0
0,(κ,κ−1,0) =

1
2
√

(2κ − 1) (2κ + 1)

√
h.

The definition of γ0,0,0
0,(κ,κ−1,0) is

∫ h

0 Φ0
0,κ(x)

(∫ h

0 Φ0
0,κ−1(y)Φ0

0,0(x− y)dy
)

dx. By Φ0
0,0(x) = 1/

√
h in [0, h]

and Φ0
0,0(x) = 0 outside, we have

(
Φ0

0,κ−1 ∗ Φ0
0,0

)
(x) =

∫ h

0

Φ0
0,κ−1(y)Φ0

0,0(x− y)dy =
1√
h

∫ x

0

Φ0
0,κ−1(y)dy for 0 ≤ x ≤ h.

Hence, Φ0
0,κ−1 ∗Φ0

0,0 restricted to [0, h] is the antiderivative of Φ0
0,κ−1. The relation between Φ0

0,κ−1 and the
Legendre polynomial Pκ−1 allows to translate the formula (A.1c) into

1√
h

∫ x

0

Φ0
0,κ−1(y)dy =

√
h

2
√

(2κ − 1) (2κ + 1)
Φ0

0,κ −
√
h

2
√

(2κ − 3) (2κ − 1)
Φ0

0,κ−2 for 0 ≤ x ≤ h.

Hence, the scalar product with Φ0
0,ν yields

γ0,0,0
0,(ν,κ−1,0) =

∫ h

0

Φ0
0,ν(x)

1√
h

∫ x

0

Φ0
0,κ−1(y)dy dx =

⎧⎪⎪⎨
⎪⎪⎩

0 for ν /∈ {κ,κ − 2},√
h

2
√

(2κ−1)(2κ+1)
for ν = κ,

−√
h

2
√

(2κ−3)(2κ−1)
for ν = κ − 2.

Together with (C.4c) the assertion follows.

Remark C.5 The recursion (C.7) for computing γ0,0,0
0,(α,β,κ) proceeds with increasing k := α + β + κ =

0, 1, 2, . . . . For fixed k, the loop runs from α = 1 to k using the values (C.8) for α = 0.

We remark that γ0,0,0
0,(α,β,κ) can be represented by γ0,0,0

0,(α,β,κ) = γ∗α,β,κ

√
h

(2α+1)(2β+1)(2κ+1) with rational
numbers γ∗α,β,κ. However, the involved integers in the nominators and denominators are not as small as in
Table B.1.

In the following we give the first values of γ0,0,0
0,(α,β,κ). Here, the underlying step size h = h0 is chosen as

h = 1. For other step sizes the given values γ0,0,0
0,(α,β,κ) must be multiplied by

√
h. The values in Table C.1

belong to the indices 0 ≤ α, β,κ ≤ 5 and can be used in the Cases A,B if p ≤ 4. In Case C, the convolution
yields polynomial up to degree 2p + 1. There p ≤ 4 requires coefficients γ∗α,β,κ in the range 0 ≤ α ≤ 11,
0 ≤ β,κ ≤ 5. Table C.2 shows the missing coefficients for 6 ≤ α ≤ 11.
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values γ0,0,0
0,(0,β,κ) for α = 0

β κ = 0 1 2 3 4 5
0 5.000000000E-1 -2.886751346E-1 0 0 0 0
1 -2.886751346E-1 0 1.290994449E-1 0 0 0
2 0 1.290994449E-1 0 -8.451542547E-2 0 0
3 0 0 -8.451542547E-2 0 6.299407883E-2 0
4 0 0 0 6.299407883E-2 0 -5.025189076E-2
5 (see Lemma C.4) 0 0 -5.025189076E-2 0

values γ0,0,0
0,(1,β,κ) for α = 1

β κ = 0 1 2 3 4 5
0 2.886751346E-1 0 -1.290994449E-1 0 0 0
1 0 -3.464101615E-1 2.236067977E-1 3.779644730E-2 0 0
2 -1.290994449E-1 2.236067977E-1 8.247860988E-2 -1.463850109E-1 -1.844277784E-2 0
3 0 3.779644730E-2 -1.463850109E-1 -3.849001795E-2 1.091089451E-1 1.096586158E-2
4 0 0 -1.844277784E-2 1.091089451E-1 2.249416633E-2 -8.703882798E-2
5 0 0 0 1.096586158E-2 -8.703882798E-2 -1.480385306E-2

values γ0,0,0
0,(2,β,κ) for α = 2

β κ = 0 1 2 3 4 5
0 0 1.290994449E-1 0 -8.451542547E-2 0 0
1 1.290994449E-1 -2.236067977E-1 -8.247860988E-2 1.463850109E-1 1.844277784E-2 0
2 0 -8.247860988E-2 3.194382825E-1 -1.259881577E-1 -7.142857143E-2 -7.178841538E-3
3 -8.451542547E-2 1.463850109E-1 -1.259881577E-1 -1.490711985E-1 1.178093810E-1 4.247059929E-2
4 0 1.844277784E-2 -7.142857143E-2 1.178093810E-1 8.711953159E-2 -1.012534592E-1
5 0 0 -7.178841538E-3 4.247059929E-2 -1.012534592E-1 -5.733507635E-2

values γ0,0,0
0,(3,β,κ) for α = 3

β κ = 0 1 2 3 4 5
0 0 0 8.451542547E-2 0 -6.299407883E-2 0
1 0 3.779644730E-2 -1.463850109E-1 -3.849001795E-2 1.091089451E-1 1.096586158E-2
2 8.451542547E-2 -1.463850109E-1 1.259881577E-1 1.490711985E-1 -1.178093810E-1 -4.247059929E-2
3 0 -3.849001795E-2 1.490711985E-1 -2.725925593E-1 3.030303030E-2 8.504166129E-2
4 -6.299407883E-2 1.091089451E-1 -1.178093810E-1 3.030303030E-2 1.823744660E-1 -6.720751945E-2
5 0 1.096586158E-2 -4.247059929E-2 8.504166129E-2 -6.720751945E-2 -1.259881577E-1

values γ0,0,0
0,(4,β,κ) for α = 4

β κ = 0 1 2 3 4 5
0 0 0 0 6.299407883E-2 0 -5.025189076E-2
1 0 0 1.844277784E-2 -1.091089451E-1 -2.249416633E-2 8.703882798E-2
2 0 1.844277784E-2 -7.142857143E-2 1.178093810E-1 8.711953159E-2 -1.012534592E-1
3 6.299407883E-2 -1.091089451E-1 1.178093810E-1 -3.030303030E-2 -1.823744660E-1 6.720751945E-2
4 0 -2.249416633E-2 8.711953159E-2 -1.823744660E-1 2.007992008E-1 4.969967218E-2
5 -5.025189076E-2 8.703882798E-2 -1.012534592E-1 6.720751945E-2 4.969967218E-2 -1.794871795E-1

values γ0,0,0
0,(5,β,κ) for α = 5

β κ = 0 1 2 3 4 5
0 0 0 0 0 5.025189076E-2 0
1 0 0 0 1.096586158E-2 -8.703882798E-2 -1.480385306E-2
2 0 0 7.178841538E-3 -4.247059929E-2 1.012534592E-1 5.733507635E-2
3 0 1.096586158E-2 -4.247059929E-2 8.504166129E-2 -6.720751945E-2 -1.259881577E-1
4 5.025189076E-2 -8.703882798E-2 1.012534592E-1 -6.720751945E-2 -4.969967218E-2 1.794871795E-1
5 0 -1.480385306E-2 5.733507635E-2 -1.259881577E-1 1.794871795E-1 -1.150563653E-1

Table C.1: Values of γ0,0,0
0,(α,β,κ) for 0 ≤ α, β,κ ≤ 5
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values γ0,0,0
0,(6,β,κ) for α = 6

β κ = 0 1 2 3 4 5
0 0 0 0 0 0 4.181210050E-2
1 0 0 0 0 7.278552446E-3 -7.242068244E-2
2 0 0 0 3.551569931E-3 -2.818971241E-2 8.726171907E-2
3 0 0 3.551569931E-3 -2.101137107E-2 6.035579363E-2 -7.374961314E-2
4 0 7.278552446E-3 -2.818971241E-2 6.035579363E-2 -7.564093585E-2 8.198451078E-3
5 4.181210050E-2 -7.242068244E-2 8.726171907E-2 -7.374961314E-2 8.198451078E-3 1.033265071E-1

values γ0,0,0
0,(7,β,κ) for α = 7

β κ = 1 2 3 4 5
1 (γ = 0 in rows/columns β,κ = 0) 0 0 5.186152788E-3
2 0 0 0 2.018707235E-3 -2.008588338E-2
3 0 0 1.504655534E-3 -1.194283306E-2 4.442521691E-2
4 0 2.018707235E-3 -1.194283306E-2 3.664278773E-2 -6.516846365E-2
5 5.186152788E-3 -2.008588338E-2 4.442521691E-2 -6.516846365E-2 4.683531500E-2

values γ0,0,0
0,(8,β,κ) for α = 8

β κ = 2 3 4 5
2 (γ = 0 in rows/columns β,κ ≤ 1) 0 1.257826807E-3
3 0 0 7.478892157E-4 -7.441403750E-3
4 0 7.478892157E-4 -5.936186627E-3 2.358624958E-2
5 1.257826807E-3 -7.441403750E-3 2.358624958E-2 -4.811435476E-2

values γ0,0,0
0,(9,β,κ) for α = 9

β κ = 0, 1, 2 3 4 5
3 (γ = 0 in rows/columns β,κ ≤ 2) 0 4.140507769E-4
4 0 0 3.302982550E-4 -3.286426189E-3
5 0 4.140507769E-4 -3.286426189E-3 1.349504317E-2

values γ0,0,0
0,(10,β,κ) for α = 10

β κ = 0, 1, 2, 3 4 5
4 (γ = 0 in rows/columns β,κ ≤ 3) 0 1.645270785E-4
5 0 1.645270785E-4 -1.637023960E-3

values γ0,0,0
0,(11,β,κ) for α = 11

β κ = 0, 1, 2, 3, 4 5
5 (γ = 0 in rows/columns β,κ ≤ 4) 0 7.448707785E-5

Table C.2: Values of γ0,0,0
0,(α,β,κ) for 6 ≤ α ≤ 11, 0 ≤ β,κ ≤ 5

23



D Coefficients G and Γ

The coefficients

G�′′,�′,�
(i,α),(j,β) :=

∑
k∈Z

p∑
κ=0

g�
k,κ γ

�′′,�′,�
(i,α),(j,β),(k,κ) =

∑
k∈Z

p∑
κ=0

g�
k,κ γ

�′′,�′,�
k−i2�−�′′+j2�−�′ ,(α,β,κ)

(D.1)

(last equality only for � ≥ max{�′, �′′}) allow to rewrite (3.1b) in the form

ω�′′
i,α =

∑
j,k∈Z

p∑
β,κ=0

f �′
j,β G

�′′,�′,�
(i,α),(j,β).

Combining the definition (D.1) of G�′′,�′,�
(i,α),(j,β) with the recursion formulae (C.2a,b) for γ�′′,�′,�

(i,α),(j,β),(k,κ), one

obtains the following recursion formulae for G�′′,�′,�
(i,α),(j,β).

Remark D.1 For all �′′, �′, � ∈ N0 and all i, j ∈ Z we have

G�′′,�′,�
(i,α),(j,β) =

α∑
q=0

ξα,q

(
(−1)α+q

G�′′+1,�′,�
(2i,q),(j,β) +G�′′+1,�′,�

(2i+1,q),(j,β)

)
(D.2a)

=
α∑

q=0

ξβ,q

(
(−1)β+q

G�′′,�′+1,�
(i,α),(2j,q) +G�′′,�′+1,�

(i,α),(2j+1,q)

)
. (D.2b)

For the case �′′ = �′ ≤ �, one concludes from the definition (D.1) that G�′,�′,�
(i,α),(j,β) depends only on the

difference i− j, i.e., G�′,�′,�
(i,α),(j,β) = G�′,�′,�

(i−j,α),(0,β) = Γ�′,�
i−j,(α,β) with Γ�′,�

i−j,(α,β) defined in (3.4).

The essential identities (3.7a,b) of the Γ-coefficients Γ�′,�
i,(α,β) are repeated in the next lemma.

Lemma D.2 a) For �′ = � we have

Γ�,�
i,(α,β) =

p∑
κ=0

(
g�

i,κ + (−1)α+β+κ g�
i−1,κ

)
γ�,�,�
0,(α,β,κ) for all i ∈ Z, 0 ≤ α, β ≤ p.

b) For 0 ≤ �′ < �, the following relation holds for all i ∈ Z and all 0 ≤ α, β ≤ p:

Γ�′,�
i,(α,β) =

α∑
p=0

β∑
q=0

ξα,pξβ,q

(
(−1)α+p Γ�′+1,�

2i−1,(p,q) +
(
1 + (−1)α+β+p+q

)
Γ�′+1,�

2i,(p,q) + (−1)β+q Γ�′+1,�
2i+1,(p,q)

)
.

Proof. a) Since γ�,�,�
k,(α,β,κ) = 0 for k /∈ {−1, 0}, the definition (3.4) yields

Γ�,�
i,(α,β) =

p∑
κ=0

(
g�

i,κ γ
�,�,�
0,(α,β,κ) + g�

i−1,κ γ
�,�,�
−1,(α,β,κ)

)
.

The symmetry property (C.4c) allows to express γ�,�,�
−1,(α,β,κ) as (−1)α+β+κ

γ�,�,�
0,(α,β,κ).

b) Application of (D.2a) to Γ�′,�
i,(α,β) = G�′,�′,�

(i,α),(0,β) yields

Γ�′,�
i,(α,β) =

α∑
q=0

ξα,q

(
(−1)α+q

G�′+1,�′,�
(2i,q),(j,β) +G�′+1,�′,�

(2i+1,q),(j,β)

)
.

Now (D.2b) can be applied to both G�′+1,�′,�
(∗,q),(∗,β)-terms. The resulting G�′+1,�′+1,�

(ν,q),(µ,p) -terms equal Γ�′,�
ν−µ,(q,p) and

yield the expression in part b).
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