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Stabilised rounded addition of hierarchical
matrices

M. Bebendorf∗and W. Hackbusch†

The efficiency of hierarchical matrices is based on the approximate evaluation of usual
matrix operations. The introduced approximation error may, however, lead to a loss
of important matrix properties. In this article we present a technique which preserves
the positive definitness of a matrix independently of the approximation quality. The
importance of this technique is illustrated by an elliptic mixed boundary value problem
with tiny Dirichlet part.

1 Introduction

The technique of hierarchical matrices allows to perform the standard matrix operations (Ax, A+B,
A ∗ B, A−1, LU decomposition), provided that the matrices are originating from elliptic boundary
value problems or corresponding integral operators. Since the storage and CPU time are proportional
to n logq n, where n denotes the matrix size, these method can compete with standard iterative solvers
in the case of solving linear systems. However, these operations are not exact but approximate. The
involved error depends on the choice of the local rank k. Since the accuracy improves exponentially
with increasing k, a moderate choice k ∼ log(1/ε) suffices to reach a given tolerance ε.

Depending of the choice of k, there are two different strategies of using the hierarchical matrix
technique:

(i) We may achieve a high accuracy by a larger choice of k. Then the technique of hierarchical
matrices can be considered as a direct solution method. Of course, the computational work
increases with k.

(ii) It is cheaper to perform the calculations with rather small k. Then the accuracy is low, but may
even be sufficient to produce a good preconditioner. In that case, there is a further coarsening
of the hierarchical block structure which reduces the computational work; see Sect. 5.

Although the method of hierarchical matrices works astonishingly robust, there are some ill-
conditioned problems, where small perturbations may turn, e.g., a positive definite matrix into a
indefinite one so that a following Cholesky decomposition fails. In principle, a larger choice of k can
avoid the problem. However, as stated in version (ii), we deliberately like to use a lower accuracy in
order to reduce the computational costs.

The principal source of approximation errors is the truncation of a matrix block to lower rank. Let
the exact matrix block of rank � be represented by its singular value decomposition

∑�
i=1 σiuiv

H
i . A
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truncation to rank k < � yields
∑k

i=1 σiuiv
H
i as a best approximation. The truncation consists of �−k

subtractions of rank-1 matrices σiuiv
H
i . In this paper we propose to compensate each subtraction

of a rank-1 matrix by a modification on the diagonal. Then it can be guaranteed that a positive
definite input matrix remains positive definite during the truncation process. A numerical example
is given in Sect. 6 which is extremely sensible to perturbations, since the lowest eigenvalue is quite
close to zero. We show that the standard approach fails for the desired choice of a low rank k, while
the method proposed here works robustly.

The coarsening process mentioned above requires several local singular value decompositions. The
cost is moderate since k is not large, but the number of operations can be reduced by a factor of
almost 2, if we replace the standard representation ABH of low-rank matrices by their singular value
representations. The particular advantages in connection with the coarsening process are explained
in Sect. 4.

2 Hierarchical Matrices

The structure of hierarchical matrices was first introduced in [14, 16]. Let I and J be index sets
and assume that a partition P of I × J has been generated such that each block satisfies a so-
called admissibility condition, which is the characteristic property for the existence of low-rank
approximants to the respective sub-block of A ∈ C

I×J . The construction of P is usually done by
recursive subdivision of the row and column indices I and J . A subdivision strategy based on the
principal component analysis is presented in [1], a method which gives similar results was proposed
in [9]. The resulting cluster trees will be denoted by TI and TJ . The construction of TI at least in
the case of quasi-uniform grids has complexity O(|I| log |I|). The depth of TI , i.e., the maximum
level of a vertex in TI increased by one, will be denoted by d(TI), while S(t) will be used as the set
of sons of a vertex t ∈ TI . For reasonable cluster trees TI one expects d(TI) ∼ log2 |I|. The recursive
subdivision stops at a cluster t whenever its cardinality |t| falls below a given number nmin ∈ N.
L(TI) stands for the set of leaves of TI .

Using the cluster trees TI and TJ , which embody a hierarchy of partitions of I and J , P := L(TI×J)
is defined as the leaves of the so-called block cluster tree TI×J , which contains a hierarchy of partitions
of I × J . The block cluster tree terminates at blocks t× s, t ∈ TI , s ∈ TJ , which satisfy a condition
that guarantees the existence of low-rank approximants. All other blocks are refined by subdividing
the clusters t and s according to their cluster trees. The complexity of building TI×J in the case
of quasi-uniform grids can be estimated to be of the order O(|I| log |I| + |J | log |J |); cf. [1, 13]. An
important property of the used hierarchical partitions is that for a given t ∈ TI or a given s ∈ TJ a
constantly bounded number of blocks t× s appear in TI×J ; i.e., the expressions

crsp := max
t∈TI

|{s ⊂ J : t× s ∈ TI×J}| and ccsp := max
s∈TJ

|{t ⊂ I : t× s ∈ TI×J}|

are bounded independently of the sizes of I and J ; see [13]. As a consequence, we obtain an estimate
for the following expression which will appear in many complexity estimates such as the storage
requirement of an H-matrix∑

t×s∈TI×J

[|t| + |s|] =
∑
t∈TI

∑
t×s∈TI×J

|t| +
∑
s∈TJ

∑
t×s∈TI×J

|s| (1a)

≤ csp

⎛
⎝∑

t∈TI

|t| +
∑
s∈TJ

|s|
⎞
⎠ ≤ cspd(TI×J )[|I| + |J |], (1b)

where csp := max{crsp, ccsp}. A further consequence of the hierarchical structure is the following
lemma; see [11].
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Lemma 2.1. Let P be a partition as described above. Then for any matrix M ∈ R
n×n the following

inequality holds between the global and the blockwise spectral norms:

‖A‖2 ≤ cspd(TI×J )max
b∈P

‖Ab‖2, where Ab = (aij)i∈t, j∈s for b = t× s.

Using the previous notation, we can define the set of H-matrices for a block cluster tree TI×J with
blockwise rank k:

H(TI×J , k) := {A ∈ C
I×J : rankAb ≤ k for all b ∈ L(TI×J)}.

Note that H(TI×J , k) is not a linear space, since the sum of two matrices from

C
m×n
k := {A ∈ C

m×n : rank A ≤ k}

exceeds rank k in general. If, however, two matrices A ∈ C
m×n
kA

and B ∈ C
m×n
kB

having the represen-
tations A = UAV

H
A , UA ∈ C

m×kA , VA ∈ C
n×kA , and B = UBV

H
B , UB ∈ C

m×kB , VB ∈ C
n×kB , are to

be added, the sum
A+B = [UA, UB ][VA, VB ]H

might be close to a matrix of a much smaller rank. In this case, the rounded addition of two low-rank
matrices, which truncates the sum to rank k, can be used. It is known (see [8, 18]) that the closest
matrix in C

m×n
k to a given matrix from A ∈ C

m×n, m ≥ n, is given by the sum of the major k
singular triplets; i.e, let A = UΣV H be a singular value decomposition of A, then for k ∈ N, k ≤ n,
it holds that

min
M∈C

m×n
k

‖A−M‖ = ‖A−Ak‖ = ‖Σ − Σk‖, (2)

where Ak := UΣkV
H ∈ C

m×n
k and Σk := diag(σ1, . . . , σk, 0, . . . , 0) ∈ R

n×n. Here, ‖·‖ is any unitarily
invariant norm.

The information about the error ‖A − Ak‖ = ‖Σ − Σk‖ can be used in two different ways. If the
maximum rank k of the approximant is prescribed, one gets to know the associated error. If on the
other hand a relative accuracy ε > 0 of the approximant Ak is prescribed (say with respect to the
spectral norm), i.e.,

‖A−Ak‖2 < ε‖A‖2,

then due to (2) the required rank k(ε) is given by

k(ε) := min{k ∈ N : σk+1 < εσ1}.

Using the rounded addition on each sub-block of an H-matrix, it is therefore possible to define
an approximate matrix addition under which H(TI×J , k) is closed. Based on this substitute of the
usual addition, approximate matrix operations with logarithmic-linear complexity can be defined;
see [14, 16, 15, 13]. Hierarchical LU decompositions (see [3]) can be used for preconditioning linear
systems. In addition to the efficient treatment of discretisations of integral operators (see [7]),
theoretical evidence for the applicability of H-matrices was given when approximating inverses of
finite-element stiffness matrices for general elliptic second order partial differential operators; see [6,
2]. The approximation of the factors of the LU decomposition of finite-element stiffness matrices
was investigated in [4].

Although the introduced approximation error allows to guarantee almost linear complexity, it
comes with the disadvantage that important matrix properties which are present in exact arithmetic
might be lost.
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3 Preserving positivity

The acceleration of matrix operations by the H-matrix arithmetic is connected with a certain ap-
proximation error, which in particular perturbs the eigenvalues of the results of these operations. If
the smallest eigenvalue is close to the origin compared with the rounding accuracy, it may happen
that the result of these operations becomes indefinite although it should be positive definite in exact
arithmetic. Since the introduced error arises only from the rounded addition of low-rank matrices,
we concentrate on the rounded addition in order to avoid the loss of positivity.

Assume that Â ∈ C
I×I is the Hermitian positive definite result of an exact addition of two matrices

from H(TI×I , k) and let A ∈ H(TI×I , k) be its H-matrix approximant. For a moment we assume
that Â and A differ only on a single off-diagonal block t × s ∈ P . Let EFH , E ∈ C

t×k, F ∈ C
s×k,

be the error matrix associated with t× s; i.e.,

Ats = Âts − EFH

and let
ε := max{‖E‖2

2, ‖F‖2
2}. (3)

Due to symmetry, FEH is the error matrix on block s× t.
We modify the approximant A in such a way that the new approximant Ã is guaranteed to be

positive definite. This is done by adding EEH to Att and FFH to Ass such that[
Ãtt Ãts

ÃH
ts Ãss

]
:=

[
Att Ats

AH
ts Ass

]
+

[
EEH

FFH

]
=

[
Âtt Âts

ÂH
ts Âss

]
+

[
EEH −EFH

−FEH FFH

]
.

Since [
EEH −EFH

−FEH FFH

]
=

[−E
F

] [−E
F

]H

is positive semi-definite, the eigenvalues of Ã are not smaller than those of Â. Therefore, Ã is
Hermitian positive definite and

‖
[
Ãtt Ãts

ÃH
ts Ãss

]
−

[
Âtt Âts

ÂH
ts Âss

]
‖2 = ‖

[−E
F

]
‖2
2 ≤ ‖E‖2

2 + ‖F‖2
2 ≤ 2ε.

A relative error estimate can be obtained if we assume that

‖E‖2
2 ≤ ε‖Âtt‖2, ‖F‖2

2 ≤ ε‖Âss‖2, and ‖EFH‖2 ≤ ε‖Âts‖2

holds instead of (3). In this case, we obtain

‖
[
Ãtt Ãts

ÃH
ts Ãss

]
−

[
Âtt Âts

ÂH
ts Âss

]
‖2 = ‖

[
EEH −EFH

−FEH FFH

]
‖2 ≤ 2ε‖

[
Âtt Âts

ÂH
ts Âss

]
‖2,

which follows from the fact that∥∥∥∥
[
A
B

]∥∥∥∥
2

≤
√

2
∥∥∥∥
[
C
D

]∥∥∥∥
2

and
∥∥[
A B

]∥∥
2

=
∥∥∥∥
[
AT

BT

]∥∥∥∥
2

≤
√

2
∥∥∥∥
[
CT

DT

]∥∥∥∥
2

=
√

2
∥∥[
C D

]∥∥
2

for matrices A, B, C, and D satisfying ‖A‖2 ≤ ‖C‖2 and ‖B‖2 ≤ ‖D‖2. The last estimates are a
consequence of∥∥∥∥

[
A
B

]∥∥∥∥
2

2

≤ 2 sup
x �=0

max
{‖Ax‖2

2

‖x‖2
2

,
‖Bx‖2

2

‖x‖2
2

}
= 2 max{‖A‖2

2, ‖B‖2
2} ≤ 2 max{‖C‖2

2, ‖D‖2
2}

= 2 sup
x �=0

max
{‖Cx‖2

2

‖x‖2
2

,
‖Dx‖2

2

‖x‖2
2

}
≤ 2 sup

x �=0

‖Cx‖2
2 + ‖Dx‖2

2

‖x‖2
2

= 2
∥∥∥∥
[
C
D

]∥∥∥∥
2

2

.
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Since t × t and s × s will usually not be leaves in TI×I , it is necessary that EEH and FFH are
restricted to the leaves contained in t× t and s × s when adding them to Att and Ass, respectively.
Note that this leads to rounding errors which in turn have to be added to the diagonal sub-blocks
of t× t and s × s in order to preserve positivity. The computational complexity which is connected
with the rounded addition makes it necessary to remodify the above idea. Once again, we replace
an approximant with another approximant by adding a positive semi-definite matrix. Let t1 and t2
be the sons of t and let s1 and s2 be the sons of s. If we define

˜̃Att := Ãtt +
[
Et1

Et2

] [
Et1

Et2

]H

= Att +
[
2Et1E

H
t1 0

0 2Et2E
H
t2

]
,

the problem of adding EEH to Att is reduced to adding 2Et1E
H
t1 to At1t1 and 2Et2E

H
t2 to At2t2 .

Applying this idea recursively, adding EEH to Att can finally be done by adding a multiple of Et∗E
H
t∗

to the dense matrix block At∗t∗ for each leaf t∗ in TI from the set of descendants of t. We obtain the
following two algorithms addsym stab and addsym diag; see Algorithm 3.1 and Algorithm 3.2.

procedure addsym stab(t, s, U, V, varA)
if t× s is non-admissible then

add UV H to Ats without approximation;

else
add UV H to Ats using the rounded addition;

denote by EFH the rounding error;

addsym diag(t, E,A);
addsym diag(s, F,A);

endif

Algorithm 3.1: Stabilised Hermitian rounded addition

The first algorithm adds a matrix of low rank UV H to an off-diagonal block t× s, t 	= s, while the
latter adds EEH to the diagonal block t × t. Note that we assume that an Hermitian matrix is
represented by its upper-triangular part only.

procedure addsym diag(t, E, varA)
if t× t is a leaf then

add EEH to Att without approximation;
else

addsym diag(t1,
√

2Et1 , A);
addsym diag(t2,

√
2Et2 , A);

endif

Algorithm 3.2: Stabilised diagonal addition

We will now estimate the costs if the above algorithms are applied to t × s ∈ TI×I . Denote by
N stab

diag (t) the number of operations needed if Algorithm 3.2 is applied to t ∈ TI with E ∈ C
t×k. Since

N stab
diag (t) = N stab

diag (t1) +N stab
diag (t2)

and since k|t∗|2/2 operations are required on each leaf t∗ of Tt, we obtain

N stab
diag (t) =

∑
t∗∈L(Tt)

N stab
diag (t∗) ≤

∑
t∗∈L(Tt)

k

2
|t∗|2 ≤ nmink

2

∑
t∗∈L(Tt)

|t∗| =
nmink

2
|t|.

Additionally, denote by N stab
add (t, s) the number of operations required for adding UV H ∈ C

t×s
k to

Ats using Algorithm 3.1. If t× s is non-admissible, then min{|t|, |s|} ≤ nmin, which leads to

N stab
add (t, s) ≤ |t||s| ≤ nmin(|t| + |s|).
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In the other case, t × s is admissible. Since for t × s ∈ TI×I a rounded addition and two calls of
addsym diag have to be performed, the costs of Algorithm 3.2 can be estimated by

N stab
add (t, s) = max{k2, nmin}(|t| + |s|) +N stab

diag (t) +N stab
diag (s)

≤ [max{k2, nmin} + nmink/2](|t| + |s|).

Hence, the stabilised addition has asymptotically the same computational complexity as the rounded
addition on each block.

If two H-matrices are two be added, the stabilised rounded addition has to be applied to each
block. The resulting H-matrix will differ from the result SH of the rounded addition only in the
diagonal blocks of P . Hence, it requires the same amount of storage. The following theorem gathers
the estimates of this section.

Theorem 3.1. Let A,B be Hermitian and let λi, i ∈ I, denote the eigenvalues of A+ B. Assume
that SH ∈ H(TI×I , k) has precision ε. Using the stabilised rounded addition on each block leads to a
matrix S̃H ∈ H(TI×I , k) with eigenvalues λ̃i ≥ λi, i ∈ I, satisfying

‖A+B − S̃H‖2 ∼ d(TI)|I|ε.

Hence, if A+B is positive definite, so is S̃H. At most [2max{k2, nmin} + nmink]d(TI )|I| operations
are required for the construction of S̃H.

Proof. Let t∗ ∈ L(TI) and let t ∈ TI be an ancestor of t∗ from the �-th level of TI . Since at most
csp blocks t × s, s ∈ TI , are contained in P , addsym diag is applied to t only csp times during the
stabilised addition of A and B. This routine adds terms 2pEt∗E

H
t∗ , p ≤ d(TI) − �, to St∗t∗ . Hence,

the error on t∗ × t∗ is bounded by

csp

d(TI )∑
�=0

2d(TI )−�‖Et∗‖2
2 ≤ csp2d(TI )+1‖Et∗‖2

2 ≤ ccsp|I|ε.

The last estimate follows from the fact that the depth d(TI) of TI scales at most like log2 |I|. Since
all other blocks coincide with the blocks of SH, which have accuracy ε, the blockwise estimates give
the global estimate

‖A+B − S̃H‖2 ≤ cc2spd(TI×I)|I|ε ≤ cc2spd(TI)|I|ε
due to Lemma 2.1.

4 Approximate addition of low-rank matrices

The rounded addition of two low-rank matrices is the central operation of the H-matrix arithmetic
and determines the efficiency of H-matrices since a singular value decomposition of the sum has to
be computed. The SVD of matrices C

m×n, m ≥ n, is an expensive operation. From [10, §5.2.9
and §5.4.5] it can be seen that the cost of computing an SVD for general matrices from C

m×n is
21mn2. However, for matrices A = UV H ∈ C

m×n
k it is possible to compute an SVD with complexity

O(k2(m + n)). A method based on Gram matrices has been proposed in [14]. In [1, p. 70] the
following improved variant having the complexity 6(kA + kB)2(m+ n) + 22(kA + kB)3 was proposed
which computes the SVD of A + B in C

m×n
k for k ≤ kA + kB . Assume that QR decompositions

U = QURU and V = QVRV of U := [UA, UB ] and V := [VA, VB ] have been computed. Due to
UV H = QURUR

H
V Q

T
V , the SVD of the m × n matrix UV H simplifies to the SVD of the k × k

matrix RUR
H
V , where k := kA + kB . Since the rounded addition is the most time-consuming part
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in the arithmetic of hierarchical matrices, improvements for this operation will directly improve
the efficiency of H-matrix operations. Therefore, it is worth investigating other algorithms for the
rounded addition. If instead of the outer-product representation A = UV H of A the representation
by its singular value decomposition is used, the numerical effort can be further reduced. Assume
that

A = UAΣAV
H
A and B = UBΣBV

H
B , (4)

where UA, VA, UB , and VB have orthonormal columns and ΣA ∈ R
kA×kA and ΣB ∈ R

kB×kB are
diagonal matrices. Then

A+B = [UA, UB ]
[
ΣA

ΣB

]
[VA, VB ]H .

Assume that kA ≥ kB . In order to reestablish a representation of type (4), we have to orthogonalise
the columns of the matrices [UA, UB ] and [VA, VB ]. Let XU := UH

A UB ∈ C
kA×kB and YU := UB −

UAXU ∈ C
m×kB . Furthermore, let QURU = YU , QU ∈ C

m×kB , be a QR decomposition of YU . Then

[UA, UB ] =
[
UA, QU

] [
I XU

RU

]

is a QR decomposition of [UA, UB ]. Similarly,

[VA, VB ] =
[
VA, QV

] [
I XV

RV

]

is a QR decomposition of [VA, VB ], where XV := V H
A VB ∈ C

kA×kB and QVRV = YV is a QR
decomposition of YV := VB − VAXV ∈ C

n×kB . We obtain

A+B = [UA, QU ]M [VA, QV ]H ,

where

M :=
[
ΣA +XUΣBX

H
V XUΣBR

H
V

RUΣBX
H
V RUΣBR

H
V

]
∈ C

(kA+kB)×(kA+kB).

Using the SVD M = Û Σ̂V̂ H of the (small) matrix M , one has that

A+B = ([UA, QU ]Û) Σ̂ ([VA, QV ]V̂ )H

is a SVD of A+B, because [UA, QU ]Û and [VA, QV ]V̂ both are unitary.
For the complexity analysis we concentrate on those terms which depend on m. The orthogonali-

sation of [UA, UB ] using the previous method requires

Computing XU 2kAkBm
Computing YU (2kA + 1)kBm
Decomposing YU 4k2

Bm

(4kA + 4kB + 1)kBm

operations while the orthogonalisation of [UA, UB ] using the QR decomposition needs 4(kA + kB)2m
operations. If k := kA = kB , then the proposed variant requires (8k+1)km operations, while 16k2m
operations are needed to decompose [UA, UB ]. The main advantage of this new algorithm, however,
is that it is mainly based on matrix-matrix multiplications, which nowadays much attention is paid
to when optimising code on a given platform. Taking into account the other parts of the algorithm
we obtain the following complexity estimate.
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Theorem 4.1. Let A ∈ C
m×n
kA

, B ∈ C
m×n
kB

, and k ∈ N with k ≤ kA + kB. Then a matrix S ∈ C
m×n
k

satisfying
‖A+B − S‖ = min

M∈C
m×n
k

‖A+B −M‖

with respect to any unitary invariant norm ‖ ·‖ can be computed with (8kAkB +6k2
B +2k2

A +kB)(m+
n) + 22(kA + kB)3 operations.

In Table 1 we compare the old and the new rounded addition routines for three problem sizes.
The presented CPU times are the times for 10 000 additions with accuracy ε = 110−2. Apparently,
using the modified addition algorithm almost half of the time can be saved.

m× n kA kB time old time new gain
200 × 100 8 5 5.23s 4.78s 9%
300 × 200 10 7 12.57s 8.51s 32%
400 × 200 11 8 16.05s 9.92s 38%
600 × 300 12 9 30.05s 15.94s 47%
800 × 400 13 10 45.97s 23.82s 48%

Table 1: Old and new rounded addition.

5 Coarsening H-Matrices

The previous stabilised addition is of particular importance when the accuracy of previously com-
puted H-matrix approximants is to be significantly reduced for the purpose of preconditioning. In
this situation it is not only useful to remove further singular triplets from the SVD of each block, the
block structure itself can be improved by unifying neighbouring blocks. Fig. 1 shows an H-matrix
before and after coarsening. Unifying blocks may even allow to increase the rank while decreasing
the amount of storage. In [12] it was demonstrated that improving the partition leads to a significant
reduction of the H-matrix arithmetic.

In this section we describe how a given matrix A ∈ H(TI×J , k) is approximated by a matrix
A′ ∈ H(T ′

I×J , k
′), where T ′

I×J is a sub-tree of TI×J with the same root I × J . While in [13] the
coarsening of H-matrices with fixed rank k has been investigated for the purpose of multiplying
H-matrices, we want A′ to approximate A with given accuracy ε > 0. In this case, the required
blockwise rank k′ would significantly increase if TI×J is coarsened to the root I × J . Hence, the
coarsened tree T ′

I×J has to be found such that the cost of the approximant A′ does not increase
compared with A, while the computation of A′ has almost linear complexity.

Assume that the matrix Ad ∈ H(Td, kε), kε ≤ k, has been generated from A by approximating
each block Ab, b ∈ L(TI×J), with accuracy ε using the technique from Sect. 4. Here, Td := TI×J is
the initial tree of depth d = d(TI×J). Since A is approximated on each block with accuracy ε, for
the Frobenius norm it holds that

‖A−Ad‖F ≤ ε‖A‖F . (5)

This first coarsening step requires
∑

t×s∈L(TI×J )

16k2(|t| + |s|) + 22k3 ≤ 16cspk2[d(TI)|I| + d(TJ )|J |] + 22cspk3[|I| + |J |]/nmin

arithmetical operations due to (1a,b).
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Figure 1: H-matrix before and after coarsening (the numbers indicate the local rank).

In a second step we improve the block structure. For this purpose consider a 2 × 2 block matrix
[
A1 A2

A3 A4

]
≈ UΣV H

consisting of four low-rank matrices Ai = UiΣiV
H
i , i = 1, . . . , 4, each having rank at most k. Assume

this matrix is to be approximated by a single matrix UΣV H ∈ C
m×n
kε

with kε ∈ N. Since

[
A1 A2

A3 A4

]
=

[
A1

]
+

[
A2

]
+

[
A3

]
+

[
A4

]
,

this problem may be regarded as a rounded addition of four low-rank matrices. Therefore, an
approximation with accuracy ε can be computed in C

m×n
kε

using the SVD of low-rank matrices. Note
that kε may be larger than k; in general kε is bounded only by 4k.

Compared with the rounded addition of general low-rank matrices, the presence of zeros should
be taken into account. Since [

A1 A2

A3 A4

]
= Û Σ̂V̂ H ,

where

Û :=
[
U1 U2

U3 U4

]
, V̂ :=

[
V1 V3

V2 V4

]
, and Σ̂ =

⎡
⎢⎢⎣

Σ1

Σ2

Σ3

Σ4

⎤
⎥⎥⎦ ,

it is enough to orthonormalise [U1, U2], [U3, U4], [V1, V3], and [V2, V4]. The number of arithmetical
operations can be estimated as

Computing the QR decompositions 2(8k + 1)k(m+ n)
Building the unitary factors 2(2k)2(m+ n)

∼ 24k2(m+ n)

The amount of operations can be reduced if each of the matrices [A1, A2] and [A3, A4] are agglom-
erated before agglomerating the results. However, in this case we cannot expect to obtain a best
approximation.

Using the previous agglomeration of a 2×2 block matrix, the following recursion defines a sequence
of block cluster trees T� and an associated sequence of approximants A� ∈ H(T�, kε), � = d−1, . . . , 1.
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Let T� arise from T�+1 by removing the sons of each block b ∈ T
(�)
�+1 \L(T�+1) in the �-th level of T�+1.

A� results from A�+1 by the previous agglomeration procedure applied to such blocks b. Note that
in order to guarantee that a possible positivity of A�+1 is preserved for A�, we have to employ the
stabilisation technique from Sect. 3.

Since we want to avoid that A� requires more storage than A�+1, we stop the agglomeration process
in blocks for which the required rank kε is such that the agglomeration is not worthwhile. Assume
that the sub-blocks S(b∗) of a block b∗ = t∗× s∗ ∈ T

(�)
�+1 \L(T�+1) in A�+1 are low-rank matrices with

ranks
kt×s for t× s ∈ S(b∗). (6)

In order to agglomerate a non-admissible block, it is first converted to the outer product representa-
tion using the SVD. By comparing the original storage costs of (A�+1)b∗ and the costs of (A�)b∗ , it
is easy to check whether the coarsening leads to an increment of the cost of the approximant. If

kt∗×s∗(|t∗| + |s∗|) ≤
∑

t×s∈S(b∗)

kt×s(|t| + |s|), (7)

then the block cluster tree T�+1 is modified by replacing the sons S(b∗) of b∗ by the new leaf b∗. If this
condition is not satisfied, then the sons of b∗ will be kept in the block cluster tree. This procedure
can then be applied to the leaves of the new block cluster tree until (7) is not satisfied.

It is obvious that the previous recursion cannot increase the amount of storage. What remains is
to estimate the accuracy of A′ and the computational cost of its computation. Since each block has
accuracy ε > 0, this property is inherited by the whole matrix with respect to the Frobenius norm,
i.e,

‖A�+1 −A�‖F ≤ ε‖A�+1‖F . (8)

The following lemma describes the accuracy of A′ compared with the accuracy of A.

Lemma 5.1. Let A ∈ H(TI×J , k). Then there is c > 0 such that ‖A−A′‖F ≤ c d(TI×J )ε‖A‖F .

Proof. From (8) and ‖A�‖F ≤ ‖A�+1‖F + ‖A�+1 −A�‖F ≤ (1 + ε)‖A�+1‖F we have that

‖Ad −A1‖F = ‖
d−1∑
�=1

(A�+1 −A�)‖F ≤
d−1∑
�=1

‖A�+1 −A�‖F ≤ ε
d−1∑
�=1

‖A�+1‖F

≤ ε

d−1∑
�=1

(1 + ε)d−�−1‖Ad‖F ≤ [(1 + ε)d−1 − 1]‖Ad‖F .

Using (5), we obtain that

‖A−A1‖F ≤ ‖A−Ad‖F + ‖Ad −A1‖F ≤ ε‖A‖F + [(1 + ε)d−1 − 1]‖Ad‖F

≤ ε‖A‖F + [(1 + ε)d−1 − 1](‖A −Ad‖F + ‖A‖F )

≤
{
ε+ (1 + ε)[(1 + ε)d−1 − 1]

}
‖A‖F = [(1 + ε)d − 1]‖A‖F .

The assertion follows from (1 + ε)d − 1 ∼ dε as ε→ 0.

The number of arithmetical operations of the above construction is determined by the number
of operations required for the SVD of each non-admissible block and the numerical effort for the
agglomeration of each b ∈ TI×J \ L(TI×J). The computational cost is estimated in the following
lemma. For this purpose we consider a single block b ∈ TI×J in which the described agglomeration
stops due to the violation of (7) by the father block of b. Without loss of generality we identify b
with I × J and assume that (7) holds for all t× s ∈ TI×J \ L(TI×J).
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Lemma 5.2. Assume that (7) holds in each step of the above coarsening procedure applied to TI×J

such that TI×J is coarsened to I × J . Let A ∈ H(TI×J , k). The storage requirements of A′ are
bounded by those of A while the resulting blockwise rank of A′ is bounded by cspkd(TI). The required
computational cost is of the order

c3spk
2d3(TI×J)[|I| + |J |].

Proof. Let kt×s be as in (6). Similarly to the case of a blockwise constant rank, the costs of coarsening
TI×J can be estimated as ∑

t×s∈TI×J

k2
t×s(|t| + |s|),

where we have omitted terms which do depend neither on |t| nor |s|. Using (7), the cost of each
block t∗ × s∗ ∈ TI×J can be estimated by the sum over its leaves:

kt∗×s∗(|t∗| + |s∗|) ≤
∑

t×s∈L(Tt∗×s∗)

kt×s(|t| + |s|) ≤ k
∑

t×s∈L(Tt∗×s∗ )

|t| + |s|.

From (1a,b) it follows that kt∗×s∗ ≤ cspd(Tt∗×s∗)k. With the last estimate we obtain
∑

t×s∈TI×J

k2
t×s(|t| + |s|) ≤ c2spd

2(TI×J)k2
∑

t×s∈TI×J

|t| + |s| ≤ c3spd
3(TI×J)k2[|I| + |J |]

due to another application of (1a,b).

6 Numerical experiments

For the numerical tests we consider the mixed boundary value problem

−∆u = f in Ω, (9a)
u =gD on ΓD, (9b)

∂nu = 0 on ΓN , (9c)

where Ω is the coil domain1 shown in Fig. 2. The domain Ω is connected to other devices on its left
and right end, where we impose Dirichlet boundary conditions. The respective part of the boundary
will be denoted by ΓD. On the larger part ΓN := Γ \ ΓD of the boundary Γ := ∂Ω we impose
Neumann boundary conditions.

This system is to be solved for the potential u, which can be calculated by making use of Green’s
representation formula (cf. [17]) in the interior of the conductor

u(x) = V[∂nu](x) −K[u](x), x ∈ Ω, (10)

where V represents the single-layer potential operator

(Vv)(x) :=
1
4π

∫
Γ

v(y)
|x− y| dsy, x ∈ R

3 \ Γ,

acting on v on the boundary Γ. K is the double-layer potential operator

(Kv)(x) :=
1
4π

∫
Γ
v(y) ∂ny

1
|x− y| dsy, x ∈ R

3 \ Γ.

1The computational geometry is by courtesy of ABB Schweiz AG
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Figure 2: A domain with dominating Neumann boundary.

Applying the trace operators γ0 and γ1 to the representation formula (10) leads to the following
boundary integral equations

[
γ0u
γ1u

]
=

[
1
2I −K V

D 1
2I +K ′

] [
γ0u
γ1u

]
, x ∈ Γ, (11)

in which
(K′v)(x) :=

1
4π

∫
Γ
v(y) ∂nx

1
|x− y| dsy, x ∈ R

3 \ Γ

denotes the adjoint of K and D is the hypersingular operator which results from applying the negative
Neumann-trace to the double-layer potential operator. Let g̃D and g̃N denote the canonical extensions
of gD and gN to Γ. Setting ũ := u − g̃D and t̃ := t − g̃N , we have to compute ũ ∈ H̃1/2(ΓN ) and
t̃ ∈ H̃−1/2(ΓD). Here, Hs(Γ0) and H̃s(Γ0), s ≥ 0, denote Sobolev spaces on a part Γ0 ⊂ Γ of the
boundary Γ:

Hs(Γ0) := {u|Γ0 : u ∈ Hs(Γ)} and H̃s(Γ0) := {u ∈ Hs(Γ0) : supp u ⊂ Γ0}

with the norm
‖u‖Hs(Γ0) := inf{‖u|Γ0‖Hs(Γ) : u ∈ Hs(Γ)}.

The negative Sobolev space H−s(Γ0) on Γ0 is defined as the dual of Hs(Γ0).
Since ũ = 0 on ΓD and t̃ = 0 on ΓN , we obtain from (11)

−V t̃+ Kũ = V g̃N −
(

1
2
I + K

)
g̃D on ΓD, (12a)

K′t̃+ Dũ =
(

1
2
I − K′

)
g̃N −Dg̃D on ΓN . (12b)

Equation (10) together with (11) make up the so-called symmetric boundary integral formulation of
the mixed boundary value problem (9). It is known (see for instance [17]) that V : H̃−1/2(ΓD) →
H1/2(ΓD) is continuous and H̃−1/2(ΓD)-elliptic, i.e.,

〈Vv, v〉L2(ΓD) ≥ cV‖v‖2
H̃−1/2(ΓD)

for all v ∈ H̃−1/2(ΓD)

and that D : H̃1/2(ΓN ) → H−1/2(ΓN ) is continuous and H̃1/2(ΓN )-elliptic, i.e.,

〈Dv, v〉L2(ΓN ) ≥ cD‖v‖2
H̃1/2(ΓD)

for all v ∈ H̃1/2(ΓD)
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provided ΓD has a positive measure. Hence, (12a,b) is uniquely solvable since the Schur complement
D + K′V−1K : H̃1/2(ΓN ) → H−1/2(ΓN ) is continuous and H̃1/2(ΓN )-elliptic. If ΓD = ∅ such that
ΓN = ∂Ω, then D will not be invertible since (9) becomes a pure Neumann problem.

After discretising (12a,b) by a Galerkin method, we obtain a linear system with the partially
known Neumann data th :=

∑n′
i=1 tiψi, where ψi are piecewise constants such that Wh := span{ψi :

i = 1, . . . , n′} ⊂ H−1/2(Γ). Furthermore, let Vh := span{ϕj : j = 1, . . . , n} be made of piecewise
linears. The discrete variational formulation of (12a,b) leads to the following algebraic system of
equations for the unknown coefficients u ∈ R

nD and t ∈ R
n′

N of uh and th[−V K
KT D

] [
t
u

]
=

[
V −1

2M −K
1
2M −KT −D

] [
g̃N

g̃D

]
=:

[
fN

fD

]
.

The entries of the above matrices are

Vk� = (Vψ�, ψk)L2 , Kkj = (Kϕj , ψk)L2 , Dij = (Dϕj , ϕi)L2 ,

where k, � = 1, . . . , n′N and i, j = 1, . . . , nD. Hence, for boundary value problems having a small
Dirichlet part, we can expect numerical difficulties since the smallest eigenvalue of the discrete of D
decreases with the size of ΓD.

Since for the domain from Fig. 2, ΓD is tiny compared with the Neumann boundary ΓN , the
above problem is ill-conditioned and preconditioning is required. Using the H-arithmetic, one can
construct a block LU decomposition, in which coarse approximations of Cholesky factors of V and D
appear. Before computing the Cholesky decomposition, it is helpful to reduce the complexity by the
agglomeration technique from Sect. 5. The introduced error leads to a perturbation of the spectrum
such that, depending on the accuracy, D may become indefinite.

For preconditioning A we could obviously approximate the following LU decomposition

A =
[
L1

−XT L′
2

] [−LT
1 X

L′T
2

]
,

where V = L1L
T
1 is the Cholesky decomposition of V , X is defined by L1X = K, and L′

2L
′T
2 =

D +XTX is the Cholesky decomposition of the Schur complement. The computation of D +XTX
can however be time-consuming even if H-matrices are employed. Therefore, we use the following
matrix C for symmetrically preconditioning A

C := Û−1

[
L−T

1

L−T
2

]
with Û :=

[
I −L−T

1 X
I

]

and L1 and L2 denote lower triangular H-matrices such that

‖I − (L1L
T
1 )−1V ‖2 < δ, ‖I − (L2L

T
2 )−1D‖2 < δ,

and X is an H-matrix satisfying ‖K −L1X‖2 < δ. The computation of the Cholesky factors L1 and
L2 with almost linear complexity is explained in [4]. Note that L2 is defined to be the approximate
Cholesky factor of D but not of D + XTX; i.e., instead of approximating the original coefficient
matrix A, CTC approximates the matrix

[−V K
KT D −KTV −1K

]−1

.

After generating the approximant using the ACA algorithm (see [7, 5]) with accuracy ε = 110−6,
we recompress a copy of the coefficient matrix to a blockwise relative accuracy δ using the coarsening
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n = 3128 n = 12520
precond. solution precond. solution

δ time MB #It time δ time MB #It time
110−3 2.1s 9.3 55 1.4s 210−4 18.5s 36.0 50 4.8s
210−3 1.8s 8.5 69 1.7s 510−4 16.4s 32.8 71 7.2s
510−3 1.5s 7.5 84 2.1s 110−3 14.1s 30.1 96 8.9s

Table 2: Preconditioned MinRes for the domain from Fig. 2.

procedure from Sect. 5. The hierarchical Cholesky decomposition fails to compute unless a rounding
precision is used that is significantly higher than the values of δ. In order to circumvent this problem,
we use a stabilised variant which is based on the stabilisation technique from Sect. 3. The additional
time for computing the preconditioner and the total time for the iterative solution using MinRes in
Table 2 can be neglected compared with the construction of the H-matrix approximant. Iterating
without any preconditioner does not converge at all. Note that preconditioners which guarantee an
asymptotic boundedness of the condition number with respect to n based on the mapping properties
of the operator (see [19]) will not be enough in order to obtain a reasonable convergence behaviour.
The bad condition number is caused by the geometry and not by n.
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