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Abstract

In this paper, we introduce a model of adaptive dynamical network by integrating the complex network

model and adaptive technique. This model is characterized by that the adaptive updating laws for each

vertex in the network depend only on the state information of its neighborhood besides itself and external

controllers. This suggests that adaptive technique be added to a complex network without breaking its

intrinsic existing network topology. The core of adaptive dynamical networks is to design suitable adaptive

updating laws to attain certain aims. Here, we propose two series of adaptive laws to synchronize and pin

a complex network respectively. Based on the Lyapunov function method, we can prove that under several

mild conditions, with the adaptive technique, a connected network topology is sufficient to synchronize or

stabilize any chaotic dynamics of the uncoupled system. This implies that these adaptive updating laws

actually enhance synchronizability and stabilizability respectively. We find out that even though these

adaptive methods can success for all networks with connectivity, the underlying network topology can

affect the convergent rate and the terminal average coupling and pinning strength. And, this influence can

be measured by the smallest nonzero eigenvalue of the corresponding Laplacian. Moreover, we detailed

study the influence of the prior parameters in this adaptive laws and present several numerical examples to

verify our theoretical results and further discussions.
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Synchronization and control of complex networks has been one of the focal points in many

research and application fields. Most of such research has been focused so far on networks

with prior given coupling and controlling parameters (for example, coupling and pinning

strengths). The choice of such parameters is determined by the network synchronizability,

which can be characterized by the eigenvalue information of the corresponding Laplacian.

In this paper, we propose a model of adaptive dynamical network for which the coupling and

pinning strengths as well as other parameters of each vertex are adapted only dependently

on the state information of its neighborhood and itself as well as external controllers. By this

way, synchronization and pinning control can be achieved with any initial coupling strengths,

mismatched parameters, and network topology of connectivity. That is to say, this adaptive

technique actually enhances synchronizability or stabilizability of the network. However, we

also find out that the underlying network topology can affect the convergent rate and the

terminal average of coupling and pinning strengths.

I. INTRODUCTION AND MODEL DESCRIPTION

Models of complex networks have been widely used to describe systems in science, engineer-

ing, and nature. Typical examples of complex networks include the Internet, WWW, food webs,

cellular and metabolic networks [1–4]. As an implicit assumption, these networks are described

by the mathematical term of graph. In such graphs, each vertex represents an individual element

in the system, while edges represent the relations between them. That is, each vertex can receive

the state information from its neighbors and send its state information to all its neighbors simul-

taneously. Thus, the evolution of the dynamics of each vertex is derived by two factors: its own

dynamical property and its neighborhood’s. Generally, complex networks can be formalized as:

ẋi(t) = f i(xi, ciφ
i({xj : j ∈ N (i)}), t, qi), i = 1, · · · , m, (1)

where xi is the state variable vector of vertex i, t ∈ R
+ is the continuous time, φi is the coupling

function which indicates the interactions from the neighborhood to vertex i, ci ∈ R is the coupling

strength of vertex i, N (i) denotes the neighborhood of the vertex i, and q i is the parameter vector

characterizing the difference between vertices, i = 1, · · · , m. A prime example, linearly coupled

identical oscillators formulated as:

ẋi = g(xi, t) + c
∑

j∈N (i)

[H(xj) − H(xi)], i = 1, · · · , m, (2)
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where g(·, ·) describes the dynamics of each individual oscillator, c is the common coupling

strength, and H(·) is the output function, were widely studied in the recent last few years [5–

7]. If H(·) is a linear function, i.e., H(u) = Γu, where Γ ∈ R
n,n, then the coupled system (2) has

a special form named by linearly coupled ordinary differential systems which can be written as:

ẋi = g(xi, t) + c
∑

j∈N (i)

Γ(xj − xi), i = 1, · · · , m. (3)

See [8–11] for references.

Besides many existing studies of this issue which have been only focused on networks with a

regular structure, such as chains, lattices, and grids, the new discoveries of small-world phenomena

[12] and scale-free features [13] in many natural and artificial complex networking systems have

recently arose very wide concentrations on the complexity of graph topology by scientists from

various fields [2, 4], yielding fruitful studies which enrich and deepen the understanding of real-

world complex networks, an important step forward from the random graph theory built in [14].

From then on, control and synchronization of complex networks have been one of the focal

points in many research and application fields [5–7, 15–22]. Most of all, how the collective dy-

namics of a large ensemble of dynamical systems depend on the complex wiring topology is the

most important question [4]. In [6, 7, 16], the master stability function based on the transverse

Lyapunov exponents is used to study local synchronization. Global synchronization of coupled

nonlinear dynamical systems are investigated by introducing a distance between the collective

states in [10, 11, 23, 24]. In [25, 26], the authors have stabilized a complex dynamical network to

its homogenous static state with a small fraction of vertices placing local feedback controllers, i.e.,

the so-called pinning control algorithm in [20, 21]. The results of previous literature indicate that

the region of parameters such as coupling or pinning strengths for which the complex networks

can be synchronized, stabilized, or achieve other dynamical aims is significantly affected by the

nontrivial topological patterns of complex networks, for example, the eigenvalues of the corre-

sponding Laplacian [4, 6, 9, 26]. For some network topology which has weak synchronizability

(or stabilizability), the lower-bound of the region is relatively large in the case of linear output

function (3) or even null in the case of general nonlinear output function (2). Then, a question

arises how to achieve synchronization, stability, or other aims for most network whether they have

“good” topologies or not, and without knowing global information of the coupling topology.

One method to solve this problem introduced recently is adding weights to vertices and edges.

Different from the model (2), which has a common coupling strength for all vertices and edges, in
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[27–30], the vertices or edges are set with different strengths. As evidences, certain weighting pro-

cedures which break the symmetry of the coupling matrix can actually enhance synchronization

in scale-free networks [28, 29]. Furthermore, [27, 30] show that for random complex networks,

synchronizability is drastically enhanced when the heterogeneity of the distribution of vertex’s

intensity is reduced. As a basic condition, [31] points out that under several mild conditions, a

directed and weighted network can completely synchronize the coupled system (3) for sufficiently

large coupling strengths if and only if the underlying graph has a spanning tree. Another method

to enhance synchronizability is evolving the network topology through the same time scale as its

dynamics. [32, 33] prove that if the average networks topology is able to synchronize the cou-

pled system, then the coupled system can be synchronized when the switch period is sufficiently

small. [34] evolves the network graph through time providing the coupling matrices commute and

finds out that the synchronizability of the graph process can be significantly improved. All these

temporal variations of topology are independent on the dynamics.

During the last several decades, adaptive technique has emerged as an exciting research area

for nonlinear system control. Rapid and impressive developments have been witnessed to utilize

adaptive technique to stabilize [35–37], synchronize [38–41] nonlinear systems, and identifying

unknown parameters [40–43]. For more details, the interested readers can be referred to [44]. This

technique suggests a way to realize such aims without knowing much information about the object

systems. Besides the controllers, the core of this technique is to design suitable adaptive update

laws for the parameters according to the control problem. An idea arises to utilize the adaptive

technique to complex dynamical networks to achieve the given results such as stability and syn-

chronization without knowing much information of the network topology. In [45, 46], the authors

presented methods to synchronize or stabilize a dynamical network by setting adaptive controller

to all or most vertices. In [47], the adaption is realized by knowing the global dynamical informa-

tion of the network, i.e., all states of vertices. However, when considering complex networks, it

seems very expensive to be realized.

Therefore, it is natural to conceive a dynamical network model of which the adaption is carried

out following the intrinsic network topology. In such adaptive dynamical networks, on each vertex

the weight evolves only by the signals received from its neighborhood. This implies that the added

adaption shall not destroy the existing network topology. For the model (1), adaptive dynamical

network is characterized by that the coupling strength and parameter vector of each vertex is

adapted via the feedback information of its neighborhood and itself. Generally, design certain
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adaptive updating laws ξi(·) and ζ i(·) by







q̇i = ξi(xi, {xj , j ∈ N (i)})
ċi = ζ i(xi, {xj , j ∈ N (i)})

, i = 1, · · · , m, (4)

to realize the given task. [48, 49] proposed adaptive schemes for the coupling weights of vertices or

edges according to the local synchronization property and indicate that these methods can enhance

synchronizability. These adaptive schemes seem intuitionistic, simple, generic, and available, but

can not be rigorously proved to be universally available [55].

In this paper, we consider the model of a linearly coupled array of nonidentical systems of

which the nonidentity is characterized by mismatched parameters. Thus, the linearly coupled

systems can be formulated as:

ẋi = g(xi, t) + f(xi, t)qi + ci

∑

j∈N (i)

Γ(xj − xi), i = 1, · · · , m, (5)

where g(z, t) = [g1(z, t), · · · , gn(z, t)]
⊤ : R

n × R
+ → R

n is a common continuous vector func-

tion, f(z, t) = [f1(z, t), · · · , fd(z, t)] : R
n × R

+ → R
n,d is a continuous matrix function involved

by mismatched parameter vector, qi = [qi
1, · · · , qi

d]
⊤ ∈ R

d is the parameter vector of vertex i, ci

is the coupling strength of vertex i, and Γ = [γkl]
n
k,l=1 ∈ R

n,n denotes the inner connection matrix

of which the element γkl 6= 0 implies that the l-th component of vertex j is connected to the k-th

component of vertex i by coefficient γkl if the vertices i and j are connected.

Two problems are studied in this paper. One is to synchronize the dynamical network (5).

The other is to pin the whole dynamical network to certain object trajectory s(t) by the following

pinning controllers added to a small fraction of vertices [25, 26]:



























ẋi = g(xi, t) + f(xi, t)qi + ci

∑

j∈N (i)

Γ(xj − xi) + ui i ∈ D,

ẋk = g(xk, t) + f(xk, t)qk + ck

∑

l∈N (k)

Γ(xl − xk) k /∈ D,

ui = ǫiΓ(s − xi) i ∈ D,

(6)

where ui is the pinning controller to the pinned vertex i, ǫi is the pinning strength of the pinned

vertex i, i ∈ D, and D ⊂ N is the pinned vertex set.

Based on the Lyapunov method, we design suitable adaptive updating laws to realize such aims.

For each vertex, these adaptive updating laws only depend on the state information of its neighbor-

hood and itself. This implies that these adaptive technique are realized to the dynamical network
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without breaking its intrinsic network topology. We can prove that connectivity of network is suf-

ficient to guarantee synchronizing or stabilizing the coupled system (5) or (6) respectively since

following these proposed adaptive updating laws, the potential difference between the collection

of the states characterized by a candidate Lyapunov function decreases.

Furthermore, we will show that even though these adaptive technique can achieve desired syn-

chronization or stability result in spite of the network topology, the network topology and the

choice of the prior parameters actually affect the convergent rate and the average of the terminal

coupling strengths which can be used to measure the synchronization or stability performance. We

detailed analyze the dependence of the performance on the network topology and several prior pa-

rameters by estimating the upper-bounded of such quantities. We show that the smallest nonzero

eigenvalue λ2 of the corresponding Laplacian or the modified Laplacian plays the key role in the

synchronization or pinning control problem respectively. A larger λ2 might imply a faster con-

vergence and a smaller coupling cost. In addition, the prior control parameters also affect these

quantities.

This paper is organized as follows. In Section 2, we introduce the necessary definitions, lem-

mas, and notations which will be used throughout this paper. We give adaptive updating laws,

prove that they can realize synchronization and pinning control if the network has connected prop-

erty, and afterwards provide the upper-bounded estimations of the proposed quantities measuring

performance, for synchronization and pinning control in Section 3 and 4 respectively. In Section

5, we present several numerical examples to verify our theoretical results and further discussions.

We conclude this paper in Section 6.

II. PRELIMINARIES

In this section, we give necessary notations, definitions, and lemmas which will be used

throughout the paper. If all eigenvalues of a matrix A ∈ R
n,n are real numbers, λi(A) denotes

its i-th smallest eigenvalue and λmax(A) denotes the maximum one. ⊤ denotes the transpose

of matrix. ‖v‖ denotes some norm of vector v and ‖A‖ denotes the norm of matrix A induced

by this vector norm. For instance, ‖v‖2 =

√

n
∑

i=1

|vi|2 for a vector v = [v1, · · · , vn]⊤ ∈ R
n

and ‖A‖2 =
√

λmax(A⊤A) for a matrix A ∈ R
m,n. × denotes the Cartesian product of lin-

ear spaces. ⊗ denotes the Kroneck product, i.e., for two matrices A = [aij ]
m
i,j=1 ∈ R

m,m and

B = [bkl]
n
k,l=1 ∈ R

n,n, A ⊗ B = [aijB]mi,j=1 ∈ R
mn,nm. R

+ = [0, +∞). Im denotes the identity
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matrix with order m. #D denotes the element number of finite set D. δD(·) denotes the character-

istic function of set D, i.e., δD(i) = 1 if i ∈ D; otherwise, δD(i) = 0. A\B = A ∩ Bc denotes the

set difference from set A to set B. The approximation expression a(t) ∼ b(t) as t → ∞ means

limt→∞ a(t)/b(t) = 1 in the case b(t) 6= 0. We denote by A ≥ 0 in the case that the symmetric

matrix A is semi-positive definite. So it is with ≤, >, and <.

Define a graph by G = [V, E ], where V = {1, · · · , m} denotes the vertex set and E = {e(i, j)}
the edge set. N (i) denotes the neighborhood of vertex i in the sense N (i) = {j ∈ N : e(i, j) ∈
E}. In this paper, graph G is supposed to be undirected (e(i, j) ∈ E implies e(j, i) ∈ E) and

simple (without loops and multiple edges). Let L = [lij ]
m
i,j=1 be the Laplacian matrix of graph G

defined as follows: for any pair i 6= j, lij = lji = −1 if e(i, j) ∈ E ; otherwise, lij = lji = 0.

lii = −∑m

j=1,j 6=i lij represents the degree of vertex i, for i = 1, · · · , m. Thus, equivalently, the

system (5) can be rewritten as:

ẋi = g(xi, t) + f(xi, t)qi − ci

m
∑

j=1

lijΓ(xj − xi), i = 1, · · · , m. (7)

From the graph theory (see [50] for reference) and the Gerishgorin disc theorem [51], all eigenval-

ues of the Laplacian L corresponding graph G satisfy 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λm(L). And,

G is connected if and only if λ2(L) > 0, namely, L is irreducible. Also, the following result can

be derived.

Lemma 1 For a graph G = [V, E ] and some vertex set D ⊂ V , the following statements are

equivalent: (i) all vertices V\D can be accessible from the vertex set D, i.e., for any vertex i in

V\D, there exists an vertex j ∈ D such that there exists an path between the vertices i and j; (ii)

define a new graph G̃ = [Ṽ , Ẽ] where Ṽ = V ⋃{v0} and Ẽ = E ⋃{e(i, j) : i ∈ D and j = v0}
such that G̃ is connected.

A matrix-valued function h(x, t) : R
n × R

+ → R
m,k is said to be locally uniformly bounded on z

with respect to t if for any compact Z ⊂ R
n, there exists M > 0 such that ‖h(x, t)‖ ≤ M holds

for all x ∈ Z and t ≥ 0. And h(x, t) is said to be locally uniformly Lipschitz continuous on z with

respect to t if for any compact Z ⊂ R
n, there exists K > 0 such that ‖h(x, t)−h(y, t)‖ ≤ K‖x−

y‖ holds for all x, y ∈ Z and t ≥ 0. A vector-valued continuous function p(x, t) : R
n ×R

+ → R
n

is said to be uniformly decreasing for a matrix Γ ∈ R
n,n if there exist α ∈ R and δ > 0 such that

(x − y)⊤
[

p(x, t) − p(y, t) − αΓ(x − y)

]

≤ −δ(x − y)⊤(x − y)
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holds for all x, y ∈ R
n and t ≥ 0.

Then, we give the definition of “persistently exciting” [44]. A function φ : R
+ → R

m×n is said

to be persistently exciting if there exist T > 0, δ′ > 0 and δ > 0 such that

δ′Im ≥
∫ t+T

t

φ(τ)φ(τ)⊤dτ ≥ δ Im

holds for all t ≥ 0. As shown in [44, 52], the property of “persistent excitation” is firmly related

to convergence of time-varying systems.

Lemma 2 (Lemma A.1 in [52]) Given a system of the following form:






ė1 = g(t)e2 + f1(t), e1 ∈ R
p

ė2 = f2(t), e2 ∈ R
q

such that (i) limt→∞ ‖e1(t)‖ = 0, limt→∞ ‖f1(t)‖ = 0, limt→∞ ‖f2(t)‖ = 0; (ii) g(t), ġ(t) are

bounded and g⊤(t) is persistently exciting; then limt→∞ ‖e2(t)‖ = 0 can hold.

III. SYNCHRONIZATION ANALYSIS

In this section, we construct adaptive updating laws to achieve global complete synchroniza-

tion of the coupled system (5). That is, for each initial data xi(0) ∈ R
n, i = 1, · · · , m,

limt→∞ ‖xi(t) − xj(t)‖ = 0 holds for all i, j = 1, · · · , m. These adaptive updating laws have

the form as (4), i.e., the adaption on each vertex only depends on its state and the states of its

neighborhood and are constructed based on a candidate Lyapunov function indicating the poten-

tial difference between the states of vertices. And, we prove that these adaptive updating laws can

synchronize any coupled system (5) with connected graph topology under several mild conditions

since following the adaption, the candidate Lyapunov function actually decreases. Furthermore,

we give the estimation of the synchronous performance also based on the Lyapunov function.

The following adaptive updating laws are proposed:


















q̇i(t) = Qif(xi, t)⊤
∑

j∈N (i)

(xj − xi),

ċi = ηi

[

∑

j∈N (i)

(xj − xi)

]⊤

Γ

[

∑

j∈N (i)

(xj − xi)

]

,
i = 1, · · · , m, (8)

where Qi ∈ R
d,d is symmetric positive definite, and ηi > 0, i = 1, · · · , m. One can see that

for each vertex i, the adaption of qi and ci is actually only related to state information of its

neighborhood and itself.
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Theorem 1 Suppose that (i). matrix Γ is symmetric and semi-positive definite; (ii). the common

function g(z, t) is continuous on (z, t) ∈ R
n ×R

+ and locally uniformly bounded on z ∈ R
n with

respect to t ∈ R
+, f(z, t) is continuous on (z, t) ∈ R

n × R
+ and locally uniformly bounded on z

with respect to t, and there exists q̄ ∈ R
d such that g(z, t) + f(z, t)q̄ is uniformly decreasing for

the matrix Γ; (iii). for any initial data xi(0) ∈ R
n, i = 1, · · · , m, there exists at least one index j0

such that the trajectory xj0(t) is bounded. If graph G is connected, then

1. the coupled system (5) associated with the feedback adaptive updating laws (8) can be

globally completely synchronized, i.e., for any initial data xi(0) ∈ R
n, i = 1, · · · , m,

lim
t→∞

‖xi(t) − xj(t)‖ = 0, i, j = 1, · · · , m;

2. the coupling strengths converge, i.e., limt→∞ ci = c∞i , for some c∞i ∈ R, i = 1, · · · , m;

3. in addition, if supposing that (i). g(z, t) and f(z, t) are locally uniformly Lipschitz contin-

uous on z with respect to t; (ii). ∂f(z, t)/∂t exists and is locally uniformly bounded on z

with respect to t; (iii). f⊤(xj0(t), t) is persistently exciting, then

lim
t→∞

‖qi(t) − qj(t)‖ = 0, , i, j = 1, · · · , m.

A proof is given in Appendix.

Remark 1 As a preliminary, we suppose that the dynamics of the coupled system (5) associated

with the adaptive laws (8) is bounded. This is very natural when studying chaotic dynamics and

can be verified analytically for practical models or numerically for real-world applications. Also,

we can conclude that the third hypothesis can guarantee that all xi(t) are bounded and the persis-

tent excitation of f⊤(xj0(t), t) can guarantee that each f⊤(xi(t), t) is persistently exciting.

We introduce the following two quantities to measure performance of synchronization dynam-

ics. One is the average of terminal coupling strengths:

c =
1

m

m
∑

i=1

c∞i ,

where c∞i = limt→∞ ci(t), i = 1, · · · , m, which denotes the average coupling cost of the network.

The other comes from time average of the variance of the state collection {x1(t), · · · , xm(t)}:

σ2(t) =
1

t

∫ t

0

1

m − 1

m
∑

i=1

[xi(τ) − x̄(τ)]⊤[xi(τ) − x̄(τ)]dτ
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with x̄ = 1/m
∑m

j=1 xj . Obviously, for σ2(t), we have the approximation σ2(t) ∼ β/t as t → ∞,

where

β =

∫ ∞

0

1

m − 1

m
∑

i=1

[

xi(τ) − x̄(τ)
]⊤[

xi(τ) − x̄(τ)
]

dτ,

which describes the convergence rate of the synchronization dynamics. Therefore, these two quan-

tities: the terminal average coupling cost c and the convergent rate β can be used to measure the

synchronous performance. A “good” performance means a high convergent rate (a small β) and

low coupling cost (a small c).

Here, we pick Qi = ρId, ηi = η, where ρ, η > 0 and ci(0) = 0 for all i = 1, · · · , m. Then, we

give estimations for the quantities β and c.

Proposition 1 Under all the conditions in Theorem 1, picking Qi = ρId, ηi = η, and ci(0) = 0

for all i = 1, · · · , m, we have

c ≤ ĉ, ĉ =
α

λ2(L)
+

√

α2

λ2
2(L)

+
2ηm0

m
,

where m0 = 1/4
∑m

i=1

∑

j∈N (i) ‖eij(0)‖2
2 + 1/(2ρ){∑m

i=1 ‖qi(0) − q̄‖2
2 − limt→∞

∑m

i=1 ‖qi(t) −
q̄‖2

2}; in addition, if supposing Γ = In, then we have

β ≤ β̂, β̂ =
m

(m − 1)λ2
2(L)

[

α

ηλ2(L)
+

√

α2

λ2
2(L)η2

+
2m0

mη

]

.

A proof is given in Appendix. From the proof, one can see that if ci(0) 6= 0, ĉ estimates the

increasing amount of the average coupling cost, i.e., ĉ ≥ 1/m
∑m

i=1[ci(∞) − ci(0)].

From the estimations ĉ and β̂, we can conclude that a larger λ2(L) implies smaller ĉ and β̂.

This indicates that λ2(L) can describe the synchronizability of a network topology for the coupled

model (5) associated with the adaptive updating laws (8). This conclusion is the similar to the

linearly coupled network model (3) without feedback adaption as proposed in [3, 9]. However,

there exists clear difference. In [3, 9], λ2(L) can denote the synchronized region of the coupling

strength but in the adaptive model (5,8), λ2(L) affects the synchronization convergent rate since

a connected graph is sufficient to synchronize an uncoupled chaotic system under several mild

conditions. Moreover, it can also be shown that a larger ρ might imply smaller ĉ and β̂ because a

larger ρ might roughly imply a smaller m0 and a larger η might imply a smaller β̂ but a larger ĉ

[56].
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Remark 2 In this paper, we use the similar ideas as in [27–30, 32–34, 48, 49] reviewed in Section

1 but clear differences exist. First, the models investigated are different. In the literature above, the

authors study the coupled model (2) of which the output function is general and can be nonlinear

and each vertex has identical dynamics. Our model concerns the case that the output function

is linear but the dynamical property of each vertex is different, which is characterized by the

mismatched parameter vector. Second, the adaptive method proposed in this section is universal,

i.e., connectivity of network is sufficient for synchronization following such adaptive schemes and

proved via rigorous mathematical art, i.e., the Lyapunov-based method. This implies that our

adaptive scheme for the model (5) is universal under several mild conditions.

IV. PINNING CONTROL

In this section, we consider the pinning control problem in dynamical networks. By the method

proposed in [25, 26], we control the whole dynamical network to a given trajectory s(t) of the

uncoupled system







ṡ = g(s, t) + f(s, t)q̄

s(0) = s0

(9)

for a given q̄ ∈ R
d by pinning only a small fraction of vertices. Thus, the coupled system can be

written as (6). For this purpose, we propose feedback adaptive updating laws to achieve global

asymptotical stability of the object trajectory s(t). A little difference from the synchronization

problem is that the adaption on each pinned vertex should additionally depend on the external

controllers. A candidate Lyapunov function indicating the potential difference between the net-

work states and the objective trajectory is used to construct adaptive updating laws. We can prove

that under several mild conditions, a pinned vertex set accessible from all other vertices can guar-

antee that all vertices are asymptotically pinned to the desired trajectory. This Lyapunov function

method can also be used to analyze the pinning control performance dependently on the topol-

ogy and prior parameters. Furthermore, this dependence might imply a method to select pinned

vertices for better control performance.
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The following adaptive updating laws are proposed:







































q̇i = Qif⊤(xi, t)

[

∑

j∈N (i)

(xj − xi) + δD(i)(s − xi)

]

i = 1, · · · , m,

ċi = ηi

[

∑

j∈N (i)

(xj − xi) + δD(i)(s − xi)

]⊤

Γ

[

∑

j∈N (i)

(xj − xi)

]

i = 1, · · · , m,

ǫ̇k = κk

[

∑

l∈N (k)

(xl − xk) + (s − xk)

]⊤

Γ(s − xk) k ∈ D,

(10)

where Qi, i = 1, · · · , m, are all symmetric and positive definite, ηi, i = 1, · · · , m, and κk, k ∈ D
are positive numbers.

Theorem 2 Suppose that (i). matrix Γ is symmetric and semi-positive definite; (ii). g(z, t) is

continuous on (z, t) ∈ R
n × R

+ and locally uniformly bounded, f(z, t) is continuous on (z, t) ∈
R

n × R
+ and locally uniformly bounded on z with respect to t, and there exist α ∈ R and q̄ ∈ R

d

such that g(z, t) + f(z, t)q̄ is uniform decreasing for Γ; (iii). the synchronized trajectory s(t) is

bounded. If all vertices in V\D can be accessible from the pinned vertex set D, i.e., for any vertex

i in V\D, there exists an vertex j in D such that there exists an path between i and j, then

1. the pinning coupled system (6) with the adaptive updating laws (10) can be globally asymp-

totically stable at the trajectory s(t), i.e., for any initial data xi(0) ∈ R
n, i = 1, · · · , m,

lim
t→∞

‖xi(t) − s(t)‖ = 0, i = 1, · · · , n;

2. all coupling and pinning strengths converges as t goes to ∞., i.e., limt→∞ ci(t) = c∞i holds

for all i = 1, · · · , m and limt→∞ ǫj(t) = ǫ∞j holds for j ∈ D;

3. in addition, if supposing that (i). g(z, t) and f(z, t) are locally uniformly Lipschitz contin-

uous on z with respect to t; (ii). ∂f(z, t)/∂t exists and is locally uniformly bounded on z

with respect to t; (iii). f(s(t), t)⊤ is persistently exciting, then we have

lim
t→∞

qi(t) = q̄, i = 1, · · · , m.

A proof is given in Appendix.

Similar to Proposition 1, we can use two quantities to describe the stable performance and

estimate their upper-bounds. One is the average of the coupling and pinning strengths:

ε =
1

m + #D

[ m
∑

i=1

c∞i +
∑

j∈D

ǫ∞j

]

,
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which describes the terminal coupling and pinning cost. The second comes from the variance from

the state collection {x1(t), · · · , xm(t)} to s(t):

var2(t) =
1

t

∫ t

0

1

m

m
∑

i=1

[xi(τ) − s(τ)]⊤[xi(τ) − s(τ)]dτ

which can be estimated by var2(t) ∼ χ/t, as t → ∞, where

χ =

∫ ∞

0

1

m

m
∑

i=1

[xi(t) − s(t)]⊤[xi(t) − s(t)]dt

describes the stability convergent rate and measure stable performance. Therefore, χ and ε can

be used to measure the stability performance, i.e., a “good” performance implies a small ε and a

small χ. Then, we will give the estimations for ε and χ.

Proposition 2 Under all the conditions in Theorem 2, picking Qi = ρIn, ηi = ǫj = η, and

ci(0) = ǫj(0) = 0, for all i = 1, · · · , m and j ∈ D, we have

ε ≤ ε̂, ε̂ =
α

λ2(L̂)
+

√

α2

λ2
2(L̂)

+
2ηm̂0

m + #D ;

in addition, if supposing Γ = In, we have

χ ≤ χ̂, χ̂ =
(m + 1)(m + #D)

mλ2
2(L̂)

[

α

ηλ2(L̂)
+

√

α2

η2λ2
2(L̂)

+
2m̂0

η(m + #D)

]

,

where m̂0 = V1(Ẽ(0)) + V2(Q(0)) − limt→∞ V2(Q(t)).

A proof is given in Appendix.

From Proposition 2, we can similarly conclude that a larger λ2(L̂) might imply smaller ε̂ and

χ̂. A larger ρ might imply smaller ε̂ and χ̂ since a larger ρ might roughly imply a smaller m0 and

a larger η might imply a smaller χ̂ but a larger ε̂.

Since λ2(L̂) can describe the stabilizability of a network topology with the pinned vertex set D
through the coupled model (5) associated with the adaptive equations (10), if giving the network

topology and the fraction of the pinned vertex set, the different choices of pinned vertex set D
might lead different λ2(L̂), i.e., different stabilizabilities of the network with pinned vertex set D.

Hence, it is very significant to study how to select a vertex set (given the fraction) to achieve a

“good” stabilizability, i.e., a large λ2(L). This will be further discussed in the following section.
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V. NUMERICAL ILLUSTRATIONS

In this section, we present several numerical examples to verify the adaptive laws proposed in

the sections above to synchronize or stabilize a complex network and discuss the dependence of

synchronous and stable performance on the network topology and prior parameters. Here, on each

vertex, we set the following Hopfield neural network as an intrinsic uncoupled system:

dv

dt
= f(v, q) = −Dv + T (q)g(v). (11)

Here, v = [v1, v2, v3]
⊤, q = [q1, q2]

⊤, and

T (q) =











1.2500 −3.200 q1

−3.200 q2 −4.4000

−3.200 4.4000 1.000











,

where q1,2 are unknown mismatched parameters. Also, D = I3, and g(v) = [g(v1), g(v2), g(v3)]
⊤,

where g(s) = (|s + 1| − |s − 1|)/2. In this section, ordinary differential equations (ODEs)

are numerically solved by the fourth-order Runge-Kutta formula (RK4) with a fixed step length

according to the network type and integrals are computed by the Simpson’s rule.

A. Adaptive synchronization

First, we use the adaptive laws (8) to synchronize a complex network which can be formulated

as follows:

ẋi = −Dxi + T (qi)g(xi) + ci

∑

j∈N (i)

(xj − xi), i = 1, · · · , m. (12)

And the adaptive laws (8) are realized as:


































q̇i
1 = ρ g(xi

3)
∑

j∈N (i)

(xj
1 − xi

1)

q̇i
2 = ρ g(xi

2)
∑

j∈N (i)

(xj
2 − xi

2)

ċi = η

[

∑

j∈N (i)

(xj − xi)

]⊤[

∑

j∈N (i)

(xj − xi)

]

, i = 1, · · · , m,

(13)

where the ρ, η > 0 are prior control parameters.

The coupling graph used here is a small-world (SW) network, which is an intermediate between

regular and random networks. It can be characterized as a regular network with a very small mean
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path length and also be characterized as a random graph with a high clustering coefficient. SW

network was investigated in [12] and a little variance we follow here was proposed in [54]. It

begins with m vertices and every vertex is connected with k nearest vertices on each side of its left

and right hands. Then for each pair of vertices (i, j) for which e(i, j) is not an edge at the initial

time, we connect them with probability p ≪ 1 as an edge with duplicate edges and self-connection

avoided. Here, m = 200 and k = 2 are given, and the step length for solving the ODEs is picked

as 0.005.

These two quantities β and c introduced in Proposition 1 are used to measure synchronous

performance and numerically computed by β =
∫ T

0
1/(m − 1)

∑m

i=1[x
i(τ) − x̄(τ)]⊤[xi(τ) −

x̄(τ)]dτ and c = 1/m
∑m

i=1 ci(T ) for a large T picked as T = 100. As we have known, the

smallest nonzero eigenvalue of the corresponding Laplacian: λ2(L), increases with respect to

p. This implies that the estimated upper-bounds β̂ and ĉ decrease with respect to p. Figures 1

and 2 indicate that β and c decrease with respect to p from 0.002 to 0.2 with ρ = 5 and η =

0.5. Furthermore, the inner sub-figures of Figures 1 and 2 show that β and c actually decrease

with respect to λ2(L). This coincides with from our theoretical analysis (Proposition 1). As an

example, picking p = 0.1, Figure 3 shows that σ2 converges to zero, which suggests achieving

synchronization, qi, i = 1, · · · , m, converge to a uniform vector, and ci, i = 1, · · · , m, converge

to certain different positive values.

We also investigate the variations of β and c with respect to η and ρ, respectively. Figures 4 and

5 show that β decreases with respect to η and ρ, and c increases with respect to η but decreases

with respect to ρ. These phenomena coincide with our theoretical analysis well.

B. Adaptive pinning

Second, we use the adaptive laws (10) to pin a complex network of coupled Hopfiled neural

networks to an object trajectory satisfying:

ds

dt
= f(s, q) = −Ds + T (q∗)g(s),

where s = [s1, s2, s3]
⊤ and q∗ = [−3.2, 1.1]⊤ is given. With initial data s(0) = [0.1, 0.1, 0.1]⊤,

this system has a double-scrolling chaotic attractor [53]. We pin a selective vertex set D of the
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network and have the following pinned dynamical network:










ẋi = −Dxi + T (qi)g(xi) + ci

∑

j∈N (i)

(xj − xi) + δD(i)ui i = 1, · · · , m,

uk = ǫk(s − xk) k ∈ D.

(14)

The adaptive laws (10) proposed in Section 4 are realized as follows:






































q̇i
r = ρ g(xi

4−r)

[

∑

j∈N (i)

(xj
r − xi

r) + δD(i)(sr − xi
r)

]

i = 1, · · · , m, r = 1, 2,

ċi = η

[

∑

j∈N (i)

(xj − xi) + δD(i)(s − xi)

]⊤[

∑

j∈N (i)

(xj − xi)

]

i = 1, · · · , m,

ǫ̇k = η

[

∑

l∈N (k)

(xl − xk) + (s − xk)

]⊤

(s − xk) k ∈ D.

The wiring topology used here is a scale-free (SF) network, which is characterized by that the

degree distribution obeys a power law that is observed in many real networks. Here, we follow

the SF network model proposed in [13]. At the starting stage, it has k0 vertices. Then at each

time a new vertex is added and it is connected to the k already existing vertices with a probability

proportional to the degree of that vertex. This process continues for a long time t1, thus the degree

distribution subordinates the power law P (k) ∼ k−γ approximately, where γ = 3 is independent

of k. Here, we pick k0 = k = 2 and t1 = 100, which implies the size of the final network is

m = 102, and pick the step length for solving the ODEs as 0.002.

The quantities ε and χ are numerically computed as χ =
∫ T

0
1/m

∑m

i=1[x
i(τ)−s(τ)]⊤[xi(τ)−

s(τ)]dτ and ε = 1/(m + #D)
∑m

i=1[ci(T ) +
∑

j∈D ǫj(T )] where T is picked as T = 200. Let

ff = #D/m be the fraction of the pinned vertex set of the whole network. We select ⌊ff × m⌋
vertices with equal probability composing the set D, where ⌊z⌋ is the ceiling function, i.e., the

largest integer less than z. As an example, Figures 6 and 7 show the variations of var2(t), ci(t),

ǫj(t), qi(t), i = 1, · · · , m, j ∈ D, with respect to time with ff = 0.2, η = 5, and ρ = 20. One

can see that var2(t) converges to zero, which implies achieving stabilization, each qi(t) converges

to the given vector q∗, and all coupling and pinning strengths converge to certain different positive

values.

As shown in Figures 8 and 9, both λ2(L̂) and #D increase with respect to ff , which implies

that χ̂ and ε̂ decreases with respect to ff . In particular, the inner sub-figure of Figures 8 and 9

gives the variance of χ and β with respect to λ2(L̂). Hence, if giving the pinned fraction ff , λ2(L̂)

is a suitable quantity to measure the stabilizability of the network with the pinned vertex set D.

In Figures 10 and 11 , one can see that χ decreases with respect to ρ and η. But ε decreases with

16



respect to ρ and increases with respect to η. These phenomena coincide with our analytical results

well.

From the observation above, a question arises that for a given network and given pinned vertex

fraction ff , which selection of pinned vertex set D with #D = ⌊ff ×m⌋ can lead a high stabiliz-

ability: a large λ2(L̂), which suggests a fast convergence speed and low coupling and pinning cost.

In [25, 26], the authors found out that for a scale-free network as introduced above, a degree-based

selective pinning strategy is better than a random pinning strategy for pinning a linearly coupled

differential systems without considering adaptive laws. Here, for the adaptive pinning problem,

we also compare the stabilizability λ2(L̂) in two pinning strategies for a give scale-free network

and the same pinning fraction ff : one is the random pinning strategy as mentioned above and

the other is the selective pinning strategy which means that we pin the ⌊ff × m⌋ vertices which

have the largest connection degrees. Figure 12 shows that the selective pinning strategy is actually

better than the random pinning strategy for a large network size and a small fraction ff . This

result coincides with that reported in [25, 26] without considering adaptive feedback laws.

VI. CONCLUSIONS

The adaptive technique proposed in this paper can be proved to achieve synchronization and

pinning control for the graphs with connectivity. This technique has two advantages. First, en-

hance synchronizability or stability of a network. Synchronization or pinning control can be guar-

anteed under a very weak topology condition for the network: connectivity. Second, synchroniza-

tion or pinning control can be obtained with any initial coupling and pinning strengths, and any

initial mismatched parameter vectors. However, the enhancement is achieved by additional com-

putation or realization expense for the adaption. Furthermore, the underlying network topology

heavily affects the convergent performance. Therefore, the problem of a “good” network topol-

ogy for synchronization or a “good” network topology attached with pinned vertex selection for

pinning control is similar to the existing theoretical analysis in [9, 25, 26, 31] which concern dy-

namical networks without adaption. However, the obvious difference exists. The previous results

concern whether the complex network can be synchronized or pinned but in this paper we consider

the convergent rate and terminal coupling and pinning strengths with synchronization or pinning

control guaranteed.

Also, we can see that these prior parameters used in real-world application should be properly
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chosen. In fact, there exists a trade-off when picking η and ρ. η should be picked as a relative small

value since a large η might cause a large terminal coupling strengths which could lead divergence

of the numerical computation of the ODEs. And, ρ might be picked as a relative large value

since it could advance synchronization. However, both η and ρ can not be very large, otherwise

it might cause divergence of the numerical computation. Therefore, in application, we always

pick a relatively large ρ and a relatively small η to obtain both fast convergence and low terminal

coupling cost.
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APPENDIX

Proof of Theorem 1: Since graph G is connected, the corresponding Laplacian L is irreducible,

i.e., λ2(L) > 0. And, picking q̄ as defined in the second hypothesis, there must exist α ∈ R and
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δ > 0 such that

(x − y)⊤
[

(g(x, t) + f(x, t)q̄) − (g(y, t) + f(y, t)q̄) − αΓ(x − y)

]

≤ −δ(x − y)⊤(x − y) (15)

holds for all x, y ∈ R
n and t ≥ 0. Let a be a positive number such that aλ2(L) > α.

Let x = [x1⊤, · · · , xm⊤]⊤ ∈ R
nm, C = [c1, · · · , cm] ∈ R

m, Q = [q1, · · · , qm] ∈ R
d,m, and

eij = xi − xj, for all i, j = 1, · · · , m. Since L is irreducible, we conclude that (L ⊗ In)x = 0

if and only if eij = 0 holds for all i, j = 1, · · · , m. Let E = {eij}m
i,j=1 and define the following

candidate Lyapunov function:

V (E, Q, C) =
1

4

m
∑

i=1

∑

j∈N (i)

eij⊤eij +
1

2

m
∑

i=1

(qi − q̄)⊤Qi−1
(qi − q̄) +

1

2

m
∑

i=1

1

ηi

(ci − a)2.

Note that 1/2
∑m

i=1

∑

j∈N (i) eij⊤eij = x⊤(L ⊗ In)x,
∑m

i=1(
∑

j∈N (i) eij)⊤Γ(
∑

j∈N (i) eij) =

x⊤(L2 ⊗ Γ)x, and
∑m

i=1

∑

j∈N (i) cje
ij⊤Γ

∑

l∈N (j) e
lj =

∑m

i=1 ci[
∑

j∈N (i) e
ji]⊤Γ[

∑

j∈N (i) e
ji].

Thus, differentiating V (E, Q, C) along the coupled system (5) and adaptive laws (8) gives

d

dt
|(5,8)V (E, Q, C) =

1

2

m
∑

i=1

∑

j∈N (i)

eij⊤
[

g(xi, t) − g(xj, t) + f(xi, t)qi − f(xj , t)qj

+ci

∑

k∈N (i)

Γeki − cj

∑

l∈N (j)

Γelj

]

+
m

∑

i=1

∑

j∈N (i)

(qi − q̄)⊤f(xi, t)⊤eji

+
m

∑

i=1

ci

[

∑

j∈N (i)

eji

]⊤

Γ

[

∑

j∈N (i)

eji

]

− a
m

∑

i=1

[

∑

j∈N (i)

eji

]⊤

Γ

[

∑

j∈N (i)

eji

]

=
1

2

m
∑

i=1

∑

j∈N (i)

eij⊤
[

(g(xi, t) + f(xi, t)q̄) − (g(xj, t) + f(xj, t)q̄) − αΓeij + f(xi, t)(qi − q̄)

−f(xj , t)(qj − q̄)

]

+

m
∑

i=1

∑

j∈N (i)

(qi − q̄)⊤f(xi, t)⊤eji +
α

2

m
∑

i=1

∑

j∈N (i)

eij⊤Γeij

−a

m
∑

i=1

[

∑

j∈N (i)

eji

]⊤

Γ

[

∑

j∈N (i)

eji

]

≤ −δ

2

m
∑

i=1

∑

j∈N (i)

eij⊤eij +
α

2

m
∑

i=1

∑

j∈N (i)

eij⊤Γeij − a
m

∑

i=1

(

∑

j∈N (i)

eij

)⊤

Γ

(

∑

j∈N (i)

eij

)

= −δ x⊤

(

L ⊗ In

)

x + x⊤

[

(αIm − aL)L ⊗ Γ

]

x ≤ −δ x⊤

(

L ⊗ In

)

x, (16)

since aλ2(L) > α implies that (αIm − aL)L ≤ 0. The derivation (16) gives

∫ t

0

x⊤

(

L ⊗ In

)

x ≤ 1

δ
V (E(0), Q(0), c(0)) < +∞, ∀ t ≥ 0 (17)
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Since V̇ (E, Q, C) ≤ 0, we can conclude that eij(t), qi(t), and ci(t), i, j = 1, · · · , m, are all

bounded. Due to the boundedness of xj0(t) and the irreducibility of L, we can conclude that xi(t),

i = 1, · · · , m, are all bounded. Note that for i = 1, · · · , m,

ėij0 = g(xi, t) − g(xj0, t) + f(xi, t)qi − f(xj0 , t)qj0 + ci

∑

k∈N (i)

Γeki − cj0

∑

l∈N (j0)

Γelj0

implies that the derivatives ėij0 , i = 1, · · · , m, are bounded. This implies that the derivatives ėij ,

i, j = 1, · · · , m, are all bounded. Therefore, eij(t), i, j = 1, · · · , m, are all uniformly continuous.

Namely, x⊤(t)(L ⊗ In)x(t) is uniformly continuous. Addition with the inequality (17) leads

limt→∞ x⊤(t)(L ⊗ In)x(t) = 0. Hence, we can conclude that limt→∞ eij(t) = 0 holds for all

i, j = 1, · · · , m, namely, the coupled system is globally completely synchronized. The first claim

is proved.

The inequality (17) also implies that the trajectories ci(t) =
∫ t

0
[
∑

j∈N (i) eji(τ)]⊤Γ[
∑

j∈N (i) eji(τ)]dτ is a Cauchy series as t goes to the infinity, i = 1, · · · , m.

Therefore, its convergence can be concluded. The second claim is proved.

Rewrite the equations for eij0 and qi − qj0 as







ėij0 = f i
1(t) + f(xj0(t), t)(qi − qj0),

d
dt

[qi − qj0] = f i
2(t), i = 1, · · · , m,

where f i
1(t) = [g(xi, t)−g(xj0, t)]+ [f(xi, t)−f(xj0 , t)]qi + ci

∑

k∈N (i) Γeki−cj0

∑

l∈N (j0)
Γelj0 ,

and f i
2(t) = Qif(xi, t)⊤

∑

k∈N (i) e
ki − Qj0f(xj0, t)⊤

∑

l∈N (j0)
elj0 , i = 1, · · · , m. Since the

f⊤(xj0(t), t) is persistently exciting, f(xj0(t), t) is bounded, and df(xj0(t), t)/dt is essentially

bounded, by Lemma 2, we can conclude that limt→∞(qi − qj0) = 0 holds for all i = 1, · · · , m.

This completes the proof of this theorem. �

Proof of Proposition 1: Before the proof, we present the following matrix inequality.

Claim 1: Let L be the Laplacian matrix of the irreducible graph G. Then, the following matrix

inequality holds: (a − α/λ2(L))L2 ≤ a L2 − α L.

In fact, let vi be the eigenvector of L associated with the eigenvalue λi(L) ordered by

0 = λ1(L) < λ2(L) ≤ λ3(L) ≤ · · · ≤ λm(L). And, we properly pick the eigenvectors which

correspond to the same eigenvalue with multiplicity such that v1, v2, · · · , vm compose an orthog-

onal standard basis of R
m. For any v ∈ R

m, we can write it as v =
∑m

i=1 rivi for some ri ∈ R,
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i = 1, · · · , m. Then,

v⊤

[

(a − α

λ2(L)
)L2 − (a L2 − α L)

]

v =
m

∑

i=1

v⊤
i vi

[

(a − α

λ2(L)
)λ2

i (L) − aλ2
i (L) + αλi(L)

]

r2
i

+2

m
∑

i=1

∑

j>i

v⊤
i

[

(a − α

λ2(L)
)L2 − (a L2 − α L)

]

vjrirj =

m
∑

i=2

v⊤
i vi

[

− α

λ2(L)
λ2

i (L) + αλi(L)

]

r2
i ≤ 0

since v⊤
i vj = 0 holds for all i 6= j. This proves the claim.

First, in order to estimate c, according to the adaptive updating laws (8), we have

m
∑

i=1

∫ ∞

0

ċi(t)dt =

∫ ∞

0

m
∑

i=1

η

[

∑

j∈N (i)

eji

]⊤

Γ

[

∑

j∈N (i)

eji

]

dt.

This implies c = η/m
∫ ∞

0
x⊤(t)(L2⊗Γ)x(t)dt. From the derivative (16), we have V̇ ≤ x⊤[(αIm−

aL)L ⊗ Γ]x. Addition with Claim 1 implies
∫ ∞

0

x⊤(τ)

(

L2 ⊗ Γ

)

x(τ)dτ ≤ λ2(L)

aλ2(L) − α

∫ ∞

0

x⊤(τ)

[

(aL − αIm)L ⊗ Γ

]

x(τ)dτ

≤ − λ2(L)

aλ2(L) − α

∫ ∞

0

V̇ dt =
λ2(L)

aλ2(L) − α
[V0 − V∞],

where V0 = V (E(0), Q(0), C(0)) and V∞ = limt→∞ V (E(t), Q(t), C(t)). Note that

V0 − V∞ = m0 +
1

2η

m
∑

i=1

(2ac∞i − c∞i
2) ≤ m0 +

am

η
c − m

2η
c2

where

m0 =
1

2

m
∑

i=1

∑

j∈N (i)

‖eij(0)‖1
2 +

1

2ρ

[ m
∑

i=1

‖qi(0) − q̄‖2
2 − lim

t→∞

m
∑

i=1

‖qi(t) − q̄‖2
2

]

,

since
∑m

i=1 c∞i
2 ≥ 1/m(

∑m

i=1 c∞i )2 where the equality holds if only if c∞i = c∞j holds for all

i, j = 1, · · · , m. We have the following estimation:

c ≤ ηλ2(L)

m(aλ2(L) − α)

(

m0 +
am

η
c − m

2η
c2

)

for all a > α/λ2(L). By solving this quadratic inequality, we obtain c ≤ ĉ, where ĉ is an upper-

bounded estimation of c:

ĉ =
α

λ2(L)
+

√

α2

λ2
2(L)

+
2ηm0

m
.

Second, we give an estimation for β. Let M = (mij) with mij = −1/m if i 6= j and mii =

1 − 1/m for all i = 1, · · · , m, and W = 1/(m − 1)M⊤M . One can conclude that

β =

∫ ∞

0

x⊤(t)

(

W ⊗ In

)

x(t)dt
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holds and W has nonnegative off-diagonal elements and zero row sums. More careful calculations

lead that the eigenvalues of W are 0 with multiplicity one and 1/(m− 1) with multiplicity m− 1.

We demand the following matrix inequality:

Claim 2:

W ≤ 1

(m − 1)λ2
2

L2.

In fact, let e = 1/
√

m[1, 1, · · · , 1]⊤. Then, for any vector v ∈ R
m, we can write v = ree + v+

for some re ∈ R and v+ ∈ R
m satisfying e⊤v+ = 0. Then, we have

v⊤

[

W − 1

(m − 1)λ2
2(L)

L2

]

v = v⊤
+

[

W − 1

(m − 1)λ2
2(L)

L2

]

v+

≤
[

1

m − 1
− 1

(m − 1)λ2
2(L)

λ2
2(L)

]

v⊤
+v+ = 0

since v⊤
+Wv+ ≤ 1/(m − 1)v⊤

+v+ and v⊤
+L2v+ ≥ λ2

2(L)v⊤
+v+. This proves the claim.

Therefore, we have

β ≤ 1

(m − 1)λ2
2(L)

∫ ∞

0

x⊤(t)

(

L2 ⊗ In

)

x(t)dt

If Γ = In, according to the estimation of c, we have β ≤ β̂, where β̂ is an upper-bounded

estimation of β which has the following form:

β̂ =
m

(m − 1)λ2
2(L)η

ĉ =
m

(m − 1)λ2
2(L)

(

α

ηλ2(L)
+

√

α2

λ2
2(L)η2

+
2m0

mη

)

. �

Proof of Theorem 2: Define x̂ = [x1⊤, · · · , xm⊤, s⊤]⊤ ∈ R
n(m+1) and matrix L̂ = [l̂ij]

m+1
i,j=1 as

l̂ij = l̂ji =































−1 j ∈ N (i), m ≥ i, j ≥ 1,

−1 i = m + 1, j ∈ D, or j = m + 1, i ∈ D,

− ∑

j=1,j 6=i

lij i = j,

0 otherwise.

This matrix can be regarded as the Laplacian of a graph Ĝ = [V̂ , Ê ], where V̂ = V ∪ {m + 1} and

Ê = E ∪ {(i, j), i ∈ D, j = m + 1}. Since all vertices in the graph G can be accessible from

D, according to Lemma 1, we can see that Ĝ is connected which implies that L̂ is irreducible.

Therefore, λ2(L̂) > 0. Let a be positive number satisfying aλ2(L̂) > α, where α is as defined by

the uniform decreasing condition in the second hypothesis.
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For simple notations, let ei,m+1 = xi − s, for all i = 1, · · · , m, Ẽ = E ∪ {ei,m+1}i∈D, and

ǫ = {ǫj : j ∈ D}. Define the candidate Lyapunov function

V̂ (Ẽ, Q, C, ǫ) = V1(Ẽ) + V2(Q) + V3(C, ǫ)

V1(Ẽ) =
1

4

m
∑

i=1

∑

j∈N (i)

eij⊤eij +
1

2

∑

i∈D

ei,m+1⊤ei,m+1

V2(Q) =
1

2

m
∑

i=1

(qi − q̄)⊤Qi−1
(qi − q̄)

V3(C, ǫ) =
m

∑

i=1

1

2ηi

(ci − a)2 +
∑

i∈D

1

2κi

(ǫi − a)2.

Note that 1/2
∑m

i=1

∑

j∈N (i) eij⊤eij +
∑

k∈D(xk − s)⊤(xk − s) = x̂⊤

(

L̂ ⊗ In

)

x̂ and

m
∑

i=1

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]⊤

Γ

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]

= x̂⊤

(

L̂2 ⊗ Γ

)

x̂.

Differentiating V1,2,3 gives

d

dt
|(6)V1(Ẽ) =

1

2

m
∑

i=1

∑

j∈N (i)

eij⊤
[

g(xi, t) − g(s, t) + f(xi, t)qi − f(xj , t)qj + ci

∑

k∈N (i)

Γeki

−cj

∑

l∈N (j)

Γelj + ǫiΓ(s − xi) − ǫjΓ(s − xj)

]

+
∑

i∈D

(xi − s)⊤
[

g(xi, t) − g(s, t) + f(xi, t)qi

−f(s, t)q̄ + ci

∑

j∈N (i)

Γeji + ǫiΓ(s − xi)

]

=
1

2

m
∑

i=1

∑

j∈N (i)

eij⊤
[

(g(xi, t) + f(xi, t)q̄) − (g(s, t) + f(xj , t)q̄) − αΓeij

]

+
∑

i∈D

(xi − s)⊤

[

(g(xi, t) + f(xi, t)q̄) − (g(s, t) + f(s, t)q̄) − αΓ(xi − s)

]

+
1

2

m
∑

i=1

∑

j∈N (i)

eij⊤
[

f(xi, t)(qi − q̄)

−f(xj , t)(qj − q̄)

]

+
∑

i∈D

(xi − s)⊤f(xi, t)(qi − q̄) −
m

∑

i=1

ci

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]⊤

Γ

(

∑

j∈N (i)

eji

)

−
∑

i∈D

ǫi

[

∑

j∈N (i)

eji + (s − xi)

]⊤

Γ(s − xi) +
α

2

m
∑

i=1

∑

j∈N (i)

eij⊤Γeij + α
∑

i∈D

(xi − s)⊤Γ(xi − s)

≤ −δ

2

m
∑

i=1

∑

j∈N (i)

eij⊤eij − δ
∑

i∈D

(xi − s)⊤(xi − s) +
α

2

m
∑

i=1

∑

j∈N (i)

eij⊤Γeij + α
∑

i∈D

(xi − s)⊤Γ(xi − s)

+

m
∑

i=1

∑

j∈N (i)

eij⊤f(xi, t)(qi − q̄) +
∑

i∈D

(xi − s)⊤f(xi, t)(qi − q̄)
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−
m

∑

i=1

ci

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]⊤

Γ

(

∑

j∈N (i)

eji

)

−
∑

i∈D

ǫi

[

∑

j∈N (i)

eji + (s − xi)

]⊤

Γ(s − xi),

d

dt
|(10)V2(Q) =

m
∑

i=1

(qi − q̄)⊤f⊤(xi, t)

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]

,

d

dt
|(10)V3(C, ǫ) =

m
∑

i=1

(ci − a)

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]⊤

Γ

(

∑

j∈N (i)

eji

)

+
∑

i∈D

(ǫi − a)

[

∑

j∈N (i)

eji + (s − xi)

]⊤

Γ(s − xi).

Therefore,

d

dt
|(6,10)V̂ (Ẽ, Q, C, ǫ) ≤ −δ

2

m
∑

i=1

∑

j∈N (i)

eij⊤eij − δ
∑

i∈D

(xi − s)⊤(xi − s) +
α

2

m
∑

i=1

∑

j∈N (i)

eij⊤Γeij

+α
∑

i∈D

(xi − s)⊤Γ(xi − s) − a
m

∑

i=1

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]⊤

Γ

[

∑

j∈N (i)

eji + δD(i)(s − xi)

]

= −δx̂⊤

(

L̂ ⊗ In

)

x̂ + x̂⊤

[

L̂(αIm − aL̂) ⊗ Γ

]

x̂ ≤ −δx̂⊤

(

L̂ ⊗ In

)

x̂ (18)

according to aλ2(L̂) > α which implies that L̂(αIm − aL̂) ≤ 0. Similar to the arguments in the

proof of Theorem 1, we can conclude that the first claim. Moreover, the second and third claims

can be proved as a repetition of the proof of Theorem 1. �

Proof of Proposition 2: This proof is quite similar to Proposition 1. First, from the adaptive

equation (10), we have

(m + #D)ε =

∫ ∞

0

[ m
∑

i=1

ċi(t) +
∑

j∈D

ǫ̇i(t)

]

dt

= η

∫ ∞

0

m
∑

i=1

[

∑

j∈N (i)

eji(t) + δD(i)(s(t) − xi(t))
]⊤

Γ
[

∑

j∈N (i)

eji(t) + δD(i)(s(t) − xi(t))
]

dt

= η

∫ ∞

0

x̂⊤(t)

(

L̂2 ⊗ Γ

)

x̂(t)dt

And, the derivative (18) of V̂ (Ẽ, Q, C, ǫ) gives

x̂⊤

[

L̂(aL̂ − αIm) ⊗ Γ

]

x ≤ − ˙̂
V (Ẽ, Q, C, ǫ).

Similarly by Claim 1, the inequality above implies

ε ≤ η

m + #D

∫ ∞

0

x̂⊤(t)

(

L̂2 ⊗ Γ

)

x̂(t)dt ≤ ηλ2(L̂)

[aλ2(L̂) − α](m + #D)
(V̂0 − V̂∞)
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where V̂0 = V (Ẽ(0), Q(0), C(0), ǫ(0)) and V̂∞ = limt→∞ V (Ẽ(t), Q(t), C(t), ǫ(t)). Noting that

V̂0 − V̂∞ = m̂0 +
1

2η

m
∑

i=1

(2ac∞i − c∞i
2) +

1

2η

∑

k∈D

(2aǫ∞k − ǫ∞k
2)

≤ m̂0 +
a(m + #D)

η
ε − m + #D

2η
ε2

for all i = 1, · · · , m and k ∈ D since

m
∑

i=1

c∞i
2 +

∑

k∈D

ǫ∞k
2 ≥ 1

m + #D

( m
∑

i=1

c∞i +
∑

k∈D

ǫ∞k

)2

.

Then, it gives

ε ≤ ηλ2(L̂)

[aλ2(L̂) − α](m + #D)

[

m̂0 +
a(m + #D)

η
ε − m + #D

2η
ε2

]

,

which implies that ε ≤ ε̂ by solving the quadratic inequality above.

Second, define T = [tij ]
m+1
i,j=1 ∈ R

m+1,m+1 as follows:

tij =



















1 i = j and i ≤ m

−1 i ≤ m and j = m + 1

0 otherwise

and let Ŵ = 1/m T⊤T . One can see that Ŵ has eigenvalue 0 with multiplicity one, eigenvalue

1/m with multiplicity m − 1, and eigenvalue 1 + 1/m with multiplicity one. Similarly by Claim

2, this gives

χ =

∫ ∞

0

x̂⊤(t)

(

Ŵ ⊗ In

)

x̂(t)dt ≤ m + 1

mλ2
2(L)

∫ ∞

0

x̂⊤(t)

(

L̂2 ⊗ In

)

x̂(t)dt

≤ (m + 1)(m + #D)

mλ2
2(L̂)η

ε ≤ (m + 1)(m + #D)

mλ2
2(L̂)η

ε̂ = χ̂

since Γ = In. This completes the proof of this proposition. �
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FIG. 1: β vs p and its corresponding λ2(L) (the inner sub figure) in a SW network with network size

m = 200, where we pick η = 0.5, ρ = 5, and the same initial data.
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FIG. 2: c vs p and its corresponding λ2(L) (the inner sub figure) in a SW network with network size

m = 200, where we pick η = 5, ρ = 0.5, and the same initial data.
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FIG. 3: The dynamics of the time-average variance σ2(t), the collective parameters qi
1,2, and the collective

coupling strengths ci in the SW network with network size m = 200 and the connection probability p = 0.1,

where we pick η = 5 and ρ = 0.5 and illustrate dynamics with random twenty indices i.
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FIG. 4: β and c vs η in the SW network with network size m = 200 and the connection probability p = 0.1,

where we pick ρ = 0.5 and the same initial data.
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FIG. 5: β and c vs ρ in the SW network with network size m = 200 and the connection probability p = 0.1,

where we pick η = 5 and the same initial data.
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FIG. 6: The dynamics of the time-average variance var2(t) and the parameters qi
1,2 in the SF network with

the network size m = 102 and pinning fraction ff = 0.2, where we pick η = 10 and ρ = 20 and illustrate

dynamics with random ten indices i.
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FIG. 7: The dynamics of the terminal coupling strengths ci and the pinning strengths ǫj in the SF network

with the network size m = 102 and the pinning fraction ff = 0.2, where we pick η = 10 and ρ = 20 and

illustrate dynamics with random fifteen indices i and ten indices j ∈ D.
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FIG. 8: χ vs the pinning fraction ff and its corresponding λ2(L̂) (the inner sub-figure) in SF network with

the network size m = 102, where we pick η = 10, ρ = 20, and the same initial data.
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FIG. 9: ε vs ff and its corresponding λ2(L̂) (the inner sub-figure) in SF network with the network size

m = 102, where we pick η = 10, ρ = 20, and the same initial data.
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FIG. 10: χ and ε vs η in the SF network with the network size m = 102 and the pinning fraction ff = 0.2,

where we pick ρ = 20 and the same initial data.
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FIG. 11: χ and ε vs ρ in the SF network with the network size m = 102 and the pinning fraction ff = 0.2,

where we pick η = 10 and the same initial data.
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FIG. 12: λ2(L̂) vs the pinning fraction ff ∈ [0, 0.05] under two pinning strategies: randomly pinning

(−o−) and selectively pinning based on degree distribution (− ∗ −) in SF network with network size m =

1002 and k = 2. The curves are plotted by averaging ten realizations.
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