Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Nonlinear Dirac equations on Riemann surfaces

by
Qun Chen, Jiirgen Jost, and Guofang Wang

Preprint no.: 42 2007







NONLINEAR DIRAC EQUATIONS ON RIEMANN SURFACES
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ABSTRACT. We develop analytical methods for nonlinear Dirac equations. Ex-
amples of such equations include Dirac-harmonic maps with curvature term and
the equations describing the generalized Weierstrass representation of surfaces
in three-manifolds. We provide the key analytical steps, i.e., small energy reg-
ularity and removable singularity theorems and energy identities for solutions.
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1. INTRODUCTION

Dirac type equations on Riemann surfaces are ubiquitous in geometry as they
constitute the most basic first order system of elliptic equations. The first ex-
amples are of course the Cauchy-Riemann equations. These are linear, but other
examples are typically of the nonlinear type

(1.1) P = Hpa(?, "),

with a notation to be explained shortly. The linear operator on the left hand side
is, of course, the Dirac operator whereas the nonlinearity on the right hand side
is cubic. As we shall see, this type of nonlinearity on one hand arises naturally in
geometry, because (1.1) is conformally invariant and on the other hand, from the
analytical side, it presents a borderline case where standard linear methods fail
to apply (again, because it is conformally invariant), but an analytical treatment
nevertheless is still possible by utilizing the structure of the equation in a more
sophisticated manner. That is, analytical methods need to be supplemented by
geometric insights. This frame makes (1.1) particularly attractive. In the present
paper, we develop a systematic and general treatment of the key steps of the
nonlinear analysis.

Let us now describe the underlying geometric structure in more detail. Let
(M, g) be a Riemann surface with a fixed spin structure, and denote the spin
bundle by ¥. On X, there is a Hermitian metric (-,-) compatible with the spin
connection V on . For any orthonormal basis {e,,« = 1,2} on M, the (Atiyah-
Singer) Dirac operator is defined by @ := e, - V., where - stands for the Clifford
multiplication. In this paper, we use the summation convention.
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2 Q. CHEN, J. JOST AND G. WANG
We consider (1.1), that is,
(1.2) P = Hpa (W, 0" )0",

/—/L
where ¢ = (w17w27--- 7wn) € F(Zn), Y= N X e X Z, n € Z, and ijl =
1,2,--- n}, by = max{|[VH,|(z);x € M,i,j,k,l = 1,2,--- ,n} and [¢] :=

n

(3= (%, 9™)) /2. We note that (1.2) is conformally invariant.

i=1

Let us now discuss examples where (1.2) arises. In fact, we have been led to it
through our study of Dirac-harmonic maps with curvature term (c.f. [6]) which
in turn were derived from the nonlinear supersymmetric o-model of quantum
field theory where Dirac type equations describe fermionic particles. Let ¢ be a
smooth map from M to a Riemannian manifold (N, h) of dimension n > 2 and
¢ TN the pull-back bundle of TN by ¢. On the twisted bundle ¥ ® ¢~ 'TN,
there is a metric (also denoted by (-, -)) and a natural connection V induced from
the those on ¥ and ¢~'T'N. In local coordinates {z,} and {y'} on M and N
respectively, a section ¢ of ¥ ® ¢ 'TN takes the form

U(x) = 9 (2) @ Dy (¢())
and V can be written as
V(@) = Vi (2) @ 9, (¢(x)) + Ti(6(2) Vo ()0 () @ Dy (6(x)),

where ¢ € T'(X), {0,5} is the natural local basis on N and {T%,} stands for the
Christoffel symbols of N. The Dirac operator along the map ¢ is defined as

Dy = e, 6%1&
= P'(x) ® 0y (D)) + Tip(9(2)) Ve o () e - () ® Oy (6(x)).

In [6], we considered the following functional:

(13) Lo =5 [ (408 +(0.00) = §Ralo, o) .01

We call critical points (¢,v) of L. Dirac-harmonic maps with curvature term.
This functional is dictated by the supersymmetry requirements of the o-model in
superstring theory. The difference is that here the components of ¢ are ordinary
spinor fields on M, while in physics they take values in a Grassmann algebra.
The Euler-Lagrange equations of the functional L. are (see [6] for details):

- 1. , 1 . ,
(14) TZ(¢) - §Rzlmj Wm, v¢l : ¢]> + EhlpRmkjl;P<¢m7 W><¢k7 wl> = 07

(1.5) P = SRyl 0, =120

where 7(¢) is the tension field of ¢, R’;j; stands for a component of the curvature
tensor of NV and R,,x;i,, denotes the covariant derivative of hmiR"kﬂ with respect
to ayp.
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In particular, if ¢ is a constant map, then (1.5) becomes

(1.6 Pt = SRl o, =12,

which is a Dirac equation of type (1.2).

Another more classical example of an equation of type (1.2) comes from the
geometry of surfaces in three-manifolds via the generalized Weierstrass represen-
tation as we shall now explain. When n = 1, it takes the form

(1.7) P = H[p|*

for H € CY(M), ¢ € T'(X). A similar equation was considered by Ammann and
Humbert in [2] when they studied the first conformal Dirac eigenvalue. See also
[1] for a Yamabe type problem.

Recall that the classical Weierstrass formula represents minimal surfaces X
immersed in R? in terms of a holomorphic 1-form and a meromorphic function.
The generalized Weierstrass representation was found to express a general surface
immersed in R? (as well as in R? and some three-dimensional Lie groups) by
Dirac equations (see e.g. [8], [11], [16]). For the ambient space R?, a surface
X : M — R3 is represented by

X = Re / (2 + §2), 83 — 02, 2ui),

where 1) := <zl> : R? — C? satisfies the following equation:
2

49 25 ) (o o)) () =

with U = H|¢|%. On the Euclidean plane R? the spin structure is unique, and
the spinor bundle ¥ is trivial. By choosing a representation of {e,} as

0 1 0 ¢ .
01:(_1 O>’ 02:(2. 8), 1:=v—1

the Dirac operator can be expressed as
_ 0 1\ [0 0 @\ (00
o= (500) ()= (0 a) (32)
W (D)

where ¢ := <zl> : R? — C? is a spinor field, 9 := 1(0, — i0,), 0 := 1(0, + i0,).
2

Therefore, the equation (1.8) can be written as (1.7) which is a special case of
(1.2) with n = 1. Similar types of equations will be discussed in section 5.

We now turn to the analytical aspects and introduce the following energy func-
tional:

(1.10) Bw) = [l
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For the analysis of the equation (1.2), we use [|¢[|zs, instead of |[V¢[| 4, as the
energy functional of ¢, since the former is strong enough to get various estimates
in most cases, as one can see in [4] and [5].

For a solution v of (1.2), if ¢ € L" for some r > 4, then the standard argument
of elliptic regularity theory implies the smoothness of . Furthermore, under
the condition of uniformly bounded L"(r > 4) norms, one has compactness for
these solutions. However, if we only assume the boundedness of the L* norm
of v, then the compactness is no longer true. One then naturally considers the
blow up phenomenon for the solutions. In particular, it is interesting to know
whether the energy identity and removable singularity results hold. ¢ € L* is
the borderline case for the geometric analysis of the solutions of (1.2), since the
standard bootstrap method in elliptic estimates fails in the first step. It turns out
that this can be overcome by establishing some LP elliptic boundary estimates
and combining various estimates in delicate ways.

In this paper, our aim is to study properties of the solution space of this
and similar types of equations. We will prove small energy regularity theorems
in which basic apriori estimates for smooth solutions of (1.2) and related types
of equations are given. Then we prove a removable singularity theorem, which
provides a key tool for the blow up analysis of the solutions. Based on these,
we consider the blow up process of solutions under a uniform bound for the L*
norm, and we will establish an energy identity for these solutions. For harmonic
maps, holomorphic curves and also maps with uniformly L?-bounded tension
fields, these results are derived in [15], [10], [7], [17], [13] and [14].

We would like to remark that these considerations are closely related to the
regularity of weak solutions, corresponding to the well-known case of harmonic
maps in dimension two. Based on the discussion in this paper, we believe that,
using an L theory for boundary value problems of the Dirac equations (see [3]
for the L? theory), regularity results for weak solutions are available.

2. SMALL ENERGY REGULARITY THEOREM

In this section, we will prove a small energy regularity theorem. Since the
problem is local and the equation (1.2) is conformally invariant, without loss of
generality, we may assume M to be the unit disk

B ={(z,y) € R*|2* + y* < 1}

equipped with the Euclidean metric.

Theorem 2.1 (Small energy regularity theorem). There exists a small
constant € > 0 such that for any smooth solution 1 of (1.2) satisfying

(2.2) E(; B) := / [t <e.
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we have

(2.3) 115k < Clll 30,4,

VB' CC B,1 <pandk € Z,, where C = C(B',p) > 0 is a constant, and ||- || 5.k
denotes the norm in W"P(B).

For proving this result, we need the following L” boundary estimates for Dirac
operators. This is essentially Lemma 4.8 in [4], but we will give another proof
here.

Lemma 2.2. Suppose 1 is a solution of

(2.4) MW=
on B, with Y|sp = ¢, and f € LP(B,X"), o € WHP(IB,%X") for some p > 1,
then

(2.5) [lB1p < CUlfllB00 + lellon),
where C'= C(p) > 0 is a constant.

Proof of Lemma 2.2. First, let
w(a)i= [ Ta =)Wy

B
be the Dirac-Newton potential of f, where
1 =z
INz)=———"
(=) 27 |x|?

is the Green function of @. Using the relation between I' and the Green function
" of the Laplace operator: I' = @I', one sees that w = @w, where

a(a) i= [ Tla =) fw)d.
B
From the Calderon-Zygmund inequality (see e.g. [9] Theorem 9.9):

V20 gop < Cllf B0y

Noting that
Vaw = Va@u? = UgvaV5”Ll~),
it follows that

(2.6) IVwlizop < Cllfll0p

Second, for any &€ € Wy (B, ¥") and F € LP(B,%") satisfying
(2.7) §E=F,

we have

(2.8) IVEllB.op < 1150,

In fact, there exists a sequence of & € C}(B,%") such that & — £ in W? which
implies @&, — P¢ in LP. Denote Fy := @&, since & has compact support , we
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know (see e.g. [12]) that & is the Dirac-Newton potential of Fj, and by (2.6) we
have

V&l B.op < [ Fkll 5.0,
letting & — 400 yields (2.8).
Now we extend ¢ to @ on B\ Bs (0 < § < 3) by
o(r,0) =), 6d<r<1, 0€IB.
Choose a cut-off function 7 such that 0 <n <1,
(1 r>3
= 0 r S 29
and |n'| < 2, define
P = ng,
then ¢ € W'(B,¥") and ¢ — ¢ € W, P(B,X").
From (2.8), we have
IV@W = )lBop < ClPL = &)llBos
< C(lf1lBop + 192l 5.0p),
which implies
(2.9) IVOlop < CfllBop + 1921 B.0p + IVElB0,)-
Note that

IVellgop, = [IV(n@)llBop
< C(H@HB%\B%,O,NLHV@HB\B%,O,p)

1 1
Cllelonon+1 [ IV
B\B%

< Cll¢llosop + IVellonop),

IN

namely,

(2.10) IV@llop < Cligllosp
Similarly,

(2.11) 1921180, < Cllellon, -
Subsituting (2.10) and (2.11) into (2.9) then yields:

(2.12) IVl oy < CUflBop + #llon.1s):

By the Poincare inequality,
1 = &llBop < ClIV® = @)llBop

hence
(2.13) ¢ Bop < CIV(W = @)Bop + 18 B0ps
but

1210, = 1Pl Bop < Cllellos,op,
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putting this and (2.10), (2.12) into (2.13), we finally obtain (2.5). Q.E.D.
Now we can give the
Proof of Theorem 2.1. We first derive the following estimate:

(2.14) 11500 < CliYllB04,

VB’ CcC B, where C = C(B',p) > 0 is a constant.
For this, we choose a cut-off function n such that 0 < n < 1, n|p = 1, and
suppn C B. Denote £ := 1, then

= )
= P+ V-
(2.15) = H;p (¢, ")t + Vi -,

From Lemma 2.2, for any 1 < ¢ < 2,

1€lB1e < ClnHjm(@, 0" + V- 4| pog
(2.16) < ClholnlY) | B,o.q + 1¥]5,0.4)-

Now observing that

IofPlleos = ([ (Pavl)):

B

= ([ ubey:

[ e

B

q*)q%

Y

(2.17) < / o

where ¢* := ;qu, putting (2.17) into (2.16), and using the Sobolev embedding, we
have

€504+ < Choll¥llB04llEll B0 + 1Y ]l5,0.)-
Thus, if € > 0 is small enough such that Chg/c < %, then for ¢ with

B/Wm

1€l B.0.4+ < Clll 504

Clearly, for any p > 1, one can find some ¢ < 2 such that p = ¢*. This establishes
(2.14).

we have
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Next, since

Jver = [

B B
[ o+
B
e[ 1wr+ [ 1op)

B B
we have

1€115,0,2 Cll¥l 306 + 1¥1B0,2)
Cl19l150.4 + 1Pl 3.0.4)
CllYllB.oal + 1950.4)
Cllvlls,0.4,

where in the second step we have used (2.14) and in the last step we have used
(2.2). We then have,

(2.18) VY| B o2 < ClY|Bo.a4s

where C' > 0 is constant depending only on hy and B’. Using the Weitzenbock
formula and noting that the scalar curvature vanishes in this case, we have

VaVatp = —@2
—P(Hpa(, "))
—(1/1] VNNV Hja - ") = Hyg (Ve 7, 05) + (07, Ve, 90F)) (ea - 9)
Jkl pqr(w] ¢k><¢p ¢q>¢r

Therefore, for any n € C*(B),

[A(my)| < CUP| + VY[ + [Vl + ¢ + [¢]),
where C' > 0 is a constant depending only on 7, hg and h, from which we have
(2.19)  [[nllap < CU1¥llop + 1Vllop + 1IVENDllop + 111 llop + 112017 ]l0,0)-
Using the above estimates (2.14) and (2.18), we have

VY pros < VOB 02lldllEos

< OB
P 505 < CllY B0,

11800 < CllYl B 04
Substituting these into (2.19) on B’ with p = 3 and using (2.14), (2.18) again,
we conclude that

VAN VAN VAR VAN

1m0 525 < CllY| B4
This implies that

[¥llgr s < Clldloa
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for any B” CC B’. By Sobolev,

1915714 < CllY] B04;

and consequently, [[¢]] i) < Clll o
Choose p = 2, in (2.19) and using the above estimates, we have
Y22 < C|lY]|Bo.a-
This yields
191510 < CllYllB0a-

We can then obtain all the desired estimates by the standard bootstrap method.
Q.E.D.

From the above estimates, we have the following (see e.g. [12]):

Corollary 2.3. Let M be a compact Riemannian surface without boundary, with
a fived spin structure. If 1 € WP is a solution of

(2.20) W =F
with F' € LP, then
(2.21) [l ar10 < CUF 00 + 10l 61.0p)

where C'= C(M,p) > 0 is a constant.

Proof. Using (2.8) and an argument of finite covering of M, one immediately
obtains (2.21). Q.E.D.

3. REMOVABLE SINGULARITY THEOREM

For a given smooth solution v of (1.2) on the sphere S?, one can create a solution
zﬁ on the Euclidean plane R? through the stereographic projection from the north
pole N, by virtue of the conformal invariance of the equation. Conversely, given
a solution ¢ on R?, through the stereographic projection, we only have a solution
¢ on S§* \ {N}, which then leads to the question of removable singularities. In
this section, we will prove the following

Theorem 3.1 (Removable singularity theorem). Let 1) be a solution of (1.2)
which is smooth on B\ {0}. If

(3.2) / ]t < oo,

B
then v extends to a smooth solution of (1.2) on the whole B.

Proof. Since (1.2) is conformally invariant, by a rescaling transformation, we may

assume that
JR
B
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where € > 0 is a small constant whose appropriate value will be determined later.
For any given small § > 0, we choose a cut-off function 75 € C5°(Bsys) such that
0 S s S 17
|1 in By,
=10 in B\ By,
and |Vn;| < C/§. Then
NA =ns)] = (1 =ns) — Vs -
= (1= ns) Hya{0? , ") = Vs - 4.

By Lemma 2.2, we have

BN —m)lpas < CI— ) Hyal? )0 = Vsl s + Clbllop s

(3.4) < Clholllbos+ 195 - llmo s+ lo5,.1).
By the Sobolev embedding theorem, we have
(3.5) 11 = 15)¥l|Boa < Clholllloa+ Vs - Pllpos + 1Ullopa,1)-

We note that as 6 — 0,

Vs ¥lsog = [ IValtloh?

Bys\Bs
C 4.3
< — 3)1
< S(f
Bas
< ¢ / B =0,
Bas

therefore, letting 0 — 0 in (3.5) we obtain
11504 < Chollvll5 0 all¥llm04 + Clltllop,s-

We choose € > 0 so small that Chg/e < 1/2, then
14llBoa < Clldllap,s

4.3 1
< c(f velhi+ o [ 1ol
oB oB
By a rescaling argument, we have for any r € (0, 1

)
(/W!“)i < C<r/ywy%)%+0(r/ |4

0B, 0Br

IN

i [ 1velht+ o [ e

OB 0B,
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that is,

(3.6) / Bt < Or / vyl + Cr / e
0B, 0B,

Denote

1
= %/wa
0B
then on B\ {0}:

Pp — ) = Hyp (7, 0"t = Hypg (07, ") (0 — 9') + Hjp (07, 0"
From Lemma 2.2, we have
1 = Pllpas < CUHmW W) (@ = )pos + Hju(e?, 05 ) |5,
= Blap2):
using the Poincare’s inequality, we obtain
[ =Yllpr: < CUHpl W)W =)o + 1 Hiule?, ") 0 .0
IV = Bllo )

S

3

< Choll¥lBoalld = ©llsoa+ ChollllE o alldll.oa
+CIVYllapoa

< CholltlBeallY = ¥llp s + ChollllBoall¥llonon
+CHV¢H63,0,§7

using the smallness of ||¢|| g4 again, we have
I = Vllp1s < ChollllEoall¥llonos + ClIVEllape s,

therefore,
VY08 < Choll¥llh 04llvllonoa + ClIVElape,s,

([ 1vulh)i < /|w| /|w| 4+c/|w| i,

B
Ch§</w\4>§</wr4>% +c/\w\%‘
B

It is then easy to see that
< o [l /w\4+c/1vws
B

that is,

IN

/\W\é
B
0B

where o > 0 is small constant, and C' > 0 is constant depending only on hy.

rescaling again, we have

(37) AZE / pit+ &r [ vor [ oot

By OB OB

11
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Combining (3.6) and (3.7), we have

(3.8) / o]t + / vl <cr [ it [ 1901)

OBy OBy

Denote F(r) :== [ ||* + |V4|3, then

Br
F(r) < CrF'(r),

which implies that
(3.9) F(r) < F(1)ro.

From this, it follows that ¢ € W' for some p > 4/3, and then, by the standard
bootstrap method, one can conclude the smoothness of . Q.E.D.

Remark. When ¢ is the spinor representing a surface M in R3 with mean
curvature H, and z = x 4 4y is the parameterization of M, then the metric of M
is

= [P|*dzdz,
and the condition (3.2) means that (M, ds?) has finite area.

4. ENERGY IDENTITY

Let M be a compact Riemann surface with a fixed spin structure. Given a
sequence {t,,} of solutions of (1.2) on M, if we assume it is uniformly bounded
in LP(p > 4), then the standard bootstrap method implies that {1, } is uniformly
bounded in C" (r € Z,). However, in the case of the L*-norm, examples show
that this compactness is no longer true. If {¢,,} converges to 1 weakly in L*,
then in the limit we may encounter bubbling phenomenon; namely, by a rescaling
argument and the previous removable singularity theorem, we may get some
solutions on S?, and this causes an energy loss. Comparing to the well-known
case of harmonic maps, one naturally asks whether the blow up set is finite and the
energy identity holds. In view of the Weierstrass representation, this corresponds
to the question of the convergence of surfaces with a uniform area bound.

We will need the following lower bound for the energy of the bubbles:

Lemma 4.1. There exists a constant A > 0 such that for any nontrivial solution
Y of (1.2) on S?, we have

(42) /|¢|4 > A

Proof. Firstly, for any solution ¢ on S?,
(13) I9lls < Pl
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Otherwise, for any k € Z, there is a 1), which solves (1.2), but

9l > K90l
Denote 7 := ¢ /|[¢hx |4, then

(4.4) 1mells < 1k, mells = 1.

Using Corollary 2.3, we have
Il s < CCPmells + Inilo) < €.

which implies that there exists some 7y such that 7, converges to 1y weakly in
4 4
Whs. By Sobolev, ny — g in L3, so HUO“% = klim anH% = 1. But @y converges

to @Pno weakly in L3, and from (4.4), it is easy to see that @ny = 0, hence 1y = 0
since there is no nontrivial harmonic spinor on 2. This contradicts ||no]| i =1

Now from (4.3) and (2.21), we have
[lhs < CUPOs + lels)

< Cliplls
< Choll¥|l3,
therefore,
1¥]|4 < Choll I3,

and if |[1)]|4 is so small that Chg||||3 < 1, then we have ¢ = 0. Equivalently, we

can find a constant A > 0 such that for any nontrivial solution v of (1.2) on S?,

the energy [ |4|* is bounded below by A. Q.E.D.
M

Let
S = Nyso{z € M| hminf/ [Um|* > €}
B(z,r)

m—-+00o

be the blow up set of {¢,,,}, where € is as in Theorem 2.1.

Theorem 4.2 (Energy Identity). Let M be a compact Riemann surface with
fized spin structure, and suppose that {1} is a sequence of smooth solutions of
(1.2) on M satisfying

(4.5) E(thy,) = / ]t < A < +o00.

If {4t} converges to ¢ weakly in L*(M) (but not strongly,) then the (non-empty)
blow up set S must be finite:

S = {p17p27 e 7pK}
Furthermore, there exists a constant co > 0 depending only on M such that if

(46) Sup |H;kl|\/K < Co,

M7i7j7k:7l
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then the energy identity for {1y} holds, namely, for each blow up point py (k =
1,2,---,K), there exists a finite number of solutions {&{ }a=12,....4, of (1.2) on
S* such that

K Ay
(4.7) lim E(Ym) = E@)+) > BE)
k=1 a=1

Proof. Since the removable singularity theorem, the small energy regularity theo-
rem, and Lemma 4.1 provide key ingredients for establishing the energy identity,
the theorem can then be proved by an argument as in [5], see also [7]. Here we
only give a sketch of proof.

First, the condition E(¢,,) < A < 400 and Theorem 2.1 imply that the
blow up set S must be finite. We choose small disks Bs, for each pj such that
Bs, N Bs, = ¢ for k # j, k,j = 1,2,--- , K. Furthermore, by Theorem 2.1, {9, }
strongly converges to ¢ in L* on M \ UX_ Bs,, (4.7) is then equivalent to

(4.8) Sicy Jim lim E(Ym; Bs,) = S Sk B,

It suffices to prove that for each blow-up point p, we have
(4.9) lim lim E(¢m; Bs) = X2 B(&Y).

6—0m—oo
By virtue of the conformal invariance of the equation (1.2), and the locality of
the problem, we may assume that each disk Bs is equipped with the FEuclidean
metric. For each 1,,, we choose \,, and z,, € Bs such that \,, — 0, x,,, — p and
E(m; By, () = max E(iby: By, (z)) = =
z€Bs(p)
Rescaling by

() = A2 o (T + AmiZ),
then

B(ni B = B(tn; By, () = 5 < <.

E({m; BR) = E(¥m; By, 5(wm)) < A
By Theorem 2.1, we have a subsequence of {t,,} which strongly converges to

some v in L*(Bg) for any R > 1. We thus obtain a nonconstant solution 1)
of (1.2) on R? and hence a nonconstant solution of (1.2) ¢! on §? \ {N} with
bounded energy. Theorem 3.1 then gives us a nonconstant solution of (1.2) on
the whole S?, and we obtain the first bubble ¢! at the blow up point p.

Next, denote

A6, Rym) = {z € RIN R < |z — 2| < 6},
then (4.9) is equivalent to

(4.10) lim lim lim E(¢,; A5, R,m)) = S, E(%).

R—o00 §—0 m—o0

For a fixed blow-up point p, the number of bubbles £ must be finite; this follows
easily from Lemma 4.1. We only consider (4.10) in the case of exactly one bubble
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at the blow up point p, because the case of at least two bubbles can be reduced
to this case. Then, (4.10) is just

(4.11) lim lim lim E(¢,; A6, R,m)) = 0.

R—00 §—0 m—oo

To prove this, we consider a conformal transformation f : RxS' — R?  f(¢,0) =
(e7t,0), where R x S! is given the metric ¢ = dt* + d#*. for the pull-back
U, := f*m, then E(V,,) < A. Set Ty := |logd|, T, := |log\. R

Using Theorem 3.1, through an argument by contradiction (c.f. [5] for more
details), one can prove that there is a K > 0 such that if m > K, then

(4.12) / V' <e, Vte[l,T,—1].
[t,t+1]xST

Choose a cut-off function 1 on B(z,,, 20) as follows:
UGCSO(ng\BAmR/Q); n= 1 in Bg\B)\mR
V| < C/6 in B\ Bs; V| < C/A\nR in By, g\ Bx,g/2,

where we denote Bs := B(x,,,d) etc. for simplicity. Then from Lemma 2.2 we
have

IN

[17%m]| L4 Clin@bm + V0 - Yl 4

Ol ol + 1901 ]

Choll |2 Il za + C / (Val[6ml)

A(26,R/2,m)

IN

4
3

IN

kE

IN

Chov/Rllml o1 + C / (VnllemD) 415,

A(26,R/2,m)

Clearly, there exists a constant ¢q > 0 such that when (4.6) is satisfied, we have
Chov/A < 1, from the above estimate, we then have

mnlls < €L (VallvnE Ol (Vllim .
Bs\Bs Bxm R\Bx,, R/2

Therefore,

1 1
lwlzsasrmy < C| / el E+ O / el
Bas\Bs Bam R\Bx, r/2

< Cei+ C’si,
where in the last step, we used (4.12). This proves (4.11). Q.E.D.

5. RELATED TYPES OF DIRAC EQUATIONS

Let M be a compact Riemann surface with fixed spin structure. For any local
orthonormal basis {e,}a=1.2, one can define the so-called chirality operator

I''=1¢e;-€y-.
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This definition is independent of the choice of {e,}a=12, therefore I' is globally
defined on M. Define
1

1

Let U =U(v), V = V(%) be complex functions. We consider the following Dirac
equation:
(5.2) P =UW)I +V(@)I-].

Clearly, (1.2) corresponds to the case U = V = —H |[+|?. Comparing to (1.2), the
Dirac equation for surfaces immersed into some three-dimensional Lie group N
takes a special form of (5.2). For example (c.f. [16])

(5.3) N = SU(2) : U=V =—(H-i)|y|*
(5.4) N=Nil:  U=V=—HWP - (i: - sl
N=5Lp:  U=—HgP—i(Glal ~ [P,
3
(55) V = —HJY — ([l - S1al).

Using the same methods as in the previous sections, one can conclude similar
results for the above types of Dirac equations.

Corollary 5.1. There exists a small constant € > 0 such that for any smooth
solution 1 of (5.2), with U,V satisfying one of (5.3),(5.4),(5.5), and

(5.6) B(w:B) = [ 10l <=
B

we have

(5.7) ] B kp < CllYl B o4,

VB' CC B, 1<pandk € Z;, where C = C(B',p) > 0 is constant, and || - || 5k
denotes the norm in WHP(B).

Corollary 5.2. Let v be a solution of (5.2),with U,V satisfying one of (5.3),(5.4),(5.5),
which is smooth on B\ {0}. If

(5.8) [0l <.

then 1 extends to a smooth solution on the whole B.

Corollary 5.3. Let M be a compact Riemann surface with fixed spin structure,
and suppose that {1} is a sequence of smooth solutions of (5.2), with U,V
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satisfying one of (5.3),(5.4),(5.5) respectively, on M and

(5.9) E(thy,) = / ]t < A < +o00.

If {4} converges to 1 weakly in L*(M), but not strongly, then the blow up set
S must be finite:

S = {pl7p27' te 7pK}

Furthermore, there exists a constant co > 0 depending only on M such that if

(5.10) (sup |H| + a)VA < o,
M

with a = 1, %7% respectively, then the enerqgy identity for {1, } holds, namely, for

each blow up point py (k=1,2,--- | K), there exists a finite number of solutions

{&iYaz12, 4, of (5.2) on X2 such that

K A
(5.11) Jdim B() = B@) + ) ) E(&).
k=1 a=1
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