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Abstract

We present a perturbative treatment of Jastrow-type correlation factors which focuses on an accurate
description of short-range correlations. Our approach is closely related to coupled cluster perturbation
theory with the essential difference that we start from a variational formulation for the energy. Such
kind of perturbation theory is especially suited for multiscale bases, like wavelets, which provide sparse
representations for Jatrow factors. Envisaged applications in solid state physics are confined many-
particle systems like electrons or multi excitons in quantum dots. The resulting Jastrow factors can
be further used as trial wavefunctions in quantum Monte Carlo calculations for these systems. First
applications to a screened homogeneous Fermi gas model demonstrate that already first order Jastrow
factors recover 95% of the correlation energy in variational Monte Carlo calculations over a fairly large
range of densities and screening parameters. The corresponding second and third order perturbation
energies turned out to be more sensitive to the specific choice of the model parameters. Furthermore,
we have compared our first order Jastrow factors with those obtained from Fermi hypernetted chain
calculations, where excellent agreement at short and intermediate inter-particle distances has been
observed.

1 Introduction

The determination of ground state properties for interacting many-particle systems is a central topic in
condensed matter physics and quantum chemistry. It can be either treated by density functional theory

(DFT), or through a more direct approach based on certain kinds of many-particle wavefunctions. Within
DFT, the original many-particle problem is mapped, via the Kohn-Sham equation [1], into an effective
one-particle problem and thus considerably reduces the computational effort. Despite the great success
of DFT for a large variety of systems, it has the basic drawback that there exists no systematic way to
improve the exchange-correlation potential in the Kohn-Sham equation. On the contrary various schemes
for a systematic improvement of many-particle wavefunctions exist. We just want to mention coupled

cluster (CC) theory [2, 3] and the Fermi hypernetted chain (FHNC) method [4, 5]. By construction CC
theory is aiming towards a direct approximation of the exact wavefunction, while the FHNC method deals
with a more restricted class of Jastrow-type wavefunctions which is supposed to be very close to the exact
one. A common feature of both methods is the ansatz

Ψ(x1,x2, . . . ,xN ) = F Φ(x1,x2, . . . ,xN ), (1.1)
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where a correlation operator F acts on a single Slater determinant Φ. Here and in the following xi :=
(ri, σi) denotes the combined spatial and spin coordinate of a particle. Their distinguished role in con-
densed matter physics is due to the fact that both methods provide the correct asymptotic behaviour for
short- and long-range correlations. The latter, however, inevitably lead to certain types of nonlinearities
which make these methods considerably more complicated than standard many-body perturbation theory

(MBPT). Concerning computational complexity, the CC method appears to be better tractable, however
for the price of a rather special ansatz for the correlation operator. This excludes e.g. the Jastrow ansatz

F(r1, r2, . . . , rN ) = e
P

i u(1)(ri)+
P

i<j u(2)(ri,rj) ··· (1.2)

where the correlation operator simply consists of a symmetric function of the spatial electron coordinates.
In this context we have to mention the generalized CC method of Noga and Kutzelnigg [6] which in-
corporates a spatial function which depends explicitly on the inter-electron distance. Such kind of term
describes the wavefunction near inter-electron cusps and improves convergence with respect to the size of
the basis set.

Jastrow factors provide the starting point for the FHNC method and are particularly interesting
concerning possible applications in quantum Monte Carlo (QMC) calculations [7]. Within variational

Monte Carlo (VMC), the expectation value of the energy is calculated for Jastrow-type wavefunctions using
various variants of the Metropolis algorithm. The diffusion Monte Carlo (DMC) method enables an exact
solution of Schrödinger’s equation within the fixed-node approximation. This method requires Jastrow
factors as accurate trial wavefunctions for an efficient reduction of the statistical variance of the energy.
Herewith it is the short-range behaviour of the Jastrow factor near the coalescence points of particles
that gives the dominant contribution. QMC methods enable a compact representation of the k-particle
correlation functions u(k) in terms of rational functions of the inter-particle distances [8, 9]. Because
of the computational complexity of the FHNC method, it became common practice to use stochastic
approaches for the optimization of these Jastrow factors [8, 9, 10, 11, 12, 13]. Either variance-minimization
techniques [8, 9, 10, 11] or methods for a direct minimization of the energy [12, 13] were employed. These
optimization techniques yield wavefunctions which typically recover between 70% to 95% of the correlation
energy with amazingly small numbers of parameters compared to other many-particle methods of similar
accuracy. A potential drawback of stochastic approaches, however, is the multitude of local minima that
are encountered during the optimization. The resulting Jastrow factors, therefore, typically correspond
to local minima which might depend on the initial guess for the parameters. Such kind of ambiquity has
only minor effects concerning the total energy of a system, however, it hampers an unbiased calculation
of energy differences.

An alternative representation for Jastrow factors can be obtained from wavelet based multiresolution
analysis. This approach takes into account the multiscale character of many-particle systems and pro-
vides sparse approximations for correlation functions u(k) in terms of hierarchical tensor product wavelets
[14, 15, 16, 17] which can be adapted to the specific length- and energy-scales of the system under consid-
eration. Multiscale representations are also of potential interest for QMC calculations because of the local
character of wavelet bases. In a previous paper [16], we have studied the computational complexity of
wavelet approximations for the local ansatz of Stollhoff and Fulde [18, 19] using diagrammatic techniques
from FHNC theory. Within the present work, we consider a more general approach based on standard
perturbation theory. It turns out that our approach is closely related to the coupled cluster perturbation

theory (CCPT) presented in Ref. [2]. Furthermore we have to mention the huge amount of work devoted
to linked-cluster expansions for Jastrow-type wavefunctions in nuclear physics during the late sixities and
early seventies of the last century, which finally culminated into the development of FHNC theory (see e.g.
Ref. [20] for a comprehensive discussion of this subject). We just want to refer to Talman’s approximate
variational treatment of Jastrow factors [21, 22] that agrees in lowest order with our approach. Except for
homogeneous systems, these methods become very costly from the computational point of view. There-
fore, standard perturbation theory turns out to be an interesting alternative at the expense of an accurate
treatment of long-range correlations. For our envisaged applications in solid state physics, like electrons or
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multi excitons confined to a quantum dot, and quantum chemistry this is perfectly justified. Otherwise it
is possible to combine our perturbative approach with a recently developed random phase approximation

(RPA) for inhomogeneous systems by Gaudoin et al. [23] that provides an accurate description of the
long-range behaviour of Jastrow factors.

The paper is organized as follows: In Section 2 we present a perturbation analysis of Jastrow factors,
where linear and exponential perturbation expansions for correlation factors are derived in Sections 2.1
and 2.2, respectively. Applications to a screened Fermi gas model with periodic boundary conditions are
discussed in Section 3. A qualitative study of perturbative Jastrow factors through comparison with FHNC
calculations is presented in Section 3.1. The second and third order correlation energies are compared with
results from QMC calculations in Section 3.2. Finally, in Section 4 we make some concluding remarks.

2 Perturbation analysis of Jastrow factors

We consider a general product ansatz for the wavefunction

Ψ(x1, · · · ,xN) = F(x1, · · · ,xN)Φ(x1, · · · ,xN), (2.1)

where the correlation factor F is a symmetric function of the electron coordinates. The corresponding
variational problem consists of minimizing the expectation value of the energy

E = min
F

∫

d3x1 . . . d3xN FΦ∗ (x1, . . . ,xN )H FΦ (x1, . . . ,xN )
∫

d3x1 . . . d3xN FΦ∗ (x1, . . . ,xN )FΦ (x1, . . . ,xN )
, (2.2)

with respect to the correlation factor F for a fixed reference wavefunction Φ. Two different perturbation
scheme for this variational problem are discussed below. The first scheme utilizes a linear representation
for the correlation factor, whereas the second scheme is based on the exponential Jastrow-type ansatz
(1.2). Both schemes employ symmetric many-particle basis functions of the form

U (0)(X) = 1,

U (1)
α (X) =

∑

i

u(1)
α (xi),

U
(2)
β (X) =

1

2

∑

i6=j

u
(2)
β (xi,xj), (2.3)

...

where u
(k)
α (xi1 ,xi2 , . . . ,xik) denote symmetric k-particle basis functions with indices α ∈ Λk taken from

conveniently defined index sets. In the following we refer to k as the degree of the basis functions. For
notational convenience we have introduced the short-hand notation X := (x1,x2, . . . ,xN ) to represent the
combined vector of all electron coordinates. The computational complexity increases substantially with
the degree of the basis functions. Therefore it is essential to truncate the basis at a certain degree. It
turns out that both perturbation schemes discussed below provide such truncations in a natural way.

Obviously there are certain redundancies in our many-particle basis. According to definition (2.3),
one-particle basis functions can be expressed e.g. in terms of two-particle functions etc., which means that
the basis is overcomplete without further restrictions. Such kind of restrictions can be imposed in various
ways. For example it is possible to derive a suitable basis from multiresolution analysis. Neglecting spin
degrees of freedom, a many-particle basis can be defined via wavelet tensor products

u(1)
α (ri) = γα(ri), (2.4)

u
(2)
α,β(ri, rj) = γα(ri) γβ(rj) + γα(rj) γβ(ri),

...
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where a k-particle basis function corresponds to a k-fold tensor product of 3d-wavelets γα. The multivariate
wavelets γα themselves consist of three-fold mixed tensor products of univariate wavelets and scaling
functions, at which each tensor product contains at least one univariate wavelet. For further details
and applications, we refer to our previous publication [14, 16]. By definition these 3d-wavelets span so
called homogeneous function spaces [24] that do not contain constant functions. Thereby, this ansatz
largely avoids possible redundancies within the many-particle basis. Wavelet tensor products enable an
adaptive approximation of electron correlations [14], where the size of the k-particle basis increases almost
linearly i.e. O(M log(M)k−1) with the number M of 3d-wavelets. Furthermore, tensor product structures
considerably simplify the evaluation of matrix elements [16, 25].

Second quantization provides another possibility to impose further restrictions on the many-particle
basis (2.3). It has been suggested by Stollhoff and Fulde [18, 19] to take only the normal ordered part

of the basis functions (2.3) which removes all contributions with degree < k from U
(k)
α . Furthermore,

second quantization introduces additional flexibility into the perturbation analysis. This can be used to
reduce the computational complexity which is essential for practical applications. In order to illustrate
our assertion, we consider an arbitrary two-particle basis function as an operator in second quantization

U (2)
α ≡ Û (2)

α =
1

2

∑

pqrs

〈pq|u(2)
α |rs〉c†pc

†
qcscr, (2.5)

where c†p, cs denote creation and anihilation operators for the corresponding orbitals ϕp, ϕs of a single-
particle Hamiltonian H0. In the following, we denote virtuals orbitals by a, b, · · ·, occupied orbitals by
i, j, · · · and arbitrary orbitals by p, q, · · ·. Using standard diagrammatic notation [26] we can express
two-particle operators in terms of Goldstone diagrams. These diagrams are depicted in Fig. 2.1, where

horizontal dashed lines represent two-particle integrals 〈pq|u
(2)
α |rs〉 and upward and downward pointing

solid lines denote “particle” (virtual orbitals) and “hole” states (occupied orbitals), respectively. We want
to mention that virtual orbitals {ϕa} are introduced for purely formal reasons and that for diagrammatic
calculations only occupied orbitals {ϕi} are required. This is due to the fact that the underlying basis
(2.3) consists of simple functions which allows us to use the identity

∑

a

ϕa(x1)ϕ
∗
a(x2) = δ(r1 − r2) δσ1,σ2 −

∑

i

ϕi(x1)ϕ
∗
i (x2), (2.6)

we refer to Ref. [16] for further details. The normal ordered part of the operator (2.5) comprises the
diagrams 1 to 10. According to the original suggestion of Stollhoff and Fulde [18] only these diagrams
should be taken into account. The remaining diagrams 11 to 18 represent one-particle operators, however,
diagrams 11 to 14 are intrinsically nonlocal and are therefore not represented by basis functions of degree
< 2. To keep all nonlocal diagrams preserves commutativity of the many-particle basis, which turns out to
be essential for the exponential perturbation scheme. Furthermore it has the advantage that it is directly
applicable in QMC calculations where only local functions can be used to represent the Jastrow factor.
The new local basis functions, corresponding to diagrams 1 to 14, are given by

Ũ (2)
α (X) = U (2)

α (X) −
∑

i

∫

d3x′ u(2)
α (xi,x

′)ρ(x′) −
1

2

∑

i,j

(

〈ij|u(2)
α |ij〉 − 〈ij|u(2)

α |ji〉
)

(2.7)

where ρ(x) is the spin density of the reference wavefunction Φ. A more radical approach in the spirit of
CC theory, is to keep only the 10th diagramm, where the corresponding cluster-type operator

Û (2,c)
α :=

1

2

∑

abij

〈ab|u(2)
α |ij〉c†ac

†
bcjci, (2.8)

is of nonlocal character and cannot be immediately applied in QMC calculations. It turns out that cluster
operators significantly reduce the computational complexity at higher orders of perturbation theory.
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Figure 2.1: Goldstone diagrams representing a symmetric two-particle basis function U
(2)
α .

2.1 Linear perturbation expansion of the correlation factor

It is instructive to consider first in second quantization a linear expansion of the correlation factor

F̂ =

N
∑

k=0

∑

α∈Λk

akαÛ (k)
α , (2.9)

where e.g. Û
(2)
α can be represented by any subset of the diagrams in Fig. 2.1. Variation of the Rayleigh-

quotient (2.2) with respect to the coefficients akα leads to a generalized eigenvalue problem

〈Û (k)†
α ĤF̂〉 = E〈Û (k)†

α F̂〉, (2.10)

where we use here and in the following 〈Ô〉 to denote
∫

d3x1 . . . d3xN Φ∗ (x1, . . . ,xN ) ÔΦ (x1, . . . ,xN ). The

eigenvalue problem (2.10) determines the correlated wave function F̂Φ up to a normalization constant. In
order to fix this constant we have chosen the intermediate normalization condition

〈F̂〉 = 1, (2.11)

which is frequently used in standard MBPT [27].
A basic drawback of the variational treatment of the linear ansatz (2.9) is that there exists no sim-

ple size-consistent truncation scheme with respect to the degree of the basis functions (2.3). However,
such a scheme exists for a perturbative treatment of Eq. (2.10). According to a standard procedure in
perturbation theory, we split up the Hamiltonian

Ĥ(λ) = Ĥ0 + λŴ , (2.12)

into a one-particle operator Ĥ0 and a two-particle operator Ŵ times the coupling constant λ, where the
reference wavefunction Φ solves the ground state eigenvalue problem

Ĥ0Φ = E0Φ. (2.13)
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Furthermore, we assume that there exist power series expansions with respect to the coupling constant λ
for the energy

E(λ) = E0 + λE1 + λ2E2 + · · · , (2.14)

and the correlation factor
F̂(λ) = F̂0 + λF̂1 + λ2F̂2 + · · · . (2.15)

It follows immediately from the intermediate normalization condition (2.11) that

F̂0 = 1, and 〈F̂m〉 = 0 for m ≥ 1. (2.16)

Actually, F̂ depends on λ, according to Eq. (2.9), via its coefficients akα(λ). These coefficients have formal
expansions

akα(λ) =
∑

m

a
(m)
kα λm, (2.17)

so that the m’th order correlation factor F̂m in Eq. 2.15 can be written as

F̂m =
N

∑

k=0

∑

α∈Λk

a
(m)
kα Û (k)

α . (2.18)

Inserting Eqs. (2.12), (2.14) into Eq. (2.10) and comparing different powers of λ, we obtain perturbation
equations for the correlation factor

〈Û (k)†
α (Ĥ0 − E0) F̂m〉 = −〈Û (k)†

α Ŵ F̂m−1〉 +

m
∑

p=1

Ep〈Û
(k)†
α F̂m−p〉, m = 1, 2, . . . . (2.19)

These equations resemble to Galerkin discretizations of continous perturbation equations already men-
tioned by Møller and Plesset [28]. However we want to remind the reader that our test basis Uα(X)Φ
is generically incomplete in the space of many-particle wavefunctions. To a certain extent our approach
resembles to the fixed-node approximation in QMC calculations, because all of our test basis functions
in the Galerkin scheme share the nodes of the reference wavefunction Φ. This important aspect should
be beared in mind in the following, when we obtain expressions which appear similar to standard pertur-
bation theory. In this respect our approach differs from the Gaussian geminal method described in Refs.
[29, 30], where highly accurate solutions of the continous perturbation equations have been considered
following Sinanoğlu’s work [31, 32].

The underlying variational formulation for correlation factors (2.2) is obviously size-consistent. There-
fore, size-consistency is satisfied for each order of perturbation theory separately. Furthermore, the se-
quence of perturbation equations (2.19) implies a truncation scheme with respect to the degree of the
many-particle basis (2.3), which has been already recognized by Sinanoğlu [32]. For example, a first order
correlation factor F̂1 contains contributions only from one- and two-particle normal ordered or cluster-type

operators Û
(k)
α .

2.2 Perturbation expansion of the Jastrow ansatz

The linear expansion of the correlation factor is not convenient for further usage in QMC calculations.
Although the perturbation energies are size consistent this is not the case any more for a variational
treatment of the perturbative wavefunction. It is therefore natural to consider a perturbation theory for
the exponential Jastrow ansatz

F̂ = eτ̂ with τ̂ =
K

∑

k=0

∑

α∈Λk

akαÛ (k)
α , (2.20)
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where we can truncate the expansion with respect to k at any order K ≤ N without violating size-

consistency for the variational energy (2.2). It is well known that the two-particle terms Û
(2)
α give the

dominant contribution to the correlation energy, cf. Ref. [33] for a discussion of higher order terms. The
exponential ansatz incorporates already a lot of essential physics and therefore considerably reduces the
number of degrees of freedom that have to be taken into account. Variation with respect to the coefficients
akα leads to a nonlinear eigenvalue problem

〈Û (k)†
α eτ̂†

Ĥeτ̂ 〉 = E〈Û (k)†
α eτ̂†

eτ̂ 〉, (2.21)

where we have assumed that the operators Û
(k)
α commute with each other. This is the case for simple

functions as well as for cluster-type operators. According to our previous discussion, cluster-type operators
are much more favourable concerning the diagrammatic evaluation of matrix elements. On a first glance,
the exponential Jastrow ansatz (2.20) resembles closely to the CC approach [3]. There is however an

essential difference inasmuch as the underlying function basis U
(k)
α does not guaranty convergence of the

product ansatz (2.1) to the exact wavefunction in the complete basis set limit. Here completeness has

to be considered in an appropriate function space to which the U
(k)
α belong. This shortcoming of the

Jastrow ansatz manifests itself in the fixed-node error of DMC calculations. For that reason we take the
variational energy (2.2) as the starting point for our perturbation analysis instead of the CC energy and
projection equations. The latter assume an exact ansatz for the wavefunction and provide the basis for
the CCPT presented in Ref. [2].

For the perturbation analysis, we assume again a λ dependent Hamiltonian (2.12) which leads to power
series expansions for the energy (2.14) and correlation operator

τ̂(λ) = τ̂0 + τ̂1λ + τ̂2λ
2 + · · · + τ̂mλm + · · · . (2.22)

Analogously to Eq. (2.9), different orders of the correlation operator are represented through expansions
in the operator basis

τ̂m =
K

∑

k=0

∑

α∈Λk

a
(m)
kα Û (k)

α , (2.23)

which can be truncated at any order K ≤ N . In order to derive the perturbation equations for τ̂m, we
expand the exponential ansatz in powers of λ.

eτ̂ (λ) = F̂0 + F̂1λ + F̂2λ
2 + · · · + F̂mλm + · · · , (2.24)

where the constant term F̂0 = 1 (τ̂0 = 0) is fixed by the intermediate normalisation condition (2.11) and
the next lowest order terms are given by

F̂1 = τ̂1,

F̂2 = τ̂2 +
1

2
τ̂2
1 ,

F̂3 = τ̂3 + τ̂2 τ̂1 +
1

3!
τ̂3
1 ,

F̂4 = τ̂4 + τ̂3 τ̂1 +
1

2
τ̂2
2 +

1

2
τ̂2τ̂

2
1 +

1

4!
τ̂4
1 ,

... .

Perturbation equations for the Jastrow ansatz can be obtained by inserting Eqs. (2.14), (2.24) into the
eigenvalue problem (2.21) and comparing the coefficients for fixed powers of λ. In the following, we refer
to this method as Jastrow perturbation theory (JPT). The first order equation for the correlation operator
τ̂1 is given by

〈Û (k)†
α (Ĥ0 − E0) τ̂1〉 = −〈Û (k)†

α (Ŵ − E1)〉, (2.25)

7



from which we obtain the second order energy (JPT2)

E2 = 〈Ŵ τ̂1〉, (2.26)

with E1 = 〈Ŵ 〉 and 〈τ̂1〉 = 〈F̂1〉 = 0 as before. For higher orders, we have the following general equation

〈Û (k)†
α (Ĥ0 − E0)F̂m〉 = −

m−1
∑

p=1

〈Û (k)†
α F̂ †

p (Ĥ0 − E0)F̂m−p〉 −

m−1
∑

p=0

〈Û (k)†
α F̂ †

pŴ F̂m−p−1〉 (2.27)

+

m
∑

p=1

Ep

m−p
∑

q=0

〈Û (k)†
α F̂ †

q F̂m−p−q〉.

From this, we get the second order equation

〈Û (k)†
α (Ĥ0 − E0)τ̂2〉 = −〈Û (k)†

α (Ŵ − E1)τ̂1〉 −
1

2
〈Û (k)†

α (Ĥ0 − E0)τ̂
2
1 〉 (2.28)

−〈Û (k)†
α τ̂ †

1 (Ĥ0 − E0)τ̂1〉 − 〈Û (k)†
α τ̂ †

1(Ŵ − E1)〉 + E2〈Û
(k)†
α 〉,

and third order energy (JPT3)

E3 =
1

2
〈τ̂ †

1 (Ŵ − E1)τ̂1〉 + 〈τ̂ †
1(Ĥ0 − E0)(τ̂2 +

1

2
τ̂2
1 )〉 + 〈(Ŵ − E1)(τ̂2 +

1

2
τ̂2
1 )〉 + c.c.

=
1

2
〈τ̂ †

1 (Ŵ − E1)τ̂1〉 +
1

2
〈τ̂ †

1 (Ĥ0 − E0)τ̂
2
1 〉 +

1

2
〈(Ŵ − E1)τ̂

2
1 〉 + c.c., (2.29)

where we have used the relation

〈τ̂ †
1 (Ĥ0 − E0)τ̂2〉 = −〈(Ŵ − E1)τ̂2〉 (2.30)

which can be easily derived from Eq. (2.25). In accordance with Wigner’s 2m + 1 rule [2], the third order
energy requires only the first order correction of the wavefunction. Furthermore with the second order
wavefunction we obtain an expression for the fourth order energy (JPT4)

E4 =
1

2
〈(τ̂2 +

1

2
τ̂2
1 )†(Ĥ0 − E0)(τ̂2 +

1

2
τ̂2
1 )〉 + 〈τ̂ †

1(Ŵ − E1)(τ̂2 +
1

2
τ̂2
1 )〉 − E2

1

2
〈τ̂ †

1 τ̂1〉

+〈τ̂ †
1(Ĥ0 − E0)(τ̂2 τ̂1 +

1

3!
τ̂3
1 )〉 + 〈(Ŵ − E1)(τ̂2 τ̂1 +

1

3!
τ̂3
1 )〉 + c.c.. (2.31)

If a cluster-type basis is used, further simplifications of the second order Eq. (2.28) as well as of third
and fourth order energies (2.29), (2.31) can be achieved, provided that the operator basis is closed with
respect to multiplication up to degree two i.e.

Û (1)
α Û

(1)
β =

∑

γ

cγ Û (2)
γ . (2.32)

Under this assumption, we can make use of the relation

〈Û (k1)†
α Û

(k2)†
β Û

(k3)†
λ (Ĥ0 − E0) τ̂1〉 = −〈Û (k1)†

α Û
(k2)†
β Û

(k3)†
λ (Ŵ − E1)〉. (2.33)

For an operator product Û
(k1)†
α Û

(k2)†
β Û

(k3)†
λ of degree k1 +k2+k3 > 2 both sides of the relation vanish since

it can not be fully contracted by (Ĥ0 − E0) τ̂1 and Ŵ respectively. In the remaining cases, the relation
(2.33) either directly corresponds to the first order Eq. (2.25), or can be reduced to it by applying the
closedness assumption (2.32). Using relation (2.33) for a cluster-type operator basis which satisfies the
closedness condition (2.32), the Eqs. (2.28), (2.29), and (2.31) reduce to

〈Û (k)†
α (Ĥ0 − E0)τ̂2〉 = −〈Û (k)†

α (Ŵ − E1)τ̂1〉 −
1

2
〈Û (k)†

α (Ĥ0 − E0)τ̂
2
1 〉 + E2〈Û

(k)†
α 〉 (2.34)
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E3 = 〈τ̂ †
1 (Ŵ − E1)τ̂1〉, (2.35)

E4 =
1

2
〈(τ̂2 +

1

2
τ̂2
1 )†(Ĥ0 − E0)(τ̂2 +

1

2
τ̂2
1 )〉 + 〈τ̂ †

1 (Ŵ − E1)(τ̂2 +
1

2
τ̂2
1 )〉 −

1

2
E2〈τ̂

†
1 τ̂1〉 + c.c.. (2.36)

We want to close this section with a remark concerning the intimate relation between JPT3 and the
local ansatz of Stollhoff and Fulde [18]. In Ref. [16], we have discussed the local ansatz in its simplest
variant namely for two-particle normal ordered operators only. Concerning the local ansatz these operators
are equivalent to cluster-type operators (2.8). In our present notation, the local ansatz corresponds to the
linear equation

〈Û (2)†
α (Ĥ0 + Ŵ )τ̂〉 − (E0 + E1)〈Û

(2)†
α τ̂〉 = −〈Û (2)†

α Ŵ 〉, (2.37)

where the correlation energy is given by
Ecorr = 〈Ŵ τ̂〉. (2.38)

It is easy to see that a perturbative treatment of the local ansatz using Eqs. (2.12), (2.14), and (2.22)
reproduces the first and second order Eqs. (2.25) and (2.34) as well as the second and third order energy
expressions (2.26) and (2.35).

3 Perturbative Jastrow factors for a homogeneous Fermi gas

In order to test the accuracy of the JPT approach for short-range correlations, we have studied a homo-
geneous spin unpolarized Fermi gas at various densities. Because of the well known shortcoming of finite
order perturbation theory for the homogeneous electron gas, we have chosen, instead of the bare Coulomb
potential, a Yukawa potential

v(r) =
e−µ|r|

|r|
, (3.1)

with screening parameter µ. To be consistent with QMC methods, the calculations have been performed
for supercell models with periodic boundary conditions [7, 34]. The supercell Hamiltonian is of the form

Ĥ = −
1

2

N
∑

i=1

∆i +
1

2

∑

R

∑

i6=j

v(ri − rj + R), (3.2)

where the periodic interaction potential has been taken as a sum over all lattice vectors R of the supercell.
We have considered two different decompositions of the Hamiltonian Ĥ = Ĥ0 + Ŵ , where Ĥ0 either
corresponds to the bare kinetic energy or to the Fock operator. For homogeneous systems this makes only
a minor difference because the zeroth order wavefunction Φ is already fixed by translational symmetry.
For small values of the screening parameter (µ ≤ 1 bohr−1), the Fock operator yields more accurate
correlation energies and pair-correlation functions. It turns out, however, that with increasing µ, this
difference becomes marginal. In the following, we present results only for the Fock operator.

Because of translational symmetry, the first order Jastrow factor requires only two-particle basis func-
tions. Adapted to periodic boundary conditions and translational symmetry, we have chosen two-particle
basis functions of the form

u(2)
α (r1, r2) =

∑

R

gα(r1 − r2 + R) with gα(r) = exp(−ξαr
2), (3.3)

where the exponents of the Gaussian basis set have been taken from an even-tempered sequence ξα =
a0b

α−1, α = 1, . . . , n, with appropriately chosen parameters a0 = 0.03, b = 3 and n = 6. Expressed
in second quantization, this basis can be modified by removing the constant diagrams 19, and 20 from
Fig. 2.1 in order to satisfy the intermediate normalization condition 〈τ1〉 = 0. Actually, only diagram
10 in Fig. 2.1 contributes to the first order equation (2.25). It makes no difference with respect to the

coefficients a
(1)
2α and therefore for the JPT2 and JPT3 correlation energies, cf. Eqs. (2.26) and (2.29),
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whether local basis functions (2.7), or cluster-type operators (2.8) have been chosen as a basis set. For
higher orders in perturbation theory the two basis sets are not equivalent any more.

The matrix elements of the first order Eq. (2.25) require the calculation of the Goldstone diagrams
shown in Fig. 3.1, where the symbol −X denotes insertion of the Fock operator. With the first order
Jastrow factor in hands, one can also calculate the second and third order contributions to the correlation
energy. These contributions are expressed in terms of Goldstone diagrams in Figs. 3.2 and 3.3, where
dashed lines represent the first order correlation operator τ1 and wavy lines represent the interaction
potential (3.1). For the third order contribution, we have assumed that Ŵ −E1 is normal ordered, which
is actually the case if H0 corresponds to the Fock operator. The computational complexity of third order
diagrams for wavelet bases has been discussed in detail in Ref. [16].

3.1 Comparison with FHNC Jastrow factors

In order to judge the quality of first-order Jastrow factors, we have performed FHNC//0 calculations [4, 5]
for the homogeneous Fermi gas model (3.1). The FHNC//0 calculations represent the thermodynamic
limit of an infinitely large supercell. Due to the finite size of the supercell in our JPT calculations,
Jastrow factors possess a periodic structure with a small anisotropy due to the lattice sum (3.3) over
neighbouring supercells. In Fig. 3.4, we present first order pair-correlation functions along the (100)
direction for different supercell size at density rs = 2 and µ = 1 bohr−1, together with the corresponding
FHNC//0 result. For short-range correlations, a good agreement between first order approximations and
the FHNC//0 Jastrow factor can be observed already for rather small supercells. With increasing size of
the supercell, first order JPT converges amazingly well towards the FHNC//0 result even at intermediate
distances where a good agreement cannot be taken for granted.

Since our focus is on short-range correlations, we have chosen in the following a fixed supercell with
N = 54 particles. Different values of the screening parameter µ, at fixed density rs = 2, have been
considered in Fig. 3.5 a). It turns out that there is a close agreement between first order JPT and
FHNC//0 pair-correlation functions for the whole range of parameters. To avoid computational artefacts
we have plotted the JPT pair-correlation functions only up to 0.1 bohr because our Gaussian approximation
(3.3) does not provide a resolution of the cusp beyond this scale. For comparison, Fig. 3.5 b) shows the
behaviour at different densities and fixed µ = 1 bohr−1. From this figure we observe a discrepancy between
first order JPT and FHNC//0 pair-correlation functions at low densities and intermediate inter-particle
distances ≥ 1 bohr. This is because in the low density regime correlations are getting stronger and
perturbation theory in general becomes less accurate.

In our previous calculations, we have not distinguished between pairs with parallel and anti-parallel
spins. By a slight modification of the formalism, however, it is possible to calculate spin dependent
Jastrow factors. The resulting first order pair-correlation functions for µ = 1 bohr−1, rs = 2 and N = 54
are shown in Fig. 3.6. It is interesting to compare the slopes at short inter-particle distances with Kato’s
cusp condition [35, 36]. For this, we have used a slightly enlarged basis containing 14 even-tempered
Gaussians. The value of the averaged slope in the interval (0.1, 0.2) is 0.23 and 0.46 for parallel and
anti-parallel spins, respectively. This compares favourably with Kato’s cusp condition which requires
spherically averaged derivatives of 0.25 and 0.5 at the inter-particle cusp.

X X

α

β

X X

Figure 3.1: Diagrams required for the calculation of matrix elements 〈Û
(2)†
α (Ĥ0 − E0)Û

(2)
β 〉.
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Figure 3.2: Diagrammatic representation of E2 = 〈Ŵ τ̂1〉

1
2

1
2

1
2 2

1

Figure 3.3: Diagrammatic representation of E3 = 〈τ̂ †
1 (Ŵ − E1)τ̂1〉

3.2 Correlation energies

With first order Jastrow factors at hand, we have calculated JPT2 and JPT3 correlation energies for the
homogeneous Fermi gas model. Due to momentum conservation, the diagrams with two external lines in
Fig. 2.1 do not contribute to Eq. (2.25). Therefore we can immediately identify correlation operators τ̂1

with ordinary two-particle correlation functions in Jastrow factors. In order to judge the quality of our
results, we have performed VMC and pure diffusion quantum Monte Carlo (PDMC) calculations [37, 38]
for the Hamiltonian (3.2) using these Jastrow factors as trial wavefunctions. The VMC method directly
calculates the energy expectation value (2.2) for a given trial wavefunction and therefore provides a measure
for the quality of the Jastrow factors. Despite small fixed node errors, PDMC provides fairly accurate
benchmark values for the correlation energy of a homogeneous Fermi gas. Furthermore, we compare with
standard second order Møller Plesset (MP2) perturbation theory [27], which can be expressed as a sum
over momentum vectors kp and corresponding eigenvalues ǫp of spatial HF orbitals

E(2) =
∑

ijab

2〈ij||ab〉〈ab||ij〉 − 〈ij||ab〉〈ab||ji〉

ǫi + ǫj − ǫa − ǫb

, (3.4)

〈ij||ab〉 =
1

Ωs

4π

(ka − ki)2 + µ2
δki+kj ,ka+kb

, (3.5)

where Ωs denotes the volume of the supercell and indices i, j, a, b have the same meaning as in Section 2.
According to our discussion in Section 3.1, we first consider the size dependence of JPT2, MP2, VMC,

and PDMC correlation energies. These are shown in Fig. 3.7 for different size of the supercell in the case
of a homogeneous Fermi gas at density rs = 2 and µ = 1 bohr−1. The JPT2 and VMC calculations have
been performed for spin independent and spin dependent (JPT2*,VMC*) Jastrow factors. It can be seen
that the different methods yield almost parallel curves, where the correlations energies turned out to be
fairly stable already for a small number of particles (N ≥ 54). Both JPT2 and JPT2* overestimate the
correlation energy by roughly 9% and 14%, respectively. By comparison with the corresponding VMC
calculations, we observed that the first order perturbative Jastrow factors are actually significantly better
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0.1
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N
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N
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N
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N
=114

N
=246

FHNC

Figure 3.4: First order JPT pair-correlation functions (dashed lines) for a homogeneous Fermi gas at
density rs = 2 and screening parameter µ = 1 bohr−1 for different size of the supercell. For comparison,
the FHNC//0 result for the infinite system (solid line) is shown.

and recover 93% and 96% of the PDMC correlation energy, respectively. These results have to be compared
with standard MP2 calculations which overestimate the correlation energy by about 28%.

In order to study the homogeneous Fermi gas model for a larger range of densities and screening
parameters, we restricted ourselves to a fixed supercell size with N = 54 particles. Since we compare
our results with PDMC benchmark calculations for the same supercell size, possible finite-size errors can
be ignored. Correlation energies for a homogeneous Fermi gas at density rs = 2 and different screening
parameters µ are listed in Table 3.1. It can be seen that JPT2 overestimates whereas JPT3 underestimates
the correlation energy. The JPT3 results are in better agreement with VMC calculations than the corre-
sponding JPT2 energies. Except for very small values µ < 1 bohr−1, the relative errors of JPT3 and VMC
calculations remain almost constant with respect to variations of the screening parameter as it is shown in
Fig. 3.8 (a) for spin-dependent Jastrow factors. In contrast to this, the JPT2 relative errors decrease with
increasing values for the screening parameter, which has to be expected because short-range correlations
become increasingly important. These observations once again suggest that the first-order Jastrow factor
is more accurate than the corresponding perturbative correlation energies. A similar behaviour has been
observed for a fixed screening parameter µ = 1 bohr−1 and different densities which can be seen from
Table 3.2 and Fig. 3.8 (b).

It turns out that the second order correlation energies for rs = 2 and µ = 0.5, 1, 2, 4 bohr−1 are quite
close to those for µ = 1 bohr−1 and rs = 1, 2, 4, 8, respectively. Actually they should be exactly the same
if Ĥ0 contains only the kinetic energy. By rescaling the electron coordinates r

′
i = ri/rs for i = 1, . . . , N it

can be seen that rs serves as a coupling constant in the Schrödinger equation


−
1

2

N
∑

i=1

∆′
i + rs

∑

i<j

e−µrs|r′i−r
′
j |

|r′i − r′j |



 Ψ = r2
sEΨ = E′Ψ. (3.6)

It follows from the perturbation series for the energy

E′ = E′
0 + rsE

′
1 + r2

sE
′
2 + · · · −→ E = E′

0/r
2
s + E′

1/rs + E′
2 + · · · (3.7)

that the second order correlation energy depends only on the product µrs.

12



0 1 2 3
|r1 − r2| (bohr)

−0.8

−0.6

−0.4

−0.2

0

τ

(a)µ=0
.5

µ=1
µ=2

µ=4

,

0 1 2 3
|r1 − r2| (bohr)

−0.8

−0.6

−0.4

−0.2

0

τ

(b)
r s
=8

r s
=4

r s
=2

r s
=1

Figure 3.5: Comparison of first order JPT (dashed lines) and FHNC//0 (solid lines) pair-correlation
functions for various screening parameters and densities. a) Fixed density rs = 2 and different screening
parameters ranging from µ = 0.5 to 4 bohr−1. b) Fixed screening parameter µ = 1 bohr−1 and different
densities ranging from rs = 1 to 8. The JPT results have been calculated for a supercell containing N = 54
particles.

4 Conclusions

We have presented a perturbation scheme for Jastrow-type correlation functions. From a computational
point of view, this scheme is simple enough to be of practical significance for the determination of ac-
curate trial wavefunctions to be used in QMC calculations. Although essentially limited to short-range
correlations, JPT can be apllied to the model Hamiltonian of the inhomogeneous RPA method in Ref. [23]
in order to obtain Jastrow factors for metalic systems, where long-range correlations become important.
Our applications to a screened homogeneous Fermi gas suggest that first order Jastrow factors are fairly
accurate for short-range correlations and provide significantly better results in VMC calculations than it
could be expected on the basis of second and third order correlation energies. It remains to develop an
efficient implementation for inhomogeneous systems. For this, we have proposed multiscale bases [16],
like wavelets, which provide sparse representations for two-particle correlation functions and a favourable
computational complexity concerning the evaluation of Goldstone diagrams.

Table 3.1: Correlation energy per particle (mhartree) of a homogeneous Fermi gas at density rs = 2
and different screening parameters µ. JPT2, JPT3 and VMC results have been obtained from first-order
spin independent and spin dependent (∗) Jastrow factors. The VMC method corresponds to a direct
evaluation of the energy expectation value for first-order wavefunctions, whereas PDMC provides almost
exact energies within the fixed-node approximation which do not depend on the Jastrow factor. For
comparison MP2 correlation energies have been stated. A supercell containing N = 54 particles has been
used in all calculations.

µ JPT2 JPT3 VMC JPT2* JPT3* VMC* MP2 PDMC

0.5 -21.52 -15.66 -17.69(2) -22.12 -16.19 -18.12(2) -24.20 -18.70(3)

1 -8.91 -7.22 -7.63(2) -9.33 -7.55 -7.94(2) -10.35 -8.23(3)

2 -2.36 -2.03 -2.08(1) -2.53 -2.15 -2.20(1) -2.79 -2.31(2)

4 -0.450 -0.407 -0.415(4) -0.480 -0.431 -0.435(4) -0.525 -0.461(6)
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Figure 3.6: First order JPT pair-correlation functions for parallel and anti-parallel spins. The homoge-
neous Fermi gas has been considered at density rs = 2 and µ = 1 bohr−1 for a supercell with N = 54
particles.

Table 3.2: Same as Table 3.1 but for fixed screening parameter µ = 1 bohr−1 and different densities.

rs JPT2 JPT3 VMC JPT2* JPT3* VMC* MP2 PDMC

1 -22.46 -19.26 -20.03(3) -23.11 -19.87 -20.61(3) -25.39 -21.5(1)

2 -8.91 -7.22 -7.63(2) -9.33 -7.55 -7.94(2) -10.35 -8.23(3)

4 -2.36 -1.68 -1.84(1) -2.52 -1.76 -1.93(1) -2.78 -2.02(1)

8 -0.457 -0.274 -0.322(2) -0.486 -0.282 -0.335(2) -0.524 -0.353(2)
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Figure 3.7: Correlation energy per particle (mhartree) of a homogeneous Fermi gas at density rs = 2 and
µ = 1 bohr−1 for different size of the supercell.
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Figure 3.8: Relative errors (Ecorr − EPDMC
corr )/|EPDMC

corr | of JPT2, JPT3, and VMC correlation energies
for different densities and screening parameters. The results are for spin dependent Jastrow factors and
supercells with N = 54 particles. (a) Fixed density rs = 2. (b) Fixed screening parameter µ = 1 bohr−1.
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[31] O. Sinanoğlu, Phys. Rev. 122, 493 (1961).
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