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THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE
ELEMENTS AND BY SINGULAR PERTURBATION ARE SCALING

EQUIVALENT

ANDREW LORENT

Abstract. Let K := SO (2) A1 ∪ SO (2) A2 . . . SO (2) AN where A1, A2, . . . AN are ma-
trices of non-zero determinant. We establish a sharp relation between the following two
minimisation problems.

Firstly the N-well problem with surface energy. Let p ∈ [1, 2], Ω be a convex polytopal
region. Define

Ip
ε (u) =

Z
Ω

dp (Du (z) , K) + ε
˛̨
D2u (z)

˛̨2
dL2z

and let AF denote the subspace of functions in W 2,2 (Ω) that satisfy the affine boundary
condition Du = F on ∂Ω (in the sense of trace), where F �∈ K. We consider the scaling
(with respect to ε) of

mp
ε := inf

u∈AF

Ip
ε (u) .

Secondly the finite element approximation to the N-well problem without surface energy.
We will show there exists a space of functions Dh

F where each function v ∈ Dh
F is piece-

wise affine on a regular (non-degenerate) h-triangulation and satisfies the affine boundary
condition v = lF on ∂Ω (where lF is affine with DlF = F ) such that for

αp (h) := inf
v∈Dh

F

Z
Ω

dp (Dv (z) , K)dL2z

there exists positive constants C1 < 1 < C2 (depending on A1, . . . AN , ς, p) for which the
following holds true

C1αp
`√

ε
´ ≤ mp

ε ≤ C2αp
`√

ε
´

for all ε > 0.

The main goal of this paper is to show the equivalence (in the sense of scaling) of two dif-
ferent regularisations of a non-convex variational problem that forms a model of crystalline
microstructure, specifically regularisation by second order gradients (otherwise known as sin-
gular perturbation) and regularisation by discretation via finite elements.

We focus on the simplest problem with non-trivial symmetries, the N -well problem in two
dimensions. To set the scene let us take the Ball-James [3], [4], Chipot-Kinderlehrer [7] approach
to crystal microstructure. We have an energy function I on the space of deformations u : Ω ⊂
IR3 → IR3 which has the form

I (u) =
∫

Ω

W (Du (x)) dL2x, (1)

where W is the stored energy density function that describes the various properties of the
material. The function W has its minimum on a set of matrices known as the wells

K = SO (3)A1 ∪ SO (3)A2 . . . SO (3)AN . (2)

Roughly speaking the A1, A2, . . . AN are symmetry related and represent the lattice states of
the material.
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2 ANDREW LORENT

Since w must be invariant with respect to rotation of the ambient space the wells K must
have form (2). Functional I is minimised over the space of functions that have affine boundary
condition F �∈ K.

A key point is that functional I is not weakly lower semi-continuous. Minimising sequences
form finer and finer oscillations, as is to be expected in any model designed to capture properties
of microstructure.

Surprisingly for F �∈ K there exists an exact minimiser of I, this follows from work of Müller-
Šverák [29], [30], see Sychev [34], [35] and Kirchheim [16], [17] for latter developments and
Dacorogna-Marcellini [12] for a different approach to some related problems. The approach of
Müller-Šverák uses the theory of “convex integration” (denoted by CI from this point) developed
by Gromov, it is one of the simplest results of the theory.

Functional I does not constrain oscillations of the gradient, it does not give a length scale or
any restriction on the fine geometry of the microstructure. For many materials, the observed
length scale of the microstructure is many orders larger than the atomic scale and for these
materials functional I is only a first approximation. To overcome this the following adaption
of the functional I is commonly made, see [33] Section 6

Iε (u) =
∫

Ω

W (Du (z)) + ε
∣∣D2u (z)

∣∣2 dL2z.

Roughly speaking this is a regularisation of I that starts to constrain oscillations in the gradient
below the

√
ε scale. There have been a number of studies of simplified versions of functional

Iε, [19], [8] and [27]. However these works focus on the case where the wells of I are given by
two rank-1 connected matrices. In this case (scaling) sharp upper and lower bounds has been
proved. For functional with wells that have rotational invariance, i.e. of the form (2), nothing
is known about the energy of minimisers.

Another way to constrain oscillation in the gradient is to minimise I directly over the space
of functions that are piecewise affine on a

√
ε sized triangular grid. This is known as the finite

element approximation of I. There are have been many studies of finite element approximations
to functional of the form I, again for the simplified case where the wells are given by two or
three rank-1 connected matrices, [5], [6], [20] and [25].

Our main achievement in this paper is to show that for the specific stored energy func-
tion W (·) ∼ dp (·,K) for some p ∈ [1, 2], we have that these two regularisations are scaling
equivalent.

For the case where the wells of I are given by sets of two or three matrices it is possible to
calculate the scaling of the minimiser of Iε and the minimiser of the finite element approximation
to I, ([6], [20]), as such in this case the scaling equivalence of the energy is trivial.

The point of this paper is that we study functional Iε with wells of the form SO (2)A1 ∪
. . . SO (2)AN and for these wells the scaling of the minimiser of Iε is completely unknown,
for this case our main theorem allows us to replace this question with a discrete minimisation
problem.

To state our theorem we need to give some background. Given a polytopal region Ω and
some small constant ς ∈ (0, 1) we say a collection of triangles {τi} is an (h, ς)-triangulation of Ω
if
⋃
i τi = Ω and every triangle τi contains a ball of radius ςh and has diameter less than ς−1h.

Given w ∈ S1 we denote by �ς
h (w) the set of regular triangulations with respect to axis 〈w〉,

w⊥ axis, by this we mean every triangle τi of distance ς−1h from ∂Ω is a right angle triangle
with sides parallel to 〈w〉, w⊥. Finally we let F ς,h

F (w) denote the space of functions that
are piecewise affine on some triangulation in �ς

h (w) and satisfy the affine boundary condition
u = lF on ∂Ω, where lF is a fixed affine function with DlF = F .
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For given triangulation {τi} and function u ∈ F ς,h
F (w) and triangle τi we define the neigh-

bouring gradients by

Ni (u) =

{{
Du�τj

: τj ∩ τi �= ∅} for i such that τi ∩ ∂Ω = ∅{
Du�τj

: τj ∩ τi �= ∅} ∪ {F} for i such that τi ∩ ∂Ω �= ∅. (3)

And for u ∈ F ς,h
F we define the jump triangles by

J (u) :=
{
i : ∃ A,B ∈ Ni (u) such that |A−B| > ς−1

}
. (4)

Finally given two connected subsets of matrices M,N ⊂ M2×2 we say M and N are rank-1
connected if and only if there exists A ∈ M and B ∈ N and v ∈ S1 such that Av = Bv. The
set of rank-1 directions connecting M , N are the set of vectors v ∈ S1 satisfying Av = Bv for
some A ∈M , B ∈ N .

Our main theorem is the following.

Theorem 1. Let K := SO (2)A1 ∪ SO (2)A2 . . . SO (2)AN where A1, A2, . . . AN are matrices
of non-zero determinant. Let σ = max

{‖A1‖, . . . ‖AN‖, ‖A−1
1 ‖, . . . ‖A−1

N ‖}.
Let ς < σ

100 be some small positive number. Let w1 ∈ S1 be such that for w2 ∈ w⊥
1 ,

w1, w2,
w1−w2
|w1−w2| are not in the set of rank-1 directions connecting SO (2)Ai to SO (2)Aj for

any i �= j. Let Ω be a polytopal convex domain. Define

Ipε (u) :=
∫

Ω

dp (Du (z) ,K) + ε
∣∣D2u (z)

∣∣2 dL2z.

Let F �∈ K and let AF denote the subspace of functions in W 2,2 (Ω) that have boundary condition
Du = F on ∂Ω in the sense of trace. Let

Dς,h
F (w1) :=

⎧⎨⎩v ∈ F ς,h
F (w1) :

∑
i∈J(v)

∑
M∈Ni(v)

∣∣Dv�τi
−M

∣∣2 ≤ ς−1ε−1

∫
Ω

dp (Dv,K)

⎫⎬⎭
and define

αp (h) := inf
w∈Dς,h

F (w1)
Ip0 (w) and mp

ε := inf
u∈AF

Ipε (u)

there are positive constants C1 < 1 < C2 (depending only on σ, ς, p) for which the following
holds true

C1αp
(√
ε
) ≤ mp

ε ≤ C2αp
(√
ε
)

for all ε > 0. (5)

In truth our main motivation for establishing Theorem 1 was that we hoped to use it as a
tool to understanding the minimiser of Ipε . To explain this further we will simplify and take
K = SO (2) ∪ SO (2)H where H is a diagonal matrix of determinant 1 and we take p = 1.

As mentioned, nothing is known about the minimiser of the functional I1
ε . In particular it is

completely unknown if for very small ε the minimiser is something like the absolute minimiser
of I0 provided by CI1. In some sense this might seem reasonable, we refer to the

∫ ∣∣D2u
∣∣2 term

as the “surface energy” and the
∫
d (Du,K) term as the “bulk energy”, as ε → 0 the surface

energy becomes less and less important, the main thing to be minimised is the bulk energy and
of course C.I. solutions have zero bulk energy.

This question is best expressed by considering the scaling ofm1
ε . An upper bound ofm1

ε ≤ cε
1
6

is provided by the standard double laminate which follows from the characterisation of the
quasiconvex hull of SO (2) ∪ SO (2)H provided by [36] (we refer to [33] for background and
precise definitions), see figure 1.

1We know it can not be a function u with I0 (u) = 0 because the result of Dolzmann Müller [13], that any u
with this property and with the property that Du is a BV has to be laminate
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Figure 1

If mε ∼ ε
1
6 +α for α > 0 then the minimiser will have to take a very different form than the

double laminate. On the other hand if α = 0 then energetically the minimiser does no better
than the double laminate.

This question is important because CI solutions are important, many counter examples
to natural conjectures in PDE have been achieved via CI, [31], [16], [32], [11]. Minimising
functional Iε is the simplest problem that constrains oscillation in some slight way where we
can hope to see the effect of the existence of exact minimisers of (1).

In the proof of Theorem 1 we have to work quite hard to establish the result for p = 1, we
do so because functional I1

ε is particularly clean in the sense that it is not necessary to consider
laminates with “domain branching” to construct upper bounds (contrast this with the case
p = 2, [8], [19]) as such the upper bound is given by cε

1
6 and is domain independent.

Let w1 ∈ S1 be such that for w2 ∈ w⊥
1 we have w1, w2,

w1−w2
|w1−w2| do not belong to the rank-1

connections between SO (2) and SO (2)H . If ũ ∈ F ς,h
F (w1) and τ1, τ2 ∈ �ς

h (w1) are such that
d
(
Dũ�τ1 , SO (2)

) ≈ 0 and d
(
Dũ�τ2 , SO (2)H

) ≈ 0, it is not too hard to see τ1 can not touch
τ2, i.e. there must be a triangle τ3 between τ1 and τ2 for which d

(
Du�τ3 ,K

) ≥ o(1).
For example if we have an interpolant of a laminate, and triangle τi cuts through an interface

of the laminate the affine map we get from interpolating the laminate on the corners of τi will
have its linear part some distance from the wells. See figure 2.

So we can not lower the energy of I0 over F ς,h
F (w1) by simply making a laminate type

function with finer layers, there is a competition between the surface energy as given by the
error contributed from the interfaces and the bulk energy which in the case of the laminate is
the width of the interpolation layer.

Let B1 := diag (1, 0), B2 := diag (−1, 1), B3 := diag (−1, 1). See figure 1 (b). Define Ĩ (u) :=∫
Ω
d (Du (z) , {B1, B2, B3}) dL2z. F.E. approximations of Ĩ over F ς,h

F0
(where F0 := diag (0, 0))

have been studied by Chipot [5] and the author [20]. It has been shown infu∈Ah
F0
Ĩ (u) ∼ h

1
3 ,

see [6] for an earlier, similar result. From Šverák’s characterisation [36] we know the exact
arrangement of rank-1 connections between the matrices in the set SO (2) ∪ SO (2)H and a
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Figure 2

matrix in the interior of the quasiconvex hull of SO (2) ∪ SO (2)H , see figure 1 (a). As we
can see from figures 1 (a) and (b), the finite well functional Ĩ precisely mimics these rank-1
connections.

Conjecture 1. Let K = SO (2) ∪ SO (2)H where H is a diagonal matrix with eigenvalues
σ, σ−1. Let w1 ∈ S1 and w2 ∈ w⊥

1 be such that w1, w2, w1−w2
|w1−w2| are not in the set of rank-1

connections between SO (2) and SO (2)H. Let Ω be a polytopal convex region, ς ∈ (
0, σ

100

)
.

Given F ∈ int (Kqc). Let function space F ς,h
F (w1) denote the space of functions that are

piecewise affine on some regular triangulation {τi} ∈ �ς
h (w1). There exists c0 = c0 (σ, ς) > 0

such that
inf

u∈Fς,h
F

I1
0 (u) ≥ c0h

1
3 for all h > 0.

So from Theorem 1, if Conjecture 1 could be proved it would imply the scaling m1
ε ∼ ε

1
6 .

Unfortunately even though the minimisation of I1
0 over F ς,h

F is discrete problem, it appears to
be quite hard to prove lower bounds.

1. Sketch of the Proof

Written out in detail, the proof of Theorem 1 is not short, however the basic ideas are quite
simple. We give a sketch of the proof based on two lemmas that are only “morally true”, by
this we mean that either we can not prove them, or only a weaker form hold true. This may
be a bit unconventional, but it seems to us to be the best way to get to the heart of the matter
without being flooded with details.

1.1. Lower bound. We focus on the case p = 1 and take Ω = Q1 (0). Let M =
[
ε−

1
2

]
. We

cut the square Ω into M2 sub-squares of side length 1
M , let c1, c2, . . . cM2 be the centres of these
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squares. So Q1 (0) =
⋃M2

i=1Q 1
M

(ci). Let C1 = C1 (σ) be some small constant we decide on later.
Now we define the “bad” squares to be

B :=

⎧⎨⎩i :
∫
Q 1

M
(ci)

∣∣D2u
∣∣2 ≥ C1

⎫⎬⎭ .

“Morally true” lemma 1. For any i ∈ {1, 2, . . .M2
} \B define vi (z) = u

(
ci + z

M

)
M we

have that there exists affine function Li with DLi ∈ K such that

‖vi − Li‖L∞(Q1(0)) ≤ c

∫
Q1(0)

d (Dvi,K) +
∣∣D2vi

∣∣2 . (6)

“Morally true” lemma 2. The minimiser u of Iε is a Lipschitz.

Let us make it once again clear we can not prove either “morally true” lemmas 1 or 2,
they are simply a device to show the strategy of the proof. Now we split every sub-square
Q 1

M
(ci) into two right angle triangles, denote them τi, τi+M2 so the set {τ1, τ2, . . . τ2M2} is a

triangulation of Ω. Let ũ be the piecewise affine function we obtain from u by defining ũ�τi
to

be the affine map we get from interpolating u on the corners of τi.
Now for any i �∈ B let ωi1, ωi2, ωi3 denotes the corners of τi, so l, q ∈ {1, 2, 3}∣∣∣∣∣Dũ�τi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)

−DLi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)∣∣∣∣∣

≤M
∣∣(u (ωil)− u

(
ωiq
))− (Li (ωil)− Li

(
ωiq
))∣∣

= M
∣∣(u (ωil)− Li

(
ωil
))− (u (ωiq)− Li

(
ωiq
))∣∣

≤ ∣∣vi (M (
ωil − ci

))− Li
(
M
(
ωil − ci

))∣∣
+
∣∣vi (M (

ωiq − ci
))− Li

(
M
(
ωiq − ci

))∣∣
(6)

≤ c

∫
Q1(0)

d (Dvi,K) +
∣∣D2vi

∣∣2
≤ c

∫
Q 1

M
(ci)

M2d (Du,K) +
∣∣D2u

∣∣2 . (7)

Since (7) holds true for every l, q ∈ {1, 2} we have
∣∣Dũ�τi

−DLi
∣∣ ≤ c

∫
Q 1

M
(ci)

M2d (Du,K) +∣∣D2u
∣∣2. In exactly the same way

∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣ ≤ c
∫
Q 1

M
(ci)

M2d (Du,K)+
∣∣D2u

∣∣2. So

∑
i∈{1,2,...M2}\B

∣∣Dũ�τi
−DLi

∣∣L2 (τi) +
∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣L2 (τi+M2 )

≤ c
∑

i∈{1,2,...M2}\B

∫
Q 1

M
(ci)

d (Du,K) + ε
∣∣D2u

∣∣2
≤ cm1

ε . (8)

Now for any i ∈ B, since u is Lipschitz, for l, q ∈ {1, 2, 3} we have∣∣∣∣∣Dũ�τi

(
ωil − ωiq∣∣ωil − ωiq

∣∣
)∣∣∣∣∣ =

∣∣∣∣∣u
(
ωil
)− u

(
ωiq
)∣∣ωil − ωiq

∣∣
∣∣∣∣∣ ≤ c
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thus d
(
Dũ�τi

,K
) ≤ c and in the same way d

(
Dũ�τi+M2 ,K

)
≤ c so∑

i∈B

∣∣Dũ�τi
−DLi

∣∣L2 (τi) +
∣∣∣Dũ�τi+M2 −DLi+M2

∣∣∣L2 (τi+M2 )

≤ c

M2
Card (B)

≤ c

M2

∑
i∈B

∫
Q 1

M
(ci)

∣∣D2u
∣∣2

≤ cm1
ε . (9)

So as {τi} is a
(√

ε, σ
100

)
-triangulation and from (8), (9) we have α (

√
ε) ≤ cm1

ε which establishes
the lower bound.

It is easy to construct a counter example to the “morally true” lemma 1, however as a
substitute we have Proposition 1, see Section 4. Since i ∈ B it should seem reasonable that
there exists k0 such that∫

Q1(0)

d (Dvi, SO (2)Ak0) ≤ c

∫
Q1(0)

d (Dvi,K) . (10)

This follows from a kind of capacity type argument that is Step 1 of Proposition 1. Alter-
natively imagine we had slightly more integrability of D2vi and hence we could show that(∫

Q1(0)

∣∣D2vi
∣∣2+δ) 1

2+δ

is “small” (in fact vi satisfies a fourth order elliptic PDE coming from
the Euler Lagrange equation of u so we could indeed establish such higher integrability via
reverse Holder inequalities), then by Sobolev embedding we would have that Dvi stays in a
neighbourhood of some well SO (2)Ak0 and so (10) trivially follows.

Now if we were considering the dp (·,K) distance from the wells then we could apply Theorem
2 to obtain sharp Lp control of the distance of Dvi from a matrix in K. For the p = 1 case
Theorem 2 is false [9] and so we need to use the fact that the “tangent space” to the set SO (2)
around the identity is the set of skew symmetric matrices. This allows us to apply the Korn
type Poincaré inequality given by Lemma 1 to gain sharp control of the L1 distance of vi from
the affine function.

Note that Proposition 1 is not enough since in the argument given in (7) we need to control
the function exactly at the corners of the triangles. The trick to overcome this is the following.
Let v : QM (0) → IR2 be defined by v (z) = u

(
z
M

)
M . By the Co-area formula we can find

a grid of squares of side length 1, labelled S1, S2, . . . SM2−4M such that for each i there exists
affine function Li with DLi ∈ K such that

c

∫
∂Si

|v − Li| +
∣∣D2v

∣∣2 + d (Dv, SO (2) sym(DLi))

≤
∫
N1(Si)

d (Dv,K) +
∣∣D2v

∣∣2 =: αi (11)

(where sym (A) denotes the symmetric part of matrix A we obtain by polar decomposition).
We can split Si into disjoint triangles τi, τi+M2 . Let ai, bi, ci be the corners of τi where
[ai, bi] ∪ [bi, ci] = ∂τi ∩ ∂Si. The important point is that Dv along [ai, bi] varies by at most√
αi and so its not hard to show Dv (z) ∈ Bc√αi

(DLi) for all z ∈ [ai, bi]. For simplicity let us
assume sym(DLi) = Id.

Given b̃i ∈ [ai, bi], by trigonometry this allows to conclude∣∣∣v (ai) − v
(
b̃i

)∣∣∣ ≥ (1 − cαi)
∣∣∣ai − b̃i

∣∣∣ .
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And very easily from (11) (since we have assumed sym (DLi) = Id) we have∣∣∣v (ai) − v
(
b̃i

)∣∣∣ ≤ (1 + cαi)
∣∣∣ai − b̃i

∣∣∣
The point b̃i can be easily chosen so that

∣∣∣v (b̃i)− Li

(
b̃i

)∣∣∣ ≤ cαi. In exactly the same way we
can find c̃i ∈ [ai, ci] such that |v (c̃i) − Li (c̃i)| ≤ cαi and ||v (ai) − v (c̃i)| − |ai − c̃i|| ≤ cαi. Let
γ1 =

∣∣∣ai − b̃i

∣∣∣ and γ2 = |ai − c̃i| so (defining Nδ (A) := {x : d (x,A) < δ}) we have

v (ai) ∈ Ncαi

(
∂Bγ1

(
b̃i

))
∩Ncαi (∂Bγ2 (c̃i)) . (12)

See figure 4. From (12) it is not hard to show v (ai) ∈ Bcαi (Li (ai)). We can control the corners
bi, ci in the same way. Therefor if we define li to be the affine map we get from interpolating
v on {ai, bi, ci} we have d (Dli, DLi) ≤ cαi. Since

∑
i αi ≤ cε−1mp

ε this gives the lower bound.

1.2. Upper bound. To obtain the upper bound we will have to convert a function v that is
piecewise affine on a (

√
ε, ς)-triangulation into a function u ∈ W 2,2 (Ω) with affine boundary

condition Du = F on ∂Ω (in the sense of trace), recall we denote the space of such functions
by AF . The most natural way to do this is to convolve v with a function ψ√

ε where ψ√
ε (z) :=

ε−1ψ
(
z√
ε

)
and ψ ∈ C∞

0 (B1 (0) : IR+) with ψ = 1 on B 1
2

(0).

Let G0 :=
{
i : d

(
Dv�τi

,K
) ≤ d(SO(2),SO(2)H)

8

}
and define E (x) :=

{
i : τi ∩B√

ε (x) �= ∅}.
Suppose x ∈ Ω is such that E (x) ⊂ G0, for simplicity we will assume d

(
Dv�τi

, SO (2)
)

=
d
(
Dv�τi

,K
)

for every i ∈ E (x). Since for any k, l ∈ E (x) with H1 (τk ∩ τ l) > 0 we
have that there exists w ∈ S1 such that Dv�τk

w = Dv�τl
w and thus

∣∣Dv�τk
−Dv�τl

∣∣ ≤
c
(
d
(
Dv�τk

, SO (2)
)

+ d
(
Dv�τl

, SO (2)
))

because if Dv�τk
∈ SO (2) and Dv�τl

∈ SO (2) the
fact that Dv�τk

w = Dv�τl
w would imply Dv�τk

= Dv�τl
, so the difference between Dv�τk

and
Dv�τl

is controlled by the distance of these matrices from SO (2).
A relatively easy generalisation of this is that for any x where E (x) ⊂ G0∣∣Dv�τk

−Dv�τl

∣∣ ≤ cmax
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}

for any k, l ∈ E (x) (13)

so

Du (x) =
∫
Dv (z)ψ√

ε (z − x) dL2z

=
∑

i∈E(x)

Dv�τi

∫
τi

ψ√
ε (z − x) dL2z. (14)

Lets pick i0 ∈ E (x) we then have∣∣∣Du (x) −Dv�τi0

∣∣∣ =

∣∣∣∣∣∣
∑

i∈E(x)

(
Dv�τi

−Dv�τi0

)∫
τi

ψ√
ε (z − x) dL2z

∣∣∣∣∣∣
(13)

≤ cmax
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}
. (15)

So for any x ∈ Ω such that E (x) ⊂ G0, d (Du (x) ,K) is comparable to d
(
Dv�τi0

,K
)

with

error given by max
{
d
(
Dv�τi

,K
)

: i ∈ E (x)
}

and thus∫
{x:E(x)⊂G0}

dp (Du (z) ,K)dL2z ≤
∑
i

dp
(
Dv�τi

,K
)

+ c
∑
i

dp
(
Dv�τi

,K
)

≤ c
∑
i

dp
(
Dv�τi

,K
)
.
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Now from (14) we know

|Du (x)| =

∣∣∣∣∣∣
∑

i∈E(x)

Dv�τi

∫
τi

ψ√
ε (z − x) dL2z

∣∣∣∣∣∣
≤ c

∑
i∈E(x)

∣∣Dv�τi

∣∣
and thus dp (Du (x) ,K) ≤ c

(∑
i∈E(x) d

p
(
Dv�τi

,K
)

+ 1
)

so as

L2 ({x ∈ Ω : E (x) �⊂ G0}) ≤ cL2

⎛⎝ ⋃
i�∈G0

τi

⎞⎠ ≤ cmp
ε

we have
∫
{x:E(x) �⊂G0} d

p (Du (x) ,K) ≤ cmp
ε .

So all that remains is to control the
∫
Ω

∣∣D2u
∣∣2 term. For x ∈ Ω such that E (x) ⊂ G0 this is

relatively easy since

D2u (x) = −
∫
Dv (z) ⊗Dψ√

ε (z − x) dL2z (16)

and as
∫
Dψ√

ε (z − x) dL2z = 0 we have

D2u (x) = −
∫ (

Dv (z) −Dv�τi0

)
⊗Dψ√

ε (z − x) dL2z

≤ cε−
3
2 max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
}
L2
(
Sptψ√

ε

)
≤ cε−

1
2 max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
}
.

So ∣∣D2u (x)
∣∣2 ≤ cε−1

(
max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
})2

≤ cε−1
(
max

{∣∣∣Dv�τj
−Dv�τi0

∣∣∣ : j ∈ E (x)
})p

(13)

≤ cε−1 max
{
dp
(
Dv�τi

,K
)

: i ∈ E (x)
}
.

Thus ∫
{x:E(x)⊂G0}

∣∣D2u (x)
∣∣2 dL2x ≤ cε−1

∑
i

dp
(
Dv�τi

,K
)
L2 (τi)

≤ cε−1mp
ε .

So far everything goes well simply by using (13), however for x ∈ Ω such that E (x) �⊂ G0

we have a problem because the quantity we are interested in is
∣∣D2u (x)

∣∣2 and from equation
(16), if the jump from Dv�τi

to Dv�τl
is much greater than 1 we can not estimate

∣∣D2u
∣∣2 by

any L1 control of the distance of Dv from K. Quite simply if we have an arbitrary function

v ∈ F(ς,√ε)
F and we form function u by convolving it with ψ√

ε it could be the case that∫
Ω
dp (Du,K) +

∣∣D2u
∣∣2 >> mp

ε . In order for the estimate we want to hold true we need some
condition that bounds the square of all the jumps of order > 1 by the quantity ε−1mp

ε . The way
we deal with this problem is by circumventing it: in establishing the lower bound we showed
that from a function u ∈ AF we can create a function ũ that is piecewise affine on a (

√
ε, ς)

triangulation and
∫
Ω
d (Dũ,K) ≤ cmp

ε , if we were smarter we could show the function ũ that
we created had even stronger properties. For example if u was Lipschitz then ũ would also
be Lipschitz and our problems would be over. Unfortunately we can not prove u is Lipschitz,
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however what we have for free is that
∫
Ω

∣∣D2u
∣∣2 ≤ ε−1mp

ε . It turns out that for sufficiently
careful choice of triangulation this is strong enough for us to be able to construct a function ũ
such that if we define Ni (ũ), J (ũ) by (3), (4) we have that∑

i∈J(ũ)

∑
M∈Ni(ũ)

∣∣Dũ�τi
−M

∣∣2 ≤ cε−1mp
ε . (17)

So we define a function space we call D(ς,√ε)
F to be the set of piecewise affine functions

in F(ς,√ε)
F that satisfies (17) and we will show in the “lower bound” part of Theorem 1 that

given u ∈ AF with Ipε (u) ≤ cmp
ε we can construct function ũ ∈ D(ς,√ε)

F from it such that∫
Ω d

p (Dũ,K) ≤ cmp
ε .

To prove the “upper bound” we will need to show that if v ∈ D(ς,√ε)
F then we can construct

function u ∈ AF and Ipε (u) ≤ c
∫
Ω
dp (Dv,K). It turns out that proceeding in the “naive” way

and simply defining u = v∗ψ√
ε inequality (17) is strong enough to conclude

∫
Ω

∣∣D2u
∣∣2 ≤ ε−1mp

ε ,
in some sense from equation (16) this should come as no great surprise. Since we have already
shown

∫
Ω d

p (Du,K) ≤ mp
ε the upper bound is completed.

For the case p > 1 we can replace the bulk energy dp (·,K) by a function Jp : M2×2 → IR
where Jp (·) ∼ dp (·,K) and Jp (M) = |M |P for any |M | > 1000σ−2. Let Ĩpε (u) :=

∫
Ω Jp (Du)+

ε
∣∣D2u

∣∣2. Clearly the energy of Ĩpε is within a constant of Ipε and for the minimiser ũ of Ĩpε we
can apply Theorem 1.1 of [28] to conclude ũ is Lipschitz in any interior domain Ω0 ⊂⊂ Ω. If we
could conclude that ũ is Lipschitz on the whole domain Ω we could greatly simplify the proof
and the statement of Theorem 1: it would allow us to simply define Dς,h

F to be the space of
Lipschitz functions in F ς,h

F .
Given the method of proof of Theorem 1.1. of [28] it seems reasonable to hope the same

result holds true for p > 1 for the whole domain Ω, which would lead to a strong improvement
of Theorem 2 for the case p > 1. We hope to pursue this in a future paper.

Acknowledgements. Firstly we would like to thank Georg Dolzmann for pointing out
the connection between finite element approximations and problems which constrain surface
energy. In some sense this paper is nothing more than a precise formulation of this observation.
Secondly we owe a great debt to discussions with Stefan Müller, particularly with reference to
Proposition 1. Suggestions from him lead to a cleaner statement and a drastic simplification of
proof.

2. Background

We will need a couple of not so well known Poincaré inequalities. Firstly a Korn type
Poincaré inequality from [18], for a form more convenient for our purposes we refer to Theorem
6.5 [1]. The lemma we state is highly simplified version of Theorem 6.5.

Lemma 1. Let u ∈ W 1,1 (Ω : IRn) we have a constant c0 = c0 (n) such that for any Br (x) ⊂ Ω
there exists vectors ax,r, bx,r ∈ IRn∫

Br(x)

|u (z) − bx,r · (z − x) − ax,r| dLnz ≤ c0r

∫
Br(x)

∣∣∣∣Du (z) +DuT (z)
2

∣∣∣∣ dLnz
Secondly a version of the more standard Poincaré inequality.
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Lemma 2. Let a0 > 0 be a fixed small constant. Let p ≥ 1. Suppose u ∈ W 1,p (B1 (0)) is such
that

Ln ({x : u (x) = 0}) > a0.

There exists constant c1 = c1 (a0, n)∫
B1(0)

|u (z)|p dLnz ≤ c1

∫
B1(0)

|Du (z)|p dLnz (18)

Proof of Lemma 2. Since this lemma is essentially standard we only sketch its proof. Suppose
(18) is false, then we have a sequence un ∈W 1,p (B1 (0)) such that(∫

B1(0)

|un (z)|p dLnz
)(∫

B1(0)

|Dun (z)|p dLnz
)−1

→ ∞. (19)

Let wn (x) := un (x)
(∫

B1(0) |un (z)|p dLnz
)−1

. So ‖wn‖Lp(B1(0)) = 1 and ‖Dwn‖Lp(B1(0))
(19)→ 0

as n→ ∞. By BV compactness theorem (see Theorem 3.22 [2]) there exists a subsequence of wn
that has a limit w ∈ BV (B1 (0)) where Dw = 0 and

∫
B1(0) w = 1 with L2 ({x : w (x) = 0}) ≥

a0, which is a contradiction.
A theorem that we will use many times is the following [15].

Theorem 2 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in IRn, n ≥ 2. Let
q > 1. There exists a constant C (U, q) with the following property. For each v ∈W 1,q (U, IRn)
there exists an associated rotation R ∈ SO (n) such that

‖Dv − R‖Lq(U) ≤ C (U, q) ‖dist (Dv, SO (n)) ‖Lq(U). (20)

3. Rough lower bounds on mp
ε

Lemma 3. Let p ≥ 1, define

mp
ε := inf

u∈AF

∫
Ω

dp (Du (z) ,K) + ε
∣∣D2u (z)

∣∣2 dL2z. (21)

We have positive constant c1 (depending only on σ, p) such that

mp
ε ≥ c1ε

1
2 for all ε > 0. (22)

Proof. Let

d0 :=
1
4

inf {|A−B| : A ∈ SO (2)Ai, B ∈ SO (2)Aj , i �= j} (23)

By density of smooth functions in W 2,2 (Ω) we can find a smooth function u satisfying
u (x) = lF (x) for x ∈ ∂Ω with∫

Ω

dp (Du (x) ,K) + ε
∣∣D2u (x)

∣∣2 dL2x ≤ 2mp
ε . (24)

Now suppose (22) is false, so for some small positive constant c1 < d0 we have mp
ε ≤ c1ε

1
2 . By

Cauchy Schwartz inequality we have∫
Ω

d
p
2 (Du (x) ,K)

∣∣D2u (x)
∣∣ dL2x ≤ 2c1. (25)

Let Ui := {x ∈ Ω : d (Du (x) , SO (2)Ai) < c1}. There must exists i0 ∈ {1, 2, . . .N} such that

L2 (Ui0) ≥ L2(Ω)−cε
1
2p

N . Let E (x) = d
p
2 (Du (x) ,K)

∣∣D2u (x)
∣∣ and ψz : IR2 → [0, 2π) be de-

fined by |x− z| eiψz(x) = x − z. Note ψz is smooth in IR2\ {(z1, z2 + λ) : λ ∈ IR+} =: Uz and
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|Dψz (x)| ≤ 1
|x−z| for any x ∈ Uz. Let c0 :=

∫
Ω

1
|z−x|dL

2z. We know via Fubini theorem∫
Ω

∫
Ω

E (x) |Dψz (x)| dL2xdL2z =
∫

Ω

E (x)
(∫

Ω

|Dψz (x)| dL2z

)
dL2x

≤
∫

Ω

E (x)
(∫

Ω

1
|z − x|dL

2z

)
dL2x

≤ c0

∫
Ω

E (x) dL2x

(25)

≤ 2c0c1.

So we can find a subset G ⊂ Ω such that L2 (Ω\G) ≤ 2c0c
1
3
1 and for every z ∈ G we have∫

Ω

E (x) |Dψz (x)| dL2x ≤ c
2
3
1 .

Now by the Co-area formula, for each z ∈ G we can find Ψz ⊂ [0, 2π) with L1 ([0, 2π) \Ψz) ≤ c
1
3
1

for every θ ∈ Ψz we have
∫
(z+〈eiθ〉)∩Ω

E (x) dH1x ≤ c
1
3
1 . We can assume c1 is sufficiently small

so G ∩ Ui0 �= ∅. Now we claim for each z ∈ G ∩ Ui0 we have that

sup

{
d (Du (x) , SO (2)Ai0 ) : x ∈

( ⋃
θ∈Ψz

(
z + 〈eiθ〉)) ∩ Ω

}
≤ 4c

2
3(2+p)
1 . (26)

Suppose (26) is false. So there exists z0 ∈ G ∩ Ui0 and θ0 ∈ Ψz0 with z1 ∈ (z0 + 〈eiθ〉) ∩ Ω

such that d (Du (z1) , SO (2)Ai0 ) > 4c
2

3(2+p)
1 . So as d (Du (z0) , SO (2)Ai0) < c1 we can find

z2, z3 ∈ [z0, z1] with the properties

d (Du (z2) , SO (2)Ai0) = c
2

3(2+p)
1 and d (Du (z3) , SO (2)Ai0 ) = 4c

2
3(2+p)
1 .

In addition we have

d (Du (z) , SO (2)Ai0) ∈
[
c

2
3(2+p)
1 , 4c

2
3(2+p)
1

]
for any z ∈ [z2, z3] . (27)

So

c
1
3
1 ≥

∫ z3

z2

E (z) dH1z

=
∫ z3

z2

d
p
2 (Du (z) , SO (2)Ai0 )

∣∣D2u (z)
∣∣ dH1z

≥ c
p

3(2+p)
1

∫ z3

z2

∣∣D2u (z)
∣∣ dH1z

= 3c
p

3(2+p)
1 c

2
3(2+p)
1

= 3c
1
3
1

which is a contradiction. So pick z0 ∈ G ∩ Ui0 and let Λ =
(⋃

θ∈Ψz0

(
z0 + 〈eiθ〉)) ∩ Ω. Note

that

L2 (Ω\Λ) ≤ L2

⎛⎝⎛⎝ ⋃
θ∈[0,2π)\Ψz0

(
z0 + 〈eiθ〉)

⎞⎠ ∩Bdiam(Ω) (0)

⎞⎠
≤ 2πdiam (Ω)L1 ([0, 2π) \Ψz0)

≤ 2πdiam (Ω) c
1
3
1 . (28)
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So as for any x ∈ Ω\Λ we have d (Du (x) , SO (2)Ai0) ≤ d (Du (x) ,K) + c thus∫
Ω

d (Du (x) , SO (2)Ai0 ) dL
2x ≤

∫
Ω

d (Du (x) ,K) dL2x+ cL2 (Ω\Λ)

(28)

≤ 2πdiam (Ω) c
1
3
1 + cε

1
2p .

So applying Proposition 2.6 [10] we have that there exists R0 ∈ SO (2) such that∫
Ω

|Du (x) −R0Ai0 | dL2x ≤ cc
1
6
1 .

Since R0Ai0 �= F there must exist w ∈ S1 such that R0Ai0w �= Fw. We must be able to find
c ∈ w⊥ ∩B diam(Ω)

10
(0) such that∫

Ω∩(c+〈w〉)
|Du (z) −R0Ai0 | dL1z ≤ cc

1
12
1 .

Let a, b denote the endpoints of Ω ∩ (c+ 〈w〉). We have

|F (a− b) −R0Ai0 (a− b)| = |u (a) − u (b) −R0Ai0 (a− b)|

≤
∣∣∣∣∣
∫ b

a

(Du (z) −R0Ai0 )wdL
1z

∣∣∣∣∣
≤ cc

1
12
1

which is a contradiction assuming c1 is chosen small enough. �
4. Proof of Theorem 1

Proposition 1. Suppose u ∈W 2,2
(
B1 (0) : IR2

)
satisfies the following properties∫

B1(0)

dp (Du (z) ,K)dL2z ≤ β (29)∫
B1(0)

∣∣D2u (z)
∣∣2 dL2z ≤ β (30)

then in the case p > 1 there exists matrix M ∈ K such that∫
B1(0)

|Du (z) −M |p dL2z ≤ cβ. (31)

And for the case p = 1 there exists i0 ∈ {1, 2, . . .N} and affine function L : B1 (0) → IR2 with
DL ∈ SO (2)Ai0 such that ∫

Bσ2 (0)

|u (z) − L (z)| dL2z ≤ cβ (32)

and ∫
B1(0)

d (Du (z) , SO (2)Ai0) dL
2z ≤ cβ. (33)

Proof.
Step 1. Recall definition (23) of d0, let d1 = σ

10d0 and let

Ui := {x ∈ B1 (0) : d (Du (x) , SO (2)Ai) < d1} for i = 1, 2, . . .N. (34)

We will show there exists i0 ∈ {1, 2, . . .N} such that

L2 (B1 (0) \Ui0) ≤ cβ. (35)

As a consequence we will establish (33).
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Proof of Step 1. Since for any x ∈ B1 (0) \
(⋃N

i=1 Ui

)
we have d (Du (x) ,K) > d1. So

L2

(
B1 (0) \

(
N⋃
i=1

Ui

))
≤ 1

dp1

∫
B1(0)

dp (Du (z) ,K) dL2z

(29)

≤ cβ (36)

which implies there must exists i0 ∈ {1, 2, . . .N} such that L2 (Ui0) ≥ c
N .

Define P0 : M2×2 → IR+ by P0 (M) = (d (M,SO (2)Ai0 ) − d1)+, so note for any M ∈
Nd1 (SO (2)Ai0) we have P0 (N) = 0. By a well known result of Stampachhia f (z) :=
P0 (Du (z)) is in W 1,1 (B1 (0)) with Df = DP0 (Du)D2u a.e. since P0 is Lipschitz and D2u ∈
L2 (B1 (0)) this gives f ∈W 1,2 (B1 (0)) and we have |Df (z)| ≤ c

∣∣D2u (z)
∣∣, hence∫

B1(0)

|Df (z)|2 dL2z ≤ cβ.

We also know we have f (z) = 0 for any z ∈ Ui0 and so by Lemma 2 we have that∫
B1(0)

|f (z)|2 dL2z ≤ cβ.

As f (z) ≥ d1 for any z ∈ ⋃i∈{1,2,...N}\{i0} Ui together with (36) this implies (35).
Note (d (Du (z) ,K) + c)p ≤ dp (Du (z) ,K) + c∫

B1(0)

dp (Du (z) , SO (2)Ai0) dL
2z

≤
∫
Ui0

dp (Du (z) ,K) dL2z

+
∫
B1(0)\Ui0

(d (Du (z) ,K) + c)p dL2z

≤
∫
B1(0)

dp (Du (z) ,K)dL2z + cL2 (B1 (0) \Ui0)
(29),(35)

≤ cβ. (37)

Now for p > 1 by Theorem 2 there exists R0 ∈ SO (2) such that∫
B1(0)

|Du (z) −R0Ai0 |p dL2z ≤ cβ

which establishes (31). Obviously inequality (37) also gives (33) for p = 1.

Step 2. Let P0 be the affine function with P0 (0) = 0, DP0 = A−1
i0

. Define v : Bσ (0) → IR2

by v (z) = u (P0 (z)). We will show there exists and affine function L1 such that∫
Bσ(0)

|v (z) − L1 (z)| dL2z ≤ cβ. (38)

Proof of Step 2. Firstly we apply the truncation theorem Proposition A.1. [15]. So there
exists a Lipschitz function ṽ with ‖Dṽ‖L∞(Bσ(0)) ≤ C and

L2 ({x ∈ Bσ (0) : ṽ (x) �= v (x)}) ≤ c

∫
{x∈Bσ(0):|Dv(x)|>C}

|Dv (z)| dL2z

≤ cβ (39)



THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE ELEMENTS 15

and

‖Dv −Dṽ‖L1(Bσ(0)) ≤ c

∫
{x∈Bσ(0):|Dv(x)|>C}

|Dv (z)| dL2z

≤ cβ. (40)

Note ∫
Bσ(0)

d (Dṽ (z) , SO (2)) dL2z
(40)

≤
∫
Bσ(0)

d (Dv (z) , SO (2)) dL2z + cβ

=
∫
Bσ(0)

d
(
Du (P0 (z))A−1

i0
, SO (2)

)
dL2z + cβ

(37)

≤ cβ. (41)

Thus by Theorem 2 we have that there exists R0 such that∫
Bσ(0)

|Dṽ (x) −R0|2 dL2x ≤ c

∫
Bσ(0)

d2 (Dṽ (x) , SO (2)) dL2x

≤ c

∫
Bσ(0)

d (Dṽ (x) , SO (2)) dL2x

(41)

≤ cβ. (42)

Let lR0 be an affine function with DlR0 = R0 and lR0 (0) = 0, we define w (x) = ṽ (lR0 (x)). So
from (42) we have ∫

Bσ(0)

|Dw (x) − Id|2 dL2x ≤ cβ. (43)

Now Linearising d (·, SO (2)) near the identity we have

d (G,SO (2)) =
∣∣∣∣12 (G+GT

)− Id

∣∣∣∣+ o
(
|G− Id|2

)
= |sym (G− Id)| + o

(
|G− Id|2

)
.

So we have∫
Bσ(0)

|sym (Dw (x) − Id)| dL2x ≤ c

∫
Bσ(0)

|Dw (x) − Id|2 dL2x

+c
∫
Bσ(0)

d (Dw (x) , SO (2)) dL2x

(43)

≤ cβ +
∫
Bσ(0)

d (Dṽ (lR0 (x)) , SO (2)) dL2x

(41)

≤ cβ.

Now by Lemma 1 we have that there exists an affine function L0 : Bσ (0) → IR2 such that∫
Bσ(0)

|w (x) − x− L0 (x)| dL2x ≤ cβ (44)

which gives us an affine function L1 : Bσ (0) → IR2 with the property that∫
Bσ(0)

|ṽ (x) − L1 (x)| dL2x ≤ cβ. (45)
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Now note by Lemma 2 we know that∫
Bσ(0)

|ṽ (x) − v (x)|dL2x ≤
∫
Bσ(0)

|Dṽ (x) −Dv (x)|dL2x

(40)

≤ cβ. (46)

Thus ∫
Bσ(0)

|v (x) − L1 (x)| dL2x ≤
∫
Bσ(0)

|ṽ (x) − L1 (x)| dL2x

+
∫
Bσ(0)

|ṽ (x) − v (x)| dL2x

(45),(46)

≤ cβ.

Step 3. We will show there exists R0 ∈ SO (2) such that

|DL1 −R0| ≤ cβ. (47)

Proof of Step 3. It is immediate from (30) that
∫
Bσ(0)

∣∣D2v (x)
∣∣2 dL2x ≤ cβ. And so by

Holder
∫
Bσ(0)

∣∣D2v (x)
∣∣ dL2x ≤ c

√
β. We also know that∫

Bσ(0)

d (Dv (x) , SO (2)) dL2x
(37)

≤ cβ. (48)

Let C3 be some large positive number we decide on later

H0 := {x ∈ Bσ (0) : |L1 (z) − v (z)| ≤ C3β} . (49)

Assuming constant C3 is large enough we have from (38) that

L2 (Bσ (0) \H0) ≤ σ2

1000
. (50)

Let w ∈ S1. We define

G1
w :=

{
y ∈ Pw⊥

(
Bσ

2
(0)
)

:
∫
P−1

w⊥ (y)∩Bσ
2

(0)

d (Dv (z) , SO (2)) dH1z ≤ C3β

}
and

G2
w :=

{
y ∈ Pw⊥

(
Bσ

2
(0)
)

:
∫
P−1

w⊥ (y)∩Bσ
2

(0)

∣∣D2v (z)
∣∣2 dH1z ≤ C3β

}
.

Assuming C3 was chosen large enough we have that

L1
(
Pw⊥

(
Bσ

2
(0)
) \G1

w

) ≤ σ2

1000
and L1

(
Pw⊥

(
Bσ

2
(0)
) \G2

w

) ≤ σ2

1000
.

Now by (50) we can pick y ∈ G1
w ∩G2

w such that

L1
(
P−1
w⊥ (y) ∩Bσ

2
(0) ∩H0

)
>

σ

100
.

So we can pick a, b ∈ P−1
w⊥ (y) ∩Bσ

2
(0) ∩H0 such that |a− b| > σ

100 . We have that∫
[a,b]

d (Dv (z) , SO (2)) dH1z ≤ cβ (51)

and ∫
[a,b]

∣∣D2v (z)
∣∣ dH1z ≤ c

√
β. (52)



THE REGULARISATION OF THE N-WELL PROBLEM BY FINITE ELEMENTS 17

For each z ∈ [a, b] let R (z) ∈ SO (2) be such that d (Dv (z) , SO (2)) = |Dv (z) −R (z)|.
From (51) and (52) we have that there exists R0 ∈ SO (2) such that

sup {|Dv (z) −R0| : z ∈ [a, b]} ≤ c
√
β. (53)

Now note

(v (a) − v (b)) · R0v1 =

(∫
[a,b]

Dv (z) v1dH1z

)
·R0v1

≥
∫

[a,b]

R (z) v1 · R0v1dH
1z −

∫
[a,b]

|Dv (z) − R (z)| dH1z

(51)

≥
∫

[a,b]

R (z) e1 ·R0e1dH
1z − cβ. (54)

By definition of R (z), we have that |Dv (z) −R (z)| ≤ |Dv (z) −R0|
(53)

≤ c
√
β. So

|R (z) −R0| ≤ |Dv (z) −R0| + |Dv (z) −R (z)|
(53)

≤ c
√
β.

Let ψ ∈ [0, 2π) be such that

R0 =
( sinψ cosψ
− cosψ sinψ

)
and ψ (z) ∈ [0, 2π) be such that

R (z) =
( sinψ (z) cosψ (z)
− cosψ (z) sinψ (z)

)
.

We know sup {|ψ − ψ (z)| : z ∈ [a, b]} ≤ c
√
β so∫

[a,b]

R (z) e1 · R0e1dH
1z =

∫
[a,b]

( sinψ (z)
− cosψ (z)

)
·
( sinψ
− cosψ

)
dH1z

=
∫

[a,b]

cos (ψ (z) − ψ) dH1z

≥ |a− b| − c

∫
[a,b]

|ψ (z) − ψ|2 dH1z

≥ |a− b| − cβ.

Putting this together with (54) we have (v (a) − v (b)) · R0v1 ≥ |a− b| − cβ which of course
implies

|v (a) − v (b)| ≥ |a− b| − cβ. (55)

Now

|v (a) − v (b)| ≤ H1 (v ([a, b]))

=
∫

[a,b]

∣∣∣∣Dv (z)
a− b

|a− b|
∣∣∣∣ dH1z

≤
∫

[a,b]

1 + d (Dv (z) , SO (2)) dH1z

≤ |a− b| + cβ. (56)
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Since a, b ∈ H0 we have

||L1 (a− b)| − |a− b||
(49)

≤ ||v (a) − v (b)| − |a− b|| + cβ

(55),(56)

≤ cβ

which gives
||L1 (w)| − 1| ≤ cβ for all w ∈ S1. (57)

Let us take three points x1, x2, x3 that form the corners of an equilateral triangle, i.e.
|xi − xj | = 1 for i, j ∈ {1, 2, 3}. So L1 (x1), L1 (x2), L1 (x3) form the corners of a triangle
which we denote by T1.

Let θi denote the angle of the triangle T1 at the corner L1 (xi). Let A1 = |L1 (x2) − L1 (x3)|,
A2 = |L1 (x1) − L1 (x3)|, A3 = |L1 (x1) − L1 (x2)|. Now by the law of sins sin θ1

A1
= sin θ2

A2
= sin θ3

A3
.

Let i, j ∈ {1, 2, 3},
sin θi
Ai

=
sin θj
Aj

=
sin θj
Ai

+ sin θj

(
1
Aj

− 1
Ai

)
.

So
sin θi − sin θj

Ai
= sin θj

(
Ai −Aj
AjAi

)
.

Note A1 = |L1 (x1 − x3)|
(57)∈ (1 − cβ, 1 + cβ). In the same way

1 − cβ ≤ Ai ≤ 1 + cβ for i = 2, 3

so
|sin θi − sin θj | ≤ c |Ai −Aj | < cβ. (58)

Now assuming β is small enough we must have

θi ∈
(

0,
999π
2000

)
for i = 1, 2, 3

since otherwise

max {|L1 (xi) − L1 (xj)| : i, j ∈ {1, 2, 3} , i �= j} > √
2 − 1

50
which contradicts (57). So

|θi − θj | ≤ c

∣∣∣∣∣
∫ θj

θi

cosx dL1x

∣∣∣∣∣
≤ c |sin θi − sin θj |

(57)

≤ cβ.

Since θ1 + θ2 + θ3 = π this gives
∣∣θi − π

3

∣∣ ≤ cβ for i = 1, 2, 3 which implies there exists rotation
R0 ∈ SO (2) such that |DL1 −R0| ≤ cβ which completes the proof of Step 3.

Proof of Proposition 1 completed. Let L0 be the affine function with L0 (0) = L1 (0) and
DL0 = R0 where R0 ∈ SO (2) satisfies (47) of Step 3. So from (38) we know∫

Bσ(0)

|v (x) − L0 (x)| dL2x ≤ cβ. (59)

As u (z) = v
(
P−1

0 (z)
)

we have that∫
Bσ2 (0)

∣∣u (z) − L0

(
P−1

0 (z)
)∣∣ dL2z =

∫
Bσ2 (0)

∣∣v (P−1
0 (z)

)− L0

(
P−1

0 (z)
)∣∣ dL2z.
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Let y = P−1
0 (z), dL2y = det (Ai0 ) dL2z so∫
Bσ2 (0)

∣∣u (z) − L0

(
P−1

0 (z)
)∣∣ dL2z ≤ c

∫
P−1

0 (Bσ2 (0))
|v (y) − L0 (y)| dL2y

(59)

≤ cβ.

Define L := L0 · P−1
0 , so DL = DL0 ·DP−1

0 = R0A0 ∈ K so L satisfies (32) which completes
the proof of Proposition 1. �
Proposition 2. We will show that for some enough ς = ς (σ) we can find ũ ∈ Dς,

√
ε

F such that∫
Ω

dp (Dũ (z) ,K) dL2z ≤ cmp
ε . (60)

Proof. Let C0 = C0 (σ, ς) be some small number we decide on later. We claim we can assume

mp
ε ≤ C0. (61)

Suppose (61) is false, then we can simply define ũ = lF , clearly lF ∈ Dς,
√
ε

F and∫
Ω

dp (DlF ,K)dL2z ≤ c,

so inequality (60) is satisfied. So we can assume (61) or there is nothing to show.
Let u ∈ AF be such that Ipε (u) ≤ cmp

ε . So we
∫
Ω

∣∣D2u (z)
∣∣2 dL2z ≤ cε−1mp

ε . Define

v (z) :=
u(√εz)√

ε
. Recall Ω

ε−
1
2

= ε−
1
2 Ω. Note∫

Ω
ε
− 1

2

dp (Dv (z) ,K)dL2z ≤ cε−1mp
ε (62)

and ∫
Ω

ε
− 1

2

∣∣D2v (z)
∣∣2 dL2z ≤ cε−1mp

ε . (63)

Let T 1
t := {kw2 + 〈w1〉 : k ∈ Z} + tw2 and T 2

t := {kw1 + 〈w2〉 : k ∈ Z} + tw1.
Define L1 : Ω

ε−
1
2
→ [0, 1] to be such that L

−1
1 (s) = T 1

s ∩ Ω
ε−

1
2

and L2 : Ω
ε−

1
2
→ [0, 1] to be

such that L
−1
1 (s) = T 1

s ∩ Ω
ε−

1
2
. It is easy to see |DL1| ≤ 1, |DL2| ≤ 1.

Now Dv = F in the sense of trace on ∂Ω
ε−

1
2
. By Theorem 2 Section 5.3 [14] this implies

lim
r→0

−
∫
Br(x)∩Ω

ε
− 1

2

|Dv (z) − F (z)| dL2z = 0 for H1a.e. x ∈ ∂Ω
ε−

1
2
. (64)

Let S1, . . . Sp0 denote the sides of ∂Ω
ε−

1
2
. For simplicity we make the assumption that none

of the sides S1, S2, . . .Sp0 are parallel to w1, w2. Let i ∈ {1, . . . p0}, there exists S̃i ⊂ Si with

L1
(
Si\S̃i

)
= 0 such that for any x ∈ S̃i we can find rx ∈ (0, ε) with the property that for any

r ∈ (0, rx] we have
∫
Br(x)∩Ω

ε
− 1

2

|Dv (z) − F (z)| dL2z ≤ εr2.

So there exists δ ∈ (0, 1) such that for each i we can find subset Si ⊂ S̃i with L1
(
S̃i\Si

)
≤ ε

and for each x ∈ Si, rx ≥ δ.
Let q ∈ {1, 2}, i ∈ {1, . . . p0}. The set of intervals

{
Pw⊥

q
(Bδ (x)) : x ∈ Si

}
forms a cover

of Pw⊥
q

(Si) and so by the 5r Covering Theorem, Theorem 2.1 [26] we can extract a subset
{x1, x2, . . . xJ0} ⊂ Si such that{

Pw⊥
q

(
B δ

5
(xn)

)
: n ∈ {1, 2, . . . J0}

}
are disjoint (65)
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and

Pw⊥
q

(Si) ⊂
J0⋃
n=1

Pw⊥
q

(Bδ (xn)) . (66)

Let Cin :=
{
z ∈ Bδ (xn) ∩ Ω

ε−
1
2

: |Dv (z) − F | ≤ 1
}

so L2
(
Bδ (xn) \Cin

) ≤ εδ2. This implies

L1
(
Pw⊥

q
(Bδ (xn)) \Pw⊥

q

(
Cin
)) ≤ cεδ. (67)

Let Σi =
⋃J0
n=1 Cin. We have

L1
(
Pw⊥

q
(Si ∩H (0, wq)) \Pw⊥

q
(Σi ∩H (0, wq))

)
= L1

(
Pw⊥

q
(Si ∩H (0, wq)) \

(
J0⋃
n=1

Pw⊥
q

(
Cin ∩H (0, wq)

)))

≤ L1

(
Pw⊥

q
(Si ∩H (0, wq)) \

(
J0⋃
n=1

Pw⊥
q

(Bδ (xn))

))

+
J0∑
n=1

L1
(
Pw⊥

q

((
Bδ (xn) \Cin

) ∩H (0, wq)
))

(66),(67)

≤ cJ0εδ
(65)

≤ cε. (68)

By exactly the same argument

L1
(
Pw⊥

q
(Si ∩H (0,−wq)) \Pw⊥

q
(Σi ∩H (0,−wq))

)
≤ cε. (69)

Define

A0 :=
p0⋃
i=1

Σi. (70)

Note that
A0 ⊂ N1

(
∂Ω

ε−
1
2

)
. (71)

Let q ∈ {1, 2} and let l be such that {l} = {1, 2} \ {q}. Let

Qq1 = inf
{
k ∈ Z : (kwl + 〈wq〉) ∩ Ω

ε−
1
2
�= ∅

}
and let

Qq2 = sup
{
k ∈ Z : (kwl + 〈wq〉) ∩ Ω

ε−
1
2
�= ∅

}
.

Step 1. For q ∈ {1, 2} and l be such that {l} = {1, 2} \ {q}
P+
q := {t ∈ [0, 1] : (wqIR+ + (t+ k)wl) ∩ A0 �= ∅ for every k ∈ {Qq1, Qq1 + 1, . . .Qq2 − 1}} (72)

and

P−
q := {t ∈ [0, 1] : (wqIR− + (t+ k)wl) ∩ A0 �= ∅ for every k ∈ {Qq1, Qq1 + 1, . . .Qq2 − 1}} (73)

we will show L1
(
[0, 1] \P+

q

) ≤ c
√
ε and L1

(
[0, 1] \P−

q

) ≤ c
√
ε.

Proof of Step 1. We argue only for the set P+
1 . For each t ∈ [0, 1] \P+

1 let

Nt :=
{
k : (w1IR+ + (t+ k)w2) ∩ A0 = ∅, k ∈ {Q1

1, Q
1
1 + 1, . . .Q1

2 − 1
}}

(74)
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wq

Qq
1

wp

Q w1
q
2

1−w
−2w1

w1

2w1

w1

0

Figure 3

and let2 n (t) := minNt.
So [0, 1] \P+

1 =
⋃
k∈{Q1

1,Q
1
1+1,...Q1

2−1} n−1 (k) and thus there must exist k0 such that

L1
(
n−1 (k0)

) ≥ L1
(
[0, 1] \P+

1

)
|Q1

1| + |Q1
2|

≥
√
ε

5
L1
(
[0, 1] \P+

1

)
. (75)

However by definition since for every t ∈ n−1 (k0), k0 = n (t) ∈ Nt and by (74) we have

(w1IR+ + (t+ k0)w2) ∩ A0 = ∅ for any t ∈ n−1 (k0) (76)

2We define n (t) to be the minimum only to produce a well defined function, we could just as well take the
maximum
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hence ((t+ k0)w2) ∩ Pw⊥
1

(A0 ∩H (0, w1)) = ∅ for any t ∈ n−1 (k0), i.e.((
n−1 (k0) + k0

)
w2

) ∩ Pw⊥
1

(A0 ∩H (0, w1)) = ∅. (77)

Since k0 ∈ {Q1
1, Q

1
1 + 1, . . .Q1

2 − 1
}

we have(
n−1 (k0) + k0

)
w2 ⊂ Pw⊥

1

(
Ω
ε−

1
2

)
= Pw⊥

1

(
∂Ω

ε−
1
2

)
and by convexity of Ω this implies(

n−1 (k0) + k0

)
w2 ⊂ Pw⊥

1

(
∂Ω

ε−
1
2
∩H (0, w1)

)
so for some a ∈ {1, 2, . . . p0} we must have

L1
(
Pw⊥

1
(Sa ∩H (0, w1)) ∩

((
n−1 (k0) + k0

)
w2

)) ≥ L1
(
n−1 (k0)

)
p0

(78)

and by (77) (and recalling definition (70)) we have

Pw⊥
1

(Sa ∩H (0, w1)) ∩
((
n−1 (k0) + k0

)
w2

) ⊂ Pw⊥
1

(Sa ∩H (0, w1)) \Pw⊥
1

(Σa ∩H (0, w1))

and thus from (68), (78) we have cε ≥ L1
(
n−1 (k0)

)
by (75) c

√
ε ≥ L1

(
[0, 1] \P+

1

)
, this com-

pletes the proof of Step 1.

Step 2. Let {ci : i = 1, 2, . . .N0} be an ordering of the set of points{
k1w1 + k2w2 : k1, k2 ∈ Z, k1w1 + k2w2 ∈ Ω

ε−
1
2
\N32σ−2

(
∂Ω

ε−
1
2

)}
.

Let C1 be some small positive number we decide on later. Let

B1 :=

{
i ∈ {1, 2, . . .N0} :

∫
B32σ−2 (ci)

∣∣D2v (z)
∣∣2 dL2z > C1

}
(79)

and

B2 :=

{
i ∈ {1, 2, . . .N0} :

∫
B32σ−2 (ci)

dp (Dv (z) ,K) dL2z > C1

}
. (80)

Note

Card (B1) + Card (B2) ≤ C1

∑
i∈B1

∫
B32σ−2 (ci)

∣∣D2v (z)
∣∣2 dL2z

+C1

∑
i∈B2

∫
B32σ−2 (ci)

dp (Dv (z) ,K) dL2z

(62)(63)

≤ cε−1mp
ε . (81)

Define G0 = {1, 2, . . .N0} \ (B1 ∪B2).
For the case p = 1, for each i ∈ G0 by Proposition 1 we have the existence of q (i) ∈

{1, 2, . . .N} and an affine function Li : B32 (ci) → IR2 with DLi ∈ SO (2)Aq(i) and∫
B32(ci)

|v (z) − Li (z)| dL2z ≤
∫
B32σ−2 (ci)

d (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z (82)

and∫
B32(ci)

d
(
Dv (z) , SO (2)Aq(i)

)
dL2z ≤

∫
B32σ−2 (ci)

d (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z. (83)
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For p > 1 for each i ∈ G0 by Proposition 1 we have a matrix Mi ∈ K such that∫
B32σ−2 (ci)

|Dv (z) −Mi|p dL2z ≤
∫
B32σ−2 (ci)

dp (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dL2z. (84)

Define

P (z) =

{∑
i∈G0

χB32(ci)

(|v (z) − Li (z)| + d
(
Dv (z) , SO (2)Aq(i)

))
, if p = 1

0, if p ∈ (1, 2]
(85)

And define

Q (z) =

{∑
i∈G0

χB32(ci) |Dv (z) −Mi|p , if p ∈ (1, 2]
0. if p = 1.

(86)

Note ∫
Ω

ε
− 1

2

Q (z) + P (z)dL2z ≤ cε−1mp
ε . (87)

By the Co-area formula we can find σ1 ∈ P+
1 ∩ P−

1 and σ2 ∈ P+
2 ∩ P−

2 such that∫
L
−1
i (σi)

dp (Dv (z) ,K) +
∣∣D2v (z)

∣∣2 dH1z ≤ cε−1mp
ε for i = 1, 2 (88)

and ∫
L
−1
i (σi)

P (z) +Q (z)dH1z ≤ cε−1mp
ε for i = 1, 2. (89)

Now set

A := Ω
ε−

1
2
\ (L−1

1 (σ1) ∪ L
−1
2 (σ2)

)
. (90)

Let R1,R2, . . .RN1 denote those among them that form complete squares. Let {τ1, τ2, . . . τ2N1}
be a collection of right angle triangles with τi ∪ τi+N1 = Ri for each i = 1, 2, . . .N1.

Let

G1 :=
{
i ∈ {1, 2, . . .N1} : Ri ∩ {ci : i ∈ G0} �= ∅} . (91)

Note that from (81) we have

Card (G1) ≥ N1 − cε−1mp
ε . (92)

For each i ∈ {1, 2, . . .N1} let li denote the affine function we obtain from interpolation of v on
the corners of τi. We will show∑

i∈G1

dp (Dli,K) + dp (Dli+N1 ,K) ≤ cε−1mp
ε . (93)

Proof of Step 2. Case p > 1. Firstly we will deal with the simpler case.
For any i ∈ G1, τi has two sides parallel to w1, w2. Let {a, b, e} denote the corners of τi

where we have order them so that a−b
|a−b| = w1 and e−b

|e−b| = w2.
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|Dliw1 −Miw1| =
∣∣∣∣v (a) − v (b)

|a− b| −Mi

(
a− b

|a− b|
)∣∣∣∣

= |a− b|−1

∣∣∣∣∣
∫

[a,b]

(Dv (z) −Mi)w1dH
1z

∣∣∣∣∣
≤ c

∫
[a,b]

|Dv (z) −Mi| dH1z

≤ c

(∫
[a,b]

|Dv (z) −Mi|p dH1z

) 1
p

(86)

≤ c

(∫
[a,b]

Q (z) dH1z

) 1
p

.

So |Dliw1 −Miw1|p ≤ c
∫
[a,b]Q (z)dH1z, in the same way |Dliw2 −Miw2|p ≤ c

∫
[b,e]Q (z)dH1z.

Assume without loss of generality |Dliw1 −Miw1| ≤ |Dliw2 −Miw2| so

|Dli −Mi|p ≤ c (|(Dli −Mi)w1| + |(Dli −Mi)w2|)p
≤ c |(Dli −Mi)w2|p

≤ c

∫
[b,e]

Q (z) dH1z

≤ c

∫
∂Ri

Q (z)dH1z.

So dp (Dli,K) ≤ c
∫
∂Ri

Q (z)dH1z in exactly the same we have dp (Dli+N1 ,K) ≤ c
∫
∂Ri

Q (z)dH1z.
Thus ∑

i∈G1

dp (Dli,K) + dp (Dli+N1 ,K) ≤
∑
i∈G1

∫
∂Ri

Q (z)dH1z

≤ c

∫
L−1(σ1)∪L−1(σ2)

Q (z)dH1z

≤ cε−1mp
ε .

Case p = 1. Now we tackle the more difficult case. Let i ∈ G1. So there exists p (i) ∈ G0

such that cp(i) ∩Ri �= ∅. Let

αi =
∫
∂Ri

P (z)+ |Dv (z)|2 dH1z+
∫
B32σ−2 (cp(i))

d (Dv (z) ,K)+P (z)+
∣∣D2v (z)

∣∣2 dL2z. (94)

So there exists Rp(i) ∈ SO (2) such that DLp(i) = Rp(i)As(i) for some s (i) ∈ {1, 2, . . .N} (note
that s (i) = q (p (i)), see (83)). Let {a, b, d, e} denote that corners of Ri where a−b

|a−b| = w1,
e−b
|e−b| = w2 .

By definition of αi there exists x1, x2 ∈ [a, b], |x1 − x2| > c, P (x1) ≤ cαi and P (x2) ≤ cαi.
So ∣∣v (x1) − Lp(i) (x1)

∣∣ ≤ cαi,
∣∣v (x2) − Lp(i) (x2)

∣∣ ≤ cαi

thus ∣∣v (x1) − v (x2) −Rp(i)As(i) (x1 − x2)
∣∣ ≤ cαi. (95)

Since
∫
[a,b]

∣∣D2v (z)
∣∣ dH1z ≤ c

√
αi there exists R0 such that

sup
{∣∣Dv (z) −R0As(i)

∣∣ : z ∈ [a, b]
} ≤ c

√
αi. (96)
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∣∣v (x1) − v (x2) −R0As(i) (x1 − x2)
∣∣ =

∣∣∣∣∣
∫

[x1,x2]

(
Dv (z) −R0As(i)

) x1 − x2

|x1 − x2|dH
1z

∣∣∣∣∣
(96)

≤ c
√
αi.

Putting this together with (95) gives∣∣R0 −Rp(i)
∣∣ ≤ c

√
αi. (97)

For z ∈ [a, b] define R (z) ∈ SO (2) be such that d
(
Dv (z) , SO (2)As(i)

)
=
∣∣Dv (z) −R (z)As(i)

∣∣.
So note that

∫
[a,b] d (R (z) , SO (2)) dH1z ≤ cαi. Note also that from (96) and (97) we have

sup
{∣∣R (z) −Rp(i)

∣∣ : z ∈ [a, b]
} ≤ c

√
αi. (98)

Arguing as in Step 3, Proposition 1. Let θ, θ (z) ∈ [0, 2π) so thatR (z) =
(

sin θ (z) − cos θ (z)
cos θ (z) sin θ (z)

)
and R =

(
sin θ − cos θ
cos θ sin θ

)
. We have

R (z) e1 · Re1 = sin θ (z) sin θ + cos θ (z) cos θ
= cos (θ (z) − θ)

(98)

≥ 1 − cαi for any z ∈ [a, b] . (99)

We can pick point ã ∈ [a, b] with |b− ã| > c and ẽ ∈ [b, e] with |ẽ− b| > c where∣∣v (ẽ) − Lp(i) (ẽ)
∣∣ ≤ cαi and

∣∣v (ã) − Lp(i) (ã)
∣∣ ≤ cαi. (100)

Let γ1 = |ã− b| ∣∣As(i)w1

∣∣ and γ2 = |ẽ− b| ∣∣As(i)w2

∣∣. We claim

v (b) ∈ Ncαi (∂Bγ1 (v (ã))) (101)

and
v (b) ∈ Ncαi (∂Bγ2 (v (ẽ))) . (102)

To see this note that∣∣(v (ã) − v (b)) · Rp(i)As(i) (−w1)
∣∣ =

∣∣∣∣∣
(∫

[ã,b]

−Dv (z)w1dH
1z

)
·Rp(i)As(i) (−w1)

∣∣∣∣∣
≥

∣∣∣∣∣
∫

[ã,b]

R (z)As(i)w1 · Rp(i)As(i)w1 dH
1

∣∣∣∣∣− cαi

≥ ∣∣As(i)w1

∣∣2 ∣∣∣∣∣
∫

[ã,b]

R (z) e1 · Rp(i)e1dH1z

∣∣∣∣∣− cαi

(99)

≥ ∣∣As(i)w1

∣∣2 |ã− b| (1 − cαi) .

Which implies |v (ã) − v (b)| ≥ ∣∣As(i)w1

∣∣ |ã− b| (1 − cαi) = γ1 − cαi. Now

|v (ã) − v (b)| =

∣∣∣∣∣
∫

[ã,b]

−Dv (z)w1dH
1z

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[ã,b]

−R (z)Ai0w1dH
1z

∣∣∣∣∣+ cαi

≤ γ1 + cαi.
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Which establishes (101). Inclusion (102) can be shown in exactly the same way. So putting
(100) together with (101), (102) we have established that

v (b) ∈ Ncαi

(
∂Bγ1

(
Lp(i) (ã)

)) ∩Ncαi

(
∂Bγ2

(
Lp(i) (ẽ)

))
.

Now the set Ncαi

(
∂Bγ1

(
Lp(i) (ã)

))∩Ncαi

(
∂Bγ2

(
Lp(i) (ẽ)

))
consists of two disjoint connected

components which we denote C1 and C2, see figure 4. It is quite straightforward to see that
diam (Ci) ≤ cαi for i = 1, 2.

p(i)L ~

2γ

C1

v(b)

Lp(i)(a)~

1γ

(e)

C2

Figure 4

Let C1 be the component that contains Lp(i) (b). We will show v (b) ∈ C1. We argue by
contradiction, suppose v (b) ∈ C2. By Proposition 1, inequality (33) (recall s (i) = q (p (i))) we
know ∫

B32(cp(i))
d
(
Dv (z) , SO (2)As(i)

)
dL2z

(85)

≤ c

∫
B32σ−2 (cp(i))

P (z) dL2z

(94)

≤ cαi.
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So by Proposition 2.6, [10] we have that there exists R0 ∈ SO (2) such that∫
B32(cp(i))

∣∣Dv (z) −R0As(i)
∣∣ dL2z ≤ c log

(
α−1
i

)
αi. (103)

Now by Sobolev embedding theorem there exists matrix Mi such that(∫
B32(cp(i))

|Dv (z) −Mi|3 dL2z

) 1
3

≤ c

(∫
B32(cp(i))

∣∣D2v (z)
∣∣2 dL2z

) 1
2

≤ c
√
αi. (104)

So∣∣Mi −R0As(i)
∣∣ ≤ c

(∫
B32(cp(i))

|Dv (z) −Mi| dL2z +
∫
B32(cp(i))

∣∣Dv (z) −R0As(i)
∣∣ dL2z

)
(103),(104)

≤ c
√
αi. (105)

Let Λi : B32

(
cp(i)

)→ IR2 be such that DΛi = R0As(i) and Λi (0) = 0. Define

wi (z) = Λi (z) + −
∫
B32(cp(i))

v (x) − Λi (x) dL2x,

so

−
∫
B32(cp(i))

v (z) − wi (z)dL2z = 0. (106)

And(∫
B32(cp(i))

|Dv (z) −Dwi|3 dL2z

) 1
3

≤
(∫

B32(cp(i))
|Dv (z) −Mi|3 dL2z

) 1
3

+c
∣∣Mi −R0As(i)

∣∣
(105),(104)

≤ c
√
αi.

So by Morrey’s inequality Theorem 3, Section 4.5.3 [14] together with (106) this implies

‖v − wi‖L∞(B32(cp(i))) ≤ c
√
αi. (107)

Since (82), (94)
∫
B32(cp(i))

∣∣v (z) − Lp(i) (z)
∣∣ dL2z ≤ cαi we have∫

B32(cp(i))

∣∣wi (z) − Lp(i) (z)
∣∣ dL2z ≤ c

√
αi.

Since wi and Lp(i) are both affine this implies
∣∣Dwi −DLp(i)

∣∣ ≤ c
√
αi and thus

‖wi − Lp(i)‖L∞(B32(cp(i))) ≤ c
√
αi.

Putting this together with (107) we have that

‖v − Lp(i)‖L∞(B32(cp(i))) ≤ c
√
αi. (108)

Recall we are arguing by contradiction, as we supposed v (b) ∈ C2, from (108) this implies
that Lp(i) (b) ∈ Nc

√
α (C2) however as we also know Lp(i) (b) ∈ C1 and d (C1, C2) > c this is a

contradiction.
Thus we have that

v (b) ∈ C1 ⊂ Bcαi

(
Lp(i) (b)

)
. (109)
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Arguing in exactly the same way we can establish the same thing for the other corners of
Ri, i.e. we can show

v (a) ∈ Bcαi

(
Lp(i) (a)

)
, v (d) ∈ Bcαi

(
Lp(i) (d)

)
, v (e) ∈ Bcαi

(
Lp(i) (e)

)
. (110)

Recall li and li+N1 are the affine maps we obtained from interpolating v on the corners
of triangle τi and τi+N1 where τi ∪ τi+N1 = Ri. Recall also that DLp(i) = Rp(i)As(i) where
Rp(i) ∈ SO (2), s (i) ∈ {1, 2, . . .N}. From (109) and (110) we have

∣∣Dliw1 −Rp(i)As(i)w1

∣∣ =
∣∣∣∣(v (a) − v (b)

|a− b|
)
−
(
Lp(i) (a− b)

|a− b|
)∣∣∣∣

≤ cαi.

In the same way we can show
∣∣Dliw2 −Rp(i)As(i)w2

∣∣ ≤ cαi which gives
∣∣Dli −Rp(i)As(i)

∣∣ ≤
cαi and hence d (Dli,K) ≤ cαi. In exactly the same way we can show d (Dli+N ,K) ≤ cαi.

Thus using (62), (63), (87), (88) and (89) for the last inequality∑
i∈G1

d (Dli,K) + d (Dli+N1 ,K)

≤ c
∑
i∈G1

αi

(94)

≤ c
∑
i∈G1

∫
∂Ri

P (z) +
∣∣D2v (z)

∣∣2 dH1z

+c
∫
B32σ−2 (cp(i))

d (Dv (z) ,K) + P (z) +
∣∣D2v (z)

∣∣2 dL2z

≤ c

∫
L
−1
1 (σ1)∪L

−1
2 (σ2)

P (z) +
∣∣D2v (z)

∣∣2 dH1z

+c
∑
i∈G0

∫
B32σ−2 (ci)

d (Dv (z) ,K) + P (z) +
∣∣D2v (z)

∣∣2 dL2z

≤ cε−1m1
ε .

Thus we have shown (93) in the case p = 1. This completes the proof of Step 2.

Step 3. We will show ∑
i∈{1,2,...N1}

dp (Dli,K) + dp (Dli+N ,K) ≤ cε−1mp
ε . (111)

Proof of Step 3. Let i ∈ {1, 2, . . .N1} \G1 and let {ai, bi, ci} denote the corners of τi where
we have ordered them so that ai−bi

|ai−bi| = w1 and ci−bi

|ci−bi| = w2. Let Dli denote the affine map we
obtain from interpolation of v on the corners of τi. Note

|Dliw1|p =
∣∣∣∣v (ai) − v (bi)

|ai − bi|
∣∣∣∣p

≤ c

∫ bi

ai

|Dv (z)|p dH1z

≤ c

∫
∂Ri

dp (Dv (z) ,K)dH1z + c.
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In exactly the same way we have |Dliw2|p ≤ c
∫
∂Ri

dp (Dv (z) ,K)dH1z + c which gives

|Dli|p ≤ c

∫
∂Ri

dp (Dv (z) ,K)dH1z + c

in exactly the same way |Dli+N |p ≤ c
∫
∂Ri

dp (Dv (z) ,K)dH1z+c. As dp (Dli,K) ≤ c |Dli|p+c
and dp (Dli+N ,K) ≤ c |Dli+N |p + c thus∑
i∈{1,2,...N1}\G1

dp (Dli,K) + dp (Dli+N ,K) ≤
∑

i∈{1,2,...N1}\G1

c |Dli|p + c |Dli+N |p

+cCard ({1, 2, . . .N1} \G1)

≤ c
∑

i∈{1,2,...N1}\G1

∫
∂Ri∪∂τi+N1

dp (Dv (z) ,K)dH1z

+cCard ({1, 2, . . .N1} \G1)
(88),(92)

≤ cε−1mp
ε (112)

Putting (112) together with (93) gives (111).

Step 4. Recall {R1,R2, . . .RN1} denote the connected components of A (see (90)) that form
complete squares, and {τ1, τ2, . . . τ2N1} are triangles where τi ∪ τi+N1 = Ri. Let

V0 (i) :=
{
j ∈ {1, 2, . . . 2N1} : H1 (τi ∩ τj) > ς

}
(113)

For any j ∈ {1, 2, . . .2N1} let lj denote the affine map we get by interpolating v on the corners
of τj . Define

Υ0 :=
{
i ∈ {1, 2, . . . 2N1} : There exists j ∈ V0 (i) such that |Dli −Dlj | > ς−1

}
. (114)

We will show ∑
i∈Υ0

∑
j∈V0(i)

|Dli −Dlj |2 ≤ cε−1mp
ε . (115)

Proof of Step 4. For any i ∈ {1, 2, . . . 2N1} define

ρ (i) :=

{
i if i ∈ {1, 2, . . .N1}
i−N1 if i ∈ {N1 + 1, . . . 2N1} .

To start we will show that if i ∈ {1, 2, . . .2N1} and j ∈ V0 (i) then

|Dli −Dlj | ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (116)

So see this we will argue as follows. Note Rρ(i)∪Rρ(j) forms a rectangle, thus τi∪τj must form
a regular parallelogram with two opposite sides that intersect ∂

(Rρ(i) ∪Rρ(j)

)
see figure 5.

Let Ui denote the side of ∂τi that intersects ∂
(Rρ(i) ∪Rρ(j)

)
and Uj denote the side of ∂τj

that intersects ∂
(Rρ(i) ∪Rρ(j)

)
. Let q ∈ {1, 2} be such that Ui and Uj are parallel to wq. Now

by the fundamental theorem of Calculus (and Holder’s inequality) there must exist M ∈M2×2

such that

sup
{|Dv (z) −M | : z ∈ ∂

(Rρ(i) ∪Rρ(j)

)} ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (117)

Let
{
ωi1, ω

i
2, ω

i
3

}
denote the corners of τi and

{
ωj1, ω

j
2, ω

j
3

}
the corners of τj where we have

chosen to label these points such that ωi3 − ωi2 = ωj2 − ωj1 and ωi1 = ωj2, ω
i
2 = ωj3, see figure 5,
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i
1 2

j

Uj

ω  =ω

wq

ω3
i

Ui

ω  =ω3
j

2
i

Rρ( )i
iτ

τ j

ω1
j

Rρ( )j

Figure 5

note
{
ωi3, ω

i
2

}
= ∂Ui and

{
ωj2, ω

j
1

}
= ∂Uj , again see figure 5. Recall we know triangles τi, τj

are conjugate to each other and hence
∣∣ωi3 − ωi2

∣∣ =
∣∣∣ωj2 − ωj1

∣∣∣. By definition

Dli

(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)

=
li
(
ωi3
)− li

(
ωi2
)∣∣ωi3 − ωi2

∣∣
=

v
(
ωi3
)− v

(
ωi2
)∣∣ωi3 − ωi2

∣∣ . (118)

And in the same way

Dlj

⎛⎝ ωj2 − ωj1∣∣∣ωj2 − ωj1

∣∣∣
⎞⎠ =

v
(
ωj2

)
− v

(
ωj1

)
∣∣∣ωj2 − ωj1

∣∣∣ . (119)
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Let lM denote an affine function with DlM = M∣∣v (ωi3)− v
(
ωi2
)− lM

(
ωi3 − ωi2

)∣∣ =

∣∣∣∣∣
∫
[ωi

3,ω
i
2]
Dv (z)

ωi3 − ωi2∣∣ωi3 − ωi2
∣∣dH1z − lM

(
ωi3 − ωi2

)∣∣∣∣∣
≤

∫
[ωi

3,ω
i
2]
|Dv (z) −M | dH1z

(117)

≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (120)

In the same way∣∣∣v (ωj2)− v
(
ωj1

)
− lM

(
ωj2 − ωj1

)∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (121)

Thus as ωj2 − ωj1 = ωi3 − ωi2 (see figure 5) we have from (120), (121)∣∣∣∣∣∣v
(
ωi3
)− v

(
ωi2
)∣∣ωi3 − ωi2

∣∣ −
v
(
ωj2

)
− v

(
ωj1

)
∣∣∣ωj2 − ωj1

∣∣∣
∣∣∣∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

.

Which from (118) and (119) implies∣∣∣∣∣Dli
(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)

−Dlj

(
ωi3 − ωi2∣∣ωi3 − ωi2

∣∣
)∣∣∣∣∣ ≤ c

(∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

) 1
2

. (122)

Recall again (see figure 5) the endpoints of τi ∩ τj are given by ωi1, ω
i
2. So

Dli
(
ωi1 − ωi2

)
= Dlj

(
ωi1 − ωi2

)
(123)

and as
ωi1 − ωi2∣∣ωi1 − ωi2

∣∣ · ωi3 − ωi2∣∣ωi3 − ωi2
∣∣ = 0

so (116) follows from (122) and (123).
Thus

2N1∑
i=1

∑
j∈V0(i)

|Dli −Dlj |2
(116)

≤
2N1∑
i=1

∑
j∈V0(i)

∫
∂(Rρ(i)∪Rρ(j))

∣∣D2v (z)
∣∣2 dH1z

≤ c

∫
L
−1
1 (σ1)∪L

−1
2 (σ2)

∣∣D2v (z)
∣∣2 dH1z

(88)

≤ cε−1mp
ε .

Step 5. Recall R1,R2, . . .RN1 are the connected component of A (see (90)). Let D1,D2, . . .DN2

denote the connected components of(
Ω
ε−

1
2
\L

−1
1 (σ1)

)
\
(
N1⋃
i=1

Ri

)
.

Note that each Di forms a polygon. As before for simplicity we will assume none of the sides
of ∂Ω

ε−
1
2

is parallel to w1. Let cΩ denote the length of the shortest side of ∂Ω, we can assume
without loss of generality

√
ε < cΩ, so we have that any Di will intersect at most two sides of

∂Ω
ε−

1
2
. Let E1 := {i ∈ {1, 2, . . .N2} : ∂Di has 4 sides }. So any i ∈ {1, 2, . . .N2} \E1 is such

that ∂Di has 5 or 3 sides.
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Let E2 := {i ∈ {1, 2, . . .N2} : ∂Di has 5 sides }. For any i ∈ E2 let ai, bi be the endpoints
of ∂Ω

ε−
1
2
∩Di and let ci, di denote the corners of the polytope Di that do not intersect ∂Ω

ε−
1
2
.

Define D̃i = conv (ai, bi, ci, di) for i ∈ E2 and define D̃i = Di for i ∈ E1. Finally define
Ti := Di\D̃i for i ∈ E2, note each Ti forms a triangle.

For each i ∈ E1 ∪ E2 we can split each D̃i into two triangles τ1
i , τ2

i , each of which has a

side parallel to w1 (i.e. D̃i = τ1
i ∪ τ2

i ). Let {τ2N1+1, τ2N1+2, . . . τN3} denote the additional set
of triangles that are formed by

{τqi : i ∈ E1 ∪ E2, q ∈ {1, 2}} , {Di : i ∈ {1, 2, . . .N2} \ (E1 ∪ E2)} and {Ti : i ∈ E2} .
And let

Bd :=
{
i ∈ {1, 2, . . .N3} : τi ⊂ N64σ−2

(
∂Ω

ε−
1
2

)}
. (124)

Firstly will show that

N3 − 2N1 ≤ cε−
1
2 and Card (Bd) ≤ cε−

1
2 . (125)

Secondly let li be the affine interpolation of v on the corners of τi for i ∈ Bd we will also show∑
i∈Bd

|Dli|2 ≤ cε−1mp
ε . (126)

Proof of Step 5. To start with since
⋃
i∈Bd

τi ⊂ N64σ−2

(
∂Ω

ε−
1
2

)
and since L2 (τi) > c for

any i ∈ Bd. So

Card (Bd) ≤ cL2
(
N64σ−2

(
∂Ω

ε−
1
2

))
≤ cε−

1
2

note also {2N1 + 1, . . . N3} ⊂ Bd which gives (125).
For any i ∈ E1 ∪ E2 we will order the triangles τ1

i , τ2
i so that two of the corners of τ2

i

intersects ∂Ω
ε−

1
2

and two of the corners of τ1
i intersects

⋃
i∈{1,2,...2N1} Ri.

So let {ai, bi, ci} denote the corners of τ1
i we can order them so that ai−bi

|ai−bi| = w1 and
ci−bi

|ci−bi| = w2. So [ai, bi] ⊂ L
−1
1 (σ1), [ci, bi] ⊂ L

−1
2 (σ2). So by definition of L

−1
1 (σ1) we have

that
[ai, bi] ⊂ (IR+w1 + (t+ k1)w2) ∪ (IR−w1 + (t+ k1)w2)

for some k1 ∈ {Q1
1, Q

1
1 + 1, . . .Q1

2 − 1
}
, σ1 ∈ P+

1 ∩ P−
1 . By definition (72) and by (71) we have

that [ai, bi] ∩ A0 �= ∅. So there exists xi ∈ [ai, bi] such that d (Dv (xi) ,K) ≤ 1. Thus

sup {|Dv (z)| : z ∈ [ai, bi] ∪ [bi.ci]} ≤ c+
∫

[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z. (127)

Let L1
i be the affine function we obtain from the interpolation of v on the corners of τ1

i . We
have ∣∣DL1

iw1

∣∣ =
∣∣∣∣L1

i (ai) − L1
i (bi)

|ai − bi|
∣∣∣∣

≤ c |v (ai) − v (bi)|
≤ c

∫
[ai,bi]

|Dv (z)|dH1z

(127)

≤ c+ c

∫
[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z.
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And in exactly the same way we have

∣∣DL1
iw2

∣∣ =
∣∣∣∣L1

i (ci) − L1
i (bi)

|ci − bi|
∣∣∣∣

≤ c+ c

∫
[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z.

Thus ∣∣DL1
i

∣∣2 = c
(∣∣DL1

iw1

∣∣2 +
∣∣DL1

iw2

∣∣2)
≤ c+ c

(∫
[ai,bi]∪[bi,ci]

∣∣D2v (z)
∣∣ dH1z

)2

≤ c+ c

∫
∂τ1

i ∩(L
−1
1 (σ1)∪L

−1
2 (σ2))

∣∣D2v (z)
∣∣2 dH1z. (128)

Now let us consider the triangle τ2
i . Let {ai, bi, ci} denote the corners of τ2

i where we have
ordered ai, bi, ci such that ai−bi

|ai−bi| = w1 and bi, ci ∈ ∂Ω
ε−

1
2
. Let L2

i denote the affine map we
get from interpolation of v on the corners of τ2

i . Arguing exactly as we have before we can
show that ∣∣DL2

iw1

∣∣2 ≤ c+ c

∫
∂τ2

i ∩(L
−1
1 (σ1)∪(L−1

2 (σ2))

∣∣D2v (z)
∣∣2 dH1z.

Now
∣∣∣DL2

i

(
bi−ci

|bi−ci|
)∣∣∣2 ≤ c |lF (bi) − lF (ci)|2 ≤ c. Since w1 and bi−ci

|bi−ci| are not parallel this
implies ∣∣DL2

i

∣∣2 ≤ c+ c

∫
∂τ2

i ∩(L
−1
1 (σ1)∪L

−1
2 (σ2))

∣∣D2v (z)
∣∣2 dH1z. (129)

Now for any i ∈ {1, 2, . . .N2} \ (E1 ∪ E2), Di forms a triangle with the corners in ∂Ω
ε−

1
2
, let Ii

be the affine map we obtain by interpolation of v on the corners of Di, then Ii has the property
that

|DIi| ≤ c for any i ∈ {1, 2, . . .N2} \ (E1 ∪ E2) . (130)

For any i ∈ E2 let Ji be the affine function we get from interpolating v on Ti, since again the
corners of τi belong to ∂Ω

ε−
1
2

we have

|DJi| ≤ c for any i ∈ E2. (131)

Let li be the affine map we obtain from interpolating v on τi for i ∈ Bd. For any i ∈
Bd\ {2N1 + 1, . . .N3} let {ai, bi, ci} denote the corners of τi where ai−bi

|ai−bi| = w1 and ci−bi

|ci−bi| =
w2. Exactly as in the case where we considered triangle τ1

i for i ∈ E1 ∪ E2 we must have
that [ai, bi] ⊂ L

−1
1 (σ1) and [ci, bi] ⊂ L

−1
2 (σ2). We will assume ai, bi are ordered so that

d
(
ai, ∂Ω

ε−
1
2

)
< d

(
bi, ∂Ω

ε−
1
2

)
. Let di ∈ ∂Ω

ε−
1
2

be such that [ai, bi] ⊂ [di, bi]. By definition of

Bd we know |di − bi| < 32σ−2. Let Γi := [di, bi] ∪ [bi, ci], by arguing exactly the same way as
we did to show (128) we have

|Dli|2 ≤ c+
∫

Γi

∣∣D2v (z)
∣∣2 dH1z (132)
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So let li be the affine map we obtain from interpolating v on τi for i ∈ Bd we have by (128),
(129), (130), (131) and (132)∑

i∈Bd

|Dli|2 ≤ cCard (Bd)

+
N3∑

i=2N1

c

∫
∂τi∩(L

−1
1 (σ1)∪(L−1

2 (σ2))

∣∣D2v (z)
∣∣2 dH1z

+
∑

i∈Bd\{2N1+1,...N3}
c

∫
Γi

∣∣D2v (z)
∣∣2 dH1z

(125)

≤ cε−
1
2 + c

∫
L
−1
1 (σ1)∪(L−1

2 (σ2)

∣∣D2v (z)
∣∣2 dH1z

(22),(88)

≤ cε−1mp
ε . (133)

Step 6. Let w ∈ F
√
ε,ς

F be defined by w (z) = li (z) for z ∈ τi, i = 1, 2, . . .N3. We will show
that ∑

i∈J(w)

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 ≤ cε−1mp
ε . (134)

Proof of Step 6. Let

V1 (i) =
{
j ∈ {1, 2, . . .N3} : H1 (τi ∩ τj) > 0

}
. (135)

Let
I0 := {i ∈ {1, 2, . . .N3} : τi ⊂ Ω\N32σ−2 (∂Ω)} . (136)

Note that for any i ∈ {1, 2, . . .N3} \I0, V1 (i) ⊂ Bd. So

∑
J(w)\I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 ≤
∑

i∈J(w)\I0

⎛⎝ ∑
j∈V1(i)

|Dli −Dlj |2 + |Dli − F |2
⎞⎠

≤ c
∑
i∈Bd

|Dli|2 + cCard (Bd)

(125),(126),(22)

≤ cε−1mp
ε . (137)

Also note that if i ∈ I0 then V1 (i) ⊂ {1, 2, . . .2N1} and V1 (i) = V0 (i) (see definition (113)) in
addition we know ∂τi ∩ ∂Ω = ∅ so Ni (w) = V0 (i) and J (w) ∩ I0 = Υ0 (see (114)). So∑

i∈J(w)∩I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 =
∑
i∈Υ0

∑
j∈V0(i)

|Dli −Dlj |2

(115)

≤ cε−1mp
ε . (138)

Now ∑
i∈J(w)

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 =
∑

i∈J(w)∩I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
+

∑
i∈J(w)\I0

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
(137),(138)

≤ cε−1mp
ε .
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Step 7. We will show
N3∑
j=1

dp
(
Dw�τi

,K
) ≤ cε−1mp

ε . (139)

Proof of Step 7. Since for any j ∈ {2N1 + 1, . . .N3} we have

dp
(
Dw�τj

,K
) ≤ c+

∣∣Dw�τj

∣∣p
≤ c+

∣∣Dw�τj

∣∣2 (140)

so using the fact {2N1 + 1, . . .N3} ⊂ Bd for the last inequality
N3∑
j=1

dp
(
Dw�τi

,K
)

=
2N1∑
j=1

dp
(
Dw�τi

,K
)

+
N3∑

j=2N1+1

dp
(
Dw�τi

,K
)

(111),(140)

≤ cε−1mp
ε + c (N3 − 2N1 + 1) +

N3∑
j=2N1+1

∣∣Dw�τj

∣∣2
(22),(125),(126)

≤ cε−1mp
ε .

Step 8. We will show that (for small enough ς) there exists function ũ ∈ Dς,h
F such that∫

Ω

dp (Dũ (z) ,K) dL2z ≤ cmp
ε . (141)

Proof of Step 8. Recall definition of d0, see (23). Let

Gg :=
{
i ∈ {1, 2, . . .N3} : d

(
Dw�τi

,K
) ≤ d0

}
.

Recall V1 (i) is defined by (135). Let V (i) :=
⋃
k∈V1(i) V1 (k) and (recall the definition of I0, see

(136)) let Ggi := {i ∈ I0 : V (i) ⊂ Gg}. Note Card (V (i)) ≤ 12. Let A0 :=
⋃
i∈I0\Ggi

τi, so

L2 (A0) ≥ cCard (I0\Ggi) . (142)

Let Oi :=
⋃
j∈V(i) τj , to by applying the 5r Covering Theorem (see Theorem 2.1. [26]) we

can find a subset {i1, i2, . . . iP1} ⊂ I0\Ggi such that

A0 ⊂
P1⋃
k=1

N60 (Oik) (143)

and
{
Oi1 ,Oi2 , . . .OiP1

}
are disjoint. Note (143), (142) imply P1 ≥ cCard (I0\Ggi) and since for

every k ∈ {1, 2, . . . P1} since V (ik) �⊂ Ggi (by definition of Ggi) we can find qk ∈ {1, 2, . . .N3}
such that τqk

⊂ Oik and d
(
Dw�τqk

,K
)
> d0. We also know that

{
τq1 , τq2 , . . . τqP1

}
are disjoint.

So

dp0P1 ≤
P1∑
k=1

dp
(
Dw�τqk

,K
)

(139)

≤ cε−1mp
ε .

Thus Card (I0\Ggi) ≤ cε−1mp
ε

(61)

≤ cC0ε
−1. Now Card (I0) ≥ cε−1 so

Card (I0 ∩ Ggi) ≥ cε−1 − cC0ε
−1.

Assuming constant C0 at the start of Proposition 2 was chosen small enough we have

Card (I0 ∩ Ggi) ≥ cε−1. (144)
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Note that again by applying the 5r covering Theorem we can find subset {j1, j2, . . . jP2} ⊂
I0 ∩ Ggi such that ⋃

i∈I0∩Ggi

τi ⊂
P2⋃
k=1

N60 (Ojk) (145)

and
{
Oj1 ,Oj2 , . . .OjP2

}
are disjoint. Inequalities (144) and (145) imply that

P2 ≥ cε−1. (146)

We denote the corners of τi by
{
ω1
i , ω

2
i , ω

3
i

}
for any i = 1, 2, . . .N3. Let q ∈ {1, 2, . . . P2} and pick

cq ∈
{
ω1
jq
, ω2

jq
, ω3

jq

}
. Let W (jq) ⊂ V (jq) be defined by W (jq) := {k ∈ V (jq) : τk ∩ cq �= ∅}.

Note that for any k ∈ W (jq), since V (jq) ⊂ Gg we have

|w (ωak) − w (cq)| ≤ 4σ−1 for any a ∈ {1, 2, 3} . (147)

For each k ∈ W (jq) define the affine map l̃k : τk → IR2 by

l̃k (b) =

{
w (b) for b ∈ {ω1

k, ω
2
k, ω

3
k

} \ {cq}
w (cq) + 30σ−1e1 for b = cq.

For simplicity we order the corners
{
ω1
k, ω

2
k, ω

3
k

}
so that ω1

k = cq. Note∣∣∣∣Dl̃k ( ω1
k − ω2

k

|ω1
k − ω2

k|
)∣∣∣∣ =

∣∣ω1
k − ω2

k

∣∣−1
∣∣∣l̃k (ω1

k

)− l̃k
(
ω2
k

)∣∣∣
=

∣∣ω1
k − ω2

k

∣∣−1 ∣∣w (ω1
k

)− w
(
ω2
k

)
+ 30σ−1e1

∣∣
≥ 15σ−1 − ∣∣w (ω1

k

)− w
(
ω2
k

)∣∣
(147)

≥ 10σ−1.

In exactly the same way we have
∣∣∣∣Dl̃k ( ω1

k−ω3
k|ω1

k
−ω3

k|
)∣∣∣∣ ≥ 10σ−1 which implies∣∣∣Dl̃k∣∣∣ ≥ 10σ−1. (148)

In a very similar way we can show∣∣∣∣Dl̃k ( ω1
k − ω2

k

|ω1
k − ω2

k|
)∣∣∣∣ ≤ 60σ−1 and

∣∣∣∣Dl̃k ( ω1
k − ω3

k

|ω1
k − ω3

k|
)∣∣∣∣ ≤ 60σ−1.

And thus ∣∣∣Dl̃k∣∣∣ ≤ 60σ−1. (149)

From (148) we know∑
k∈W(jq)

dp
(
Dl̃k,K

)
L2 (τk) ≥ dp

(
Dl̃jq ,K

)
L2
(
τjq
)

(148)

≥ 9σ−pL2
(
τjq
)
. (150)

And ∑
k∈W(jq)

dp
(
Dl̃k,K

)
L2 (τk)

(149)

≤ 1202σ−2pL2

⎛⎝ ⋃
k∈W(jq)

τk

⎞⎠
≤ 1202σ−2 × 100ς−2. (151)
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Note recall from (146) P2 ≥ cε−1
(61)
>

mp
ε

ε so we can define piecewise affine function ṽ : Ω
ε−

1
2
→

IR2 by

ṽ (z) =

⎧⎪⎪⎨⎪⎪⎩
w (z) for z ∈ τi, i ∈ {1, 2, . . .N3} \

(⋃[ε−1mp
ε ]

q=1 W (jq)
)

l̃i (z) for z ∈ τi, i ∈
(⋃[ε−1mp

ε ]
q=1 W (jq)

)
.

So ∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K)dL2z =
∑

i∈{1,2,...N3}\
„S[ε−1m

p
ε ]

q=1 W(jq)

« d
p
(
Dw�τi

,K
)
L2 (τi)

+
∑

i∈
„S[ε−1m

p
ε ]

q=1 W(jq)

« d
p
(
Dl̃i,K

)
L2 (τi)

(139),(151)

≤ cε−1mp
ε + c

[
ε−1mp

ε

]
≤ cε−1mp

ε . (152)

And ∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K)dL2z ≥
[ε−1mp

ε ]∑
q=1

∫
Ojq

dp (Dṽ (z) ,K) dL2z

(150)

≥ c
[
ε−1mp

ε

]
. (153)

Let Y :=
{
i ∈ {1, 2, . . .N3} : V1 (i) ∩

(⋃[ε−1mp
ε ]

q=1 W (jq)
)

= ∅
}

. Note

Card ({1, 2, . . .N3} \Y) ≤ cε−1mp
ε . (154)

And note ∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 ≤
∑

M∈Ni(w)

∣∣Dw�τi
−M

∣∣2 + c for any i ∈ J (ṽ) \Y (155)

so as J (ṽ) ∩ Y = J (w) ∩ Y and Dṽ�τj
= Dw�τj

for every j ∈ ⋃i∈J(ṽ)∩Y
V1 (i) we have∑

i∈J(ṽ)

∑
Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 =
∑

i∈J(w)∩Y

∑
M∈Ni(w)

∣∣Dw�τi
−M

∣∣2
+

∑
i∈J(ṽ)\Y

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2
(134),(155)

≤ cε−1mp
ε + cCard (J (ṽ) \Y)

(154)

≤ cε−1mp
ε . (156)

Thus ∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K)dL2z
(153),(156)

≥ c
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 . (157)

Define ũ (z) = ṽ (
√
εz) ε−

1
2 . We have that∫

Ω

dp (Dũ (z) ,K)dL2z = ε

∫
Ω

ε
− 1

2

dp (Dṽ (z) ,K)dL2z (158)
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And thus ∫
Ω

dp (Dũ (z) ,K)dL2z
(157)

≥ cε
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 . (159)

Now (for small enough ς) {√ετi} forms a (h, ς) triangulation of Ω and it is easy to see that∑
i∈J(ũ)

∑
M∈Ni(ũ)

∣∣Dũ�√ετi
−M

∣∣2 =
∑
i∈J(ṽ)

∑
M∈Ni(ṽ)

∣∣Dṽ�τi
−M

∣∣2 .
Thus (again assuming ς is small enough) we have from (159)∑

i∈J(ũ)

∑
M∈Ni(ũ)

ε
∣∣Dũ�√ετi

−M
∣∣2 ≤ ς−1

2

∫
Ω

dp (Dũ (z) ,K)dL2z. (160)

Thus we have that u ∈ Dς,
√
ε

F . We also know from (158) and (152) that ũ satisfies (141). �
Proposition 3. Let w1 ∈ S1 be such that w2 ∈ w⊥

1 we have that w1, w2 and w1−w2
|w1−w2| are not

in the set of rank-1 connections between SO (2)Ai and SO (2)Aj for any i �= j. Let F �∈ K,
given function u ∈ Dς,

√
ε

F we define w : Ω2 → IR2 by

w̃ (z) =

{
u (z) if z ∈ Ω
lF (z) if z ∈ Ω2\Ω.

(161)

We will show there exists a small positive constant η = η (w1, A1, . . . AN ) such that for w̃ =
w ∗ ρη√ε and

w (z) = w̃

(
z

1 + η
√
ε

)(
1 + η

√
ε
)

(162)

then w ∈ AF and w satisfies∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ c

∫
Ω

dp (Du (z) ,K) dL2z. (163)

Proof. Firstly note u is piecewise affine on a triangulation which we will label {τ1, τ2, . . . τN3}.
Given triangle τi we define the neighbouring gradients Ni (u) by (3) and we define the jump
triangles Ji (u) by (4). Now since u ∈ Dς,

√
ε

F we have∑
i∈J(u)

∑
M∈Ni(u)

∣∣Du�τi
−M

∣∣2 ≤ ς−1ε−1

∫
Ω

dp (Du (z) ,K)dL2z. (164)

Let v (z) = u (
√
εz) ε−

1
2 . Let

α0 =
∫

Ω
ε
− 1

2

dp (Dv (z) ,K) dL2z. (165)

Let V (j) :=
{
k : H1 (τk ∩ τj) > 0

}
. Define V0 (i) :=

⋃
j∈V (i) V (j) and V1 (i) :=

⋃
j∈V0(i) V (j).

Let G0 :=
{
i : d

(
Dv�τi

,K
) ≤ η

}
. Let A1,A2, . . .AN1 denote the connected components of⋃

i∈G0
τi. Let

Gk := {i : τi ⊂ Ak} and define Ãk :=
⋃

{i:V1(i)⊂Gk}
τi. (166)

Define
E (z) = {i : τi ∩Bη (z) �= ∅} for any z ∈ Q

ε−
1
2 +η

(0) . (167)

Note Card (E (z)) ≤ c and note

E (z) ⊂ V1 (i) for any z such that B 3η
2

(z) ∩ τi �= ∅. (168)
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Step 1. Given k ∈ {1, 2, . . .N1} we will show there exists k0 ∈ {1, 2, . . .N} such that

d
(
Dv�τi

, SO (2)Ak0
)

= d
(
Dv�τi

,K
)

for every i ∈ Gk. (169)

Proof of Step 1. Suppose this is not true. So we can find k0 ∈ {1, 2, . . .N1} and some N0 ∈
{2, 3, . . .N} for which we have disjoint subsets Ω1,Ω2, . . .ΩN0 ⊂ Gk0 with

⋃N0
i=1 Ωi = Gk0 and

for each k ∈ {1, 2, . . .N0} there exists pk ∈ {1, 2, . . .N} such that

d
(
Dv�τi

, SO (2)Apk

)
= d

(
Dv�τi

,K
)

for all i ∈ Ωk for k = 1, 2, . . .N0.

Since
⋃
i∈Gk0

τi = Ak0 and Ak0 is connected we must be able to find i1 ∈ Ω1 and i2 ∈ Ω2 such
that H1 (∂τi1 ∩ ∂τi2) ≥ ς. Let a, b be the endpoints of ∂τi1 ∩ ∂τi2 , since (by definition of G0)
d
(
Dv�τi1

, SO (2)Ap1
)
≤ η, d

(
Dv�τi2

, SO (2)Ap2
)
≤ η and Dv�τi1

(a− b) = Dv�τi2
(a− b) we

must have that for some R1, R2 ∈ SO (2),

|R1Ap1 (a− b) −R2Ap2 (a− b)| ≤ 3η (170)

since u ∈ Dς,
√
ε

F the edges of the triangles are parallel to w1, w2 and w1−w2
|w1−w2| . Thus (as-

suming a, b are ordered correctly) a−b
|a−b| ∈

{
w1, w2,

w1−w2
|w1−w2|

}
. Recall we chose w1, w2 so that{

w1, w2,
w1−w2
|w1−w2|

}
are not in the set of rank-1 connections between SO (2)Ap1 and SO (2)Ap2 .

So
∣∣∣Ap1 ( a−b

|a−b|
)∣∣∣ �= ∣∣∣Ap2 ( a−b

|a−b|
)∣∣∣, we can assume without loss of generality there is a constant

c4 = c4 (w1, w2) > 1 such that
∣∣∣Ap1 ( a−b

|a−b|
)∣∣∣ > c4

∣∣∣Ap2 ( a−b
|a−b|

)∣∣∣. Assuming we chose η small
enough this contradicts (170) this completes the proof of Step 1.

Step 2. Given k0 ∈ {1, 2, . . .N1} and x ∈ Ãk0 we will show that

max
{∣∣Dv�τi

−Dv�τl

∣∣ : i, l ∈ E (x)
} ≤ cmax

{
d
(
Dv�τj

,K
)

: j ∈ E (x)
}
. (171)

Proof Step 2. Firstly by change of variables we can assume k0 is such that Dv�τi
∈ Nη (SO (2))

for any i ∈ G0. We introduce some notation, let j ∈ {1, 2, . . .N3} for any p ∈ V (j) define

a (j, p) := max
{
d
(
Dv�τj

, SO (2)
)
, d
(
Dv�τp

, SO (2)
)}

so there exists Rj ∈ SO (2), Rp ∈ SO (2) such that∣∣Dv�τp
−Rp

∣∣ ≤ 2a (j, p) ,
∣∣Dv�τj

−Rj
∣∣ ≤ 2a (j, p) . (172)

SinceH1 (τp ∩ τj) ≥ ς, let a, b denote the endpoints of τp∩τj , so asDv�τp
(a− b) = Dv�τj

(a− b)
we have |Rp (a− b) −Rj (a− b)| ≤ 4a (j, p) which implies |Rp −Rj | ≤ 4ς−1a (j, p). Putting this
together with (172) gives ∣∣Dv�τp

−Dv�τj

∣∣ ≤ ca (j, p) . (173)

Pick i, l ∈ E (x), now (see figure 6) we must be able to find 3 i1, i2, . . . iM1 ∈ E (x0) with the
following properties

(1) i0 = i, iM1 = l
(2) ir+1 ∈ V (ir) for r = 0, 1, . . .M1 − 1
(3) ir1 �= ir2 for r1 �= r2
(4) E (x0) ⊂

⋃M1
r=0 V (ir).

3Since Bη (x) is open and τi ∩ Bη (x) �= ∅, τl ∩ Bη (x) �= ∅ we have H1 (∂Bη (x) ∩ τi) > 0 and
H1 (∂Bη (x) ∩ τl) > 0. Pick point s0 ∈ τi ∩ ∂Bη (x) and a point sM1 ∈ τl ∩ ∂Bη (x), since all but finitely
many points on ∂Bη (x) are contained in

S
j τj we can go clockwise from s1 to sM1 , the first triangle τj we

encounter after τi with H1 (τj ∩ ∂Bη (x)) > 0 will have the property that τj ∩Bη (x) �= ∅ (and hence j ∈ E (x0))
and j ∈ V1 (i) so define i1 = j. We can then define i2 to be the first τl we encounter going clockwise on ∂Bη (x)

after τi1 ∩ ∂Bη (x), continuing in this way gives us the sequence i1, i2, . . . iM1 with the properties we want.



40 ANDREW LORENT

τ i

τ l

x0

η

Figure 6

We have

∣∣∣Dv�τi0
−Dv�τiM1

∣∣∣ ≤
M1−1∑
r=0

∣∣∣Dv�τir
−Dv�τir+1

∣∣∣
(173)

≤
M1−1∑
r=0

ca (ir, ir+1)

≤ cM1 max
{
d
(
Dv�τr

, SO (2)
)

: r ∈ E (x)
}
.

Since from property (3) we know M1 ≤ cCard (E (x0)) ≤ c this gives (171).

Step 3. Let ṽ := v ∗ ρη we will show

N1∑
k=1

∫
eAk

dp (Dṽ (z) ,K) dL2z ≤ cα0. (174)

Proof of Step 3. Let D := {i : ∂τi ∩ ∂Ω �= ∅}. We define p : Q
ε−

1
2 +η

(0) → {1, 2, . . .N3} by

p (z) :=

{
min {i : z ∈ τi} for z ∈ Ω

ε−
1
2

min
{
i ∈ D : B 3η

2
(z) ∩ τi �= ∅

}
for z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2
.

(175)
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Fix k0 ∈ {1, 2, . . .N1}, assume Ãk0 �= ∅. Let y ∈ Ãk0 . Pick i0 ∈ E (y) and let R0 ∈ K be such
that d

(
Dv�τi0

,K
)

=
∣∣∣Dv�τi0

−R0

∣∣∣. Now

|Dṽ (y) −R0| =
∣∣∣∣∫ (Dv (y + z) −R0) ρη (z) dL2z

∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈E(y)

∫
τj

(
Dv�τj

(x) −R0

)
ρη (x− y) dL2x

∣∣∣∣∣∣
≤ c

∑
j∈E(y)

∣∣Dv�τj
−R0

∣∣
≤ c

∑
j∈E(y)

∣∣∣Dv�τj
−Dv�τi0

∣∣∣+ ∣∣∣Dv�τi0
−R0

∣∣∣
(171)

≤ cmax
{
d
(
Dv�τj

,K
)

: j ∈ E (y)
}
. (176)

Define c (i) ∈ V1 (i) to be such that

d
(
Dv�τc(i)

,K
)

= max
{
d
(
Dv�τj

,K
)

: j ∈ V1 (i)
}
. (177)

Note for any z ∈ Q
ε−

1
2 +η

(0) from (168) we know (recall definition (167)) that E (y) ⊂ V1 (p (y)),
so

dp (Dṽ (y) ,K)
(176),(177)

≤ cdp
(
Dv�τc(p(y))

,K
)
. (178)

Now ∫
eAk0

dp (Dṽ (z) ,K) dL2z =
∑

{i:V1(i)⊂Gk0}

∫
τi

dp (Dṽ (z) ,K)dL2z

≤
∑

{i:V1(i)⊂Gk0}
L2 (τi) sup {dp (Dṽ (z) ,K) : z ∈ τi}

(178)

≤
∑

{i:V1(i)⊂Gk0}
cdp

(
Dvτc(i) ,K

)
.

Now max
{
Card

(
c−1 (i)

)
: i ∈ Gk0

} ≤ c and so∫
eAk0

dp (Dṽ (z) ,K) dL2z ≤ c
∑
i∈Gk0

dp
(
Dv�τi

,K
)
.

Thus summing over k0 = 1, 2, . . .N1 gives (174).

Step 4. We will show that∫
Q

ε
− 1

2 +η
(0)

dp (Dṽ (z) ,K)dL2z ≤ cα0 + cηε−
1
2 . (179)

Proof of Step 4. Let D := {i : ∂τi ∩ ∂Ω �= ∅}. Note (recalling definition (175), (167))

p (z) ∈ E (z) for any z ∈ Ω
ε−

1
2

(180)
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so

|Dṽ (z)| =
∣∣∣∣∫ Dv (z + x) ρη (x) dL2x

∣∣∣∣
=

∣∣∣∣∣∣F
∫
Bη(z)\Ω

ε
− 1

2

ρη (a− z) dL2a+
∑
i∈E(z)

Dv�τi

∫
τi

ρη (a− z)dL2a

∣∣∣∣∣∣
≤ c |F | + c

∑
i∈E(z)

∣∣Dv�τi

∣∣
(168)

≤ c+ c
∑

i∈V1(p(z))

d
(
Dv�τi

,K
)
. (181)

Thus

dp (Dṽ (z) ,K) ≤ (|Dv (z)| + c)p

≤ c |Dv (z)|p + c

(181)

≤
⎛⎝c+ c

∑
i∈V1(p(z))

d
(
Dv�τi

,K
)⎞⎠p

+ c

≤ c+ c
∑

i∈V1(p(z))

dp
(
Dv�τi

,K
)
. (182)

Let B := {i : V1 (i) �⊂ G0}. Note that if i is such that V1 (i) ⊂ G0 then V1 (i) ⊂ Gk for some
k ∈ {1, 2, . . .N1} (and recall definition (166)) and hence τi ⊂ Ãk, thus

⋃
i∈B

τi = Ω
ε−

1
2
\
(
N1⋃
k=1

Ãk

)
. (183)

So

∫
S

i∈B
τi

dp (Dṽ (z) ,K) dL2z
(182)

≤
∑
i∈B

L2 (τi)

⎛⎝c+ c
∑

j∈V1(i)

dp
(
Dv�τj

,K
)⎞⎠

(165)

≤ cα0 + cCard (B) . (184)

By an easy application of the 5r Covering Theorem (Theorem 2.1. [26]) we know

Card (B) ≤ c ({1, 2, . . .N3} \G0) ≤ cα0. (185)

Now

τp(z) ⊂ Ω
ε−

1
2
\Ω

ε−
1
2 −10ς−1

for any z ∈ Ω
ε−

1
2 +η

\Ω
ε−

1
2
. (186)
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Let {l1, l2, . . . lX1} be an ordering of the set
{
p (z) : z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2

}
we have that X1 ≤

cε−
1
2 . And thus ∫

Ω
ε
− 1

2 +η
\Ω

ε
− 1

2

dp (Dṽ (z) ,K)dL2z

=
X1∑
k=1

∫
p−1(lk)\Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z

(182)

≤
X1∑
k=1

∫
p−1(lk)\Ω

ε
− 1

2

⎛⎝c+
∑

i∈V1(lk)

cdp
(
Dv�τi

,K
)⎞⎠ dL2z

≤ c

X1∑
k=1

L2
(
p−1 (lk) \Ω

ε−
1
2

)
+

X1∑
k=1

∑
i∈V1(lk)

cdp
(
Dv�τi

,K
)

(165)

≤ cηε−
1
2 + cα0. (187)

So putting things together, by (174), (183), (184),(185) and (187) we have∫
Ω

ε
− 1

2 +η

dp (Dṽ (z) ,K) dL2z =
∫

S
i∈B

τi

dp (Dṽ (z) ,K)dL2z (188)

+
∫

SN1
k

eAk

dp (Dṽ (z) ,K) dL2z

+
∫

Ω
ε
− 1

2 +η
(0)\Ω

ε
− 1

2

dp (Dṽ (z) ,K) dL2z

≤ cα0 + cηε−
1
2 ,

which completes the proof of (179).

Step 5. We will show
N1∑
k=1

∫
eAk

∣∣D2ṽ (y)
∣∣2 dL2y ≤ cα0. (189)

Proof of Step 5. Let y ∈ ⋃N1
k=1 Ãk, for each j ∈ E (y) define Aj :=

∫
τj
Dρη (x− y) dL2x, note∑

j∈E(y)Aj = 0. So

D2ṽ (y) =
∫

−Dv (y + z) ⊗Dρη (z)dL2z

=
∑

j∈E(y)

∫
τj

−Dv�τj
⊗Dρη (x− y) dL2x

=
∑

j∈E(y)

−Dv�τj
⊗Aj .

So we have D2ṽ (y) =
∑

j∈E(y) −
(
Dv�τj

−Dv�τp(y)

)
⊗Aj and so∣∣D2ṽ (y)

∣∣2 ≤ c
∑

j∈E(y)

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2
(171),(180)

≤ c
(
max

{
d
(
Dv�τl

,K
)

: l ∈ E (y)
})2

. (190)
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Thus (recall the definition c (i), (177)) we have∫
eAk

∣∣D2ṽ (y)
∣∣2 dL2y =

∑
{i:V1(i)⊂Gk}

∫
τi

∣∣D2ṽ (y)
∣∣2 dL2y

(168),(190)

≤
∑

{i:V1(i)⊂Gk}
c
(
max

{
d
(
Dv�τl

,K
)

: l ∈ V1 (i)
})2

=
∑

{i:V1(i)⊂Gk}
cd2

(
Dv�τc(i)

,K
)

≤ c
∑
i∈Gk

d2
(
Dv�τi

,K
)

≤ c
∑
i∈Gk

dp
(
Dv�τi

,K
)
.

Thus summing over k = 1, 2, . . .N1 gives (189).

Step 6. We will show∫
Ω

ε
− 1

2 +η
\

“SN1
k=1

eAk

” ∣∣D2ṽ (z)
∣∣2 dL2z ≤ cα0 + cηε−

1
2 . (191)

Proof of Step 6. Now let y ∈ Ω
ε−

1
2 +η

. Note that if Bη (y) �⊂ Ω
ε−

1
2

then define Ay :=∫
Bη(y)\Ω

ε
− 1

2

Dρη (x− y) dL2x otherwise define Ay = 0.

As in Step 5 for each j ∈ E (y) define Aj =
∫
τj
Dρη (x− y)dL2x. So we have

∑
j∈E(y)

Aj +Ay = 0. (192)

So as in Step 5

−D2ṽ (y) =
∫
Dv (y + z) ⊗Dρη (z)dL2z

=
∫
Bη(y)\Ω

ε
− 1

2

F ⊗Dρη (x− y) dL2x+
∑

j∈E(y)

∫
τj

Dv�τj
⊗Dρη (x− y) dL2x

= F ⊗Ay +
∑

j∈E(y)

Dv�τj
⊗Aj

=
(
F −Dv�τp(y)

)
⊗Ay +

∑
j∈E(y)

(
Dv�τj

−Dv�τp(y)

)
⊗Aj .

Thus for any y ∈ Q
ε−

1
2 +η

(0)

∣∣D2ṽ (y)
∣∣2 ≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay|2 + c
∑

j∈E(y)

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2
(168)

≤ c
∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay|2 + c
∑

j∈V1(p(y))

∣∣∣Dv�τj
−Dv�τp(y)

∣∣∣2 . (193)
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Now as in Step 1 for any i, j ∈ V1 (p (y)) we can find a finite sequence l1, l2, . . . lNj ∈ V1 (p (y))
such that l1 = i, la+1 ∈ V (la) for a = 1, 2, . . .Nj − 1 and lNj = j so

∣∣Dv�τi
−Dv�τj

∣∣2 ≤ c

Nj−1∑
a=1

∣∣∣Dv�τla+1
−Dv�τla

∣∣∣2
≤ c

∑
l∈{l1,l2,...lNj−1}

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
≤ c

∑
l∈V1(p(y))

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 .
So from (193) for any y ∈ Q

ε−
1
2 +η

(0) we have

∣∣D2ṽ (y)
∣∣2 ≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay |2 + c
∑

l∈V1(p(y))

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
≤ c

∣∣∣F −Dv�τp(y)

∣∣∣2 |Ay |2 + c
∑

l∈V1(p(y))∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c.(194)

Recall D =
{
i : ∂τi ∩ ∂Ω

ε−
1
2
�= ∅

}
. Note if y ∈ ⋃i�∈D

τi then Bη (y) ⊂ Ω
ε−

1
2

and so Ay = 0.

For i ∈ B let yi ∈ τi be such that
∣∣D2ṽ (yi)

∣∣ = sup
{∣∣D2ṽ (y)

∣∣ : y ∈ τi
}
, thus∫

Ω
ε
− 1

2
\

“SN1
k=1

eAk

” ∣∣D2ṽ (y)
∣∣2 dL2y

(183)
=

∫
S

i∈B
τi

∣∣D2ṽ (y)
∣∣2 dL2y

≤
∑
i∈B

L2 (τi)
∣∣D2ṽ (yi)

∣∣2
(194)

≤ c
∑
i∈B\D

∑
l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
+c

∑
i∈B∩D

⎛⎝∣∣F −Dv�τi

∣∣2 |Ayi |2 +
∑

l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2⎞⎠+ cCard (B)

≤ c
∑
i∈B

∑
l∈V1(i)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈B∩D

∣∣F −Dv�τi

∣∣2 + cCard (B)

≤ c
∑
l∈J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈D

∣∣F −Dv�τi

∣∣2 + cCard (B)

(185)

≤ c
∑
l∈J(v)

∑
M∈N(l)

∣∣Dv�τl
−M

∣∣2 + cα0

(164),(165)

≤ cα0. (195)

Now to estimate
∫
Ω

ε
− 1

2 +η
\Ω

ε
− 1

2

∣∣D2ṽ (z)
∣∣2 dL2z we argue as in Step 3, let {l1, l2, . . . lX1} be

an ordering of the set
{
p (z) : z ∈ Ω

ε−
1
2 +η

\Ω
ε−

1
2

}
, recall we have X1 ≤ cε−

1
2 . And of course,
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from (175) we have {l1, l2, . . . lX1} ⊂ D. So∫
Ω

ε
− 1

2 +η
(0)\Ω

ε
− 1

2

∣∣D2ṽ (z)
∣∣2 dL2z ≤

X1∑
a=1

∫
p−1(la)

∣∣D2ṽ (z)
∣∣2 dL2z

(194)

≤
X1∑
a=1

c
∣∣F −Dv�τla

∣∣2 + c
∑

l∈V1(la)∩J(v)

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2
+c

X1∑
b=1

cL2
(
p−1 (lb)

)
≤ c

N3∑
l=1

∑
k∈V (l)

∣∣Dv�τl
−Dv�τk

∣∣2 + c
∑
i∈D

∣∣F −Dv�τi

∣∣2 + cηε−
1
2

(164)

≤ c

∫
Ω

dp (Dv (z) ,K)dL2z + cηε−
1
2

≤ cα0 + cηε−
1
2 .

Putting this together with (195) gives (191).

Proof of Proposition 2. Let w (z) :=
ṽ

““
ε−

1
2 +η

”
z

”
ε−

1
2 +η

, it is clear w can also be defined by

equation (162). So from (191) and (189) we have∫
Ω

∣∣D2w (z)
∣∣2 dL2z ≤ cα0 + cηε−

1
2 . (196)

And ∫
Ω

dp (Dw (z) ,K)dL2z =
∫

Ω

dp
(
Dṽ

((
ε−

1
2 + η

)
z
)
,K
)
dL2z

=
∫

Ω
ε
− 1

2 +η

dp (Dṽ (y) ,K)
(
ε−

1
2 + η

)−2

dL2y

=

∫
Ω

ε
− 1

2 +η

dp (Dṽ (y) ,K)dL2y

ε−1 + 2ε−
1
2 η + η2

= ε

∫
Ω

ε
− 1

2 +η

dp (Dṽ (y) ,K)dL2y

1 + 2ε
1
2 η + εη2

(179)

≤ cεα0 + cηε
1
2 . (197)

Putting this together with (196) gives∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ cεα0 + cηε
1
2 . (198)

Now by (22) we have that there exists some small constant c1 = c1 (σ) such that

c1ε
1
2 ≤

∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z

so assuming we have chosen η small enough we have that∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z − cηε
1
2 ≥ 1

2

∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z
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hence from (198) we have∫
Ω

dp (Dw (z) ,K) + ε
∣∣D2w (z)

∣∣2 dL2z ≤ cεα0

(165)
= c

∫
Ω

dp (Dw (z) ,K) dL2z

which completes the proof of (163). �
4.1. The proof of Theorem 1 completed. By Proposition 2 for any ε > 0 we can find
u ∈ Dς,

√
ε

F such that
∫
Ω d

p (Du (z) ,K) dL2z ≤ cmp
ε which obviously implies there must exist

constant C1 < 1 such that C1α (
√
ε) ≤ mp

ε .
Let u ∈ Dς,

√
ε

F be such that
∫
Ω
dp (Du (z) ,K)dL2z ≤ cαp (

√
ε). By Proposition 3 function w

defined by (161) and (162) has the property that

Iε (w) ≤ c

∫
Ω

dp (Du (z) ,K)dL2z ≤ cαp
(√

ε
)

which implies there exists a constant C2 > 1 such that mp
ε ≤ C2αp (

√
ε). �
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[30] S. Müller; V. Šverák. Convex integration with constraints and applications to phase transitions and partial
differential equations. J. Eur. Math. Soc. (JEMS) 1. (1999) no.4. 393-422.

[31] S. Müller; V. Šverák. Convex integration for Lipschitz mappings and counterexamples to regularity. Ann.
of Math. (2) 157 (2003), no. 3, 715–742.
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