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NUMERICAL MATHEMATICS OF THE SUBTRACTION METHOD
FOR THE MODELING OF A CURRENT DIPOLE IN EEG SOURCE
RECONSTRUCTION USING FINITE ELEMENT HEAD MODELS.
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Abstract. In electroencephalography (EEG) source analysis, a dipole is widely used as the

model of the current source. The dipole introduces a singularity on the right-hand side of the gov-
erning Poisson-type differential equation that has to be treated specifically when solving the equation
towards the electric potential.
In this paper, we give a proof for existence and uniqueness of the weak solution in the function
space of zero-mean potential functions, using a subtraction approach. The method divides the total
potential into a singularity and a correction potential. The singularity potential is due to a dipole
in an infinite region of homogeneous conductivity. We then state convergence properties of the Fi-
nite Element (FE) method for the numerical solution to the correction potential. We validate our
approach using tetrahedra and regular and geometry-conforming node-shifted hexahedra elements
in an isotropic three-layer sphere model and a model with anisotropic middle compartment. Valida-
tion is carried out using sophisticated visualization techniques and correlation coefficient (CC) and
magnitude error (MAG) for a comparison of the numerical results with analytical series expansion
formulas at the surface and within the volume conductor. For the subtraction approach, with regard
to the accuracy in the anisotropic three-layer sphere model (CC of 0.998 or better and MAG of 4.3%
or better over the whole range of realistic eccentricities) and to the computational complexity, 2mm
node-shifted hexahedra achieve the best results. A relative FE solver accuracy of 10~% is sufficient
for the used algebraic multigrid preconditioned conjugate gradient approach. Finally, we visualize
the computed potentials of the subtraction method in realistically-shaped FE head volume conductor
models with anisotropic skull compartments.
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anisotropy.
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1. EEG source reconstruction. Electroencephalography (EEG) based source
reconstruction of cerebral activity (the EEG inverse problem) with respect to the
individual anatomy is common practice in clinical routine and research and in cogni-
tive neuroscience. The inverse methods are based on solutions to the corresponding
forward problem, i.e., the simulation of the electric potential in the head volume con-
ductor for a primary source. The primary sources to be reconstructed in the inverse
problem are electrolytic currents within the dendrites of the large pyramidal cells of
activated neurons in the cortex sheet of the human brain. A primary source is gen-
erally formulated as an ideal or mathematical point current dipole [22, 24]. Such a
focal brain activation can, e.g., be observed in epilepsy [29] (interictal spikes) or can
be induced by a stimulus in neurophysiological or neuropsychological experiments,
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FIGURE 1.1. Left: Tactile Somatosensory Evoked Potentials (SEP): Butterfly plot of the av-
eraged EEG data. The peak of the SEP signal component of interest at 35.3ms is marked. Right:
Reconstructed current dipole in somatosensory SI cortex with a remaining variance to the data of
less than 1%.

e.g., somatosensory or auditory evoked fields [20, 25]. Source analysis of individual
Somatosensory Evoked Potential (SEP) data is of high clinical interest for precise
non-invasive localization of the central sulcus in the case of lesions lying in or ad-
jacent to the sensorimotor region. This example from the wide application field of
EEG source analysis will now be used to give a general motivation for this paper:
Tactile stimuli were presented onto the right index finger tip of a 39 year old healthy
male right-handed subject using balloon diaphragms driven by bursts of compressed
air. Following [20], the optimal interstimulus interval of 1 sec. (£ 10% variation)
was used and 3 runs of 600 epochs each were recorded. After band-pass filtering and
artefact rejection, the remaining epochs were averaged, resulting in a signal-to-noise
ratio of more than 21. A butterfly plot of the measured SEP is shown in Fig. 1.1
(left). A current dipole was then reconstructed at the peak of the early component at
35.3ms using a Simulated Annealing (SA) optimization procedure on a presegmented
triangulated surface 2mm below the cortex surface. A finite element head model with
anisotropic skull compartment was used to solve the corresponding forward problems.
The remaining variance of the dipole solution to the data was less than 1%. The re-
sult, shown in Fig.1.1 (right), agrees well with a recent paper showing that the early
tactile somatosensory component arises from area 3b of the primary somatosensory
cortex (SI) contralateral to the side of stimulation [20].

2. Introduction. Besides the finite difference method (see, e.g., [15]), the finite
element (FE) method [36, 2, 1, 5, 6, 18, 30, 17, 27, 21, 34] has become popular to
solve the forward problem because it allows a realistic representation of the head
volume conductor with its various tissue geometries and conductivities. Improved
mathematical algorithms, increased power of state-of-the-art computational platforms
and modern imaging methods allow the nowadays use of the FE method for practical
localization problems [30, 31, 11, 32]. In [5, 18, 34], the influence of conductivity
anisotropy of the human skull and in [17, 34], the influence of conductivity anisotropy
of brain white matter was examined with regard to source reconstruction, motivating
the use of 3D methods when compared to spherical head models (see, e.g., [23]) or
the boundary element method (see, e.g., [10]). In FE analysis, it is yet theoretically
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unclear how to treat local (in contrast to the above remote) anisotropy, i.e., tissue
conductivity anisotropy in the direct environment of the source (cortical conductivity
anisotropy). Because of its moderate anisotropy, the cortex is generally modeled as
isotropic.

In the case of a point current dipole in the brain, the singularity of the potential
at the source position can be treated with the so-called subtraction method, where
the total potential is divided into the analytically known singularity potential and
the singularity-free correction potential, which can then be approximated numerically
using an FE approach [2, 1, 5, 18, 27]. Besides the subtraction method, direct ap-
proaches to the total potential were developed, where either partial integration over
the point source on the right-hand side of the weak FE formulation was used, ap-
proximating the source singularity by means of a projection in the function space of
the FE trial-functions [30, 21] or the point dipole was approximated by a smoother
monopolar primary source distribution [36, 6, 31, 27]. Even if it is known that the
direct approaches perform reasonably good in locally-isotropic spherical head model
validation studies, it is impossible to formulate a satisfying FE theory if the mathe-
matical dipole, being widely used in source reconstruction (especially also sphere and
BE forward modeling) [22, 24], is used as the model for a primary source. Our study
will therefore focus on the computationally more expensive (when compared to the
direct approaches) FE subtraction method, where also, until now, no sufficient theory
concerning existence and uniqueness of a solution and FE convergence properties was
shown yet. Furthermore, the theory of the subtraction method was only presented
for multi-compartment models with an isotropic conductivity in the source environ-
ment. Either tetrahedra [2, 5, 18] or regular hexahedra [27] elements were used, but
no comparison of different element types was found with regard to their numerical
properties. The use of standard direct (banded LU factorization for a 2D source anal-
ysis scenario [1]) or iterative (Conjugate Gradient (CG) without preconditioning [2]
or Successive OverRelaxation (SOR) [27]) FE solver techniques limited the overall
resolution. Therefore, local mesh refinement strategies around the source location
were proposed to reduce the otherwise unacceptably large numerical errors for eccen-
tric sources [2, 5] or specific symmetrical implementations were carried out which are
only useful in a spherical volume conductor [27]. With regard to the inverse problem,
local mesh refinement strategies around the source location are rather complicated
to implement and time-consuming to compute and thus might not be appropriate for
practical application.

In this paper, we formulate the theory of the subtraction approach for both locally
isotropic and anisotropic conductivity and give a proof for existence and uniqueness
of a weak solution in a zero-mean function space. We examine the FE convergence
properties for the singularity-free correction potential and thus gain deep inside in
theory and practice of the method. The presented theory is valid for both EEG
but also magnetoencephalography (MEG) source reconstruction. We examine the
necessary accuracies of an algebraic multigrid preconditioned CG (AMG-CG) solver
for the correction potential and describe how the subtraction approach is combined
with our recent work on lead field bases [32]. This combination also allows sufficiently
fast solutions to the EEG and MEG inverse problem. We then consider 3D three-layer
sphere model scenarios to validate our approach in isotropic models and in models
with an anisotropic skull compartment. The validation of other anisotropy types
would exceed the scope of this paper. We use globally high mesh resolutions for
both tetrahedra and hexahedra elements which result in a sufficient accuracy for the
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whole range of realistic source eccentricities. We show that regular hexahedra and
especially geometry-conforming node-shifted hexahedra elements perform better than
tetrahedra elements. We finally apply the method to three-compartment realistically-
shaped volume conductor models with anisotropic skull compartments obtained from
MR images of the human head.

3. Forward Problem Formulation.

3.1. The Maxwell equations. Let us begin with the introduction of the nec-
essary notations: let E and D be the electric field and electric displacement, resp., p
the electric free charge density, € the electric permittivity and j the electric current
density. By p we denote the magnetic permeability and by H and B the magnetic
field and induction, resp..

In the considered low frequency band (frequencies below 1000 Hz), the capac-
itive component of tissue impedance, the inductive effect and the electromagnetic
propagation effect and thus the temporal derivatives can be neglected in the Maxwell
equations of electrodynamics [26]. It can be assumed, that p is constant over the
whole volume and equal to the permeability of vacuum [26]. Therefore, the electric
and magnetic fields can be described by the quasi-static Maxwell equations

V-D=p
VXE=0
V x B = uj (3.1)
V-B=0.
with the material equations
D =cE
B =uH,

since biological tissue mainly behaves as an electrolyte [26]. The electric field can be
expressed as a negative gradient of a scalar potential,

E=-Vo. (3.3)

In the field of bioelectromagnetism, the current density is divided into two parts [26],
the primary or impressed current, j”, and the secondary or return currents, gk,

i=j’"+ ok, (3.4)
where g : ) — R3*3 denotes the 3 x 3 conductivity tensor.

3.2. The forward problem. Taking the divergence of Equation (3.1) (diver-
gence of a curl of a vector is zero) and using Equations (3.3) and (3.4) gives the
Poisson equation

V. (gV@) =V-j»=JF in Q, (3.5)
which describes the potential distribution in the head domain Q due to a primary

current jP in the cortex sheet of the human brain. We find homogeneous Neumann
boundary conditions on the head surface I' = 012,

(@V®,n)|, =0, (3.6)
with n the unit surface normal, and a reference electrode with given potential, i.e.,

(I)(xref) =0. (37)
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3.3. The primary currents. The primary currents are movements of ions
within the dendrites of the large pyramidal cells of activated regions in the cortex
sheet of the human brain and at already small distances equal to the size of the
activated region only the dipolar moment of the source term is visible [24]. The
mathematical dipole model at position £y € R? with the moment M € R? can be
formulated as [22]

JP(2) =V - jP (z) .=V -Md(x — x0) . (3.8)
3.4. The subtraction approach. In the following, it is assumed that we can
find a non-empty subdomain Q2> C € around the source position xy with homoge-
neous constant conductivity g, so that zo € Q> / 90>,
For the subtraction method, the conductivity g is then split into two parts,

g:goo +gcorr, (3.9)

so that o is constant over the whole domain 2 and g“°*" is zero in the subdomain

Q> g% (z) = 0,Va € Q. The total potential ® can now be split into two parts,

O = P> + T, (3.10)

where the singularity potential ®>° is defined as the solution for a dipole in an un-
bounded homogeneous conductor with constant conductivity ¢°°. An analytic formula
for > will be derived in the following. Let us first discuss the case of a homogeneous
and isotropic conductivity 0*°|g~ = 0*°1Id,0c* € R. In this case, the solution of
Poisson’s equation N

AP> = JP /g™ (3.11)
can be formed analytically by use of (3.8) [26]:

P e

(3.12)

In the case that the conductivity > is homogeneous and anisotropic in O, we
find [12]

1 M, (¢®) Ha —x
e~ M, (@) M- wo)) -~
4y /det o= ()~ (z — @),z — x0))>/?
In both cases the potential > has a singularity at x = xg but is smooth everywhere
else. Inserting (3.9-3.11) in (3.5) yields a Poisson equation for the correction potential

V- (aVO©T)=f inQ,  f:=V-(c"VDI®), (3.14)

with inhomogeneous Neumann boundary conditions at the surface:
(Ve n) =g onT, g:=— (Ve m). (3.15)

After solving this numerically towards &', the unknown scalar potential ® can
then be calculated using (3.10). The gain of the reformulation using the explicit
representation of ®>° is that the singularity on the right-hand side of equation (3.5)
has been eliminated: let > denote a smooth extension of ®>°[g\ g to 2. Then P>
is globally smooth and g®""'V®>® = g®"*'VP> (g% vanishes in 2°°), so that the
right-hand side f is square-integrable over the whole domain €. For the given right-
hand side f and the linear operator V - ¢V, we can apply a standard finite element
discretization and thus derive standard finite element convergence results.



6 C.H. Wolters et al.

3.5. Existence and uniqueness of the solution. In the following, we use
the definitions of the scalar products, norms, semi-norms, function spaces and weak
derivatives as used in the finite element standard literature (see, e.g., [4, 14]).

Equation (3.14) can only be understood in the classical sense under the condition
g€ ct (Q,R?’X?’). For the multi-layer model with conductivity jumps between the
compartments, we search for a weak solution in the Sobolev space H'().

THEOREM 3.1 (Variant of Friedrichs inequality, [4]). Let Q be a domain with

volume () that is contained in a cube with edge length s. We then find for all
ue HY(Q):

lullo < [@l/u(@) + 2sluly,  @:= / u(a)de/ ().

For existence and uniqueness of a solution for the correction potential, we will make
use of the following specific subspace of H!():

HY(Q) = {v € HY(Q) ‘ /Qv(x)d:z: - o} .

We now formulate the bilinear form a : H'(Q) x H'(Q) — R and the functional
[ : HY(Q) — R for our application:

a(u,v) ::/Q<g(m)Vu(x),Vv(m)>dx, l(v) ::/Qf(m)v(av)d:r—i—/ngdI‘7 (3.16)

with f and ¢ from equations (3.14) and (3.15).
DEFINITION 3.2 (Continuous bilinear form). Let H be a Hilbert space. A bilinear
form B: H x H — R is called continuous, if there is a constant Ceont > 0, so that

Vu,v € H:  |B(u,v)| < Ceont||ul| x| |||z

LEMMA 3.3. The bilinear form a(-,-) from (8.16) is continuous on H'(Q) x
HY(Q).

Proof. Let 0,4, be the largest eigenvalue of any conductivity tensor o(x),z € €.
Then the bilinear form is continuous, N

(3.16)
la(u,v)| "=

/Q<g(x)Vu(x), Vo(x))dz

< Gmas / V(@) Vo) |dz

Holder
< Omaz ||Vl 2 [Vo(@) | L2) < Omaz vl mr @)Vl 21(0)

with continuity constant Ceony = Omaz- O
DEFINITION 3.4 (H-ellipticity). A symmetric, continuous bilinear form B is called
H-elliptic, if there is a constant Cgy > 0 so that

Yue H : B(u,u) > Con|ul|%.

LEMMA 3.5. The bilinear form a(-,-) from (3.16) is H}()-elliptic.
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Proof. Let 0yin be the smallest eigenvalue of any conductivity tensor a(x), z € Q.
Let u € H}(Q) and s be the constant from Friedrichs inequality. Then the ellipticity

a(u,u) = /Q(g(:E)Vu(x),Vu(m)>dm > amm/Q<Vu(a:),Vu(sc))dx = Ominlul}
. Omin 2 4 44202 [2[=0  Omin 2 _\/7Q 9 2
= (Tl + 457 ful) " TR (uff 4+ (/) + 26lu)?)
Th.3.1 Omin 2 2 Omin 2
S Tl i) = Tl

holds with ellipticity constant Cej = 0pnin /(1 + 4s2). O

LEMMA 3.6. The functional I(+) in (3.16) is well-defined and bounded on H' (),
in particular 1(-) € (HX(Q))".

THEOREM 3.7 (Existence and uniqueness). Let ) be compact with piecewise
smooth boundary (e.g. polygonal). Then the variational problem

Seeku € HH(Q): Yve HY Q) alu,v) =1(v)

has exactly one solution u € HL().

Proof. The bilinear form af(-,-) is H!-continuous (Lemma 3.3) and H}(Q)-elliptic
(Lemma 3.5) and the functional I(-) is bounded (Lemma 3.6). Due to Lax-Milgram
we find exactly one u € H}(2) that solves the variational problem for all v € H} ().
For o € H*() we use the splitting ¥ = v +c- 1,v € H}(Q2), and find that first

a(u,0) = a(u,v) + ¢+ au, 1) = a(u, v)

and, with Q' := Q\ K(zg,¢) (K(zo,€) being a small ball with radius e around the
source position at ),

I5) = l(v)+c~l(1)=l(v)+c-(/Qf+/Fg)
= Il(v)+ec- (/QV (c"V ) — A(aV@”,n))

Ga:uﬁ Z(U) —|—C' /<gcorrv®oo’n> _/
T

r

AV o n>)

OK (zo,€)

Gaub oy ¢ (/S V- (e®Ve) —/ <a°°Vc1>°°,n>>

In the last step of the above equation, both integrals are zero: The volume integral is
zero, because P> defined in (3.12) or (3.13) is a solution of the homogeneous problem
and JP(z) = 0 for all z € . The surface integral is zero, because @ is the potential
for a dipole in the center of the spherical integration domain and, when dividing the
domain into two half-spheres, the surface integral over the one is exactly the negative
of the second. O
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3.6. Finite element formulation and implementation issues. A numeri-
cal method is needed for the field simulation in a realistically shaped head volume
conductor. We will use the Finite Element method because of its ability to treat ge-
ometries of arbitrary shape and inhomogeneous and anisotropic material parameters.
As a first step, we will use partial integration on the right-hand side (3.14,3.16):

I(v) = — / (Vo(), " () VE™ (2))dr — / (VO™ (2), n(x)v(z)dr.  (3.17)
Q T

The linear space H'((2) is discretized by the Finite Element space
Vy :=span{p;(z) |i=1,...,N} ¢ HY(Q)

spanned by piecewise affine basis functions ¢; at nodes &;, i.e., p;(z) =1 for z = ¢;
and ¢;(z) = 0 for all j # i. The singularity potential ®>° can be projected into this
FE space (only required in the smooth part Q\ Q4,)

N
() ~ O3 () = ) _pil@)u®,  uf® = 2%(&). (3.18)
i=1
Now we seek coefficients wu; for the discrete approximation of ®°*(z) ~ ®* () =
N .
ijl @;(x)u;, i.e., we solve the problem
find uw € H'(Q) so that Yo € H'(Q) :  a(u,v) = [(v)

in the discrete space Vy:

find v € Vy so that Vv € Viy :  a(u,v) =1(v). (3.19)
The coefficient vector u := (u1,...,uy) solves the corresponding linear system
Ku=j> j*:=-K“"u>* - Su™, (3.20)
where u™ = (u$°,...,u%y) is the coefficient vector for ®¢° and

K= /Q (0(2)Vii(x), Vipy () de,

K§5™ = /Q@””@W%(x% Ve, (z)) da,

Sy = / (0 (2)V o5 (x), n(x)) i (x) dra.

The computation of the matrix entries is simple, because the gradients of the basis
functions are piecewise constant. We used the template C++ library COLSAMM
described in detail in [8]. Additionally, the supports of the basis functions are small
and local so that the number of entries in K, K™ S is O(N).

In the next section we will see that the L2-error of the approximation

e = 05 — 8 o

behaves like h? = N~2/3, so we have to use a finite dimensional but large space Vy.
In order to solve the large linear system (3.20) for the correction potential, we apply
an algebraic multigrid preconditioned conjugate gradient (AMG-CG) solver [13, 31].
For the special case of a homogeneous conductivity o in the source area (the cortex),
it was shown in [32], how one can compute lead field bases for EEG and MEG which
then strongly reduce the computational burden for the FE-based inverse problem in
EEG and MEG.
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3.7. Convergence analysis. For our FE approximation ®{°"", we are interested
in estimates of the form

@ — &5°77|| < ChE (3.21)

with largest possible quantitative order k. h denotes the edge length of a finite
element. In general, the order depends on the regularity of the solution, on the degree
of the FE trial-functions, on the chosen Sobolev norm and on the approximation
properties of the triangulation to the geometry.

For a 1-layer model with homogeneous conductivity, we have the following prop-
erty:

THEOREM 3.8 (Quantitative error estimate for 1-layer model [14]). Let us as-
sume a sufficiently reqular solution ®°°"" € H?(Q). For an appropriate triangulation
(hexahedrization), linear (trilinear) FE trial-functions and a continuous and elliptic
bilinear form a(-,-), we find a constant Cy which is independent of @™ and h with

H@CO’I"T _ @}?LOTT‘”l S Clh”@COT‘T”Q.

The regularity assumption ®<°" € H?(Q) is typically fulfilled because the boundary
of the domain {2 is piecewise smooth.

LEMMA 3.9 (Aubin-Nitsche [14]). Let us assume a sufficiently reqular solution
o ¢ H?(Q). For an appropriate triangulation (hexahedrization), linear (trilinear)
FFE trial-functions and a continuous and elliptic bilinear form a(-,-), we find a constant
Cs which is independent of ®°"" and h with

||¢COT’T‘ _ (PZOTTHO S Czh2||¢007'7‘||2'

For a multi-layer model with different conductivities on each compartment, we
can only assume " € H'(Q). Following Hackbusch [14], we can hope that the
general error bounds ||®¢™" — ®5°"7||; = O(h) and ||®°™" — ®5°||y = O(h?) can be
achieved by means of isoparametric, i.e., geometry conforming, finite elements.

With regard to our specific application, we can give a statement concerning the
property of the constant C' in Equation (3.21), which will be of practical interest (see
result chapter):

LEMMA 3.10. Let § be the distance between the source position xg and the closest
location of the next conductivity jump on Q. If § gets small, then the constant

C(9) in
1(v)] < COllzae), Vo€ HY(Q),

with 1(v) from Equation (3.17) is proportional to §=%/2 (c1(8) ~ 6=°/2).
Proof. When defining r := 2 —x¢, we find |A®>®| ~ 1/|r|* and, with  := Q\ Q>,

180 ) = [ @@=~ [ [ aprsar s I =57 = 0)
Q |r|>68
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We then find constants C'(0) and cg, so that

(V)]

/ V- (g VOX) vdx — / <UV<I>°°,n>vdF‘
Q - r

= / [V - (V8> | do + el o]l (o)
Q
< oo /Q 1A [lo]ldz + ezl [o]| oo
Holder

corr

T | [APT [y @0l Ly @) + e2llv]| o)
< (omaxci(9) + ) [|vllro0) < CO)[v]|zy(0)

0

Lemma 3.10 has to be interpreted in the following way. If the source approaches a
next conductivity jump, i.e., if § goes to 0, then the constant for the upper estimation
of the right-hand side functional [ gets larger (with exponent 5/2). Because of the
assumed H2-regularity, we find [4]

|| @ — @50 ||o < Coh?[| BT [|2 < Coh[|llo < C(5)Cah?.

For sources close to the next conductivity jump (e.g., sources with high eccentricity
in the result chapter), we have to be aware of possibly larger numerical errors because
of a strongly increasing constant C(4).

4. Validation and numerical experiments.
4.1. Validation in multilayer sphere models.

4.1.1. Analytical solution. In [23], series expansion formulas were derived for
a mathematical dipole in a multilayer sphere model, denoted now as ”the analytical
solution”. A rough overview of the formulas will be given in this section. The model
consists of shells S up to 1 with radii r¢ < rg_1 < ... < r; and constant radial,
o"d(r) = 0! € R*, and constant tangential conductivity, o' 8(r) = U;ang € R,
within each layer r;1; < r < 7;. It is assumed, that the source at position xg
with radial coordinate ry € R is in a more interior layer than the measurement
electrode at position . € R? with radial coordinate r. = r; € R. The spherical
harmonics expansion for the mathematical dipole (3.8) was expressed in terms of
the gradient of the monopole potential with respect to the source point, using an
asymptotic approximation and an addition-subtraction method to speed up the series
convergence [23]. This resulted in

1 Te T
(w0 we) = 7o (M, So = + (81 - coswofjso)??
with wge being the angular distance between source and electrode and with
Fy A 1 &
So=— — + — Y {(2n+1)R,(ro,re) — FoA™} P! (coswpe)
To (1 —2Acosw0€+A2)3/2 ro 7;1
(4.1)
and
A coswpe — A2 >
S1=F — + Y {@2n+ )R] (ro,7c) — FinA™} P, (cos woe).
(1 —2A coswpe + AQ)‘S/2 ,;

(4.2)
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The coefficients R,, and their derivatives R} can be computed analytically and the
derivative of the Legendre polynomial can be determined by means of a recursion
formula. Refer to [23] for the derivation of the above series of differences and for the
definition of Fy, Fy and A '. Here, it is only important that the latter terms can
be computed from the given radii and conductivities of layers between source and
electrode and of the radial coordinate of the source and that they are independent of
n. The computation of the series (4.1) and (4.2) are stopped after the k’s term, if the
following criterion is fulfilled

. thi= 2k + )R, — FikA". (4.3)

In the following simulations, a value of 1076 was chosen for v. Using the asymptotic
expansion, no more than 30 terms were then needed for the series computation for
each electrode.

4.1.2. Model generation and error criteria. In source reconstruction, head
modeling is generally based on segmented magnetic resonance (MR) data, where
curved tissue boundaries have a stair-step representation. We therefore created a
three-compartment sphere model (S = 3 in Section 4.1.1) in MR format with 1mm?
voxel resolution as a basis for our validation studies. Starting from the outside, the
layers represent the compartments skin, skull and brain with outer surfaces of radii
r1 = 90mm, ro = 80mm and r3 = 70mm, resp.. In the isotropic simulations, we chose
conductivities of o1 = 0.33 S/m, oo = 0.0042 S/m and o3 = 0.33 S/m for the three
compartments [27], while we chose 524 = 0.0042 S/m and o5*"¢ = 0.042 S/m for the
simulations with a 1:10 anisotropic skull compartment [18].

Comparisons between the numeric and the analytic solutions were made for
dipoles located on the y axis at depths of 0% to 95% (in 1mm steps) of the inner
layer (70mm radius) using both radial and tangential orientations. We defined ec-
centricity as the percent ratio of the distance between the source location and the
model midpoint divided by the radius of the inner sphere. As reported in [18] and
further explained in the discussion, the dipoles that are located in the cortex will
have an eccentricity lower than 92%. Tangential sources were oriented in the +z axis
and radial dipoles in the +y axis. The dipole moments were InAm. To achieve error
measures which are independent of the specific choice of the sensor configuration, we
distributed electrodes in a most-regular way over a given sphere surface. On this way
we generated 134 electrode configurations on the surface of the outer sphere (90mm,
surface-EEG sFEG) and under the skull (radius 70mm, internal-EEG iFEG).

We used two error criteria that are commonly used in source analysis [19, 2, 18,
27], the correlation coefficient (CC) and the magnification factor (MAG). The CC is
defined as

& (q)?na _ @ana)(q);lum _ Ci)num)
oC = i=1 ; (4.4)
5 (o =yt 5
i=1 i=1
where m denotes the number of sensors, ®,,, € R™ and ®, ., € R™ the analytic

or numeric solution vectors at the measurement positions, resp., and ®*"* and "™

I The following is a result of a discussion with J.C. de Munck: While constants in formulas (71)
and (72) in the original paper [23] have to be flipped, our versions of Sp and S1 in Equations (4.1)
and (4.2) are correct.
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the sample means. The CC is a measure for the topography error, driven primarily
by changes in dipole location and orientation (minimal error: CC = 1). The second
similarity measure, the MAG, is defined as
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and indicates changes in the source strength (minimal error: MAG = 1).

TABLE 4.1
Hexahedra models: Mesh description.

Model Nodes Elements | Mesh resolution (in mm)
cube3130 | 3,130,496 | 3,053,617 1.0 regular
cube398 397,634 378,384 2.0 regular
cube398ns 397,634 378,384 2.0 node-shift
cubeb2 52,138 47,272 4.0 regular

4.1.3. Hexahedra mesh generation. Our hexahedra mesh generation ap-
proach takes advantage of the spatial discretization inherent in MR images. The
voxel-based approach directly converts image voxels to eight-noded hexahedra ele-
ments, so that a lmm?® FE hexahedra model (model cube3130 in Table 4.1) exactly
represents the segmented tissues. In order to keep the computation amount in reason-
able limit, our mesh generator allows a lower resolution with edge lengths of e times
the edge length of a voxel-sized cube (e being an integer multiple). In this case, the
generated cube is assigned the most frequent label of its e? interior voxels. Material in-
terfaces of regular hexahedra models are characterized by abrupt transitions and right
angles. In [7], a node-shift approach was proposed for a biomechanical FE application
in order to smooth the irregular boundaries, leading to a better representation of the
interfaces between different tissue compartments. The node-shift hexahedra approach
was used for mesh cube398ns in Table 4.1. The table summarizes the properties of
all hexahedra models that we used for validation purposes in this study.

TABLE 4.2
Tetrahedra models: Mesh description. With increasing depth, the thinning distance was in-
creased as indicated in the table for models tet57 and tet156.

Model | Nodes Elements | Thinning Erosions (in mm)

(mm) skin skull brain
tet606 | 605,959 | 3,680,234 1.1 4 x 20 4 x 20 all 2.0
tet234 | 234,314 | 1,412,813 2.0 4 x 20 4 x 2.0 all 2.0
tet156 | 156,074 930, 175 2.0-5.0 3.0, 4.0 | 3.0, 3.0, 2.0 | 2.0, 2.0, then 5.0
tet57 57,033 328,511 3.0-7.0 3.0, 4.0 3.0, 4.0 all 7.0

4.1.4. Tetrahedra mesh generation. For the tetrahedra meshing approach,
we used the software CURRY [9] to create a surface-based tetrahedral tessellation
of the segmented and auxiliary surfaces of the 3-layer sphere model. The procedure
exploits the Delaunay-criterion, enabling the generation of compact and regular tetra-
hedra. In Table 4.2, we indicate the thinning-distance parameter, which is used for the
computation of FE vertices on the segmented and auxiliary surfaces. Furthermore,
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the erosion parameters for defining intermediate auxiliary surfaces within each layer
are shown. As an example, for model tet156 in Table 4.2, we have used a thinning
of 2mm for the compartments skin and skull and increased the thinning distance to
maximally 5mm within the brain compartment. We furthermore used skin surface
erosions of 3.0 and 4.0mm to generate auxiliary surfaces at 87 and 83mm for the skin
compartment and auxiliary surfaces of 77, 74 and 72mm for the skull compartment
before tetrahedra mesh generation.
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Isotropic three layer sphere cube models Isotropic three layer sphere cube models
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FIGURE 4.1. Isotropic three compartment sphere model: Numerical accuracy for hexahedra
models at 184 sEEG electrodes.

4.1.5. Isotropic three-layer sphere modeling. Fig. 4.1 plots CC and MAG
for the total surface potentials at 134 sEEG measurement electrodes on the outer
surface (r; = 90mm) for the different source eccentricities. The performance of the
subtraction method is completely satisfying for model cube3130 and cube398ns, with
a CC of 0.999 or better and a MAG of 1.028 or better at all depths and for both source
orientations. For high eccentricities, the errors begin to rise, a behavior, which has also
been observed in [27] in a regular 1mm hexahedra model. For the 2mm regular cube
model cube398, we also get very satisfying CC results, while, due to the stair-step
approximation of the compartment boundaries, we face about 10% MAG error over
the whole range of eccentricities. This magnitude problem, which is a consequence of
the rough geometry description, can be alleviated with the node-shift approach, where,
with maximally 1.6% for model cube398ns, we achieve the smallest MAG errors of
all tested hexahedra models. Model cube52 is too coarse to appropriately represent
the volume conductor. Even if sufficient CC accuracies are achieved for eccentricities
up to 90% and therefore for the vast majority of realistic source positions, the results
for higher eccentricities fall below a CC of 0.99 and also the MAG is equipped with
an error of up to 26%.

Fig. 4.2 shows the SEEG (r; = 90mm) similarity measures CC and MAG for the
tetrahedra models for the different source eccentricities. We observe larger topog-
raphy errors and sharper declines at high eccentricities than for the best hexahedra
models (note the different CC scalings in Figs. 4.1 and 4.2), but with a CC of 0.99 or
better, the performance of the subtraction method over the whole range of practically
interesting eccentricities is still satisfying for most of the examined models. Even the
coarsest model tet57 gives sufficient CC accuracies for eccentricities up to 94%, but
the CC then declines strongly below a value of 0.99 for the highest evaluated eccen-
tricity. With regard to the potential magnitude, with a maximal MAG error of 1.9%
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FIGURE 4.2. Isotropic three compartment sphere model: Numerical accuracy for tetrahedra
models at 134 sEEG electrodes.

over all eccentricities and for both source orientation, the best result is achieved with
model tet156.

Topography error Magnitude error

Three layer sphere, 2nd layer 1:10 anisotropic Three layer sphere, 2nd layer 1:10 anisotropic

1

116
T — F F I

0.9998 ciieaad S S

114 =S

0.9996 - 112
0.9994 X 11
108
0.9992
L 108
CC o999 i MAG
\ 104
0.9988 \ o foey]
1 102 — -
0.9986 ! . o] 4
0.9984 - 098
! \
0998 094
o 01 ez o3 o4 os 08 07 os o5 0 01 0z 03 0+ 05 06 07 08 09
Source eccentricity Dipole eccentricity
—s—cube398ns, tangential —4—cube398ns, radial —=—cube398ns, tangential —&—cube398ns, radial
—=—tet156, tangential ——tet156, radial —=— tet156, tangential —#—tet156, radial
——cube398, tangential cube39s, radial cube398, tangential cube388, radial

FIGURE 4.3. Three compartment sphere model with a 1:10 anisotropic middle (”skull”) layer:
Numerical accuracy at 134 sEEG electrodes for hexahedra models cube398ns and cube398 and tetra-
hedra model tet156 when using SSM10 for the determination of the ”skull” conductivity tensor
eigenvectors.

4.1.6. Three-layer sphere models with anisotropic skull compartment.
The importance of well-defined skull conductivity tensor eigenvectors were already
pointed out in [18]. For anisotropy modeling of the middle (”skull”) compartment
in a three-layer sphere model, the conductivity tensor eigenvector in radial direction
can be determined by means of normalizing the vector from an element barycenter
to the midpoint of the sphere model, denoted now as the optimal sphere procedure.
The vector product can then be used to define both tangential directions. With
regard to a realistic head model, we also evaluated another procedure. We eroded the
segmented outer surface of the middle ”skull” compartment by half of the ”skull’s”
thickness, strongly smoothed (important only in the case of a realistic head model)
and triangulated it with an edge length of x mm (denoted now as Smooth Surface
Model, SSMz). We then exploited the SSM surface normals for the definition of the
radial tensor direction. Because the triangulated mesh is generated from a stair-case
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like surface, it is obvious that the edge length of the mesh should not be chosen too
small. We evaluated CC and MAG in a model with 1 to 10 radial to tangential
skull anisotropy when using SSM2, SSM5, SSM10, SSM20 and the optimal sphere
procedure. In Fig. 4.3, results are presented for SSM10, which, besides the optimal
sphere procedure, led to the smallest errors. As the figure shows, the results are
similar to the results in the isotropic volume conductor. Model cube398ns again
overall performs best with a CC of more than 0.999 and a MAG of maximally 4.3%.
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FIGURE 4.4. Three compartment sphere model with a 1:10 anisotropic middle (”skull”) layer,
FE model cube398ns: CC (left) and MAG (right) error at 134 sEEG electrodes on ”skin” surface
r1 = 90mm (top) and at 134 iEEG electrodes on 7inner skull” surface r3 = T0mm (bottom) with
increasing AMG-CG relative solver accuracy for sources at 95%, 50% and 0% eccentricity.

In a last examination, we plotted the exactness of the numerical approach versus
the relative solver accuracy of the AMG-CG for the correction potential for different
source eccentricities. The AMG-CG solver process was stopped if the relative error in
the controllable K,C; ' Kj-energy norm (with C; ' being one V-cycle of the AMG)
was below the value indicated on the x-axis (for further informations see [31]). Errors
at 134 sEEG (90mm) and at 134 iEEG (70mm) electrodes are shown in Fig.4.4. It
can be observed that the higher the eccentricity of the source, the more important it
is to accurately determine the correction potential. A relative solver accuracy of 10~*
was sufficient for the tested eccentricities, the solution exactness no longer increased
with higher relative solver accuracies.

4.2. Validation in a realistic anisotropic head model. A three tissue re-
alistic head model with compartments skin, skull and brain and an isotropic voxel
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size of Imm?® was segmented from a T1- and Proton-Density-weighted MR dataset of
a healthy 32 year old male subject. The bi-modal MR approach allowed an improved
modeling of the skull-shape as described in detail in [34]. 71 electrodes were positioned
on the model surface using the international 10/20 system.

TABLE 4.3
Realistically shaped 3-compartment head models: Mesh description.
Model Nodes Elements | Thinning Resolution (in mm)

(in mm) skin skull brain
cube386ns | 385,901 366,043 2.0 2.0ns 2.0ns 2.0ns
cube386 385,901 366,043 2.0 2.0 2.0 2.0

tet265 265,313 | 1,620,794 1.8 2.0, rest | 2.0, rest | all 2.0

The model was then meshed using the different mesh generation approaches de-
scribed in Sections 4.1.3 and 4.1.4. Table 4.3 summarizes the parametrization of
the different meshes. For hexahedra model cube386ns, a node-shift was used at the
compartment boundaries skin, outer and inner skull. For tetrahedra model tet265,
the following surfaces were included in the meshing procedure as also indicated in
Table 4.3: skin, 2mm eroded skin, outer skull, 2mm eroded outer skull, inner skull
and continuous 2mm erosions into the depths. Following the results of Section 4.1.6,
a strongly smoothed triangular mesh with 10mm edge length (SSM10) from a 3mm
eroded outer skull surface was used for the modeling of 1 to 10 quasi-radial to quasi-
tangential skull conductivity anisotropy. While, in a multilayer-sphere model, RDM
and MAG errors for the numerically computed potential distribution serve for indi-
rect validation of the modeled skull conductivity tensors, those error metrics are not
available in a realistic head model. It is therefore important to at least visualize the
tensors in order to check for correct skull tensor registration and eigenvector direc-
tions. Fig. 4.5 shows the anisotropic conductivity tensor ellipsoids of the human skull

e

FIGURE 4.5. 1:10 (quasi-radial:quasi-tangential) anisotropic conductivity tensor ellipsoids of the
human skull compartment when using SSM10 with underlying T1-MRI. Visualization, carried out
using BioPSE [3], is important to validate if the ellipsoids are oblate with minor azis in quasi-radial
direction through the skull compartment.

compartment with the underlying T1-MRI. The figure shows that the ellipsoids are
oblate with minor axis in quasi-radial direction through the skull compartment.

In a first study, we computed the singularity, the correction and the total potential
in model cube386ns for a radially and a tangentially oriented source at an eccentric
location in somatosensory cortex. Fig. 4.6 presents the visualization results.

We then compared the results for the different mesh generation techniques. As
the node-shifted hexahedra model showed the best accuracies in the 3-layer sphere
validations, we chose this model as a reference. In Table 4.4 we present the differences
to the solutions in other models. With a CC above 0.998 and a maximal MAG of
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| Singularity pot. | Correction pot. | Total pot. | Electrode pot. |

X X
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Radially oriented somatosensory source

FIGURE 4.6. Realistically-shaped head model cube386ns with 1 to 10 quasi-radial to quasi-
tangential anisotropic skull compartment: Visualization results for the singularity potential, the
correction potential and the total potential in the volume conductor and at the 71 surface electrodes
for a quasi-tangentially and a quasi-radially oriented source in somatosensory cortex. Visualization
was carried out using BioPSE [3].

TABLE 4.4
Realistic three compartment head models, comparison of results using different meshing tech-
niques: Differences between the forward computations at 71 electrodes using the subtraction approach
for an eccentric source in the somatosensory cortex. The reference results are the ones in the node-
shifted 2mm cube model, because this model performed best in the sphere validation studies.

Differences for somatosensory source
Tangential Radial
Model CC MAG CC MAG
cube386 | 0.9989 | 1.0643 | 0.9982 1.0689
tet265 0.9997 | 1.0009 | 0.9997 | 0.9849

6.9%, the differences between the three models are fairly small. Again, the regular
2mm hexahedra model cube386 exhibits the highest magnitude difference because of
its rough approximation of the interfaces.

TABLE 4.5
Realistic volume conductor modeling: Computation times (see Equation (3.20)) and mazimal
memory usage. (a) Has to be done once per head geometry. (b) Following [32], this has to be done
maz (nb_sour,nb_sens) times. (c) Has to be done nb_sour times.

Model Computation times (in sec.) Max.mem.
(2) (b) (c)
K, Kcorr S AMG setup || Ku =3 u>®
cube386ns 17.2 14.8 16.6 62 0.3 795MB
tet265 28.1 40.3 8.2 3.6 0.14 675MB

In a final study, the computation times and the maximal amount of memory
in our current implementation were measured for models cube386ns and tet265
(Table 4.5). In Table 4.5, nb_sour is the number of sources and nb_sens the number of
measurement sensors. The experiment was run on a Linux-PC with an Intel Pentium
4 processor (3GHz). The computation time for S contains the times for finding the
source element (determination of g), for determining surface finite elements and
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for computing the integration over all surface elements. For the determination of a
surface element, the property was used that it has at least one face, that is not a
face to any other element. A list structure was therefore built up where, for each
mesh node, all neighboring finite elements were administered. A face of an element
is then a face of the surface of the volume conductor, if the intersection of the finite
elements of all face nodes is just a single finite element. For the AMG-CG, the relative
solver accuracy was chosen to be 104, The multiplication of a sparse matrix times
a fully-populated vector as for —(K°™ + S)u> in Equation (3.20)can be neglected
(0.03 sec. for cube3d86ns and 0.02 sec. for tet265).

With regard to the inverse problem, the computation of K, K™ S and the
setup of the AMG preconditioner only have to be carried out once per head geometry.
nb_sour is generally by far larger than nb_sens and the leadfield basis approach should
be applied [32]. It reduces the necessary computation to mainly nb_sens times the
solution of an equation system of the form Ko = p with a fully-populated right-hand-
side vector p (Table 4.5, (b)) to built the lead field basis Bgg,, a fully-populated matrix
with nb_sens—1 rows and N columns. Each forward computation then only involves
the computation of 4> (Table 4.5, (c)) and its multiplication with the lead-field basis,
ie., B, u*> (0.68 sec. for model cube386ns and 0.47 sec. for model tet265).

eeg=

5. Discussion. In this paper, we presented the theory of the subtraction ap-
proach to model a point dipole in finite element (FE) method based Electroen-
cephalography (EEG) source reconstruction for isotropic and anisotropic volume con-
ductors. We proved existence and uniqueness of a weak solution for the potential in
zero-mean function space. We embedded our numerical approach for the correction
potential in the general FE convergence theory and showed that the constant in the
FE convergence proof largely depends on the distance of the source to the next con-
ductivity jump. Therefore, higher FE trial-functions or, if linear trial-functions are
used, a higher integration order and/or multiple element layers are needed between
the source and the next conductivity jump, otherwise one would have to be aware of
probably larger and unacceptable numerical errors. Since the Magnetoencephalogra-
phy (MEG) forward problem is also based on the computed electric potential (see,
e.g., [32]), our results are also applicable to MEG source reconstruction. Besides the
presented clear mathematical theory, a further important advantage of the subtraction
approach is the fact that, as soon as the corresponding singularity potential function
is known, the implementation of any other primary source model is straight-forward.
Our theoretical statements are thus valid for any such primary source model. Despite
the fact that the bioelectric primary current sources in EEG and MEG are naturally
continuous throughout the cortical tissue (which would also reduce numerical errors),
they are usually modeled with a mathematical point dipole [22, 24].

The main aim of our study was therefore to validate the subtraction approach
for the usual model, i.e., a point current dipole in a three-layer sphere with piecewise
homogeneous conductivity, for which series expansion formulas are available [23]. As
a measure of similarity, we used two common criteria [19, 6]: The first and by far more
important one, the Correlation Coefficient (CC), indicates defects in the topography
of the potential distribution and therefore, with regard to the inverse solution, defects
in the localization and orientation of the sources. Another frequently used topography
error measure is the Relative Difference Measure (RDM), introduced in [19]. For the
used zero-mean data, CC and RDM can be related through RDM = /2(1 — CC)
and a CC above 0.99 has been associated with a localization error of no more than
1lmm, while a CC of 0.98 led to dipole localization errors of 5-8mm in average, max-
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imally 1.5cm [27]. In source localization practice, an accuracy of lmm is more than
satisfactory because main limitations are then due to other sources of error such as
the limited data signal-to-noise ratio, segmentation errors, inaccuracies in the deter-
mination of the conductivities, etc.. The second error measure, the MAGnification
factor (MAG), indicates changes in the potential amplitude and thus in the source
strength. In our sphere validation studies, we placed dipole sources at positions along
the y-axes from the center of the model in 1mm steps towards the inner skull sur-
face up to an eccentricity of 95% . As reported in [18], the dipoles that are located
in the cortex will have an eccentricity lower than 92%. The reasons are that first,
compartments such as the arachnoid cavity, the subdural cavity and the dura mater,
whose conductivities are generally approximated with the conductivity of the brain
compartment [5, 6, 18], are located between the cortex and the inner skull surface
and second, the dipoles are located some millimeters below the cortical surface (see,
e.g., [24]). Our validation has been carried out for two different classes of elements,
FE hexahedra and tetrahedra. In the class of hexahedra, we examined regular and
geometry-conforming node-shifted elements.

With a CC of 0.998 or better over the whole range of realistic eccentricities at
the 134 regularly distributed surface or depths electrodes, we achieved completely
satisfying results for all tested 1lmm and 2mm isotropic and anisotropic hexahedra
models. The node-shift reduced the maximal MAG error for the 2mm anisotropic
model from about 15% to only 4.3%. For the tetrahedra models, we observed larger
topography errors and sharper declines at high eccentricities, but with minimal CC
values of 0.99 for the whole range of tested eccentricities, the three models with higher
resolutions still perform sufficiently good. In summary, with regard to the accuracy
and computational complexity, the 2mm node-shifted hexahedra model achieved the
best results. We found that with increasing eccentricity, a higher relative solver accu-
racy is needed for the correction potential, a relative accuracy of 104 being sufficient
for the used AMG-CG approach. Using eccentric sources in human somatosensory
cortex in a realistically-shaped three-compartment head model with anisotropic skull
compartment, we computed the potential distributions within the volume conductor.
Validation was carried out by visually inspecting and comparing the results when
using the different meshing techniques.

It is well-known (and in this paper, we have given a theoretical reasoning for
this fact), that with increasing eccentricity, the numerical accuracy in sphere model
validations decreases, especially with regard to radially oriented dipoles [2, 5, 18]. This
is not only the case for the subtraction approach in FE modeling, but also for the direct
approach in FE modeling [36, 6, 16, 21] and in boundary element modeling (see, e.g.,
[10]). In [2, 5, 18], coarser tetrahedra mesh resolutions were considered so that larger
numerical errors resulted with CC’s below 0.98 for radial dipoles with eccentricities
above 90%. In [2, 5], local mesh refinement was used to achieve acceptable results
for all realistic eccentricities. Nevertheless, with regard to the inverse problem, the
setup of source-location dependent locally refined meshes is difficult to implement and
time-consuming to compute and thus might not be practicable for an inverse source
analysis. We propose to use a single mesh that is sufficiently fine and that resolves the
geometry. For the efficient solution of the inverse problem the lead field-bases concept
can then be used [32]. As shown in [31], the amount of work for the computation of
the lead field bases can be reduced by means of an AMG-CG solver.

In subsequent studies, we will perform profound comparisons of the subtraction
approach with the diverse direct methods [36, 6, 30, 27, 21] for the computation of
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the EEG and MEG inverse problem both in anisotropic sphere models as well as
in realistic anisotropic head volume conductors in order to gain deeper insight in
the advantages and disadvantages of our new approach. A first comparison of the
subtraction method with a direct potential approach using partial integration [30, 21]
and with a direct potential approach using the principle of Saint Venant [6] can
be found in [35]. As shown in the theory section of this paper, the subtraction
approach enables the inclusion of local anisotropy in the source area. It is well-
known that the human cortex is about 1:2 anisotropic and that both EEG and MEG
forward problem are especially sensitive towards local conductivity changes [16, 33].
As a final note, instead of trying to reduce numerical errors for the probably ”over-
singular” mathematical point dipole, it is important to reconsider other and especially
smoother source models, taking into account the fact that the primary current sources
are continuous throughout the cortical tissue [28, 24]. This is where the FE-based
subtraction method might provide a further important contribution to EEG and MEG
source analysis.
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