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SYNCHRONIZATION OF DISCRETE-TIME DYNAMICAL

NETWORKS WITH TIME-VARYING COUPLINGS
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Abstract. We study the local complete synchronization of discrete-time dynamical networks
with time-varying couplings. Our conditions for the temporal variation of the couplings are rather
general and include both variations in the network structure and in the reaction dynamics; the re-
actions could, for example, be driven by a random dynamical system. A basic tool is the concept of
Hajnal diameter which we extend to infinite Jacobian matrix sequences. The Hajnal diameter can
be used to verify synchronization and we show that it is equivalent to other quantities which have
been extended to time-varying cases, such as the projection radius, projection Lyapunov exponents,
and transverse Lyapunov exponents. Furthermore, these results are used to investigate the syn-
chronization problem in coupled map networks with time-varying topologies and possibly directed
and weighted edges. In this case, the Hajnal diameter of the infinite coupling matrices can be used
to measure the synchronizability of the network process. As we show, the network is capable of
synchronizing some chaotic map if and only if there exists an integer T > 0 such that for any time
interval of length T , there exists a vertex which can access other vertices by directed paths in that
time interval.

Key words. Synchronization, dynamical networks, time-varying coupling, Hajnal diameter,
projection joint spectral radius, Lyapunov exponents, spanning tree
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1. Introduction. Synchronization of dynamical processes on networks is presently
an active research topic. It represents a mathematical framework that on the one hand
can elucidate – desired or undesired – synchronization phenomena in diverse appli-
cations. On the other hand, the synchronization paradigm is formulated in such a
manner that powerful mathematical techniques from dynamical systems and graph
theory can be utilized. A standard version is

xi(t + 1) = f i(x1(t), x2(t), · · · , xm(t)), i = 1, 2, · · · , m, (1.1)

where t ∈ Z
+ = {0, 1, 2, · · · } denotes the discrete time, xi(t) ∈ R denotes the state

variable of unit (veretex) i, and for i = 1, 2, · · · , m, f i : R
m → R is a C1 function.

This dynamical systems formulation contains two aspects. One of them is the reaction
dynamics at each node or vertex of the network. The other one is the coupling
structure, that is, whether and how strongly, the dynamics at one node is directly
influenced by the states of the other nodes.

Equation (1.1) clearly is an abstraction and simplification of synchronization prob-
lems found in applications. On the basis of understanding the dynamics of (1.1),
research should then move on to more realistic scenarios. Therefore, in the present
work, we address the question of synchronization when the right hand side of (1.1) is
allowed to vary in time. Thus, not only the dynamics itself is a temporal process, but
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also the underlying structure changes in time, albeit in some applications that may
occur on a slower time scale.

The essence of the hypotheses on f = [f 1, · · · , fm] needed for synchronization
results (to be stated in precise terms shortly) is that synchronization is possible as an
invariant state, that is, when the dynamics starts on the diagonal [x, · · · , x], it will
stay there, and that this diagonal possesses a stable attracting state. The question
about synchronization then is whether this state is also attracting for dynamical states
[x1, · · · , xm] outside the diagonal, at least locally, that is when the components xi are
not necessarily equal, but close to each other. This can be translated into a question
about transverse Lyapunov exponents, and one typically concludes that the existence
of a synchronized attractor in the sense of Milnor. In our contribution, we can already
strengthen this result by concluding (under appropriate assumptions) the existence
of a synchronized attractor in the strong sense instead of only in the weaker sense
of Milnor. (We shall call this local complete synchronization.) This comes about
because we achieve a reformulation of the synchronization problem in terms of Hajnal
diameters (a concept to be explained below).

Our work, however, goes beyond that. As already indicated, our main contri-
bution is that we can study the local complete synchronization of general coupled
networks with time-varying coupling functions, in which each unit is dynamically
evolving according to

xi(t + 1) = f i
t (x

1(t), x2(t), · · · , xm(t)), i = 1, 2, · · · , m. (1.2)

This formulation, in fact, covers both aspects described above, the reaction dynamics
as well as the coupling structure. The main purpose of the present paper then is to
identify general conditions under which we can prove synchronization of the dynamics
(1.2). Thus, we can handle variations of the reaction dynamics as well as of the
underlying network topology. We shall mention below various applications where this
is of interest.

Before that, however, we state our technical hypothesis on the right hand side of
(1.2): for each t ∈ Z

+, f i
t : R

m → R is a C1 function with the following hypothesis:
H1. There exists a C1 function f(s) : R → R such that

f i
t (s, s, · · · , s) = f(s)

holds for all s ∈ R, t ∈ Z
+, and i = 1, 2, · · · , m. Moreover, for any compact set

K ⊂ R
m f i

t and the Jacobian matrices [∂f i
t/∂xj]mi,j=1 are all equicontinuous in K

with respect to t ∈ Z
+ and the latter are all nonsingular in K.

This hypothesis ensures that the diagonal synchronization manifold

S =

{

[x1, x2, · · · , xm]⊤ ∈ R
m : xi = xj , i, j = 1, 2, · · · , m

}

is an invariant manifold for the evolution (1.2). If x1(t) = x2(t) = · · · = xm(t) = s(t)
denotes the synchronized state, then

s(t + 1) = f(s(t)). (1.3)

For the synchronized state (1.3), we assume the existence of an attractor:
H2. There exists a compact asymptotically stable attractor A for Eq. (1.3). That

is, (i) A ⊂ R is a forward invariant set; (ii) for any neighborhood U of A there
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exists a neighborhood V of A such that fn(V ) ⊂ U for all n ∈ Z
+; (iii) for any

sufficiently small neighborhood U of A, fn(U) converges to A, in the sense that for
any neighborhood V , there exists n0 such that fn(U) ⊂ V for n ≥ n0; (iv) there exists
s∗ ∈ A for which the ω-limit set is A.

Let Am denote the Cartesian product A × · · · × A (m times). Local complete
synchronization (synchronization for simplicity) is defined in the sense that the set
S ∩ Am = {[x, · · · , x] : x ∈ A} is an asymptotically stable attractor in R

m. That is,
for the coupled dynamical system (1.2), differences between components converge to
zero if the initial states are picked sufficiently near S ∩ Am, i.e., if the components
are all close to the attractor A and if their differences are sufficiently small. In order
to show such a synchronization, one needs a third hypothesis H3 that in technical
terms is about Lyapunov exponents transverse to the diagonal. That is, while the
dynamics on the attractor may well be expanding (the attractor might be chaotic),
the transverse directions need to be suitably contracting to ensure synchronization.
The corresponding hypothesis H3 will be stated below (see (3.2)) because it requires
the introduction of crucial technical concepts.

It is an important aspect of our work that we shall derive the attractivity here
in the classical sense, and not in the sense of Milnor, i.e., not only some set of pos-
itive measure, but a full neighborhood is attracted. For details about the difference
between Milnor attractors and asymptotically stable attractors; see [1, 2]. Usually,
when studying synchronization, one derives only the existence of a Milnor attractor;
see [3].

The motivation for studying (1.2) comes from the well-known coupled map lattices
(CML) [4], which can be written as follows:

xi(t + 1) = f(xi(t)) +

m
∑

j=1

Lijf(xj(t)), i = 1, 2, · · · , m, (1.4)

where f : R → R is a differentiable map and L = [Lij ]
m
i,j=1 ∈ R

m×m is the diffusion
matrix, which is determined by the topological structure of the network and satisfies
Lij ≥ 0 for all i 6= j, and

∑m
j=1 Lij = 0 for all i = 1, 2, · · · , m. Letting x =

[x1, x2, . . . , xm]⊤ ∈ R
m, F (x) = [f(x1), f(x2), . . . , f(xm)]⊤ ∈ R

m, and G = Im + L,
where Im denotes the identity matrix of dimension m, the CML (1.4) can be written
in the matrix form

x(t + 1) = GF (x(t)) (1.5)

where G = [Gij ]
m
i,j=1 ∈ R

m×m denotes the coupling and satisfies Gij ≥ 0 for i 6= j

and
∑m

j=1 Gij = 1 for all i = 1, 2, · · · , m. So, if Gii ≥ 0 holds for all i = 1, 2, · · · , m,
then G is a stochastic matrix.

Recently, synchronization of CML has attracted increasing attention [3,5–8]. Lin-
ear stability analysis of the synchronization manifold was proposed and transverse
Lyapunov exponents were used to analyze the influence of the topological structure
of networks. In [1], conditions for generalized transverse stability were presented. If
the transverse (normal) Lyapunov exponents are negative, a chaotic attractor on an
invariant submanifold can be asymptotically stable over the manifold. Ref. [9,10] have
found out that chaos synchronization in a network of nonlinear continuous-time or
discrete-time dynamical systems respectively is possible if and only if the correspond-
ing graph has a spanning tree. However, synchronization analysis has so far been
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limited to autonomous systems, where the interactions between the vertices (state
components) are static and do not vary through time.

In the social, natural, and engineering real-world, the topology of the network
often varies through time. In communication networks, for example, one must consider
dynamical networks of moving agents. Since the agents are moving, some of the
existing connections can fail simply due to occurrence of an obstacle between agents.
Also, some new connections may be created when one agent enters the effective region
of other agents [11]. On top of that, randomness may also occur. In a communication
network, the information channel of two agents at each time may be random [12].
When an error occurs at some time, the connections in the system will vary. In [11–13],
synchronization of multi-agent networks was considered where the state of each vertex
is adapted according to the states of its connected neighbors with switching connecting
topologies. This multi-agent dynamical network can be written in discrete-time form
as

xi(t + 1) =

m
∑

j=1

Gij(t)x
j(t), i = 1, 2, · · · , m, (1.6)

where xj(t) ∈ R is the state variable of vertex j and [Gij(t)]
m
i,j=1, t ∈ Z

+, are stochas-
tic matrices. Ref. [14] considered a convexity-conserving coupling function which is
equivalent to the linear coupling function in (1.6). It was found that the connectivity
of the switching graphs plays a key role in the synchronization of multi-agent networks
with switching topologies. Also, in the recent literature [15–17], synchronization of
continuous-time dynamical networks with time-varying topologies was studied. The
time-varying couplings investigated, however, are specific, with either symmetry [15],
node balance [16], or fixed time average [17].

Therefore, it is natural to investigate the synchronization of CML with general
time-varying connections as:

x(t + 1) = G(t)F (x(t)) (1.7)

where G(t) = [Gij(t)]
m
i,j=1 ∈ R

m×m denotes the coupling matrix at time t and F (x) =

[f(x1), · · · , f(xn)]⊤ is a differentiable function. We shall address this problem in the
context of the general coupled system (1.2).

Let

x(t) =











x1(t)
x2(t)

...
xm(t)











and Ft(x(t)) =











f1
t (x1(t), · · · , xm(t))

f2
t (x1(t), · · · , xm(t))

...
fm

t (x1(t), · · · , xm(t))











.

Eq. (1.2) can be rewritten in a matrix form:

x(t + 1) = Ft(x(t)). (1.8)

The time-varying coupling can have a special form and may be driven by some
other dynamical system. Let Y = {Ω,F , P, θ(t)} denote a metric dynamical system
(MDS), where Ω is the metric state space, F is the σ-algebra, P is the probability
measure, and θ(t) is a semiflow satisfying θ(t+s) = θ(t) ◦ θ(s) and θ(0) = id, where id
denotes the identity map. Then, the coupled system can be regarded as a random
dynamical system (RDS) driven by Y:

x(t + 1) = F (x(t), θ(t)ω), t ∈ Z
+, ω ∈ Ω. (1.9)
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In fact, one can regard the dynamical system (1.9) as a skew product semiflow,

Θ : Z
+ × Ω × R

m → Ω × R
m

Θ(t)(ω, x) = (θ(t)ω, x(t)).

Furthermore, the coupled system can have the form

x(t + 1) = F (x(t), u(t)), t ∈ Z
+, (1.10)

where u belongs to some function class U and may be interpreted as an external input
or force. Then, defining [θ(t)u](τ) = u(t + τ) as a shift map, the system (1.10) has
the form of (1.9). In this paper, we first investigate the general time-varying case of
the system (1.8) and also apply our results to systems of the form (1.9).

To study synchronization of the system (1.8), we use its variational equation by
linearizing it. Consider the difference δxi(t) = xi(t) − f (t−t0)(s0). This implies that
δxi(t) − δxj(t) = xi(t) − xj(t) holds for all i, j = 1, 2, · · · , m. We have

δxi(t + t0) =

m
∑

j=1

∂f i
t+t0−1

∂xj
(f (t−1)(s0))δx

j(t + t0 − 1), i = 1, 2, · · · , m. (1.11)

where for simplicity we have used the notation
∂fi

t+t0−1

∂xj (f (t−1)(s0)) to denote
∂fi

t+t0−1

∂xj (f (t−1)(s0), · · · , f (t−1)(s0)). Let

δx(t) =







δx1(t)
...

δxm(t)






, Dt(s) =

[

∂f i
t

∂xj
(s)

]m

i,j=1

.

The variational equation (1.11) is written in matrix form,

δx(t + t0) = Dt+t0−1(f
(t−1)(s0))δx(t + t0 − 1). (1.12)

For the Jacobian matrix, the following lemma is an immediate consequence of the
hypothesis H1.

Lemma 1.1.

m
∑

j=1

∂f i
t

∂xj
(s, s, · · · , s) = f ′(s), i = 1, 2, · · · , m and t ∈ Z

+.

Namely, all rows of the Jacobian matrix [∂f i
t/∂xj]

m
i,j=1 evaluated on the synchroniza-

tion manifold S have the same sum, which is equal to f ′(s).
As a special case, if the time variation is driven by some dynamical system

Y = {Ω,F , P, θ(t)}, then the variational system does not depend on the initial time
t0, but only on (s0, ω). Thus, the Jacobian matrix can be written in the form
D(f (t)(s0), θ

(t)ω) = Dt(f
(t)(s)), by which the variational system can be written as:

δx(t + 1) = D(f (t)(s0), θ
(t)ω)δx(t). (1.13)

In this paper, we first extend the concept of Hajnal diameter to general matrices.
A matrix with Hajnal diameter less than one has the property of compressing the
convex hull of {x1, · · · , xm}. Consequently, for an infinite sequence of time-varying
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Jacobian matrices, the average compression rate can be used to verify synchronization.
Since the Jacobian matrices have identical row sums, the (skew) projection along the
diagonal synchronization direction can be used to define the projection joint spectral
radius, which equals the Hajnal diameter. Furthermore, we show that the Hajnal
diameter is equal to the largest Lyapunov exponent along directions transverse to the
synchronization manifold; hence, it can also be used to determine whether the coupled
system (1.2) can be synchronized.

Secondly, we apply these results to discuss the synchronization of the CML with
time-varying couplings. As we shall show, the Hajnal diameter of infinite coupling
stochastic matrices can be utilized to measure the synchronizability of the coupling
process. More precisely, the coupled system (1.7) synchronizes if the sum of the log-
arithm of the Hajnal diameter and the largest Lyapunov exponent of the uncoupled
system is negative. Using the equivalence of the Hajnal diameter, projection joint
spectral radius, and transverse Lyapunov exponents, we study some particular ex-
amples for which the Hajnal diameter can be computed, including static coupling, a
finite coupling set, and a multiplicative ergodic stochastic matrix process. We also
present numerical examples to illustrate our theoretical results.

The connection structure of the CML (1.5) naturally gives rise to a graph, where
each unit can be regarded as a vertex. Hence, we associate the coupling matrix G
with a graph Γ = (V, E), with the vertex set V = {1, 2, . . . , m} and the edge set
E = {eij}, where there exists a directed edge from vertex j to vertex i if and only
if Gij > 0. The graphs we consider here are assumed to be simple (that is, without
loops and multiple edges), but are allowed to be directed and weighted. That is, we
do not assume a symmetric coupling scheme.

We extend this idea to an infinite graph sequence {Γ(t)}. That is, we regard
a time-varying graph as a graph process {Γ(t)}t∈Z+ . Define Γ(t) = [V, E(t)] where
V = {1, 2, · · · , m} denotes the vertex set and E(t) = {eij(t)} denotes the edge set of
the graph at time t. The time-varying coupling matrix G(t) might then be regarded as
a function of the time-varying graph sequence, i.e., G(t) = G(Γ(t)). A basic problem
that arises is, which kind of sequence can ensure the synchrony of the coupled system
for some chaotic synchronized state s(t+1) = f(s(t)). As we shall show, the property
that the union of the Γ(t) contains a spanning tree is important for synchronizing
chaotic maps. We prove that under certain conditions, the coupling graph process
can synchronize some chaotic maps, if and only if there exists an integer T > 0 such
that there exists at least one vertex j from which any other vertex can be accessible
within a time interval of length T .

This paper is organized as follows. In Section 2, we present some definitions
and lemmas on the Hajnal diameter, projection joint spectral radius, projection Lya-
punov exponents, and transverse Lyapunov exponents for generalized Jacobian matrix
sequences as well as stochastic matrix sequences. In Section 3, we study the synchro-
nization of the generalized coupled discrete-time systems with time-varying couplings
(1.2). In Section 4, we discuss the synchronization of the CML with time-varying
couplings (1.7) and study the relation between synchronizability and coupling graph
process topologies. In addition, we present some examples where synchronizability
is analytically computable. In Section 5, we present numerical examples to illustrate
the theoretical results, and conclude the paper in Section 6.

2. Preliminaries. In this section we present some definitions and lemmas on
matrix sequences. First, we extend the definitions of the Hajnal diameter and the
projection joint spectral radius, introduced in [18–20] for stochastic matrices, to gen-
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eralized time-varying matrix sequence. Furthermore, we extend Lyapunov exponents
and projection Lyapunov exponents to the general time-varying case and discuss their
relation. Secondly, we specialize these definitions to stochastic matrix sequences and
introduce the relation between a stochastic matrix sequence and graph topology.

2.1. General definitions. We study the following generalized time-varying lin-
ear system

u(t + t0 + 1) = Lt+t0(̺
(t)(φ))u(t + t0), (2.1)

where ̺(t) is defined by a random dynamical system {Φ,B, P, ̺(t)}, where Φ denotes
the state space, B the σ-algebra on Φ, P the probability measure, ̺(t) a semiflow.
Studying the linear system (2.1) comes from the variational system of the coupled
system (1.2). For the variational system (1.12), ̺(t)(·) represents the synchronized
state flow f (t)(·). And, if Lt(·) is independent of t, then the linear system (2.1) can
be rewritten as:

u(t + 1) = L(̺(t)(φ))u(t). (2.2)

Thus, it can represent the variational system (1.13) as a special case, where ̺(t) is the
product flow (f (t)(·), θ(t)(·)). Hence, the linear system (2.1) can unify the two cases
of variational systems (1.12,1.13) of the coupled system (1.2,1.9).

For this purpose, we define a generalized matrix sequence map L from Z
+ ×Φ to

2R
m×m

,

L : Z
+ × Φ → 2R

m×m

(t0, φ) 7→ {Lt+t0(̺
(t)φ)}t∈Z+ . (2.3)

where 2R
m×m

denotes the set containing all subsets of R
m×m. In [18,19], the concept

of the Hajnal diameter was introduced to describe the compression rate of a stochastic
matrix. We extend it to general matrices below.

Definition 2.1. For a matrix L with row vectors g1, · · · , gm and a vector norm
‖ · ‖ in R

m, the Hajnal diameter of L is defined by

diam(L, ‖ · ‖) = max
i,j

‖gi − gj‖.

We also introduce the Hajnal diameter for a matrix sequence map L.
Definition 2.2. For a generalized matrix sequence map L, the Hajnal diameter

of L at φ ∈ Φ is defined by

diam(L, φ) = lim
t→∞

sup
t0≥0

{

diam(

t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)

}

1
t

.

where
∏

denotes the left matrix product:
∏n

k=1 Ak = An × An−1 × · · · × A1.
The Hajnal diameter for the infinite matrix sequence map L does not depend on

the choice of the norm. In fact, all norms in a Euclidean space are equivalent and any
additional factor is eliminated by the power 1/t and the limit as t → ∞.

Let H ⊂ R
m×m be a class of matrices having the property that all row sums are

the same. Thus, all matrices in H share the common eigenvector e0 = [1, 1, · · · , 1]⊤,
where the corresponding eigenvalue is the row sum of the matrix. Then, the projection
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joint spectral radius can be defined for a generalized matrix sequence map L, similar
to introduced in [20] as follows.

Definition 2.3. Suppose L(t0, φ) ⊂ H for t0 ∈ Z
+ and φ ∈ Φ. Let E0 be the

subspace spanned by the synchronization direction e0 = [1, 1, · · · , 1]⊤, and P be any
(m−1)×m matrix with exact kernel E0. We denote by L̂ ∈ R

(m−1)×(m−1) the (skew)
projection of matrix L ∈ H as the unique solution of

PL = L̂P. (2.4)

The projection joint spectral radius of the generalized matrix sequence map L is defined
as

ρ̂(L, φ) = lim
t→∞

sup
t0≥0

∥

∥

∥

∥

t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)

∥

∥

∥

∥

1
t

.

One can see that ρ̂(L, φ) is independent of the choice of the matrix norm ‖ · ‖
induced by vector norm. The following lemma shows that it is also independent of
the choice of the matrix P .

Lemma 2.4. Suppose L(t0, φ) ⊂ H for all t0 ≥ 0 and φ ∈ Φ. Then

ρ̂(L, φ) = diam(L, φ).

A proof is given in the Appendix.
The Lyapunov exponents are often used to study evolution of the dynamics [5,6].

Here, we extend the definitions of Lyapunov exponents to general time-varying cases.
Definition 2.5. For the coupled system (1.2), the Lyapunov exponent of the

matrix sequence map L initiated by φ ∈ Φ in the direction u ∈ R
m is defined as

λ(L, φ, u) = lim
t→∞

1

t
sup
t0≥0

log
∥

∥

t+t0−1
∏

k=t0

Lk(̺(k−t0)φ)u
∥

∥. (2.5)

The projection along the synchronization direction e0 can also define a Lyapunov
exponent, called the projection Lyapunov exponent:

λ̂(L, φ, v) = lim
t→∞

1

t
sup
t0≥0

log
∥

∥

t+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)v
∥

∥, (2.6)

where L̂k(̺kφ) is the projection of matrix Lk(̺kφ) as defined in Definition 2.3.
It can be seen that the definition of the generalized Lyapunov exponent above sat-

isfies the basic properties of Lyapunov exponents1. For more details about generalized
Lyapunov exponents, we refer to [23].

Lemma 2.6. Suppose L(t0, φ) ⊂ H for all φ ∈ Φ and t0 ≥ 0. Then,

sup
v∈Rm−1,v 6=0

λ̂(L, φ, v) = log ρ̂(L, φ) = log diam(L, φ).

A proof is given in the Appendix.

1This kind of definition of characteristic exponent is similar to the Bohl exponent used to study
uniform stability of time-varying systems in [22].
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This lemma implies that the projection joint spectral radius gives the largest
Lyapunov exponent in directions transverse to the synchronization direction e0 of the
matrix sequence map L.

When the time dependence arises from being totally driven by some random
dynamical system, we can write the generalized matrix sequence map L as L(φ) =
{L(̺(t)φ)}t∈Z+ since it is independent of t0 and is just a map on Φ. As introduced
in [24], we have specific definitions for Lyapunov exponents of the time-varying system
(2.2) as follows.

For the linear system (2.2), the Lyapunov exponent of the matrix sequence map
L initiated by φ ∈ Φ in the direction u ∈ R

m is defined as

λ(L, φ, u) = lim
t→∞

1

t
log

∥

∥

∥

∥

t−1
∏

k=0

L(̺(k)φ)u

∥

∥

∥

∥

. (2.7)

If L(φ) ⊂ H for all φ ∈ Φ, then the Lyapunov exponent in the synchronization
direction e0 is

λ(L, φ, e0) = lim
t→∞

1

t
log

t−1
∑

k=0

|c(k)|, (2.8)

where c(k) denotes the corresponding common row sum at each time k. The projection
along the synchronization direction e0 can also define a Lyapunov exponent, called
the projection Lyapunov exponent:

λ̂(L, φ, v) = lim
t→∞

1

t
log

∥

∥

∥

∥

t−1
∏

k=0

L̂k(̺(k)φ)v

∥

∥

∥

∥

, (2.9)

where L̂(̺kω) is the (skew) projection of matrix L(̺kω). Also, the Hajnal diameter
and projection joint spectral radius become

diam(L, φ) = lim
t→∞

{

diam
(

t−1
∏

k=0

L(̺(t)φ)
)

}
1
t

, ρ̂(L, φ) = lim
t→∞

∥

∥

∥

∥

t−1
∏

k=0

L̂(̺(k)φ)

∥

∥

∥

∥

1
t

.

According to Lemmas 2.4 and 2.6, log diam(L, φ) = log ρ̂(L, φ) = supv∈Rm−1,v 6=0 λ̂(L, φ, v).
Let λ0 be the Lyapunov exponent along the synchronization direction e0 and λ1, λ2,
· · · , λm−1 be the remaining Lyapunov exponents for the initial condition φ, counted
with multiplicities.

Lemma 2.7. Suppose that L(φ) ⊂ H is time-independent. Let the matrix D(t) =
[Dij(t)]

m
i,j=1 denote the matrix L(̺(t)φ) and c(t) denote the corresponding common

row sum of D(t). If the following hold

1. lim
t→∞

1/t
∑t−1

k=0 log |c(k)| = λ0,

2. lim
t→∞

1/t log+ |Dij(t)| ≤ 0, for all i, j = 1, 2, · · · , m, where log+(z) = max{log z, 0},

then

log diam(L, φ) = log ρ̂(L, φ) = sup
i≥1

λi.

A proof is given in the Appendix.
Using the concept of Hajnal diameter, we can define (uniform) synchronization

of the non-autonomous system (1.2) as follows:
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Definition 2.8. The coupled system (1.2) is said to be (uniformly locally com-
pletely) synchronized if there exists η > 0 such that for any ǫ > 0, there exists T > 0
such that the inequality

diam
(

[x1(t), x2(t), · · · , xm(t)]⊤
)

≤ ǫ (2.10)

holds for all t > t0 + T , t0 ≥ 0 and xi(t0), i = 1, 2, · · · , m in the η neighborhood of
s(t0) of a synchronized state s(t).

2.2. Stochastic matrix sequences. The above definitions can also be used to
deal with stochastic matrix sequences.

Definition 2.9. A matrix G ∈ R
m×m is said to be a stochastic matrix if its

elements are nonnegative and each row sum is 1.
We here consider the general time-varying case without the assumption of an

underlying random dynamical system and write a stochastic matrix sequence as G =
{G(t)}t∈Z+ . The case that the time variation is driven by some dynamical system can
be regarded as a special one.

Definition 2.10. The Hajnal diameter of G is defined as

diam(G) = lim
t→∞

sup
t0≥0

(

diam

t0+t−1
∏

k=t0

G(k)

)
1
t

(2.11)

and the projection joint spectral radius for G is

ρ̂(G) = lim
t→∞

sup
t0≥0

∥

∥

∥

∥

t0+t−1
∏

k=t0

Ĝ(k)

∥

∥

∥

∥

1
t

(2.12)

where Ĝ(t) is the projection of G(t), as in Definition 2.3.
Then, from Lemma 2.4, we have
Lemma 2.11. diam(G) = ρ̂(G).
To estimate the Hajnal diameter of a product of stochastic matrices, we use the

concept of scrambling introduced in [20].
Definition 2.12. A stochastic matrix G = [Gij ]

m
i,j=1 ∈ R

m×m is said to be
scrambling if for any i, j, there exists an index k such that Gik 6= 0 and Gjk 6= 0.

For gi = [gi,1, · · · , gi,m] ∈ R
m and gj = [gj,1, · · · , gj,m] ∈ R

m, define

gi ∧ gj =
[

min(gi,1, gj,1), · · · , min(gi,m, gj,m)
]

.

We use the following quantity introduced in [18, 19] to measure scramblingness,

η(G) = min
i,j

‖gi ∧ gj‖1,

where, ‖ · ‖1 is the norm given by ‖x‖1 =
∑m

i=1 |xi| for x = [x1, · · · , xm] ∈ R
m. It is

clear that 0 ≤ η(G) ≤ 1, and that η(G) > 0 if and only if G is scrambling. Thus, the
well-known Hajnal inequality has the following generalized form.

Lemma 2.13. (Generalized Hajnal inequality, Theorem 6 in [20].) For any
vector norm in R

m and any two stochastic matrices G and H,

diam(GH) ≤ (1 − η(G))diam(H). (2.13)
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The concepts of projection joint spectral radius and Hajnal diameter are linked
to the ergodicity of stochastic matrix sequences. We can extend the ergodicity for a
matrix set [20, 28] to a matrix sequence as follows:

Definition 2.14. (Ergodicity, Definition 1 in [14].) A stochastic matrix sequence
Σ = {G(t)}t∈Z+ is said to be ergodic if for any t0 and ǫ > 0, there exists T > 0 such
that for any t > T and some norm ‖ · ‖,

diam

(

t0+t−1
∏

s=t0

G(s)

)

≤ ǫ. (2.14)

Moreover, if for any ǫ > 0, there exists T > 0 such that inequality (2.14) holds for all
t ≥ T and t0 ≥ 0, G is said to be uniformly ergodic.

A stochastic matrix G = [Gij ]
m
i,j=1 can be associated with a graph Γ = [V, E],

where V = {1, 2, · · · , m} denotes the vertex set and E = {eij} the edge set, in
the sense that there exists an edge from vertex j to i if and only if Gij > 0. Let
Γ1 = [V, E1] and Γ = [V, E2] be two simple graphs with the same vertex set. We
also define the union Γ1

⋃

Γ2 = [V, E1

⋃

E2] (merging multiple edges). It can be seen
that for two stochastic matrices G1 and G2 with the same dimension and positive
diagonal elements, the edge set of Γ1

⋃

Γ2 is contained in that of the corresponding
graph of the product matrix G1G2. In this way, we can define the union of the graph
sequence {Γ(t)}t∈Z+ across the time interval [t1, t2] by

⋃t2
k=t1

Γ(k) = [V,
⋃t2

k=t1
E(k)].

The following concepts for graphs can be found, e.g., in [25].
Definition 2.15. A graph Γ is said to have a spanning tree if there exists a

vertex, called the root, such that for each other vertex j there exists at least one
directed path from the root to vertex j.

It follows that {Γ(t)}t∈Z+ has a spanning tree across the time interval [t1, t2] if
the union of {Γ(t)}t∈Z+ across [t1, t2] has a spanning tree. This is equivalent to the
existence of a vertex from which all other vertices can be accessible across [t1, t2].

Definition 2.16. A graph Γ is said to be scrambling if for any different vertices
i and j, there exists a vertex k such that there exist edges from k to i and from k to
j.

It follows that a stochastic matrix G is scrambling if and only if the corresponding
graph Γ is scrambling.

Lemma 2.17. (See Lemma 4 in [28].) Let G(1), G(2), · · · , G(m−1) be stochastic
matrices with positive diagonal elements, where each of the corresponding graphs Γ(1),

Γ(2), · · · , Γ(m − 1) have spanning trees. Then
∏m−1

k=1 G(k) is scrambling.
Suppose now that the stochastic matrix sequence G is driven by some metric

dynamical system Y = {Ω,F , P, θ(t)}. We write G as {G(t) = G(θ(t)ω)}t∈Z+, where
ω ∈ Ω. Then, as stated in Section 2.1, we can define the Lyapunov exponents.

Definition 2.18. The Lyapunov exponent of the stochastic matrix sequence G is
defined as

σ(G, ω, u) = lim
t→∞

1

t
log
∥

∥

t−1
∏

k=0

G(θtω)u
∥

∥.

The projection Lyapunov exponents is defined as

σ̂(G, ω, u) = lim
t→∞

1

t
log
∥

∥

t−1
∏

k=0

Ĝ(θtω)u
∥

∥,
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where Ĝ(·) is the projection of G(·) as defined in Definition 2.3.
For a given ω ∈ Ω, one can see that diam(G) and ρ̂(G) both equal the largest

Lyapunov exponent of G in directions transverse to the synchronization direction
under several mild conditions.

In closing this section, we list some notations to be used in the remainder of the
paper. The matrix L̂ denotes the (skew) projection of the matrix L along the vector
e introduced in Definition 2.3, and L̂ is the (skew) projection of the matrix sequence
map L along e. For x = (x1, · · · , xm)⊤ ∈ R

m, the average 1
m

∑m
i=1 xi of x is denoted

by x̄. The notation ‖·‖ denotes some vector norm in the linear space R
m, and also the

matrix norm in R
m×m induced by this vector norm. f (t)(s0) denotes the t-iteration of

the map f with initial condition s0. We let x(t, t0, x0) be the solution of the coupled
system (1.2) with initial condition x(t0) = x0, which we sometimes abbreviate as x(t).

3. Generalized synchronization analysis. For the variational system (1.12),
similar to the Subsection 2.1, we denote by D the Jacobian sequence map in the gener-
alized sense, i.e., D is a map from Z

+×R to 2R
m×m

: D(t0, s0) = {Dt+t0(f
(t)(s0))}t∈Z+ ⊂

H for all t0 ∈ Z
+ and s0 ∈ A. Furthermore, letting

B(t, t0) =

t+t0−1
∏

k=t0

Dk(f (k−t0)(s0)),

we can rewrite the variational system (1.12) as follows:

δx(t + t0) = Dt+t0−1(f
(t−1)(s0))δx(t + t0 − 1) = B(t, t0)δx(t0). (3.1)

From Definitions 2.2 and 2.3, we have

diam(D, s0) = lim
t→∞

sup
t0≥0

{

diam
(

t0+t−1
∏

k=t0

Dk(f (k−t0)(s0))
)

}
1
t

,

ρ̂(D, s0) = lim
t→∞

sup
t0≥0

∥

∥

∥

∥

t0+t−1
∏

k=t0

D̂k(f (k−t0)(s0))

∥

∥

∥

∥

1
t

.

We will also refer to the following hypothesis.
H3.

sup
s0∈A

diam(D, s0) < 1. (3.2)

Theorem 3.1. If hypotheses H1–H3 hold, then the compact set Am
⋂

S is a
uniformly asymptotically stable attractor of the coupled system (1.2) in R

m, i.e., the
coupled system (1.2) is uniformly locally completely synchronized.

Proof. Let

diam(D, t0, t, s0) = diam

( t0+t−1
∏

k=t0

Dk

(

f (k−t0)(s0)
)

)

,

diam(D, t, s0) = sup
t0≥0

{

diam
(

t0+t−1
∏

k=t0

Dk(f (k−t0)(s0))
)

}

.

According to H3, letting 1 > d > sups0∈A diam(D, s0) and n0 satisfy dn0 < 1
3 ,

for any s0 ∈ A, there exists n(s0) ≥ n0 such that diam(D, t, s0) < d holds for all
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t ≥ n(s0). By equicontinuity (H1) and compactness (H2), there must exist a fi-
nite integer set V = {n1, n2, · · · , nv} satisfying ni ≥ n0 for all i = 1, 2, · · · , v and
a neighborhood U of A such that for any s0 ∈ U , there exists nj ∈ V such that

diam
(
∏t0+nj−1

k=t0
Dk(f (k−t0)(s0))

)

< dnj < 1
3 holds for all t0 ≥ 0.

By the hypothesis H2, there exists a compact neighborhood W of A such that
U ⊃ W ⊃ A, f(W ) ⊂ W , and

⋂

n≥0

f (n)(W ) = A [26]. Let

a = min
n∈V

dH(f (n)(W ), W ) > 0,

where dH(·, ·) denotes the Hausdorff metric in R . Then, define a compact set

Wα =

{

x = (x1, · · · , xm) ∈ R
m : max

1≤i≤m
|xi − x̄| ≤ α and x̄ ∈ W

}

.

By the mean value theorem, we have

f i
k(x1(k), · · · , xm(k)) − f(s(k), · · · , s(k)) =

m
∑

j=1

∂f i
k

∂xj
(ξij

k ),

where ξij
k belongs to the closed interval induced by the two ends xi(k) and s(k).

Denote by Dk(ξk) the matrix [∂f i
k(ξij

k )/∂xj ]mi,j=1.
Let α > 0 be sufficiently small so that for each x0 ∈ Wα with s(t0) = x̄0 and

x(t0) = x0, there exists t1 ∈ V such that

|xi(t1, t0, x0) − f (t1−t0)(x̄0)| ≤
a

2

diam

( t0+t1−1
∏

k=t0

Dk(ξk)

)

<
1

2

holds for all t0 ≥ 0. Then, for any x0 ∈ Wα, x̄0 ∈ W , we have

δx(t1 + t0) =

t1+t0−1
∏

k=t0

Dk(ξ(k))δx0 = B̃(t1, t0)δx0,

where B̃(t1, t0) =
∏t1+t0−1

k=t0
Dk(ξ(k)). Then,

|δxi(t1 + t0) − δxj(t1 + t0)| ≤
m
∑

k=1

|B̃ik(t1, t0) − B̃jk(t1, t0)||δx
j
0|

≤ diam(B̃(t1, t0)) max
1≤i≤m

|xi
0 − x̄0|.

Thus, we conclude that

max
1≤i,j≤m

|xi(t1 + t0) − xj(t1 + t0)| ≤
1

2
max

1≤i,j≤m
|xi

0 − xj
0|.

By the definition of Wα, we see that x(t1 + t0) ∈ Wα/2. With initial time t0 + t1, we
can continue this phase and afterwards obtain

lim
t→∞

|xi(t) − xj(t)| = 0, i, j = 1, 2, · · · , m,
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uniformly with respect to t0 ∈ Z
+ and x0 ∈ Wα. Therefore, the coupled system

(1.2) is uniformly synchronized. Furthermore, we obtain that Am
⋂

S is a uniformly
asymptotically stable attractor for the coupled system (1.2) and the convergence rate
can be estimated by O({sups0∈A diam(D, s0)}t) since d is chosen arbitrarily greater
than sups0∈A diam(D, s0). The theorem is proved.

Remark 1. The idea of the above proof comes from that of Theorem 2.12 in [1],
with a modification for the time-varying case. In Theorem 2.12 in [1], the authors
used normal Lyapunov exponents to prove asymptotical stability of the original au-
tonomous system for the case when it is asymptotically stable in an invariant manifold.
In this paper, we directly use the Hajnal diameter of the left product of the infinite
Jacobian matrix sequence map to measure the transverse differences of the collections
of spatial states. Furthermore, we consider a non-autonomous system here due to
time-varying couplings.

Following Lemma 2.4 gives

Corollary 3.2. If sups0∈A ρ̂(D, s0) < 1, then the coupled system (1.2) is uni-
formly synchronized.

Consider the special case that the coupled system (1.9) is a RDS on a MDS
Y = {Ω,F , P, θ(t)}. We can write this coupled system (1.9) as a product dynamical
system {A×Ω,F,P, Θ(t)}, where F is the product σ-algebra on A×Ω, P denotes the
probability measure, and Θ(t)(s0, ω) = (θ(t)ω, f (t)(s0)). Let D(f (t)(s0), θ

(t)ω) denote
the Jacobian matrix at time t. By Definition 2.5, the Lyapunov exponents for the
coupled system (1.9) can be written as follows:

λ(u, s0, ω) = lim
t→∞

1

t
log

∥

∥

∥

∥

t−1
∏

k=0

D(f (k)(s0), θ
(k)ω)u

∥

∥

∥

∥

.

It can be seen that the Lyapunov exponent along the diagonal synchronization direc-
tion e0 is

λ(e0, s0, ω) = lim
t→∞

1

t

t−1
∑

k=0

log |c(k)|,

where c(k) is the common row sum of D(f (k)(s0), θ
(k)ω). Let λ0 = λ(e0, s0, ω), λ1,

· · · , λm−1 be the Lyapunov exponents (counting multiplicity) of the dynamical system
L with the initial condition (s0, ω). From Lemma 2.7, we conclude that supi≥1 λi =
log ρ̂(F, s0, ω) = log diam(F, s0, ω). If the probability P is ergodic, then the Lyapunov
exponents exist for almost all s0 ∈ A and ω ∈ Ω, and furthermore they are independent
of (s0, ω).

Corollary 3.3. Suppose that hypotheses H1-H2 and the assumptions in Lemma
2.7 hold. Suppose further that A × Ω is compact in the weak topology defined in this
RDS, the semiflow Θ(t) is continuous, the Jacobian matrix D(·, ·) is non-singular and
continuous on A × Ω, and

sup
P∈ErgΘ(A×Ω)

sup
i≥1

λi < 0,

where ErgΘ(A × Ω) denotes the ergodic probability measure set supported in {A ×
Ω,F, Θ(t)}. Then the coupled system (1.9) is uniformly locally completely synchro-
nized.
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Proof. By Theorem 2.8 in [1], we have

sup
P∈ErgΘ(A×Ω)

λmax(D̂,P) = sup
‖u‖=1,(s0,ω)∈A×Ω

lim
t→∞

1

t
log

∥

∥

∥

∥

t−1
∏

k=0

D̂(f (k)(s0), θ
(k)ω)u

∥

∥

∥

∥

,

where D̂ is the projection of the intrinsic matrix sequence map D and λmax(D̂,P)
denotes the largest Lyapunov exponent of D̂ according to the ergodic probability P

(the value for all almost (s0, ω) according to P). From Lemmas 2.4, 2.6 and 2.7, it
follows

sup
P∈ErgΘ(A×Ω)

sup
i≥1

λi = sup
P∈ErgΘ(A×Ω)

λmax(D̂,P) = sup
(s0,ω)∈A×Ω

λmax(D̂, s0, ω)

= sup
(s0,ω)∈A×Ω

log ρ̂(D, s0, ω) = sup
(s0,ω)∈A×Ω

log diam(D, s0, ω).

The corollary is proved as a direct consequence from Theorem 3.1.
Remark 2. If λ0 is the largest Lyapunov exponent, then V = {u : λ(u) < λ0}

constructs a subspace of R
m which is transverse to the synchronization direction e0.

Corollary 3.3 implies that if all Lyapunov exponents in the transverse directions are
negative, then the coupled system (1.2) is synchronized. Otherwise, if λ0 is not the
largest Lyapunov exponent, then supi≥1 λi < 0 implies that the largest exponent
is negative, which means that the synchronized solution s(t) is itself asymptotically
stable through the evolution (1.9).

Remark 3. From Lemma 2.7, it can also be seen that when computing ρ(D), it is
sufficient to compute the largest Lyapunov exponent of D̂. In [1], the authors proved
for an autonomous dynamical system that if all Lyapunov exponent of the normal
directions, namely, the Lyapunov exponents for D̂ are negative, then the attractor in
the invariant submanifold is an attractor in R

m (or a more general manifold). In this
paper, we extend the proof theorem 2.12 in [1] to the general time-varying coupled
system (1.2) by discussing the relation between the Hajnal diameter and transverse
Lyapunov exponents. In the following sections, we continue the synchronization anal-
ysis for non-autonomous dynamical systems.

4. Synchronization analysis of coupled map lattices with time-varying

topologies. Consider the following coupled system with time-varying topologies:

xi(t + 1) =

m
∑

j=1

Gij(t)f(xj(t)), i = 1, 2, · · · , m, t ∈ Z
+, (4.1)

where f(·) : R → R is C1 continuous and G(t) = [Gij(t)]
m
i,j=1 is a stochastic matrix.

In matrix form,

x(t + 1) = G(t)F (x(t)). (4.2)

Since the coupling matrix G(t) is a stochastic matrix, the diagonal synchronization
manifold is invariant and we have the uncoupled (or synchronized) state as:

s(t + 1) = f(s(t)). (4.3)

We suppose that for the synchronized state (4.3), there exists an asymptotically stable
attractor A with the (maximum) Lyapunov exponent

µ = sup
s0∈A

lim
t→∞

1

t

t−1
∑

k=0

log |f ′(s(k))|.
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The system (4.1) is a special form of (1.2) satisfying the equicontinuous condition
H1. Linearizing the system (4.1) about the synchronized state yields the variational
equation

δxi(t + 1) =

m
∑

j=1

Gij(t)f
′(s(t))δxi(t), i = 1, 2, · · · , m,

and

diam

( t0+t−1
∏

k=t0

G(k)f ′(f (k−t0)(s0))

)

= diam

( t0+t−1
∏

k=t0

G(k)

)
∣

∣

∣

∣

t
∏

l=0

f ′(f (l)(s0))

∣

∣

∣

∣

.

Denote the stochastic matrix sequence {G(t)}t∈Z+ by G. Thus, the Hajnal diameter
of the variational system is diam(G)eµ. Using Theorem 3.1, we have the following
result.

Theorem 4.1. Suppose that the uncoupled system s(t + 1) = f(s(t)) satisfies
hypothesis H2 with Lyapunov exponent µ. Let G = {G(t)}t∈Z+. If

diam(G)eµ < 1, (4.4)

then the coupled system (4.1) is synchronized.
From Theorem 4.1, one can see that the quantity diam(G) as well as other equiva-

lent quantities such as the projection joint spectral radius and the Lyapunov exponent,
can be used to measure the synchronizability of the time-varying coupling, i.e., the
coupling stochastic matrix sequence G. A smaller value of diam(G) implies a better
synchronizability of the time-varying coupling topology. If the uncoupled system (4.3)
is chaotic, i.e. µ > 0, then the necessary condition for synchronization condition (4.4)
is diam(G) < 1. So, it is important to investigate under what conditions diam(G) < 1
holds.

Suppose that the stochastic matrix set M satisfies the following hypotheses:
H4. M is compact and there exists r > 0 such that for any G = [Gij ]

m
i,j=1 ∈ M,

Gij > 0 implies Gij ≥ r and all diagonal elements Gii > r, i = 1, 2, · · · , m.
We denote the graph sequence corresponding to the stochastic matrix sequence

G by Γ = {Γ(t)}t∈Z+ . Then we have the following result.
Theorem 4.2. Suppose that the stochastic matrix sequence G ⊂ M satisfies

hypothesis H4. Then, the following statements are equivalent:
1. diam(G) < 1;

2. there exists T > 0 such that for any t0, the graph
⋃t0+T

k=t0
Γ(k) has a spanning

tree;
3. the stochastic matrix sequence G is uniformly ergodic.

Proof. We first show (3) ⇒ (2) by reduction to absurdity. Let B(t0, t) =
∏t0+t−1

k=t0
G(k). Since G is uniformly ergodic, there must exist T > 0 such that

diam(B(t0, T )) < 1/2 holds for any t0 ≥ 0. So, v =
∏t0+T−1

k=t0
G(k)u satisfies:

max
1≤i,j≤m

|vi − vj | ≤ diam(B(t0, T ))‖u‖∞ ≤
1

2
‖u‖∞. (4.5)

If the second condition does not hold, then there exists tT such that the union
⋃tT +T−1

k=tT
Γ(k) does not have a spanning tree. That is, there exist two vertices v1

and v2 such that for any vertex z, there is either no directed path from z to v1 or
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no directed path from z to v2. Let U1 (U2) be the vertex set which can reach v1

(v2, respectively) across [tT , tT + T − 1]. This implies that U1 and U2 are disjoint
across [tT , tT + T − 1] and no edge starts outside of U1 (U2) and ends in U1 (U2) .
Furthermore, considering the Frobenius form of G(t), one can see that the elements
in the corresponding rows of U1 (U2) with columns associated with outside of U1 (U2)
are all zeros. Let

ui =







1 i ∈ U1,
0 i ∈ U2,
any value in (0, 1), otherwise.

We have

vi =







1 i ∈ U1,
0 i ∈ U2,
∈ [0, 1], otherwise.

This implies that max1≤i,j≤m |vi − vj | ≥ 1 = ‖u‖∞, which contradicts with (4.5).
Therefore, (3) ⇒ (2) can be concluded.

We next show (2) ⇒ (1). Applying Lemma 2.17, there exists T > 0 such that
∏t0+T−1

k=t0
G(k) is scrambling for any t0. There exists δ > 0 such that η(B(T, t0)) >

δ > 0 for all t0 ≥ 0 because of the compactness of the set M. So,

diam(B(t, t0)) = diam

{

B(mod(t, T ), t0 + [
t

T
]T )

[ t
T

]
∏

k=1

B(T, t0 + (k − 1)T )

}

≤ diam

{ [ t
T

]
∏

k=1

B(t0 + kT − 1, t0 + (k − 1)T )

}

≤ 2(1 − δ)[
t
T

] (4.6)

holds for any t0 ≥ 0. Here, [t/T ] denotes the largest integer less than t/T and
mod(t, T ) denotes the modulus of the division t ÷ T . Thus,

diam(G) ≤ (1 − δ)
1
T < 1.

This proves (2) ⇒ (1). Since (1) ⇒ (3) is clear, the theorem is proved.
Remark 4. According to Lemma 2.17, it can be seen that the union of graphs

across any time interval of length T has a spanning tree if and only if a union of
graphs across any time interval of length (m − 1)T is scrambling.

Moreover, from [21], we conclude more results on the ergodicity of stochastic
matrix sequences as follows:

Proposition 4.3. The implication (1) ⇒ (2) ⇒ (3) holds for the following
statements:

1. diam(G) < 1;
2. G is ergodic;
3. for any t0 ≥ 0, the union

⋃

k≥t0
Γ(k) has a spanning tree.

Remark 5. It should be pointed out that the implications in Proposition 4.3
cannot be reversed. Counterexamples can be found in [14]. However, in [14], it is also
proved under certain conditions that if the stochastic matrices have the property that
Gij > 0 if and only if Gji > 0, then statement 2 is equivalent to statement 3.
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Assembling Theorem 4.2, Proposition 4.3, and the results in [14], it can be shown
that, for G ⊂ M, the following implications hold

A1 ⇔ A2 ⇔ A3 ⇒ A4 ⇒ A5

regarding the statements:
• A1: diam(G) < 1;
• A2: there exists T > 0 such that the union across any T -length time interval

[t0.t0 + T ]:
⋃t0+T

k=t0
Γ(k) has a spanning tree;

• A3: G is uniformly ergodic;
• A4: G is ergodic;
• A5: for any t0, the union across [t0,∞):

⋃

k≥t0
Γ(k) has a spanning tree.

In the following, we present some special classes of examples of coupled map lat-
tices with time-varying couplings. These classes were widely used to describe discrete-
time networks and studied in some recent papers [5, 6, 20, 21]. The synchronization
criterion for these classes can be verified by numerical methods. Thus, the synchro-
nizability diam(G) of the time-varying couplings can also be computed numerically.

4.1. Static topology. If G(t) is a static matrix, i.e., G(t) = G, for all t ∈ Z
+,

then we can write the coupled system (4.1) as

x(t + 1) = GF (x(t)). (4.7)

Proposition 4.4. Let 1 = σ0, σ1, σ2, · · · , σm−1 be the eigenvalues of G ordered
by 1 ≥ |σ1| ≥ |σ2| ≥ · · · ≥ |σm−1|. If |σ1|eµ < 1, then the coupled system (4.7) is
synchronized.

Proof. Let v0 = e0 and choose column vectors v1, v2, · · · , vm−1 in R
m such that

v0, v1, · · · , vm−1 is an orthonormal basis for R
m. Let A = [v0, v1, · · · , vm−1]. Then,

A−1GA =

[

1 α

0 Ĝ

]

,

where the eigenvalues of Ĝ are σ1, · · · , σm−1. By the Householder theorem (see
Theorem 4.2.1 in [34]), for any ǫ > 0, there must exist a norm in R

m such that with
its induced matrix norm,

|σ1| ≤ ‖Ĝ‖ ≤ |σ1| + ǫ.

Since ǫ is arbitrary, for the static stochastic matrix sequence G0 = {G, G, · · · , }, it can
be concluded that ρ̂(G0) = |σ1|. Using Theorem 4.1, the conclusion follows. Moreover,
it can be also obtained that the convergence rate is O((|σ1|eµ)t).

Remark 6. Similar results have been obtained by several papers concerning
synchronization of coupled map lattices with static connections (see [5,6,8,30]). Here,
we have proved this result in a different way as a consequence of our main result.

4.2. Finite topology set. Let Q be a compact stochastic matrix set satisfying
H4. Consider the following inclusions:

x(t + 1) ∈ QF (x(t)), (4.8)

i.e.,

x(t + 1) = G(t)F (x(t)) (4.9)

G(t) ∈ Q. (4.10)
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Then the synchronization of the coupled system (4.8) can be formulated as follows.
Definition 4.5. The coupled inclusion system (4.8) is said to be synchronized if

for any stochastic matrix sequence G ⊂ Q, the coupled system (4.9) is synchronized.
In [20], the authors defined the Hajnal diameter and projection joint spectral

radius for a compact stochastic matrix set.
Definition 4.6. For the stochastic matrix set Q, the Hajnal diameter is given

by

diam(Q) = lim
t→∞

sup
G(k)∈Q

{

diam(

t−1
∏

k=0

G(k))

}
1
t

,

and the projection joint spectral radius is

ρ̂(Q) = lim
t→∞

{

sup
G(k)∈Q

‖
t−1
∏

k=0

Ĝ(k)‖

}
1
t

.

The following result is from [20].
Lemma 4.7. Suppose Q is a compact set of stochastic matrices. Then,

diam(Q) = ρ̂(Q).

Using Theorem 4.1, we have
Theorem 4.8. If diam(Q)eµ < 1, then the coupled system (4.8) is synchronized.
Moreover, we conclude that the synchronization is uniform with respect to t0 ∈ Z

+

and stochastic matrix sequences G ⊂ Q. Furthermore, we have the following result
on synchronizability of the stochastic matrix set Q.

Proposition 4.9. Let Q be a compact set of stochastic matrices satisfying hy-
pothesis H4. Then the following statements are equivalent:

• B1: diam(Q) < 1;
• B2: for any stochastic matrix sequence G ⊂ Q, G is ergodic;
• B3: each corresponding graph of a stochastic matrix G ∈ Q has a spanning

tree.
Proof. The implication B1 ⇒ B2 ⇒ B3 is clear by Proposition 4.3. And B3 ⇒ B1

can be obtained by the proof of Theorem 4.2 since Q is a finite set of stochastic
matrices satisfying hypothesis H4.

Remark 7. By the methods introduced in [31–33], ρ̂(Q) can be computed to
arbitrary precision for a finite set Q despite a large computational complexity.

4.3. Multiplicative ergodic topology sequence. Consider the stochastic
matrix sequence G = {G(t)}t∈Z+ driven by some dynamical system Y = {Ω,F , P, θ(t)},
i.e., G = {G(θ(t)ω)} for some continuous map G(·). Recall the Lyapunov exponent
for G:

σ(v, ω) = lim
t→∞

1

t
log

∥

∥

∥

∥

t−1
∏

k=0

G(θ(k)ω)v

∥

∥

∥

∥

.

It is clear that σ(e0, ω) = 0 for all ω and σ(v, ω) ≤ 0 for all ω and v ∈ R
m. So, the

linear subspace

Lω = {v, σ(v, ω) < 0}
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denotes the directions transverse to the synchronization manifold. If P is an ergodic
measure for the MDS Y, then σ(u, ω) and L(ω) are the same for almost all ω with
respect to P [35]. Then we can let σ1 be the largest Lyapunov exponent of G transverse
to the synchronization direction e0. By Theorem 4.1 and Corollary 3.3, we have

Theorem 4.10. Suppose that θ(t) is a continuous semiflow, G(·) is continuous
on all ω ∈ Ω and non-singular, and Ω is compact. If

sup
Erfθ(Ω)

σ1 + µ < 0,

then the coupled system (4.1) is synchronized.
Remark 8. There are many papers discussing the computation of multiplicative

Lyapunov exponents; for example, see [27]. In particular, [36] discussed the Lyapunov
exponents for the product of infinite matrices. By Lemma 2.7, we can compute the
largest projection Lyapunov exponent which equals σ1. We will illustrate this in the
following section.

5. Numerical illustrations. In this section, we will numerically illustrate the
theoretical results on synchronization of CML with time-varying couplings. In these
examples, the coupling matrices are driven by random dynamical systems which can
be regarded as stochastic processes. Then the projection Lyapunov exponents are
be computed numerically by the time series of coupling matrices. In this way, we
can verify the synchronization criterion and analyze synchronizability numerically.
Consider the following coupled map network with time-varying topology:

xi(t + 1) =
1

m
∑

k=1

Aik(t)

m
∑

j=1

Aij(t)f(xj(t)), i = 1, 2, · · · , m, (5.1)

where xi(t) ∈ R and f(s) = αs(1 − s) is the logistic map with α = 3.9, which implies
that the Lyapunov exponent of f is µ ≈ 0.5. The stochastic coupling matrix at time
t is

G(t) = [Gij(t)]
m
i,j=1 =

[

Aij(t)
m
∑

j=1

Aij(t)

]m

i,j=1

.

5.1. Blinking scale-free networks. The blinking scale-free network is a model
initiated by a scale-free network and evolves with malfunction and recovery. At time
t = 0, the initial graph Γ(0) is a scale-free network introduced in [37]. At each time
t ≥ 1, every vertex i malfunctions with probability p ≪ 1. If vertex i malfunctions,
all edges linked to it disappear. In addition, a malfunctioned vertex recovers after a
time interval T and then causes the re-establishment of all edges linked to it in the
initial graph Γ(0). The coupling Aij(t) = Aji(t) = 1 if vertex j is connected to i at
time t; otherwise, Aij(t) = Aji(t) = 0, and Aii(t) = 1, for all i, j = 1, 2, · · · , m.

In Figure 5.1, we show the convergence of the second Lyapunov exponent σ1

during the topology evolution with different malfunction probability p. We measure
synchronization by the variance K = 1/(m−1) <

∑m
i=1(x

i(t)− x̄(t))2 >, where < · >
denotes the time average, and denote W = σ1 +µ. We pick the evolution time length
to be 1000 and choose initial conditions randomly from the interval (0, 1). In Figure
5.2, we show the variation of K and W with respect to the malfunction probability
p. It can be seen that the region where W is negative coincides with the region of
synchronization, i.e., where K is near zero.
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Fig. 5.1. Convergence of the second Lyapunov exponent σ1 for the blinking topology during the
topology evolution with the same recovery time T = 3 and different malfunction probability p = 10−1,
p = 10−2, and p = 10−4. The initial scale-free graph is constructed by the method introduced in [37]
with network size 500 and average degree 12.

5.2. Blurring directed graph process. A blurring directed graph process is
one where each edge weight is a modified Wiener process. In details, the graph process
is started with a directed weighted graph Γ(0) of which for each vertex pair (i, j), one
of two edges Aij(0) and Aji(0) is a random variable uniformly distributed between 1
and 2, and the other is zero with equal probability, for all i 6= j; Aii(0) = 0 for all
i = 1, 2, · · · , m. At each time t ≥ 1, for each Aij(t − 1) 6= 0, i 6= j we denote the
difference Aij(t)−Aij(t−1) by a Gaussian distribution N (0, r2) which is statistically
independent for all i 6= j and t ∈ Z

+. If resulted in that Aij(t) is negative, a weight will
be added to the reversal orientation, i.e., Aji(t) = |Aij(t)| and Aij(t) = 0. Moreover,
if the process above results in that there exists some index i such that Aij = 0 holds
for all j = 1, 2, · · · , m, then pick Aii(t) = 1.

In Figure 5.3, we show the convergence of the second Lyapunov exponent σ1

during the topology evolution for different values of the Gaussian distribution variance
r. Picking r = 0.05, we show the synchronization of the coupled system (5.1). Let
K(t) = 1/(m − 1) <

∑m
i=1(x

i(t) − x̄(t))2 >t, where < · >t denotes the time average
from 0 to t. Since W = σ1 +µ is about −0.6, i.e. less than zero, the coupled system is
synchronized. Figure 5.4 shows in logarithmic scale the convergence of K(t) to zero.

6. Conclusion. In this paper, we have presented a synchronization analysis for
discrete-time dynamical networks with time-varying topologies. We have extended
the concept of the Hajnal diameter to generalized matrix sequences to discuss the
synchronization of the coupled system. Furthermore, this quantity is equivalent to
other widely used quantities such as the projection joint spectral radius and transverse
Lyapunov exponents, which we have also extended to the time-varying case. Thus,
these results can be used to discuss the synchronization of the CML with time-varying
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Fig. 5.2. Variation of K and W with respect to p for the blinking topology.

couplings. The Hajnal diameter is utilized to describe synchronizability of the time-
varying couplings and obtain a criterion guaranteeing synchronization. Time-varying
couplings can be regarded as a stochastic matrix sequence associated with a sequence
of graphs. Synchronizability is tightly related to the topology. As we have shown, the
statement that diam(G) < 1, i.e. that chaotic synchronization is possible, is equivalent
to saying that there exists an integer T such that the union of the graphs across any
time interval of length T has a spanning tree. The methodology will be similarly
extended to higher dimensional maps elsewhere.

Appendix. Proof. (Lemma 2.4) The proof of this lemma comes from [20] with
a minor modification. First, we show diam(L, φ) ≤ ρ̂(L, φ). Let J be any complement
of E0 in R

m with a basis u0, · · · , um−1 such that u0 = e0. Let A = [u0, u1, · · · , um−1]
which is nonsingular. Then, for any t > t0 and t0 ≥ 0,

A−1Lt(̺
(t−t0)φ)A =

[

c(t) αt

0 L̂t(̺
(t−t0)φ)

]

,

where c(t) denotes the row sum of Lt(̺
(t−t0)φ) which is also the eigenvalue corre-

sponding eigenvector e and L̂t(̺
(t−t0)φ) can be the solution of linear equation (2.4)

with P composed of the rows of A−1 except the first row. For any d > ρ̂(L, φ), there
exists T > 0 such that the inequality

∥

∥

∥

∥

t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)

∥

∥

∥

∥

≤ dt
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Fig. 5.3. Convergence of the second Lyapunov exponent σ1 for the blurring graph process
during the topology evolution with Gaussian variance r = 0.5, 0.05, 0.005, and the size of the
network m = 100.

holds for all t ≥ T and t0 ≥ 0. Let

A−1
t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)A =









t0+t−1
∏

k=t0

c(k) αt

0
t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)









Then,

∥

∥

∥

∥

A−1
t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)A −











1
0
...
0











(

t0+t−1
∏

k=t0

c(k), αt

)

∥

∥

∥

∥

=

∥

∥

∥

∥





0 0

0
t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)





∥

∥

∥

∥

≤ Cdt

holds for some constant C > 0. Therefore,

∥

∥

∥

∥

t0+t−1
∏

s=t0

Lk(̺(k−t0)φ) − A











1
0
...
0











(

t0+t−1
∏

k=t0

c(k), αt

)

A−1

∥

∥

∥

∥

≤ C1d
t,

∥

∥

∥

∥

t0+t−1
∏

k=t0

Lk(̺(k−t0)φ) − e · q

∥

∥

∥

∥

≤ C1d
t,
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Fig. 5.4. Variation of K(t) with respect to time for the blurring graph process.

where q =
[
∏t0+t−1

k=t0
c(k), αt

]

A−1 and C1 is a positive constant. It says that all row

vectors of
∏t0+t−1

k=t0
Lk(̺(k−t0)φ) lie inside the C1d

m neighborhood of q. Hence,

diam

( t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)

)

≤ C2d
t

for some constant C2 > 0, all t ≥ T , and t0 ≥ 0. This implies that diam(L, φ) ≤ d.
Since d is arbitrary, diam(L, φ) ≤ ρ̂(L, φ) can be concluded.

Second, we show that ρ̂(L, φ) ≤ diam(L, φ). For any d > diam(L, φ), there exists
T > 0 such that

diam

( t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)

)

≤ dt.

holds for all t ≥ T and t0 ≥ 0. Letting q be the first row of
∏t0+t−1

k=t0
Lk(̺(k−t0)φ), we

have

∥

∥

∥

∥

∥

t0+t−1
∏

k=t0

Lk(̺(k−t0)φ) − e · q

∥

∥

∥

∥

∥

≤ C3d
t

for some positive constant C3. Let A be defined as above. Then,

∥

∥

∥

∥

∥

A−1
t0+t−1
∏

k=t0

Lk(̺(k−t0)φ)A − A−1e · qA

∥

∥

∥

∥

∥

≤ C4d
t,
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i.e.,

∥

∥

∥

∥

∥

∥

∥

∥









t0+t−1
∏

k=t0

c(k) αt

0
t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)









−

[

γ β
0 0

]

∥

∥

∥

∥

∥

∥

∥

∥

≤ C4d
t

holds for some γ and β. This implies that
∥

∥

∥

∥

∥

t0+t−1
∏

k=t0

L̂k(̺(k−t0)φ)

∥

∥

∥

∥

∥

≤ C5d
t

holds for all t ≥ T , t0 ≥ 0, and some C5 > 0. Therefore, ρ̂(L, φ) ≤ d. The proof is
completed since d is chosen arbitrarily.

Proof. (Lemma 2.6) Let λ̂max = supv∈Rm−1 λ̂(L, φ, v). First, it is easy to see

that log ρ̂(L, φ) ≥ λ̂max. We will show log ρ̂(L, φ) = λ̂max. Otherwise, there exists d ∈

(exp(λ̂max), ρ̂(L, φ)). By the properties of Lyapunov exponents, for any normalized

orthogonal basis u1, u2, · · · , um−1 ∈ R
m−1 with Lyapunov exponent λ̂(L, φ, ui) = λ̂i,

then for any u ∈ R
m−1 we have λ̂(L, φ, u) = λ̂iu

, where iu ∈ {1, 2, · · · , m − 1}.
ρ̂(L, φ) > d implies that there exist t0 ≥ 0 and a sequence tn with limn→∞ tn = +∞
such that

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)

∥

∥

∥

∥

> dtn

for all n ≥ 0. That is, there also exists a sequence vn ∈ R
m−1 with ‖vn‖ = 1 such

that

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)vn

∥

∥

∥

∥

> dtn .

There exists a subsequence of vn (still denoted by vn) with limn→∞ vn = v∗. Let
δvn = vn − v∗. We have

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)v∗
∥

∥

∥

∥

≥

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)vn

∥

∥

∥

∥

−

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)δvn

∥

∥

∥

∥

.

Note that we can write δvn =
∑m−1

i=1 δxi
nui where δxi

n ∈ R with limn→∞ δxi
n = 0. So,

there exists an integer N such that
∥

∥

∏tn+t0−1
k=t0

L̂k(̺(k−t0)φ)δvn

∥

∥ ≤
(
∑m−1

i=1 |δxi
n|
)

dtn

holds for all n ≥ N . Then, we have

∥

∥

∥

∥

tn+t0−1
∏

k=t0

L̂k(̺(k−t0)φ)v∗
∥

∥

∥

∥

≥ dtn − dtn

(m−1
∑

i=1

|δxi
n|

)

≥ Cdtn .

for all n ≥ N and some C > 0. This implies maxv∈Rm λ̂(L, φ, v) ≥ log d which

contradicts with the assumption d ∈ (exp(λ̂max), ρ̂(L, φ)). Hence, λ̂max = log ρ̂(L, φ).

Proof. (Lemma 2.7) Recalling that {Φ,B, P, ̺(t)} denotes a random dynamical
system, where Φ denotes the state space, B denotes the σ-algebra, P denotes the
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probability measure, and ̺(t) denotes the semiflow. For a given φ ∈ Φ we denote
L(̺(t)φ) by L(t). Let A = [u1, u2, · · · , um] ∈ R

m×m where u1, · · · , um denotes a basis
of R

m and u1 = e,

A−1 =











v1

v2

...
vm











∈ R
m×m

is the inverse of A with

L̄(t) = A−1L(t)A =

[

c(t) α⊤(t)

0 L̂(t)

]

, L̂(t) = A∗
1D(t)A1, α⊤(t) = v1L(t)A1,

where A1 = [u2, · · · , um] ∈ R
m×(m−1) and

A∗
1 =







v2

...
vm






∈ R

(m−1)×m.

One can see that the set of Lyapunov exponents of the dynamical system {L̄(t)}t∈Z+

are the same as those of {L(t)}t∈Z+ . For any z(0) = [x(0), y(0)] ∈ R
m where x(0) ∈ R

and y(0) ∈ R
m−1, this evolution z(t + 1) = L̄(t)z(t) leads

z(t) =

[

x(t)
y(t)

]

=

[

c(t − 1)x(t − 1) + α⊤(t − 1)y(t − 1)

L̂(t − 1)y(t − 1)

]

.

So, we have

y(t) =

t−1
∏

k=0

L̂(k)y(0)

x(t) =

t−1
∏

k=0

c(k)x(0) +

t
∑

k=1

t−1
∏

p=t−k+1

c(p)α⊤(t − k)

t−k−1
∏

q=0

L̂(q)y(0)

(6.1)

If the upper bound is less than the lower bound for the left matrix product
∏

, then
the product should be the identity matrix. In the following, we denote by L̂ the
projection sequence map of L and will prove this lemma for two cases.

Case 1: λ0 ≤ log ρ̂(L, φ). Since ρ̂(L, φ) is just the largest Lyapunov exponent of

L̂ defined by λ̂, from conditions 1 and 2, one can see that for any ǫ > 0, there exists

T > 0 such that for any t ≥ T , it holds that |α(t)| ≤ eǫt,
∥

∥

∏t−1
k=0 L̂(k)

∥

∥ ≤ e(λ̂+ǫ)t, and

e(λ0−ǫ)t ≤ |
∏t−1

k=0 c(k)| ≤ e(λ0+ǫ)t. Thus, we can obtain

t−1
∏

k=t−k+1

|c(p)| =

t−1
∏

p=0

|c(p)| ×
1

t−k
∏

p=0
|c(p)|

=











e(λ0+ǫ)(t)e−(λ0−ǫ)(t−k+1) k ≤ t − T + 1,

e(λ0+ǫ)(t−1) max
T≥q≥0

(

q
∏

p=0
|c(p)|

)−1

t − 1 ≥ k ≥ t − T.
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Then, we have

|x(t)| ≤
t−1
∏

k=0

|c(k)||x(0)| +
t−T+1
∑

k=1

t−1
∏

p=t−k+1

|c(p)||α⊤(t − k)|
t−k−1
∏

q=0

‖L̂(q)‖‖y(0)‖

+

t−1
∑

k=t−T

t−1
∏

p=t−k+1

|c(p)|‖α⊤(t − k)‖
t−k−1
∏

q=0

‖L̂(q)‖‖y(0)‖

≤ e(λ0+ǫ)t +
t−T+1
∑

k=1

e(λ0+ǫ)(t−1)eǫte−(λ0−ǫ)(t−k)e(λ̂+ǫ)(t−k) + M1e
(λ0+ǫ)(t−1)

≤ e(λ̂+ǫ)t + e(λ̂+4ǫ)te−(λ0+ǫ)
t−T+1
∑

k=1

e(−λ̂+λ0−3ǫ)k + M1e
(λ0+ǫ)t

≤ M2e
(λ̂+4ǫ)t,

where

M1 = (T + 1) max
T≥q≥0

( q
∏

p=0

|c(p)|

)−1

eǫT

( q
∏

p=0

‖L̂(p)‖

)

‖y(0)‖

M2 = 1 + M1 + e−(λ0+ǫ)
∞
∑

k=1

e−3ǫk.

So,

lim
t→∞

1

t
log ‖z(t − 1)‖ ≤ λ̂ + 4ǫ

holds for all z(0) ∈ R
m. Noting that λ̂ must be less than the largest Lyapunov

exponent of L, we conclude that λ̂ is right the largest Lyapunov exponent. This
implies the conclusion of the lemma.

Case 2: λ0 > λ̂. Noting that for any ǫ ∈ (0, (λ0 − λ̂)/3), there exists T such that

t
∏

k=0

|c−1(k)|‖α⊤(t)‖
t
∏

l=0

‖L̂(l)‖ ≤ Ce(−λ0+λ̂+3ǫ)t (6.2)

for all t ≥ T and some constant C > 0. Let

x = −
∞
∑

t=0

t
∏

k=0

c−1(k)α⊤(t)

t−1
∏

l=0

L̂(l)y,

which in fact exists and is finite according to the inequality (6.2). Then, let

Vφ =

{

z =

[

x
y

]

: x +

∞
∑

t=0

t
∏

k=0

c−1(k)α⊤(t)

t−1
∏

l=0

L̂(l)y = 0

}

be the transverse space. For any

[

x(0)
y(0)

]

∈ Vφ,

x(t) = −
∞
∑

k=t

k
∏

p=t

c−1(p)α⊤(k)

k−1
∏

q=0

L̂(q)y(0).
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Noting that there exists T > 0 such that
k
∏

p=t
|c−1(p)| ≤ e(−λ0+ǫ)(k−t)+2ǫt for all t ≥ T ,

we have

|x(t)| ≤
∞
∑

k=t

k
∏

p=t

|c−1(p)|‖α⊤(k)‖

∥

∥

∥

∥

k−1
∏

q=0

L̂(q)

∥

∥

∥

∥

‖y(0)‖

≤
∞
∑

k=t

e(−λ0+ǫ)(k−t)e2ǫteǫke(λ̂+ǫ)k

≤

{ ∞
∑

k=t

e(−λ0+λ̂+3ǫ)(k−t)

}

e(λ̂+4ǫ)t ≤ M2e
(λ̂+4ǫ)t

for all t ≥ T and some constants M2 > 0. So, it can be concluded that

lim
t→∞

1

t
log ‖z(t− 1)‖ ≤ λ̂ + 4ǫ.

Since ǫ is chosen arbitrarily, there exists an m − 1 dimensional subspace Vφ = {z =

[x y]⊤ : x = −
∑∞

t=0

∏t
k=0 c−1(k)α⊤(t)

∏t−1
l=0 L̂(l)y} of which the largest Lyapunov

exponent is less than λ̂. The largest Lyapunov exponent of Vφ is clearly greater than

λ̂. Therefore, we conclude that λ̂ i.e. log(ρ̂(L)), is the largest Lyapunov exponent of
L except λ0. The proof is completed.
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