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AN INTEGRO-DIFFERENTTAL EQUATION MODEL
FOR ALIGNMENT AND ORIENTATIONAL
AGGREGATION

Kyungkeun Kang* Benoit Perthame! Angela Stevens! J. J. L. Veldzquez?

Abstract

We study an integro-differential equation modeling angular alignment of inter-
acting bundles of cells or filaments. A bifurcation analysis of the related stationary
problem was done by Geigant and Stoll in [J. Math. Biol. 46 (2003), no. 6, 537-563].
Here we analyze the time dependent problem and prove that the type of alignment
(one or multidirectional) depends on the initial distribution, the interaction potential,
and the preferred optimal orientation of the bundles of cells or filaments. Our main
technical tool is the analysis of the evolution of suitable functionals for the cell density,
which allows to also specify the direction(s) where the final alignment takes place.

1 Introduction

In this paper we analyze how a population of small, stiff cells or filaments with defined
orientations will align, either by being attracted towards each other or being repelled.
Here repulsion can be interpreted as attraction to the back of an elongated filament or,
like in myxobacteria, to the back of another bacterium. A major question in this context
is if bundles of the same orientation are formed, how many there are, and how they are
organized relative to each other. Our ansatz is closely related to papers by [1], [3], [4], [5],
6], [7], [8]. [9], and [10].

We assume a two-dimensional geometry. To describe the orientational aggregation of
the bundles of cells or filaments we consider an integro-differential equation for the evo-
lution of an integrable function f on the unit circle (R/Z) with arc length normalized to
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one. We will chose a representation which is 7 = [—%, %] In many of the following argu-
11

ments it is convenient though to think in geometrical terms, namely v € Z =[5, 5) —
(cos(2mu),sin(27u)) € S'. . We will use this notation freely in the figures, unless confu-
sion is to be expected. Now f = f(u,t) denotes the mean density distribution over the

orientation u € Z. The temporal evolution of f is given by

Of(u,t) =— /

JT

T(f)(u,0) f s, £)do + /I T(f)(v. u)f (v, ). (1)
The first term on the right hand side describes the bundles of cells or filaments which
reorient away from u, and the second term the bundles orienting themselves into direction
u. The stationary version of equation (1) was analyzed in detail in [3] and [6].

For notational convenience in the following we sometimes omit the explicit t-dependencies.
The turning rate 7" in (1) maps a function f acting on Z to a function T[f] acting on Z x Z
with

T fl(u,v) = /Ih(w —u)Gy(v — My(u)) f(w, t)dw. (2)

Here G, : (—1,1) =Ry, 0 > 0 is an even, bounded probability density, thus [, G, = 1,
i.e. the standard periodic Gaussian: G, (u) = (4no)~1/2 > mez €xp(—(u + 2m)?/(40)).

So the process of turning is considered to be probabilistic. The smaller o is, the narrower
is G, which means that reorientation happens with higher accuracy. The extreme case is
the Dirac mass G(z) = g, which describes deterministic turning.

The measurable function M,, : T—7Z, is called the optimal reorientation, indicating reori-
entation of bundles of cells or filaments due to their interaction with w. More precisely, if
the system is invariant under rotations, we assume

My(v) =v+V(w—wv),

where V' : [-1,1]—=R is referred to as the orientational angle, compare fig. 1. A more
detailed descriptions of M,, and V will be given in Section 2. The interaction rate h :
Z—R, is positive and bounded.

In this paper, we analyze the behavior of solutions for the Dirac mass, §y only. In

this case (1) is referred to as the “limiting” equation. We expect less singular alignment
patterns of solutions to (1) for G,, in case o > 0, sufficiently small. This is because for
any given T' > () uniform convergence in [0, 7] for the solutions corresponding to G, and
do, respectively, was established in [5] for o — 0.
Our main result states the development of peaks as long time dynamics, i.e. alignment of
bundles of cells or filaments. This can be proved for suitable classes of initial distributions
combined with various types of optimal orientation and different ranges of interaction,
both attractive and repulsive (see Theorems 4.5, 4.8, 5.3, and 5.6). Our main tool is to
analyze the dynamics of suitable functionals of the cell density, which describe its behavior
in a subset of all possible directions. With this we can also specify the direction(s) in which
the bundles finally align.



M, (v) =v+V (w-v)

WV

Figure 1: Geometrical interpretation of the turning rate v.

The paper is organized as follows: Section 2 introduces the class of optimal reorienta-
tions M,,(-) and orientational angles V(-), we are interested in. In Section 3 global exis-
tence of a unique solution of equation (1) is proved. Section 4 is dealing with the analysis
of the limiting equation. We show that uni-directional, bi-directional, or multi-directional
alignment develops for a set of prescribed initial distributions which are suitably separated,
in case the optimal orientation for a certain interaction range is attractive. In Section 5
we consider the situation that bundles of cells or filaments repel each other unless they are
close. First it is shown that for non-separated, continuously varying and symmetric initial
distributions the solution will eventually develop two symmetric peaks. Then we consider
non-symmetric initial data. We prove that if bundles of cells or filaments are attractive
and repulsive they do finally align in two exactly opposite directions. Our main result is
the local stability of Dirac masses.

2 Optimal reorientation and the orientational angle

In this section, we introduce various types of optimal reorientations M,,(v) and orientation
angles V (), which may cause uni-, bi-, and multi-directional aggregation of bundles of
cells or filaments, depending on their initial distribution. First we give conditions for the
interaction rate h, though it does not play a crucial role for our further analysis.

Assumption 2.1 Let k > 1 be a positive integer.

The interaction rate h : R—R s a bounded, positive, and 1-periodic function.

In the interval [—1/2,1/2], h is symmetric and radially decreasing with respect to 0.
There exists 0 < n < 1 such that nh(0) < h(z) < h(0) in [-1/2,1/2).

Next we recall some reasonable assumptions for the optimal reorientation (compare e.g.

[6]):
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Figure 2: (i) Attracting case (ii) Attracting and repulsive case

Assumption 2.2 The optimal orientation is of the form My(v) = v + V(w — v) with
v,w €T =[-1/2,1/2), where V : R—R is the optimal reorientation angle, with

V)= -V(-60), V(1+60)=V(®). (3)

LetVeC?>and0<a<1,0<b<1 such that

Vo) Smax{af),b<%9>}, 6c [0, %} (4)

We will see more concrete examples for V' later.

Remark 2.3 Since V is odd and 1-periodic, it is sufficient to define the values of V in
[0,1/2]. Conditions (3) are equivalent to

My (v) + My(w) =v+w, My(l+u)=My(u)+1, Myii(u) = My(u).

Next we classify the properties of the optimal orientational angle V(0), depending on
the maximal range of attraction and repulsion between the bundles of cells or filaments.
Instead of repulsion one may want to describe the phenomenon also as attraction to the
ends of the interacting partners (e.g. like in myxobacteria), [2] .

(a) Uni-directional alignment (attraction), see figure 2 (i):
Here the bundles of cells or filaments attract each other towards the direction with
angle smaller than 7. Thus additionally to Assumption 2.2, V is required to fulfill

V)>0 in [0%} (5)

(b) Bi- and Multi- directional alignment (k-directional alignment: attraction):
Depending on the initial distribution, two or multiple peaks of aligned cells may
develop. In terms of the orientational angle V', this is achieved for short ranged
attraction. E.g., for the bi-directional case, we suppose that V' > 0 in (0,6) where



0<f<1/4and V =0in [0,1/2].

Generally speaking, the shorter the range of optimal turning is, the more likely is the
development of many peaks. For simplicity, fix § = 1/(2k), k € N. The k-directional
orientational angle is then given by

V() >0 in <0%> . V(0) =0 in [i%} (6)

(c¢) Bi-directional alignment (attraction and repulsion), see figure 2 (ii)
Here we consider the following situation: if the angle between the filaments is close,
then they attract each other, if the angle between the filaments is large, then they
are repulsive, respectively attracted to the ends of the interacting partners. Let
6o € (0,1/2) then the orientational angle is given as

1
V(@) >0 in (0,6p) , V() <0 in (90, 5) . (7)
In the following C will denote a constant which may vary from line to line.

3 Global Existence

In this section we show that for bounded interaction rate h the unique solution of (1)-(2)
is globally bounded in time.

Lemma 3.1 Let 0 < T < oco. Suppose that the interaction rate h(-) is nonnegative and
bounded, i.e. h € L>®(I). Let fo € L(Z) and [; fo(u)du = m. Then there exists a
unique solution f of (1)-(2) such that f(-,t) € L®(Z x [0,T)) and [; f(u,t)du = m for
all t € [0,T). Furthermore, if fo, h, and M,(w) are smooth, then this is true also for f
in T x [0,T).

Proof. Due to equation (1) we observe a priori that mass is preserved.
Let (h* f)(u,t) = [; h(u—v)f(v,t)dv denote the convolution operator. Then (1) can be
rewritten as 9y f (u,t) = —(h * f)(u,t)f(u,t) + R(f)(u,t), where

R(f)(u,t) = /I /Ih(v —u)Gy (u — My(0)) f(w, t)f (v, t)dwdv.

With the assumptions of Lemma 3.1 we can estimate

R(S) () < 1l ez /I /I G (1 — May(0)) f(w,£)f (v, £)duwdy

<l gy 1 o8 / / Gy (1= My (v)) dw f (v, t)dv

5



< Km||hll oo gy 1 £ G )l oo () < CNFC D ooy

where K = [|G,||,, and C = C(K,m,||h||1~). Since our equation is of the form 0;f =
—a(u,t)f(u,t) + g with ¢ > 0 we have that f is positive and thus —(h * f)(u,t)f(u,t) is
non-positive. With this and the previous estimate we obtain

81‘, ‘f(“‘a t)|2

D) = f(“‘a t)atf(“‘a t)

= —(hx £)(u, ) [ £ (u,0)* + £, )R (u,) < CUFC )| oo (2 -

Using Gronwall’s lemma, we get

1FCot) o2y < £ 0) | o () xD(CH).

It remains to show uniqueness of f.
Suppose that f; and fy are solutions of (1) with f;(u,0) = f2(u,0). We will prove that

lf () = Folw, )] < CUACH) = Fol D ooy

where C' = C(K,m, ||h||;~). First note that

[ (b f1)(u, ) fr(u, £) — (b f2)(u, 2) fa(u, £)]

<O (11 GOl gy + 172 Oy ) LA 1) = o)y
for given £. On the other hand, we have

‘R(fl) (“‘a t) - R(f?) (“‘a f)‘

/I /I h(o — )Gl — My (0)) (fr (w,8) 1 (0.8) — folw, £) (v, £)) duwdo

< Ol ey 11 (o 8) = F2ls D e -

Summing up, we obtain

e f1(ust) = folu, O)* = 2 (f1(u, 8) = folu, 1)) [3; (f1(u, 8) = folu,1)]

<Clfi(.t) - f2(-at)||%oo(z) :
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Uniqueness follows again from Gronwall’s lemma. Smoothness of f is straightforward
from the equation, if the initial distribution, interaction rate, and optimal reorientation
are regular. Since the proof is similar to the one above, details are omitted. 0

Next we consider the “limiting” equation of (1) by substituting G, by dp.

Ouf (ut) = —(hx f)(u.t)f / / b0 (u — My(v)) f(w, 1) (v, )dwdo.  (8)

It is easy to see that the solution of (8) satisfies Lemma 3.1, as it is the case for the usual
Gaussian G, > 0. For convenience, denote by f and f, the solutions of (1) for 0y and
G, with o > 0, respectively. In [5] pointwise convergence of f, to f for any finite time
interval was proved, more precisely

Lemma 3.2 Let T be fized with 0 <T < oo and let the assumptions in Lemma 3.1 hold.
Let f, and f be solutions of (1) for Gy and Go with the same initial distribution. Then
in [0,T] the solution f, converges to f in the L —norm as o — 0.

Proof. See [5, Theorem 2.1]. O

4 Peak Solutions for the Limiting Equation

To introduce the main ideas and techniques we first start with a simple setting and study
the behavior of solutions for the limiting equation, which means equations (8) respectively
(1) corresponding to the Dirac mass dg. We start with assumptions on the classes of initial
distributions, which cause uni-, bi-, and multi-directional bundles for large times.

Assumption 4.1 Let k > 1 be a fized integer. Suppose fy is smooth and fI fo(u)du = m.
Assume that supp fo C UleAi where the A; C T are nonempty, open, connected, and
mutually disjoint such that for A;, 1 =1,2,--- |k

1. [, fo=mi>0 for eachi=1,2,---  k, with Zlemi:m.
2. dist(Ai,A-) > 1/(2k) fori # j, thus |T\ U A;| > 1/2.
8. |Ai| < g fori=1,2,-- k.

Remark 4.2 If k = 1, then there is only one Ay C T with |Ai| < 1/2, e.g. A =
(—1/4,1/4). If k = 2, then there are disjoint open intervals, Ay and Ag, such that |A,| =
|Ag| < 1/4. We assume Ay = (—3/8,—1/8) and Ay = (1/8,3/8). For general k > 3, we
can take A; = (7 1/2+ (20 —1)/2k,—1/2 + 1/k> where i =1,2,--- k.

In the following subsections, we derive different types of alignment with respect to the
optimal reorientations relevant for assumed initial conditions, in case the deviation o of
the Gaussian is sufficiently small.



4.1 Uni-Directional Alignment

Here we take £k = 1 in Assumption 4.1, namely supp fo = A;. Thus the interaction range
between the bundles of cells or filaments can be wide. Without loss of generality, we
assume that Ay = (—1/4,1/4). For the Dirac mass, we have

/u5g(u — ug)du = ug, / u|? 0o (u — ug)du = |ug|? . (9)
Jz JT

The interaction rate h is as given in Assumption 2.1. For simplicity suppose h = 1. Thus
we can rewrite (8) as follows:

O f(u,t) = —mf(u,t) + /I /150 (u — My (v)) f(w,t)f (v, t)dwdv. (10)

In the next lemma, we show that the first momentum of f is preserved, provided that the
orientational angle M,,(v) is of uni-directional type, compare (5).

Lemma 4.3 Let k =1 and fy be an initial distribution satisfying Assumption 4.1. Sup-
pose that My (v) and V satisfy Assumption 2.2. Let the interaction rate h = 1. Then
supp f(,t) C supp fo for all t € [0,T), and the first momentum of f is preserved, i.e.

/uf(u,t)du —/ufo(u)du for all t>0. (11)
7 z

Proof. To show the first assertion, we consider the discrete version of (10). Let 7 > 0 be
small, then we define Da’-c(u, t) by

Di(u.t+71) — DI(u,t)

T

+/ / So(u — My (v)) DY (w, t)Df (v, t)dwdv, t > T,
1)1
with initial conditions

DI (u,t) = f(u,0), 0<t<r.

With the above identity, one can check that supp D'f(u,t) C supp f(u,0) for all 7 > 0.
By following a procedure similar as in Lemma 3.1, we can see that Df is bounded for
all t and D! converges to a function g in L>® as 7 — 0. Since g solves equation (10),
by uniqueness we conclude that ¢ is identical to the solution f of (10). Therefore,

supp f(u,t) C supp f(u,0).



It remains to prove that the first moment is preserved. Using (9), we have

—/11f u, t)du = m/uf u, t)du +/ //50 My, (v)) f(w, t) f (v, t)dwdvdu

= m/uf(u,t)du—l—//Mw(v)f(w,t)f(v,t)dwdv
7 7J1

= m/ wf(u, t)du + / / (v+V(w—v)) f(w,t)f(v,t)dwdv
z )z

://V(w1))f(w,t)f(v,t)dwdv.
7J1

The last term equals zero, since with V(0) = — ) we have

V(-
// w— ) wt)fvtdwdv— / v—w)f(v,t)f(w,t)dvdw

/ / (v,) f (w, t)dvduw.

This completes the proof. 0

Remark 4.4 Lemma 4.3 s also valid when the interaction rate h is not constant, i.e. if
h satisfies Assumption 2.1, the mass and first momentum are preserved and the support
of [ is contained in the initial distribution of f. The proof is analogous to the one before.

Using the result of Lemma 4.3, namely that the first momentum is preserved, we can
define the mean of the first moment ¢ € Z, which is constant and given as

quf u, t)du

Tty = /11f u, t)du. (12)
7f

Now we show that more general types of second moments of f are decreasing in time.

Theorem 4.5 Let k=1 and fy be an initial distribution satisfying Assumption 4.1. Let
¢ as defined in (12). Suppose that My (v) and V satisfy Assumption 2.2 and condition
(5). Assume further that h = 1. Then

d

7 [ (u =& f(u,t)du < 0. (13)

Equality in (13) only holds in case f(u,t) = mdg,—¢y, where § is the Dirac mass.



Proof. Let S(t) := [(u — &)?f(u,t)du. Direct calculations show that
—S = —m/ u— t)du

— £)? So(u — My, , ,t)dwdvd
+ =92 [ [ dotu=Mao) .00, Ohwitod
——m/ u—E&)" f(u,t)du + // f(w,t)f(v,t)dwdv
——m/u— flu,t)du + = // f(w,t)f(v,t)dwdv
—I—%/I/I (Mw(w)—5)2,)”(1),75)]"(11),t)dvdw
m/ u— (u,t)du + = // (v+V(w—v)— E) flw,t)f(v,t)dwdv
+%/I/I(U)+V(7)U)) ff)Qf(v,t)f(w,t)dudw
—(Cmtm) [ (e € fudu
T

+/I/I(U_w+v(w—U))V(w—v)f(w,t)f(v,t)dwdv.

From the assumptions on V' we can deduce that V(0)(V(0) —0) < 0. Thus the last
expression is non-positive, and §’(¢) = 0 only holds if V(v —w) =0 for allv,w € Z.

Remark 4.6 The estimate is also valid if h is a general function, satisfying Assumption
2.1. Again the computation is like the one before.

10



4.2 Bi- and Multi-Directional Alignments

For completeness we shortly discuss bi- and multi-directional alignment of bundles of cells
or filaments. Basically the technical arguments are similar to the ones before. This sit-
uation is extremely unstable. Slight changes of the interaction potential will destroy the
dynamics. Later we will consider examples of stable alignment for this type of models. We
first consider the situation where several peaks develop. We start with the simple obser-
vation that mass and the first moments on disjoint sets are preserved under Assumption
4.1 also for k > 2.

Lemma 4.7 Let k > 2 be a positive integer and fo be an initial distribution satisfying
Assumption 4.1. Suppose that My (v) and V' satisfy Assumption 2.2 and condition (6).
Assume further that h satisfies Assumption 2.1. Then supp f(-,t) C supp fo = U’;:]Aj.
Furthermore '

/ f(u,t)du:/ fou)du  and / uf(u,t)du:/ ufo(u)du,  for j=1,.. k.
Aj Aj Aj A;

7 7

Proof. For simplicity and w.l.o.g. we show the result just for £k = 2. The first part is
similar to Lemma 4.3 for the uni-directional case, thus we omit details. We now show
conservation of mass on each of the sets.

d

7 N fu,t)du = /A1 / w — u) f(w,t) f(u, t)dwdu

/A1 // v —w)bo (u— My (v)) f(w,t) f(v,t)dwdvdu =: T (t) + I(t).

We show that I(t) + Io(t) = 0. Note that f is only supported in A; and Ay and

v+ V(w—wv) if w,v € Ay orif w,v € Ay

My (v) = { v ifve A, we Ay orif we Ay,v € A, (14)

due to the assumption on the arc-length separating A; and Ay. Thus we know that
do (u — My (v))du =1 if and only if w,v € Ay or v € A, w € As.
J A,

And so I»(t

/A1 /A1 v —w) wt)f(vtdwdv—i—/ /A2 v—w)f(w,t)f(v,t)dwdv = —I(t).

The argument for fA2 f(u,t)du is the same, and the first part of the proof is completed.

11



Without loss of generality we assume, that A; = (—3/8,—1/8) and Ay = (1/8,3/8).
Again we consider only fA1 uf(u,t)du. Since f is supported in A; and Ay, by arguments
of the previous lemma, and due to Assumption 2.1, we get

d
— uf(u,t)du = / / h(w — u) f(w, t)uf (u, t)dwdu
dt J a, Al

+/ / / h(w — v)udy (u — My (v)) f(w, ) f (v, t)dwdvdu

mJzlz

= / / h(w — u) f(w, t)uf(u, t)dwdu +/ / h(w — v) My (v) f (w, t) f (v, t)dwdv.
A1 A1 Al Al

= / / h(w —v)V(w —v) f(w,t)f (v, t)dwdv
o Al . Al

since My, (v) = v 4+ V(w — v). The last term equals zero, because V' is odd and h is even
with respect to 0. This completes the proof. 0

Since the first moments are preserved on each of the sets A;,7 = 1,...,k, we define the
constants

B .fA]- uf(u,t)du

= T j=1,..k (15)

&)

Like in the uni-directional case, we show that the second moments are non-increasing.

Theorem 4.8 Let k > 2 be a positive integer and fo be an initial distribution satisfying
Assumption 4.1. Let £, = 1,...,k be defined as in (15). Suppose that M, (v) and V
satisfy Assumption 2.2 and condition (6). Let h satisfy Assumption 2.1. Then

4 g t)du <0, =1,k (16)
dt Ja, '

Equality in (16) only holds for f(u,t) = Z’;:1 m;j0{y—¢;}, where [ 4. folu)du = m;.
. g 7

Proof. Again, we only consider the case .fAl(u —&1)2f(u,t)du =: S(t), and show that
S(t) is non-increasing. Let my := 'fAl fo(u)du.

iS(t) = / / h(w —u)f(w, t)(u — &) f (u, t)dwdu
dt AT

12



2
+ /A -6 /I /I h(w — )0 (u — My (v)) f(w, ) f (0, t)dwdvdu
—— [ | hw— w6 duda
A1 J Ay

4—/{41 /A1 h(w —v) (My(v) — &))" f(w,t) f(v,t)dwdv =: I (t) + I5(t).

Here we used that u € Ay, supp f C U’;:]Aj and the assumption on the size of the arc-
length between the A;. As in the uni-directional case, we can compute

I(t) = % '/A '/A h(w — v) ((Mw(v) — &) + (M, (w) — fl)2> fw, t) f (v, t)dwdv

=5 /Al /A1 h(w — v) ((1) +V(w—v)—&)" +(w+V(v—w)—§&) ) f(w, t)f(v,t)dwdv

= / / h(w — u)f(w, t)(u — &) f (u, t)dwdu
. Al . A1

+ / / h(w —v)V(w—v) (V(w—v) —w+v) f(w,t)f(v,t)dwdv.
. Al . Al

Adding up, we obtain
iS(t) = / / h(w —v)V(w —v) (V(w—v) —w+v) f(w,t)f(v, t)dwdv
dt - J Ay S Ay ’ ’ )

The right hand side is non-positive, and equals zero only if V(w —v) = 0 for all v, w € A;.

O

So far we could decouple the system into separate subsystems. The first moment of
each of these was locally preserved, due to the fact that each of them had compact support.
In the following we consider more general cases.

5 Attractive and Repulsive Optimal Orientation

5.1 The symmetric case

Here we consider the case of symmetric initial distributions and the situation that the
main part of the mass is almost concentrated at two opposite positions. The support
is supposed to be connected. Details will be given later. We intentionally discuss this
simplified situation first, as a particular case of the more relevant non-symmetric case,
since some of the basic technical details can be conveyed much easier. We start with
conditions for the orientational angle.

13



Assumption 5.1 Suppose that V is smooth, satisfies (3), (4) and
(a) V(0) >0 in (0,1/4) and V is anti-symmetric with respect to 1/4 in [0,1/2].

(b) There exists 0 < a < 1 and 01 € (0,1/4) such that V'(0) = V'(1/2) = a and
V(@) <ab in[0,60,] , —V(0)<-a(@—1/2) in [1/2—-6,1/2].
(¢) Furthermore, there exists Cy > 0 such that V'(0) < —=Cy in [01,1/2 — 64]. 0

Assumption 5.1 automatically implies |V (0)| < af and |V (0)| < a(1/2 —6) in [0,1/2].
Next we specify the initial distributions.

Assumption 5.2 Suppose that fo : (—1/2,1/2]=R is smooth and nonnegative with [; fo(u)d

m. Let fo be 1/2-periodic and symmetric with respect to both 0 and 1/4, and satisfy

(a) There exist 0 < 6 < 1/4 and €1 > 0 such that

I

(b) There exists e > 0 such that fo(u) < €2 for u € (1/4+§,1/2).

2
) (u - i) fo(u)du < €1,  where Is(y) = [y — 6,y + ¢].

1
4

Now we are ready to state and prove the main result of this section.

Theorem 5.3 Suppose that Assumptions 5.1 and 5.2 hold. If §, €1, and ey are sufficiently
small, then S*(t) = fi(;(i]/zl) (uF 1/4)2 f (u, t)du is non-increasing, and

/ (u F 1/4)% f (u, t)du < eCt/ (u F 1/4)% fo(u)du.
I5(+1/4) I5(+1/4)

Furthermore, the mass is finally concentrated only at +£1/4, i.e. for any given € > 0,

lim flu,t)du = m
t=00 J1_(+1/4) 2

Proof. We first note that f is symmetric with respect to 0 and to 1/4, thus f is also
1/2-periodic for all times ¢. This can be proved by uniqueness, namely let f(u) := f(—u).
Then f is a solution of (8) with the same initial data as f, and therefore, due to the
uniqueness of solution, we have f = f Thus f is symmetric with respect to (0. Here we
used that V' is 1/2-periodic. Similarly symmetry of f with respect to % can be checked.
Next we set 6 := 6 + 8, with 61, d such that § < % — 0 where 4 is given in Assumption 5.2
and we define

Avi=T(14) = (1/4—0,1/4+8) | Ay = [0,— —é} U [
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Since f is 1/2-periodic, it is sufficient to estimate S*(¢), which we denoted by S(t) in the
following, unless any confusion is to be expected. We analyze

1\2
S(t) := f(u,t) (u - —) du, and J(t):= sup f(u,t).
Aq 4 u€ Ag

First we compute

d 2
aS(t) =-mS(t) + /Idv/zdwf(w,t)f(v,t) (Mw(v) — i) X4, = —mS(t) + F(t),

where A = {(w,v) € T x T : M,(v) € A;}. For convenience, we denote
If == I;(1/4),I; = I5(—1/4) and I} := I} U I;. Consider

2
F(t) = /’i dv /Ii dwf(w,t)f(v,t) <Mw(1)) - %) XA,

1\ 2
+ dv/ dwf(w,t)f(v,t <Mw V) — —> X i
/I\I{;i I\ (1, £)f (v 7) Q 4 A1
2
+ dv/ dwf(w,t)f(v,t <Mw v) — —> X i
/ Lot [ s 050 (M) - 3)

1 2
+/z; dv/mﬁi dw [ (w, 1) f (v, 1) (Mw(v)—z) XA,

= Fi(t) + Fa(t) + F3(t) + Fa(?).

Estimate for F(t):
Keeping the symmetry of f in mind, the effects of the characteristic function, and finally

doing Taylor expansion for V' (0), we obtain

2
Fi(t) = /I+ dv /I+ dwf(w,t)f(v,t) (Mw(v) — i)

+/I;dv/ dw f(w, 1) f (v, 1) (Mw(v) - %>2

)

15



< /1+ dv /I+ dwf(w,t)f(v,t) <(1 —a)(v— %) bafw— i) oW “))2>2
+'/I+ dv'/ dwf(w,t)f(v,t) ((1 —a)(v — i) + a(w + i) O —w— %)2>2

2 2
<m((1-a)®+a?) / (v — i) fv,t)dv + 05/ (1) — i) f(v,t)dv. (17)
5 Iy

1

Here we have exchanged v and w in some integrations and used that

f,; flo,t)(v— %)dv = fl{ flw, t)(w + %)dw.

Lower estimate for the mass in I(}": Note that

m 1 1
)i f(u,t)du > 5 J(t) — 5—28(15) , ./[0,1/2}\1; flu,t)du < J(t) + 6—28(t). (18)

Indeed, since [ f(u,t)du = m, we get

2-/13 Fu, t)du = ./I; Fu, t)du = '/If(u,t)du—Q'/Azf(u,t)du—2/ F(u, t)du

JANTS

2
> m— 2J(1) 532/&\1+ Flut) (u _ i) du > m—2J(t) — 5—228(75).

Here we used 1 < 6%(“‘ —1/4)% for u € Ay \ I . This completes the first inequality of (18).
The second inequality is an immediate consequence of this.

Estimate for Fy(¢): Here we will use (18).

1\ 2
Folt :/ / flw,t)f(v,t <Mw v) — —) X ;i dvdw
0= [ ] 000 (M) - 3)

S(t) ? ) )
< C./I\z; f(w, t)dw /z\z; flv,t)dv < C (5—2 + J(t)) < C(82t) + J2(1).  (19)
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Estimate for F4(¢) : First we consider F4(¢), and after this F3(¢) will be estimated. If

v € Iy, then M,,(v) is not contained in A;, and we obtain

1\2
= d d t t) | M, — - i
/I;' v /I\I{;i U)f(“), )f(va ) < ’w(“) 4> XA,
:/ dv / dw---—l—/ dw---—l—/ dw---—l—/ dw--- ],
I AT AN Ao A

where A7 and A% are obtained by rotating A; and Ay by the angle 7. Using Young’s
inequality we get for arbitrarily small

1 2

1
14— dv/ dwf(w,t)f(v,t) <1) - —)
480 [+ Al\I+ 4

+(1 4+ €9) / dv / dwf(w,t)f (v, t)Vi(w — v),
Jrf ANTF
< OS*(t) + (1 4 &) / dv/ dwf(w,t)f (v, t)a*(v — w)?
I ANIF

< CS%(t) + a®(1 + &) /’+ dv /A e dwf(w,t)f(v,t) (v —1/4) + (w— 1/4)?)

(14 eg)a’m

< O8?%(t) +
() 5 L

fw,t)(w —1/4)*dw

Here again we used 1 < Cs(w—1/4)%, w € A;\ I}, Assumption 5.1, and [+ f(v,t)dv < 2.
)

In the fourth inequality, the mixed terms vanished due to the symmetry of f and V. Next,

using again symmetry, we obtain

/I+ dv/r\l dw - - SC’SQ(t)-i—(ILO)an fw, t)(w —1/4)*dw

2 AN

17



On the other hand, it is straightforward that

//---dvdw+/ / - dvdw < CJ(t).
Az I 1T e

Fu(t) < CJI(t) + CS*(t) + (1 + g¢)ma’ /A - f(u,t)(u—1/4)*du. (20)

Summing up, we get

Estimate for F3(t): Let Ay = Ay U AL. We have

A= [ L [ dwstw. 0560 (Mao) - Z)Qx;h

:/ dv/ dw---—l—/ dv/ dw---,
AT IFs Ay IFs

where we used x ; =0 for w € I(si and v € A7\ I;. The second term on the right hand
side is bounded by CJ(t), and therefore, it remains to estimate

/ dv/ dw---—l—/ dv/ dw--- .
A\If 1 AT 5

8

Both terms are equal due to the symmetry of V. Thus it is sufficient to estimate

_ /AN; do /1; dwf (w,t)f(v,1) ((v -V <(” P t- ?))2

- /AW v /I; s (w0700 |0 - ) = Vio - i)r



because the second of the three integral terms is zero. Finally

Fs(t) <m(l — (1,)2/

1\ 2
f(v,t) <v — —) dv + CJ(t) + CS*(t). (21)
ANTF 4

Summing up (17), (19), (20), and (21), we obtain

%S(t) < -—mS(t) +m(l+eo) (1 —a)®+a%) S(t) + C(J(t) + S(t)). (22)

Suppose now u € Ay: (The case for A} is similar by symmetry)
Consider

O0f (ut) = —mf(u,t) + /I dv /I dw f (w,£) (v, 1) (u — My (v)

=—mf(u,t) + / dv/ dw--- + / dv/ dw - =—mf(u,t) + I (t) + I2(t).
T £ T Jo\if

If we I(Si and v € Ay = A; U A7, then M,,(v) ¢ As. Therefore

Il(t):/ dv/ dw---:/ dv/ dw---
T\ A ¥ As ¥

where As = Ay U Aj. For fixed w € I(si, we consider My, (v) as a function of v in Ay. Due
to Assumption 5.1, (c), we can see that M) (v) > 1+ Cy where Cy > 0, thus, M, (v) is

invertible. Let M,,(v) = z, so v = M,,'(z). Using a change of variables, we get

_ flw)f (M, () m
Li(t) = /’8i dw '/Mw(AQ) dz M (Mo (2) < T Co J(t). (23)

If v € If U I, then M, (v) ¢ Ay and
L(t) = / dv/ dw--- < C(S*(t) + J*(1)) . (24)
\IF \IF

Here we used similar computations as in (19). Summing up, we obtain

b

8tf(“‘a t) S *mf(uat) + 1 + C[]

J(t)+C (S*(t) + J*(t)),  u€ A,

Since the above estimate is uniform for all u € Ay, we have

Com

15 Co J(t) + C (S%(t) + J*(t)) . (25)

d
—J(t) <
S0 <

19



With eo chosen such that v = (2(1 +e9)a(l —a) — 60>m > 0, we finally obtain

S'(t) —y 0 S(t) O (J(t) + S?(t))
= 0 _ C()m . —+
J'(t) 1+Cy J(t) O (S%(t) + J2(t))

Since S(0) and J(0) are sufficiently small, we obtain that both S and J are exponentially
decaying. This can be shown by arguments from ODE-theory. An additional linear order
term in the errors, namely J, appears only in the first equation. In the second equation
the error term is quadratic, and thus the error of J behaves like S2. So plugging in the
second equation into the first one gives an error term of order S?, which is much smaller
than the linear term. This completes the proof. 0

5.2 The non-symmetric case

In this section we consider non-symmetric initial distributions with non-separated support.
Most of the initial mass will be concentrated close to opposite positions, say 1/4 and
—1/4. We discuss the effect of an attracting and repulsive optimal reorientation. Thus
the orientational angle satisfies (7) together with Assumption 5.4.

Assumption 5.4 Suppose that the smooth, not necessarily symmetric, orientational angle
V' satisfies (3).

(a) Let V € C*([0,1]) and V'(0) = A,V'(3) = B for A,B > 0.

(b) There exists an L < ¢ with ||V || < L such that in [-% + 1,
V'(0) < —Cy where Cy > 0.

N~

+ 1] we have

(c) There ezist 0 <a<1,0<b<1andf >—-%+1 0,<Z%+1 suchthat

ab >V (0) > b0 for 6€0,6:] and

a(@—1/2) <V(0) <b@—1/2) for 0€[h,1/2].

These assumptions imply the existence of oy > 0 such that
(i) a0 > V () > b0 in [0,+ — L + o¢], anrd
1 A . 1
- 1: 71 _ L1, L
(ii) [Vl < L — 09 < 5 in [1*5’1_‘_5]
Figure 3 explains our assumption.
Next we specify the initial distribution of the cell bundles.
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Figure 3: The orientational angle V' for the non-symmetric case.

Assumption 5.5 Let I = (1/4—6,1/446) and I; = (=1/4 —6,—1/4+6) for fized
d > 0. We suppose smooth and nonnegative initial conditions fo : (—1/2,1/2]=R with
[7 folu)du = m and

(a) There exists €1 > 0 such that

8 i ’6

/+ (u — €1(0))% fo(u)du + / (u — £€2(0))% fo(u)du < 1.

JTI

Ja, ufo(u)du
B f[;' fo(u)du ’

qu wfo(u)du

where 5] (0) = W
Ig - R

£2(0)

(b) There exists €2 > 0 such that fo(u) < €3 foru € T\ (I UI;).

(c) There exists e3 > 0 such that £ (0) € I, and £(0) € 1.

We assume that § < 2. Define

no(Bgmiitm) [ o)

2 72 2 2 72

and A} , A} are their reflections with respect to the horizontal respectively the vertical
axis.

A§=<1+L””(L”°)>, A :[lul}u[l 1+LUO].

2 2 2
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NI

Figure 4: The regions A;, A}, and Ay, A}, which are separated.

Next we introduce some suitable functionals for our analysis.

mq (t) :—/ flu,t)du , ma(t) := flu,t)du ,  J(t):= sup f(u,t),
Jrf JIg AUAY

fAl uf(u,t)du
om(t)

fA; wf(u,t)du
ma(t)

) 62 (t) =

)

§i(t) =

S0 = [ &) fwodn . Sale) = [ (- G(0)? flu
A AT
The first momentum, denoted by £, is preserved over Z, i.e.

f::/qu(u,t)du:/qu(u,(])du. (26)

Our main result for the non-symmetric case is

Theorem 5.6 Let Assumptions 5.4 and 5.5 hold and m;(0),mo(0) > 0. Then we can
define 0 < eg = €9(m1(0),m2(0), V) such that for §, €1, €9, €3 < €, there exists my,may with
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1+ =m and &, & with & € IT, & € I, such that mi(t), & () converge to mg, &, for
1 1
t = 00, i = 1,2. Furthermore, S;(t) < e~ 'S;(0) and
- - .~ - - - 1
f=mid, gy +mad, gy 5 b +meby =mE ‘52 - 51‘ =5
where € is given as in (26).

Remarks:
Assumption 5.4 ensures the main properties we need for the interactions between particles
to prove our theorem.

e The particles in region A; cannot jump to region A] or the other way around, since
the width of region As is of order L, but the potential V', that measures the size of
the jumps, is smaller than that.

e For all interactions between particles v in Ig' U Iy with particles w in A; U Aj]

the inequalities for the potentials in (c¢), or the reflected ones, can be applied. In-

deed, for these interactions either v — w € [7}1 + % — 0g, % — % + (T[]] or v —w €

[i+3—o0l-g3—%+00.

e The particles in I(}" U I cannot reach the region Ay U A5, Since L < %, the width of
the region A; (or A7) is at least &, whereas the required jumps have to be at least

3
of order 4 — 4 > ¢ — 09 > L — 09 > ||V, which is not possible.

oo’

See figure 4 for illustration.

Proof. (of Theorem 5.6) Several lemmas and propositions have to be proved to get the
final result. First we start with

Assumption 5.7 Suppose first that & (t) € I($+/47 &(t) € Is)40 and m1(t),ma(t) > 19 >0
for 0 <t <t*.

Later we will use a continuity argument. First we show a lemma that will be used several
times in the following arguments.

Lemma 5.8
/ duf (u,1) < Cy(S1(t) + S(t)) + I (2).
I\(ZFuIy)

Proof. As long as Assumption 5.7 is satisfied, we have

1< Cs(u—&()% for &(t) € IS, ue Si\ Iy (27)
1< Cs(u— &) for &(t) € Is)p u €51 \ Iy . (28)
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Therefore

/ duf(u,t) = / duf(u,t) + / duf(u,t) + / duf(u,t)
JI\(ZF Iy ) JANTS JANIS J AyUAY

< Cs '/AN(;F du(u — & (£))* f (u, t) + '/AM du(u — &) f(u, t) | + J(t)
< C5(S1(t) + Sa(t)) + J(1).
m
Proposition 5.9
% (mi(t)) = O(J(t) + Si(t) + Sa(t))  for i=1,2 (29)

Proof. Let x1 = x1(v,w) = 1 on the set {(v,w) € T x T : M,,(v) € I} } and otherwise
zero. Then

Dot ——m/futdu+/l+du/dv/dw5ou— w(0)) f(w, ) (0,1

= —mmq(t /du/dw w,t) f (v, t)x1
= —mmq(t / du/dw w, t) f (v, t)x1 —I—/ /dw w, t) f (v, t)x1. (30)
I\IF

For the second term on the right hand side we have

/I+dv/zdwf(w,t)f(v,t)x1 —/I+dv (/I+dw...+/dw...+/1\(l+u1)dwm>

)

= iy () (£) + ma(t)ma (8) + O(J(E) + 81 (£) + Sa(t).

Here we have used Lemma 5.8. Since x1 = 0 if v € I, the third term of the right hand
side of (30) can be estimated as

/ dv /dwf(w,t)f(u,t)xl = /dw/ dvf(w,t)f(v,t)x1
Iy )z T I\(Iguiy)
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< /If(w,t)dw /I\(I;ulé) f(v,t)dv < mJ(t) + Cm(S:(t) + Sa2(t)).

Summing up, we get

d
dt

Similarly one obtains

d
dt

Since

m —mq(t) —mo(t) = / f(u,t)du < C(S; + Sa + J),
Si\Ifury
we immediately obtain (29) by Lemma 5.8.

Proposition 5.10

—ma(t) = —ma (t)(m — ma (t) — ma(t)) + O(J(£) + Si(t) + S2(t).

—ma(t) = —ma(t)(m — ma (t) — ma(t) + O(J(£) + Si(t) + Sa(t).

(31)

(32)

(33)

O

2
%510+ 5:(0) £ K (5104 8:0) +C (60 - )~ 5) +CW + 5+ 3)

where K > 0 is an absolute constant depending on a,b,d, and m.

(34)

Proof. We first consider %Sl (t). Let x1 denote the characteristic function with x; =1
on {(w,v) € T xT: My(v) € A1} and otherwise zero. Using fA] (u—&(t)f(u,t)du = 0,

we have

A. Estimate of Sy (t):

dé: (t)

dt dt

- /A (1 — &1(1))” 04 f (u, #)du

— o [ (u— &) o t)du + / v / dwf (w, 1) f (0,1) (Mo () — & (5) 31

Aq

— mSi(t) + /I v /I dwf (w,£)f (0.£) (Ma(0) — &1 (8))? X
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= —mSi(t / dv/dw / dv/dw---——mS’1(t)+I](t)+Ig(t).
Ay \A, T

A.1. Estimate of I (t):

Il(t):/ dv /dw---—l—/ dw---—l—/ dw--- | = I¢(t) + 1D (t) + I{(t).
Ay Aq Aq AQUAS

Among these we estimate the first by symmetrization.

A.1.(i) Estimate of I{(¢):

/A1 dv/A] dw(v+V(w—v) — & (t )) flw)f(v)
+% /A dU/A dw (w +V(v—w)— & (t))Qf(v)f(w)
| , 2
=5 /A1 dv /A1 dw [(1) —&) +2(v - &E))V(w —v)+ (V(w—v)) ]f(“’a t)f(v,t)
1 , 2
+§ ./Al dv ./A1 dw [(w — &)+ 2w — &)V (v —w) + (V(v—w)) }f(“’at)f(“a t)

= S51(t) / dwf(w,t) — / dv / dwV (w —v)[(w — v) — V(w — )] f(w, ) f(v,1).
J A J Ay J A
The first term can be estimated via

/ dwf(w,t) = / dwf(w,t) +/ dwf(w,t) = mi(t) + O(Si(t)), (35)
Ay ¥

ANTS

where we have used Lemma 5.8. Thus

I8(t) = my(t)S1(t) + O(Si(t /A dv/A dwQ(w — v) f(w, t) f (v, t),

with Q(0) =V (0)(6 — V(0)). We split

/A]/mdvde w—v)f(w,t)f(v,t) /I+/I+dvde w—v)f(w,t)f(v,t)
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With (27) used for v and w we obtain
Qa(1)] < C(Si(1)*. (36)

On the other hand, for the domains of integration used for @)1, Q2 and ()3 we have that
|w — v| < 6. Therefore, since Q(0) is even and V can be estimated in [0, 6] as given in
Assumption 5.4, (c), we obtain

Q) >b(1 —a)§? for 6e[—0,64]

Thus

[ v [ dwau—oswnswzon-af [ [ dntw o2 s.050.0

+ /A » /z; dvdw(w — )2 f (w,£) (v, 1) + /1; /A | oo o) f(w)f(v)]

+/ / dvdw [Q(w — ) —b(1 —a)(w —v)2 +b(1 —a)(w — 1))2} flw, t)f(v,1)
AN\If JAangt

>b(1 —a) /A /A dvdw(w — v)2f (w, t) f (v, t) — CsS3(t). (37)

For the first term of the right hand side we estimate again by expansion (w — v)? =

(w— & (t) — (v —&(t)))?, canceling the cross terms and using (35).

b(1 —a) /A /A dvdw(w — v)2 f(w,t) f(v,t) = 2b(1 — a)(m1(t) + O(S1(t)))S1(2).
Thus
I8 (t) < ma(t)S(t) — 2b(1 — a)mq (t)S: (t) + CSE(t).

A.1.(ii) Estimate of I{(¢): It is direct that

If(t) < /A‘UAT flw, t)dw ; flu,t)dv < CJ(t).

The estimate for 12(¢) is related to an analogous estimate appearing for %SQ(t). We will
deal with this later. So first we look at
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A.2. Estimate for I5(t):

—/" dv/dwﬂwwixxnmw)—au»aq
J1\ A,

—/ M/WMWﬁﬂmeww—ﬁwfm<Cﬂﬂ
AsUAT T

due to the definition of the characteristic function and since ||V||oc < L as given in
Assumption 5.4 (b). Combining all estimates we obtain

d
Z51(1) < —mSi(2) +ma(#)S1(2) — 2b(1 — a)my ()51 (2 )+ ID(t) + CJ(t) + CST(1).
Next we consider

B. Estimate of Sy(#):

d

252(t) = —mSy(1) /dw/dvfwt (0,1) (My(w) = &(8)% X,

= —mSy(t / dv/dw / dv/dw--- = —mSy(t) + I, (t) + L(¢).
r Joar Uz

Here x2 = x2(v,w) = 1 on the set {(w,v) € T x T : M, (v) € A]} and otherwise zero. As
before we split

I](t)—/rdv (/wa---f/A dw---+'/AUArdw---> _Fo() + (1) + To().

Due to the symmetry of the problem we obtain similarly as before

T8(t) < my(t)Sa(t) — 2b(1 — a)my(t)S2(t) + CSa(t),

I¢(t) < CJ(t) and I, < CJ(t)

since xo = 0 if v € Ay. Thus

(51( ) + Sa(t)) < —m(S1(t) + Sa(t)) +ma(t)S1(t) + ma(t)Sa(t)

~20(1 — a) (ma (1) S1(t) +m2 (1) S2(1)) + I (1) + I (t) + O (1) + C(ST(1) + S3(1))-
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AB. (iii) Estimate of I?(t) and I?(t):
Exchanging the roles of v and w in the second term in the expressions for I?(t) and I?(t)
we obtain

(1) + 11(t) < /A dv / duwf (v,6)f (w,1) | (v + V(0 = 0) = &1 (0)> + (w0 + V(0 = w) = &(1)?
= /A1 dv /q dwf (v, t)f(w,t) [(1) —E1(1)? + (w — &(t))?

+2((0 = w) = (&) = &)V (w = v) + 2V (w - v))?]

= my(t)S1(t) + m (£)Sa(t) + O(S?(t) + S3(t))

- /A o / duwf (0, 1) (w, ) [(w =0 +1/2) = V(w = v)]V (w - v)

260 =60 +172) [ av [ dwfniw.vw=

= ma(t)S1(t) + my(t)Sa(t) + O(SF (1) + S3(t)) + K1 (t) + Ka(t).

For the first terms we have assumed (35).

Estimate of Ky(t):

The assumptions on the potential V' imply |[V(w —v)| = [V (v —w)| < Clw —v +1/2| <
Clw — &) + |v — & (t)] + |&2(8) — &1(f) + 1/2]). With this and the Cauchy-Schwarz
inequality we get

Ka(t) < O (1€() — &1(0) +1/2] + VS0 + VSl ) 1&2(8) — 1) +1/2].
Using Young’s inequality we obtain
Ks(t) < eo(S1(8) + Sa(t)) + Cleo) €a(t) — &1 (2) + 1/2)°.

Estimate of K (¢):
For K (t) we first split the domains of integration as usual

/ du/ dwf(v,t)f(w,t) |[(w—v+1/2) = V(w —v)|V(w—v)
Aq 1
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—/ dv/ dw---+/ dv/ dw---+/ dv/ dw---+/ dv/ dw - --
i Jiy AL 5 I Ny AN Janay

é

= K3(t) + K5(t) + K5(t) + K3(t).
We start with the last term
|K5(1)] < C(S1(£)Sa(t)) < C (ST(t) + S3(1)) -
All other terms are positive because of Assumption 5.4 and the 1-periodicity of V

bO+1/2) >V(O) >a@+1/2) in O€[ 3/4+L/2 og,1/2],

(O +1/2) <V(O) <a(@+1/2) in 0€[-1/2,—1/4 — L/2 + oql.
Thus ((9 +1/2) - V(e))V(o) > 0. So

L} (8) + I7(t) < ma(t)S1(1) +ma (1) S2(t) + O(ST (1) + S3(1))

+e(S1(t) + Sa(t) + CoqlE2(t) — E1(t) + 1/2).

Finally, due to several cancelations, we obtain

%(51 (t) + Sa(t)) < —=2b(1 — a)(ma (t)S1(t) + ma(t)S2(t)) + o(S1(t) + Sa(t))

+C:|Ea(t) — & (1) +1/21 + C (J(t) + ST(t) + S5(1)) -

Choosing ¢ sufficiently small, we get the final estimate (34).

Proposition 5.11

e - em - 1/2) = Bom® +me)(a0) - &0 - 1/2)
FO(S1(1) + Sa(t) + T(1) + (a(t) — &2(1) — 1/2)?).

Proof. We first note that

d o Ja, w0 f (u,t)du — m(t) [ uf(u,t)du
T N ) R m3(t) '
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For the first term on the right hand side of this equation we have

S ) =~ 5 Lo [ dwoM, o) w0500

—m&y (t / dv/ dw M, (v) f(v,t) f(w,t)x1
Ay Ifurg

1

+ // dvdwM,, (v) f (v, t) f(w, t)x1
mi(t).) ) (@xo)\(Arx(1fUT))

= —m&i(t) + K{(t) + K{(t).

Here, as before, x1 = 1 on {(w,v) € Z x T : My (v) € A1} and zero otherwise. Using the
fact that x; = 0 if v € A, we obtain

dvdw M, (v) f(v,t) f(w,t)x1
(T\AD) XD\ (A1 x (15 UI5))

1
Kb = —

< O(J(t) + Si(t) + Sa(1))-
For the inequality we have used (27). Similarly, we get

d _ qu w0y f (u, t)du B mb(t) qu uf(u,t)du
ma(t) m3 (1)

—mmrt [ v [ w07 w0

dvdwM,, (v) f (v, ) f(w, t)x2
(TxT)\ (rfury )

= —mé& + K&(t) + KY(t) —
Thus
&)~ t) — 1/2) = —m(& (1) ~ &) + K () — K5(0) + K1) — (1)
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m; (%) my(t)

§a(t).

Arguing like for K?(t) we have
K3(t) < O(J(t) + Si(t) + Sa(t))

and by (31), (32), (33) we obtain

mi () my ()
2360 - 20| <00 + 510+ Si0)
Next we estimate
K (1) - A‘”ﬁml w (0 4V (w —v)) F(v.0)f (w,1)
) dv - dw (v + V(w —v)) f(v,t) f(w,1).

Here we dropped x1, X2, since they are both equal to one in the regions of integration.

Ko(t) — KS() = (ma(t) +ma(t) (Ea(t) u»maﬁm/mww«wmwmﬂ

+
STy

1 1 1
+—/ dv/ dw...——/ dv/ dw...——/ dv/ dw.... (39)
TN A T Ty N

)

The first integral on the right hand side of (39) can be estimated using Assumption 5.4, (a)

m1/1+dv/l+dew—v)f(wt fu,t) /41\I+ /I+dew—vf(wt)f(vt)

—I—L/ dv/ dwO((v —w))2f(w,t) f(v, ) < O(Sy(1)).
miJa, Jrf

Here we have used that the first term is zero by symmetry. For the second term we
estimated A(w —v) < 1 and used (27). For the third integral we used v —w = v — & (t) +
&1(t) — w and expanded. For the last integral in (39) the argumentation is the same as
the one above. For the second integral in (39) we approximate

1 1
V(w —wv) :B(w—v+§)+()<(w—v+§)2>
and for the third integral we use

V(w—v):B(w—v—%)+()<(w—v——)2>.
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Therefore the sum of these two integrals equals

B 1
du/ dw w —wv + (w, ) f(v,t) — / dv/ dw (w —v— —)f(w,t)f(v, t)
ma (t /,41 s ma(t) Jar i 2

1

/ dv / dw O (w —v + (w,t)f(v,t) / dv / dw O (w —v — —) )f(w,t)f(v,t)
Ay 5 I

8

_ p(mit)ma(t)&(t)  mu(E)me(t)&i(t) | ma()ma(t)
= 5( m) m) 2 )

—B(m]( Jma ()81 () ma(H)ma(t)Ea(t)  ma(t)ma(t)

ma(d) — 2 (1) ) +0(8106) +820) + (@) — &a(4) + %)2)

1 1
= Blma () + ma(t)(&(t) — &1(8) + 5) + O(S1(1) + S2(t) + (&2(t) —&1(8) + %)
Here we have used that [, G(u,t)du = f,; G(u,t)du + O(Si(t) + Sa(t)) for G(u,t) =
uf(u,t) and G(u,t) = f(u,t). The errors in the quadratic terms were estimated by

expansions like (w — v + 3)? = (w — &(t) — (v — & () + (&2(2) — &(2) + 3))? and similar
equations. So we finally obtain

% (600 - 60) — ) =~ &) + tm ) +me)(& 0 - &)

=Bl (1) + ma(0) (610 = €20 = 3 ) + (510 + 5(0) + 1) + (610) — () - )?)

= Blm(0) +ma(0) (60) &) 3) + 0510+ 5200 + 70 + (60 - &)~ 7).

where we used (33). This completes the proof. O

Proposition 5.12

d

T (m1(t)&1(t) +ma(t)é2(t)) | < C(J(t) + Si(t) + Sa(t)) - (40)
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Proof. Direct calculations show that

Lm0 (1) +ma()6(0) = —m (a6 (1) + ma(H) (1))

/dv/dwfwt fv, t)M, x1+/dv/dwfwt fu, )My, (v)x2

= —m(ma (& (1) + ma(0)Ea()) + T (1) + Do(0).

Due to the definition of x; we can split

= '/16+ dv '/Idwf(w,t)f(v,t)Mw(v)M +/I\(m’)dv /Idwf(w,t)f(v,t)Mw(v)X]

:/ dv / dw---—l—/ dw---—l—/ dw--- +/ du/dw---
¥ ¥ 5 I\(1fury) I\(1fury) T

The third and fourth term are estimated by C(J(t) + S1(t) + S2(t)), and therefore,

) < / v / dw f (1, 1) f (v, £) Mo (v) + / v / dw (w, 1) (v, 1) My ()
I ¥ 1 5

FO(J(t) + Si(t) + S2(2))

=mq (t)m1 (1)&1(t) + ma(t)ma(t)& (1) + O(J (1) + S1(t) + S2(1))

* ./r+ dv / dwf(w,t)f(v, )V (w — v).

Due to the symmetry of V() the respective f,; f,; integration disappears.
For I5(t) we have by similar arguments

I5(t) < ma(t)ma(t)€2(t) + ma(t)ma(t)€2(t) + C(J () + S1(t) + Sa(t))

+/ dv /+ dwf(w,t)f(v,t)V(w —v).
5 Is

Adding up, the integral terms cancel and we obtain

Li(t) + Io(t) < (ma(t) +ma(t))(ma (£)&(E) +ma(t)éa(t)) + O(J(t) + Si(t) + Sa(t))

and thus derive the estimate (40) of our proposition.
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Proposition 5.13

d C[]m
—J(t) < — .
dt ()7 1+ Cy

I(t) + C(ST(t) + S5(t) + J*(1)). (41)
Proof. For u € Ay U AL we consider

Ouf (u.t) = —mf(u,t) + /I v /I dw f (w, t)f (v, 8)Go(u — My (v)

——mf(u,t)+/dv/ dw---—i—/dv/ dw - - -
Jr o Jrfory Jr Jo\ifurg

= —mf(u,t) + L (t) + L(t).

Ifwe I; Ul; and v € A = AU A7, then M,,(v) ¢ Ay = Ay U A% Therefore

L (%) :/ du/ dw---:/ du/ dw--- .
JI\NA,  Jrfury JAy  Jrfurg

For fixed w € I U I, we consider M,,(v) as a function of v in A;. Due to Assumption
5.4, (b), we can see that M) (v) > 1+ Cy where Cy > 0, thus, M,,(v) is invertible. Let

w

My (v) = 2, so v = M, '(z). Using a change of variables, we get

_ fw)f (My'(2)) m
L(t) = /I;UIS dw /MM(AQ) dz < J(t). (42)

M (My'(2))  ~ 14 G

If v € I UI;, then My (v) ¢ As, and since ||V|[oo < L < ¢
Lit) = / o / duw- - < C(S2(t) + S2(1) + J2(1)). (43)
I\I[july I\I[july

Here we used similar computations as in (19). Summing (42) and (43), we obtain

l

e J(t) + C(S2(t) + S3(t) + J*(t)),  w€ A,.

O f(u,t) < —mf(u,t) +

Since the above estimate is uniform for all u € As, we have the estimate (41). 0
Summary of estimates: So far we have

L1y < A1) + CSHD) + $30) + (),

d

Z(81(0) + (1)) < —20(81 (1) + S2(6)) + C((61(8) — &06) — 5)* + T(0) + S20) + $3(0)).
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Claw o - 5 < aw - 66 - +0(J0+ 510+ 50+ @) - &6) - 7).

Lo (0] + | Ema(1)] < CUI0) + $1(0) + 52(1). (44)
L mi (196 (1) + mo (1)) < O +81(1) + S(1)). (45)

dt

And the initial data for our argument are

m1(0) > 4dvg ,  pa(0) > 4wy, J(0) < p,

S1(0) +52(0) Sz [1(0) = 1/4] < B Jea(0) +1/4) < B

So A = A(m, 1y, V() is independent of §, whereas C = C(m, V (.),d, uo) depends on 6.
Let t* be maximally chosen such that

J(t) < dprexp(=At) ,  Si(t) + Sa(t) < 4pugexp(—At)

€1(t) — &2(t) — 1/2] < 4pgexp(—At)

G)yeIf , & el, ., mi(t)>wv ., mo(t) >y for t<t*.
4

4

Local Stability Result
For puy = p3, iy = p3 there exists g = po(d, m,vg, V(.)) such that if u3 < pg then #* = oc.

Proof: We integrate the inequalities one after the other. The constant C will change
from line to line as usual. Then we have

J() < i exp(—At) + C / exp(—A(t — 8)) (3 + 113) exp(—2As)ds

< (1 + C(puf + p3)) exp(—At) < 2u7 exp(—At),

S1(t) + Sa(t) < pg exp(—2At)

t
+C / exp(—2A(t — s)) [u% exp(—2Xs) + p3 exp(—2Xs) + exp(—As)]ds
Jo
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< (po + C(u3 + p3)) exp(—2At) + Cpuy exp(—At) < (u2 + C(u1 + p3 + p3)) exp(—At),

§1(t) — &a(t) — % < pzexp(—4At)

t
—I—C/ exp(—4A(t — 8)) [4p2 exp(—A2) + p1 exp(—As) + u3 exp(—2Xs)]
0

< (u3 + Clu1 + p2 + p13)) exp(—At).
Since 1 = pu3 and pp = pZ, we obtain for small enough p3

J(t) < 2u3 exp(—At) < 4p3 exp(—At),
S1(t) 4 Sa(t) < 2u2 exp(—At) < 4us exp(—\t),

&1(2) — &2(t) — 1/2] < 2uz exp(—At) < 4uzexp(—At). (46)
From the previous estimates for the masses (44) we obtain
[ () — 11 (0)] + |ma () — ma(0)] < O (47)

Due to our assumptions on the initial data this gives mq(¢) > vy and mo(t) > 1y for
sufficiently small p3. Integrating (45) we have

Im1(t)&1(t) — m1(0)&1(0) + ma(t)€a(t) — m2(0)£2(0)] < Cpus.

Approximating m;(t)&;(t) by m;(0)&(¢) for i = 1,2 in this equation and estimating the
resulting error term by using |£1(0) —1/4| < p3/2 and |€2(0) +1/4| < u3/2 as well as (47),
we obtain

[m1(0)(&1(2) — 1/4) +ma(0)(&2(t) +1/4)] < Cps .
Combining this inequality with (46), we end up with
§1(2) = 1/4] +[&(2) +1/4] < Cps .

For pg sufficiently small, which means choosing €1,¢9,e3 sufficiently small, we obtain
€1(t) € If and &(t) € I . Therefore we can extend the argument for ¢ > t*, which is our
8 8

proposition. 0
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Asymptotic limit of the solution:
After having proved global existence of solutions we can easily derive their long time
asymptotics

J(t) + S1(t) + Sa(t) < Ke ™ as t — oc.

Therefore, using & (m1(¢)& (£) +ma(t)€2(2)) = O (J(t) + Si(t) + S2(t)) as well as

‘%ml(t)‘ + ‘%mz(t)‘ = O(J(t) + Si(t) + Sa(t))

we obtain:
mi(t) = mis , mo(t) = moc , mi(t)&i(t) +ma(t)éa(t) = ¢ as t — oo.
The last limit can be combined with
fl(t)—fz(t)—%—ﬂl as t — oo
to obtain
§1(t) = &0 5 2(t) = 200 a8 T — 00

where

M1 008100 + M2,0062,00 =€, &100 — 2,00 = 2

Since the first moment is preserved, compare (26), we have

fz/ufu’gdu.
T

Finally, since S1(t) — 0, Sa(t) — 0, J(¢) — 0 as ¢ — oo we obtain:
f (11,, t) — ml’ooé{u:&,m} + m27m5{u:52,m} for t — oo.

This finishes the proof of Theorem 5.6.

Discussion

In this paper we studied a kinetic model that describes alignment of cells or filaments.
This model is a specific case of the integro-differential equations discussed in [4], since we
assume deterministic interaction between the cell bundles. We obtained several rigorous
results concerning the long time asymptotics of the solutions. If only bundles interact
which are close in orientation and these interactions try to align them, then we obtain
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that the cells or filaments tend to asymptotically align into a finite set of directions. The
number of such limiting orientations is larger, the closer the bundles have to be in order
to interact with each other.

The technically most involved part of this paper is the analysis of the alignment process
in case interactions take place between all orientations. We studied in detail interactions
that tend to align bundles of cells or filaments whose orientation is either close or close to
nearly opposite directions. An example for this is for instance the behavior of myxobacte-
ria, [2]. We proved rigorously that in this case the bundles become aligned in two exactly
opposite directions for large times, thus a quasi-one-dimensional orientation of bundles
results.
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