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AN INTEGRO-DIFFERENTIAL EQUATION MODELFOR ALIGNMENT AND ORIENTATIONALAGGREGATIONKyungkeun Kang�, Benoit Perthamey, Angela Stevensz, J. J. L. Vel�azquezxAbstractWe study an integro-di�erential equation modeling angular alignment of inter-acting bundles of cells or �laments. A bifurcation analysis of the related stationaryproblem was done by Geigant and Stoll in [J. Math. Biol. 46 (2003), no. 6, 537{563].Here we analyze the time dependent problem and prove that the type of alignment(one or multidirectional) depends on the initial distribution, the interaction potential,and the preferred optimal orientation of the bundles of cells or �laments. Our maintechnical tool is the analysis of the evolution of suitable functionals for the cell density,which allows to also specify the direction(s) where the �nal alignment takes place.1 IntroductionIn this paper we analyze how a population of small, sti� cells or �laments with de�nedorientations will align, either by being attracted towards each other or being repelled.Here repulsion can be interpreted as attraction to the back of an elongated �lament or,like in myxobacteria, to the back of another bacterium. A major question in this contextis if bundles of the same orientation are formed, how many there are, and how they areorganized relative to each other. Our ansatz is closely related to papers by [1], [3], [4], [5],[6], [7], [8], [9], and [10].We assume a two-dimensional geometry. To describe the orientational aggregation ofthe bundles of cells or �laments we consider an integro-di�erential equation for the evo-lution of an integrable function f on the unit circle (R=Z) with arc length normalized to�Department of Mathematics, Sungkyunkwan University and Institute of Basic Science, Suwon 440-746,Republic of Korea (kkang@skku.edu)yD�epartment de Math�ematiques appliqu�ees, CNRS UMR 8553, Ecole Normale Sup�erieure, 45, rued'Ulm, F-75230 Paris cedex 05, France (benoit.perthame@ens.fr)zMax-Planck-Institute for Mathematics in the Sciences, Inselstr. 22 - 26, D-04103 Leipzig, Germany(stevens@mis.mpg.de)xDepartamento de Matem�atica Aplicada, Facultad de Ciencias Matem�aticas, 28040 Madrid, Spain(JJ Velazquez@mat.ucm.es) and Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26,D-4103 Leipzig, Germany 1



one. We will chose a representation which is I = [�12 ; 12 ]. In many of the following argu-ments it is convenient though to think in geometrical terms, namely u 2 I = [�12 ; 12) !(cos(2�u); sin(2�u)) 2 S1. . We will use this notation freely in the �gures, unless confu-sion is to be expected. Now f = f(u; t) denotes the mean density distribution over theorientation u 2 I. The temporal evolution of f is given by@tf(u; t) = �ZI T [f ](u; v)f(u; t)dv + ZI T [f ](v; u)f(v; t)dv: (1)The �rst term on the right hand side describes the bundles of cells or �laments whichreorient away from u, and the second term the bundles orienting themselves into directionu. The stationary version of equation (1) was analyzed in detail in [3] and [6].For notational convenience in the following we sometimes omit the explicit t-dependencies.The turning rate T in (1) maps a function f acting on I to a function T [f ] acting on I�Iwith T [f ](u; v) = ZI h(w � u)G�(v �Mw(u))f(w; t)dw: (2)Here G� : (�1; 1)!R+ ; � � 0 is an even, bounded probability density, thus RI G� = 1,i.e. the standard periodic Gaussian: G�(u) = (4��)�1=2Pm2Zexp(�(u+ 2m)2=(4�)).So the process of turning is considered to be probabilistic. The smaller � is, the narroweris G�, which means that reorientation happens with higher accuracy. The extreme case isthe Dirac mass G0(x) = �0, which describes deterministic turning.The measurable function Mw : I!I, is called the optimal reorientation, indicating reori-entation of bundles of cells or �laments due to their interaction with w. More precisely, ifthe system is invariant under rotations, we assumeMw(v) = v + V (w � v);where V : [�1; 1]!R is referred to as the orientational angle, compare �g. 1. A moredetailed descriptions of Mw and V will be given in Section 2. The interaction rate h :I!R+ is positive and bounded.In this paper, we analyze the behavior of solutions for the Dirac mass, �0 only. Inthis case (1) is referred to as the \limiting" equation. We expect less singular alignmentpatterns of solutions to (1) for G�, in case � > 0, su�ciently small. This is because forany given T > 0 uniform convergence in [0; T ] for the solutions corresponding to G� and�0, respectively, was established in [5] for � ! 0.Our main result states the development of peaks as long time dynamics, i.e. alignment ofbundles of cells or �laments. This can be proved for suitable classes of initial distributionscombined with various types of optimal orientation and di�erent ranges of interaction,both attractive and repulsive (see Theorems 4.5, 4.8, 5.3, and 5.6). Our main tool is toanalyze the dynamics of suitable functionals of the cell density, which describe its behaviorin a subset of all possible directions. With this we can also specify the direction(s) in whichthe bundles �nally align. 2



M  (v)=v+V(w-v)

Figure 1: Geometrical interpretation of the turning rate v.The paper is organized as follows: Section 2 introduces the class of optimal reorienta-tions Mw(�) and orientational angles V (�), we are interested in. In Section 3 global exis-tence of a unique solution of equation (1) is proved. Section 4 is dealing with the analysisof the limiting equation. We show that uni-directional, bi-directional, or multi-directionalalignment develops for a set of prescribed initial distributions which are suitably separated,in case the optimal orientation for a certain interaction range is attractive. In Section 5we consider the situation that bundles of cells or �laments repel each other unless they areclose. First it is shown that for non-separated, continuously varying and symmetric initialdistributions the solution will eventually develop two symmetric peaks. Then we considernon-symmetric initial data. We prove that if bundles of cells or �laments are attractiveand repulsive they do �nally align in two exactly opposite directions. Our main result isthe local stability of Dirac masses.2 Optimal reorientation and the orientational angleIn this section, we introduce various types of optimal reorientationsMw(v) and orientationangles V (�), which may cause uni-, bi-, and multi-directional aggregation of bundles ofcells or �laments, depending on their initial distribution. First we give conditions for theinteraction rate h, though it does not play a crucial role for our further analysis.Assumption 2.1 Let k � 1 be a positive integer.The interaction rate h : R!R is a bounded, positive, and 1-periodic function.In the interval [�1=2; 1=2], h is symmetric and radially decreasing with respect to 0.There exists 0 < � < 1 such that � h(0) � h(x) � h(0) in [�1=2; 1=2).Next we recall some reasonable assumptions for the optimal reorientation (compare e.g.[6]): 3



Figure 2: (i) Attracting case (ii) Attracting and repulsive caseAssumption 2.2 The optimal orientation is of the form Mw(v) = v + V (w � v) withv; w 2 I = [�1=2; 1=2), where V : R!R is the optimal reorientation angle, withV (�) = �V (��); V (1 + �) = V (�): (3)Let V 2 C2 and 0 < a < 1 , 0 < b < 1 such thatjV (�)j � max�a�; b�12 � ��� ; � 2 �0; 12� : (4)We will see more concrete examples for V later.Remark 2.3 Since V is odd and 1-periodic, it is su�cient to de�ne the values of V in[0; 1=2]. Conditions (3) are equivalent toMw(v) +Mv(w) = v + w; Mw(1 + u) = Mw(u) + 1; Mw+1(u) = Mw(u):Next we classify the properties of the optimal orientational angle V (�), depending onthe maximal range of attraction and repulsion between the bundles of cells or �laments.Instead of repulsion one may want to describe the phenomenon also as attraction to theends of the interacting partners (e.g. like in myxobacteria), [2] .(a) Uni-directional alignment (attraction), see �gure 2 (i):Here the bundles of cells or �laments attract each other towards the direction withangle smaller than �. Thus additionally to Assumption 2.2, V is required to ful�llV (�) � 0 in �0; 12� : (5)(b) Bi- and Multi- directional alignment (k-directional alignment: attraction):Depending on the initial distribution, two or multiple peaks of aligned cells maydevelop. In terms of the orientational angle V , this is achieved for short rangedattraction. E.g., for the bi-directional case, we suppose that V > 0 in (0; �) where4



0 < � < 1=4 and V = 0 in [�; 1=2].Generally speaking, the shorter the range of optimal turning is, the more likely is thedevelopment of many peaks. For simplicity, �x � = 1=(2k), k 2 N. The k-directionalorientational angle is then given byV (�) > 0 in �0; 12k� ; V (�) = 0 in � 12k ; 12� : (6)(c) Bi-directional alignment (attraction and repulsion), see �gure 2 (ii)Here we consider the following situation: if the angle between the �laments is close,then they attract each other, if the angle between the �laments is large, then theyare repulsive, respectively attracted to the ends of the interacting partners. Let�0 2 (0; 1=2) then the orientational angle is given asV (�) > 0 in (0; �0) ; V (�) < 0 in ��0; 12� : (7)In the following C will denote a constant which may vary from line to line.3 Global ExistenceIn this section we show that for bounded interaction rate h the unique solution of (1)-(2)is globally bounded in time.Lemma 3.1 Let 0 < T < 1. Suppose that the interaction rate h(�) is nonnegative andbounded, i.e. h 2 L1(I). Let f0 2 L1(I) and RI f0(u)du = m. Then there exists aunique solution f of (1)-(2) such that f(�; t) 2 L1(I � [0; T )) and RI f(u; t)du = m forall t 2 [0; T ). Furthermore, if f0, h, and Mv(w) are smooth, then this is true also for fin I � [0; T ).Proof. Due to equation (1) we observe a priori that mass is preserved.Let (h � f)(u; t) = RI h(u� v)f(v; t)dv denote the convolution operator. Then (1) can berewritten as @tf(u; t) = �(h � f)(u; t)f(u; t) +R(f)(u; t), whereR(f)(u; t) = ZI ZI h(v � u)G� (u�Mw(v)) f(w; t)f(v; t)dwdv:With the assumptions of Lemma 3.1 we can estimateR(f)(u; t) � khkL1(I) ZI ZI G� (u�Mw(v)) f(w; t)f(v; t)dwdv� khkL1(I) kf(�; t)kL1(I) ZI ZI G� (u�Mw(v)) dwf(v; t)dv5



� Km khkL1(I) kf(�; t)kL1(I) � C kf(�; t)kL1(I) ;where K = kG�k1 and C = C(K;m; jjhjjL1 ). Since our equation is of the form @tf =�a(u; t)f(u; t) + g with g � 0 we have that f is positive and thus �(h � f)(u; t)f(u; t) isnon-positive. With this and the previous estimate we obtain@t jf(u; t)j22 = f(u; t)@tf(u; t)= �(h � f)(u; t) jf(u; t)j2 + f(u; t)R(f)(u; t) � C kf(�; t)k2L1(I) :Using Gronwall's lemma, we getkf(�; t)kL1(I) � kf(�; 0)kL1(I) exp(Ct):It remains to show uniqueness of f .Suppose that f1 and f2 are solutions of (1) with f1(u; 0) = f2(u; 0). We will prove thatj@t[f1(u; t) � f2(u; t)]j � C kf1(�; t) � f2(�; t)kL1(I) ;where C = C(K;m; khkL1). First note thatj(h � f1)(u; t)f1(u; t) � (h � f2)(u; t)f2(u; t)j� C �kf1(:; t)kL1(I) + kf2(:; t)kL1(I)� kf1(:; t)� f2(:; t)kL1(I) ;for given t. On the other hand, we havejR(f1)(u; t) �R(f2)(u; t)j= ����ZI ZI h(v � u)G�(u�Mw(v)) (f1(w; t)f1(v; t) � f2(w; t)f2(v; t)) dwdv����� C khkL1(I) kf1(:; t)� f2(:; t)kL1(I) :Summing up, we obtain@t jf1(u; t) � f2(u; t)j2 = 2 (f1(u; t)� f2(u; t)) j@t (f1(u; t)� f2(u; t))j� ~C kf1(:; t)� f2(:; t)k2L1(I) :6



Uniqueness follows again from Gronwall's lemma. Smoothness of f is straightforwardfrom the equation, if the initial distribution, interaction rate, and optimal reorientationare regular. Since the proof is similar to the one above, details are omitted.Next we consider the \limiting" equation of (1) by substituting G� by �0.@tf(u; t) = �(h � f)(u; t)f(u; t) + ZI ZI �0 (u�Mw(v)) f(w; t)f(v; t)dwdv: (8)It is easy to see that the solution of (8) satis�es Lemma 3.1, as it is the case for the usualGaussian G�; � > 0. For convenience, denote by ~f and f� the solutions of (1) for �0 andG� with � > 0, respectively. In [5] pointwise convergence of f� to ~f for any �nite timeinterval was proved, more preciselyLemma 3.2 Let T be �xed with 0 < T <1 and let the assumptions in Lemma 3.1 hold.Let f� and ~f be solutions of (1) for G� and G0 with the same initial distribution. Thenin [0; T ] the solution f� converges to ~f in the L1�norm as � ! 0.Proof. See [5, Theorem 2.1].4 Peak Solutions for the Limiting EquationTo introduce the main ideas and techniques we �rst start with a simple setting and studythe behavior of solutions for the limiting equation, which means equations (8) respectively(1) corresponding to the Dirac mass �0. We start with assumptions on the classes of initialdistributions, which cause uni-, bi-, and multi-directional bundles for large times.Assumption 4.1 Let k � 1 be a �xed integer. Suppose f0 is smooth and RI f0(u)du = m.Assume that supp f0 � [ki=1Ai where the Ai � I are nonempty, open, connected, andmutually disjoint such that for Ai; i = 1; 2; � � � ; k1. RAi f0 = mi > 0 for each i = 1; 2; � � � ; k, with Pki=1mi = m.2. dist(Ai; Aj) � 1=(2k) for i 6= j, thus ��I n [ki=1Ai�� � 1=2.3. jAij � 12k for i = 1; 2; � � � ; k.Remark 4.2 If k = 1, then there is only one A1 � I with jA1j � 1=2, e.g. A1 =(�1=4; 1=4). If k = 2, then there are disjoint open intervals, A1 and A2, such that jA1j =jA2j � 1=4. We assume A1 = (�3=8;�1=8) and A2 = (1=8; 3=8). For general k � 3, wecan take Ai = �� 1=2 + (2i� 1)=2k;�1=2 + i=k� where i = 1; 2; � � � ; k.In the following subsections, we derive di�erent types of alignment with respect to theoptimal reorientations relevant for assumed initial conditions, in case the deviation � ofthe Gaussian is su�ciently small. 7



4.1 Uni-Directional AlignmentHere we take k = 1 in Assumption 4.1, namely supp f0 = A1. Thus the interaction rangebetween the bundles of cells or �laments can be wide. Without loss of generality, weassume that A1 = (�1=4; 1=4). For the Dirac mass, we haveZI u�0(u� u0)du = u0; ZI juj2 �0(u� u0)du = ju0j2 : (9)The interaction rate h is as given in Assumption 2.1. For simplicity suppose h = 1. Thuswe can rewrite (8) as follows:@tf(u; t) = �mf(u; t) + ZI ZI �0 (u�Mw(v)) f(w; t)f(v; t)dwdv: (10)In the next lemma, we show that the �rst momentum of f is preserved, provided that theorientational angle Mw(v) is of uni-directional type, compare (5).Lemma 4.3 Let k = 1 and f0 be an initial distribution satisfying Assumption 4.1. Sup-pose that Mw(v) and V satisfy Assumption 2.2. Let the interaction rate h = 1. Thensupp f(�; t) � supp f0 for all t 2 [0; T ), and the �rst momentum of f is preserved, i.e.ZI uf(u; t)du = ZI uf0(u)du for all t � 0: (11)Proof. To show the �rst assertion, we consider the discrete version of (10). Let � > 0 besmall, then we de�ne Df� (u; t) byDf� (u; t+ �)�Df� (u; t)� = �mDf� (u; t)+ZI ZI �0(u�Mw(v))Df� (w; t)Df� (v; t)dwdv; t � �;with initial conditions Df� (u; t) = f(u; 0); 0 � t < �:With the above identity, one can check that supp Df� (u; t) � supp f(u; 0) for all � > 0.By following a procedure similar as in Lemma 3.1, we can see that Df� is bounded forall t and Df� converges to a function g in L1 as � ! 0. Since g solves equation (10),by uniqueness we conclude that g is identical to the solution f of (10). Therefore,supp f(u; t) � supp f(u; 0). 8



It remains to prove that the �rst moment is preserved. Using (9), we haveddt ZI uf(u; t)du = �mZI uf(u; t)du+ ZI uZI ZI �0(u�Mw(v))f(w; t)f(v; t)dwdvdu= �mZI uf(u; t)du+ ZI ZI Mw(v)f(w; t)f(v; t)dwdv= �mZI uf(u; t)du+ ZI ZI (v + V (w � v)) f(w; t)f(v; t)dwdv= ZI ZI V (w � v)f(w; t)f(v; t)dwdv:The last term equals zero, since with V (�) = �V (��) we haveZI ZI V (w � v)f(w; t)f(v; t)dwdv = ZI ZI V (v � w)f(v; t)f(w; t)dvdw= �ZI ZI V (w � v)f(v; t)f(w; t)dvdw:This completes the proof.Remark 4.4 Lemma 4.3 is also valid when the interaction rate h is not constant, i.e. ifh satis�es Assumption 2.1, the mass and �rst momentum are preserved and the supportof f is contained in the initial distribution of f . The proof is analogous to the one before.Using the result of Lemma 4.3, namely that the �rst momentum is preserved, we cande�ne the mean of the �rst moment � 2 I, which is constant and given as� = RI uf(u; t)duRI f(u; t)du = 1m ZI uf(u; t)du: (12)Now we show that more general types of second moments of f are decreasing in time.Theorem 4.5 Let k = 1 and f0 be an initial distribution satisfying Assumption 4.1. Let� as de�ned in (12). Suppose that Mw(v) and V satisfy Assumption 2.2 and condition(5). Assume further that h = 1. Thenddt ZI(u� �)2f(u; t)du � 0: (13)Equality in (13) only holds in case f(u; t) = m�fu=�g, where � is the Dirac mass.9



Proof. Let S(t) := RI(u� �)2f(u; t)du. Direct calculations show thatddtS(t) = �mZI(u� �)2f(u; t)du+ZI(u� �)2 ZI ZI �0(u�Mw(v))f(w; t)f(v; t)dwdvdu= �mZI(u� �)2f(u; t)du+ ZI ZI �Mw(v)� ��2f(w; t)f(v; t)dwdv= �mZI(u� �)2f(u; t)du+ 12 ZI ZI �Mw(v)� ��2f(w; t)f(v; t)dwdv+12 ZI ZI �Mv(w)� ��2f(v; t)f(w; t)dvdw= �mZI(u� �)2f(u; t)du+ 12 ZI ZI �v + V (w � v)� ��2f(w; t)f(v; t)dwdv+12 ZI ZI �w + V (v � w)� ��2f(v; t)f(w; t)dvdw= (�m+m)ZI(u� �)2f(u; t)du+ZI ZI �v � w + V (w � v)�V (w � v)f(w; t)f(v; t)dwdv:From the assumptions on V we can deduce that V (�)(V (�) � �) � 0. Thus the lastexpression is non-positive, and S 0(t) = 0 only holds if V (v �w) = 0 for all v; w 2 I.Remark 4.6 The estimate is also valid if h is a general function, satisfying Assumption2.1. Again the computation is like the one before.10



4.2 Bi- and Multi-Directional AlignmentsFor completeness we shortly discuss bi- and multi-directional alignment of bundles of cellsor �laments. Basically the technical arguments are similar to the ones before. This sit-uation is extremely unstable. Slight changes of the interaction potential will destroy thedynamics. Later we will consider examples of stable alignment for this type of models. We�rst consider the situation where several peaks develop. We start with the simple obser-vation that mass and the �rst moments on disjoint sets are preserved under Assumption4.1 also for k � 2.Lemma 4.7 Let k � 2 be a positive integer and f0 be an initial distribution satisfyingAssumption 4.1. Suppose that Mw(v) and V satisfy Assumption 2.2 and condition (6).Assume further that h satis�es Assumption 2.1. Then supp f(�; t) � supp f0 = [kj=1Aj.FurthermoreZAj f(u; t)du = ZAj f0(u)du and ZAj uf(u; t)du = ZAj uf0(u)du; for j = 1; :::; k:Proof. For simplicity and w.l.o.g. we show the result just for k = 2. The �rst part issimilar to Lemma 4.3 for the uni-directional case, thus we omit details. We now showconservation of mass on each of the sets.ddt ZA1 f(u; t)du = �ZA1 ZI h(w � u)f(w; t)f(u; t)dwdu+ZA1 ZI ZI h(v � w)�0 (u�Mw(v)) f(w; t)f(v; t)dwdvdu =: I1(t) + I2(t):We show that I1(t) + I2(t) = 0. Note that f is only supported in A1 and A2 andMw(v) = � v + V (w � v) if w; v 2 A1 or if w; v 2 A2v if v 2 A1; w 2 A2 or if w 2 A1; v 2 A2; (14)due to the assumption on the arc-length separating A1 and A2. Thus we know thatZA1 �0 (u�Mw(v)) du = 1 if and only if w; v 2 A1 or v 2 A1; w 2 A2:And so I2(t)= ZA1 ZA1 h(v � w)f(w; t)f(v; t)dwdv + ZA1 ZA2 h(v � w)f(w; t)f(v; t)dwdv = �I1(t):The argument for RA2 f(u; t)du is the same, and the �rst part of the proof is completed.11



Without loss of generality we assume, that A1 = (�3=8;�1=8) and A2 = (1=8; 3=8).Again we consider only RA1 uf(u; t)du. Since f is supported in A1 and A2, by argumentsof the previous lemma, and due to Assumption 2.1, we getddt ZA1 uf(u; t)du = �ZA1 ZI h(w � u)f(w; t)uf(u; t)dwdu+ZA1 ZI ZI h(w � v)u�0 (u�Mw(v)) f(w; t)f(v; t)dwdvdu= �ZA1 ZA1 h(w � u)f(w; t)uf(u; t)dwdu + ZA1 ZA1 h(w � v)Mw(v)f(w; t)f(v; t)dwdv:= ZA1 ZA1 h(w � v)V (w � v)f(w; t)f(v; t)dwdvsince Mw(v) = v + V (w � v). The last term equals zero, because V is odd and h is evenwith respect to 0. This completes the proof.Since the �rst moments are preserved on each of the sets Aj ; j = 1; :::; k, we de�ne theconstants �j = RAj uf(u; t)duRAj f(u; t)du ; j = 1; :::; k: (15)Like in the uni-directional case, we show that the second moments are non-increasing.Theorem 4.8 Let k � 2 be a positive integer and f0 be an initial distribution satisfyingAssumption 4.1. Let �j; j = 1; :::; k be de�ned as in (15). Suppose that Mw(v) and Vsatisfy Assumption 2.2 and condition (6). Let h satisfy Assumption 2.1. Thenddt ZAj (u� �j)2f(u; t)du � 0; j = 1; :::; k: (16)Equality in (16) only holds for f(u; t) =Pkj=1mj�fu=�jg, where RAj f0(u)du = mj.Proof. Again, we only consider the case RA1(u � �1)2f(u; t)du =: S(t), and show thatS(t) is non-increasing. Let m1 := RA1 f0(u)du.ddtS(t) = �ZA1 ZI h(w � u)f(w; t)(u � �1)2f(u; t)dwdu12



+ZA1(u� �1)2 ZI ZI h(w � v)�0 (u�Mw(v)) f(w; t)f(v; t)dwdvdu= �ZA1 ZA1 h(w � u)f(w; t)(u � �1)2f(u; t)dwdu+ZA1 ZA1 h(w � v) (Mw(v) � �1)2 f(w; t)f(v; t)dwdv =: I1(t) + I2(t):Here we used that u 2 A1; supp f � [kj=1Aj and the assumption on the size of the arc-length between the Aj. As in the uni-directional case, we can computeI2(t) = 12 ZA1 ZA1 h(w � v)�(Mw(v)� �1)2 + (Mv(w) � �1)2� f(w; t)f(v; t)dwdv= 12 ZA1 ZA1 h(w � v)�(v + V (w � v)� �1)2 + (w + V (v � w)� �1)2� f(w; t)f(v; t)dwdv= ZA1 ZA1 h(w � u)f(w; t)(u � �1)2f(u; t)dwdu+ZA1 ZA1 h(w � v)V (w � v) (V (w � v)� w + v) f(w; t)f(v; t)dwdv:Adding up, we obtainddtS(t) = ZA1 ZA1 h(w � v)V (w � v) (V (w � v)� w + v) f(w; t)f(v; t)dwdv:The right hand side is non-positive, and equals zero only if V (w�v) = 0 for all v; w 2 A1.So far we could decouple the system into separate subsystems. The �rst moment ofeach of these was locally preserved, due to the fact that each of them had compact support.In the following we consider more general cases.5 Attractive and Repulsive Optimal Orientation5.1 The symmetric caseHere we consider the case of symmetric initial distributions and the situation that themain part of the mass is almost concentrated at two opposite positions. The supportis supposed to be connected. Details will be given later. We intentionally discuss thissimpli�ed situation �rst, as a particular case of the more relevant non-symmetric case,since some of the basic technical details can be conveyed much easier. We start withconditions for the orientational angle. 13



Assumption 5.1 Suppose that V is smooth, satis�es (3), (4) and(a) V (�) > 0 in (0; 1=4) and V is anti-symmetric with respect to 1=4 in [0; 1=2].(b) There exists 0 < a < 1 and �1 2 (0; 1=4) such that V 0(0) = V 0(1=2) = a andV (�) � a� in [0; �1] ; �V (�) � �a (� � 1=2) in [1=2 � �1; 1=2] :(c) Furthermore, there exists C0 > 0 such that V 0(�) < �C0 in [�1; 1=2 � �1].Assumption 5.1 automatically implies jV (�)j � a� and jV (�)j � a(1=2 � �) in [0; 1=2].Next we specify the initial distributions.Assumption 5.2 Suppose that f0 : (�1=2; 1=2]!R is smooth and nonnegative with RI f0(u)du =m. Let f0 be 1=2-periodic and symmetric with respect to both 0 and 1=4, and satisfy(a) There exist 0 < � < 1=4 and �1 > 0 such thatZI�( 14)�u� 14�2 f0(u)du < �1; where I�(y) = [y � �; y + �]:(b) There exists �2 > 0 such that f0(u) < �2 for u 2 (1=4 + �; 1=2).Now we are ready to state and prove the main result of this section.Theorem 5.3 Suppose that Assumptions 5.1 and 5.2 hold. If �, �1, and �2 are su�cientlysmall, then S�(t) = RI�(�1=4)(u� 1=4)2f(u; t)du is non-increasing, andZI�(�1=4)(u� 1=4)2f(u; t)du � e�Ct ZI�(�1=4)(u� 1=4)2f0(u)du:Furthermore, the mass is �nally concentrated only at �1=4, i.e. for any given � > 0,limt!1ZI�(�1=4) f(u; t)du = m2 :Proof. We �rst note that f is symmetric with respect to 0 and to 1=4, thus f is also1=2-periodic for all times t. This can be proved by uniqueness, namely let ~f(u) := f(�u).Then ~f is a solution of (8) with the same initial data as f , and therefore, due to theuniqueness of solution, we have f = ~f . Thus f is symmetric with respect to 0. Here weused that V is 1=2-periodic. Similarly symmetry of f with respect to 14 can be checked.Next we set ~� := �1 + �, with �1; � such that ~� < 14 � � where � is given in Assumption 5.2and we de�neA1 := I~�(1=4) = (1=4 � ~�; 1=4 + ~�) ; A2 := h0; 14 � ~�i [ h14 + ~�; 12i:14



Since f is 1=2-periodic, it is su�cient to estimate S+(t), which we denoted by S(t) in thefollowing, unless any confusion is to be expected. We analyzeS(t) := ZA1 f(u; t)�u� 14�2 du; and J(t) := supu2A2 f(u; t):First we computeddtS(t) = �mS(t) + ZI dv ZI dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1 = �mS(t) + F(t);where Â1 = f(w; v) 2 I � I : Mw(v) 2 A1g. For convenience, we denoteI+� := I�(1=4); I�� := I�(�1=4) and I�� := I+� [ I�� . ConsiderF(t) = ZI�� dv ZI�� dwf(w; t)f(v; t)�Mw(v) � 14�2 �Â1+ZInI�� dv ZInI�� dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1+ZInI�� dv ZI�� dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1+ZI�� dv ZInI�� dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1= F1(t) + F2(t) + F3(t) + F4(t):Estimate for F1(t):Keeping the symmetry of f in mind, the e�ects of the characteristic function, and �nallydoing Taylor expansion for V (0), we obtainF1(t) = ZI+� dv ZI+� dwf(w; t)f(v; t)�Mw(v)� 14�2
+ZI+� dv ZI�� dwf(w; t)f(v; t)�Mw(v)� 14�215



� ZI+� dv ZI+� dwf(w; t)f(v; t)�(1� a)(v � 14) + a(w � 14) +O(v � w)2�2
+ZI+� dv ZI�� dwf(w; t)f(v; t)�(1� a)(v � 14) + a(w + 14) +O(v � w � 12)2�2
� m �(1� a)2 + a2� ZI+� �v � 14�2 f(v; t)dv + C� ZI+� �v � 14�2 f(v; t)dv: (17)Here we have exchanged v and w in some integrations and used thatRI+� f(v; t)(v � 14 )dv = RI�� f(w; t)(w + 14)dw.Lower estimate for the mass in I+� : Note thatZI+� f(u; t)du � m2 � J(t)� 1�2S(t) ; Z[0;1=2]nI+� f(u; t)du � J(t) + 1�2S(t): (18)Indeed, since RI f(u; t)du = m, we get2ZI+� f(u; t)du = ZI�� f(u; t)du = ZI f(u; t)du� 2ZA2 f(u; t)du� 2ZA1nI+� f(u; t)du� m� 2J(t)� 2�2 ZA1nI+� f(u; t)�u� 14�2 du � m� 2J(t) � 2�2S(t):Here we used 1 � 1�2 (u�1=4)2 for u 2 A1 n I+� . This completes the �rst inequality of (18).The second inequality is an immediate consequence of this.Estimate for F2(t): Here we will use (18).F2(t) = ZInI�� ZInI�� f(w; t)f(v; t)�Mw(v) � 14�2 �Â1dvdw� C ZInI�� f(w; t)dw ZInI�� f(v; t)dv � C �S(t)�2 + J(t)�2 � C(S2(t) + J2(t)): (19)
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Estimate for F4(t) : First we consider F4(t), and after this F3(t) will be estimated. Ifv 2 I�� , then Mw(v) is not contained in A1, and we obtainF4(t) = ZI+� dv ZInI�� dwf(w; t)f(v; t)�Mw(v) � 14�2 �Â1= ZI+� dv ZA1nI+� dw � � �+ ZAr1nI�� dw � � �+ ZA2 dw � � �+ ZAr2 dw � � �! ;where Ar1 and Ar2 are obtained by rotating A1 and A2 by the angle �. Using Young'sinequality we get for arbitrarily small "0ZI+� dv ZA1nI+� dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1� (1 + 14"0 )ZI+� dv ZA1nI+� dwf(w; t)f(v; t)�v � 14�2
+(1 + "0)ZI+� dv ZA1nI+� dwf(w; t)f(v; t)V 2(w � v);� CS2(t) + (1 + "0)ZI+� dv ZA1nI+� dwf(w; t)f(v; t)a2(v � w)2� CS2(t) + a2(1 + "0)ZI+� dv ZA1nI+� dwf(w; t)f(v; t) �(v � 1=4)2 + (w � 1=4)2�� CS2(t) + (1 + "0)a2m2 ZA1nI+� f(w; t)(w � 1=4)2dw:Here again we used 1 � C�(w�1=4)2; w 2 A1nI+� , Assumption 5.1, and RI+� f(v; t)dv � m2 .In the fourth inequality, the mixed terms vanished due to the symmetry of f and V . Next,using again symmetry, we obtainZI+� dv ZAr1nI�� dw � � � � CS2(t) + (1 + "0)a2m2 ZA1nI+� f(w; t)(w � 1=4)2dw:17



On the other hand, it is straightforward thatZA2 ZI+� � � � dvdw + ZAr2 ZI+� � � � dvdw � CJ(t):Summing up, we getF4(t) � CJ(t) + CS2(t) + (1 + "0)ma2 ZA1nI+� f(u; t)(u� 1=4)2du: (20)Estimate for F3(t): Let �A2 = A2 [Ar2. We haveF3(t) = ZInI�� dv ZI�� dwf(w; t)f(v; t)�Mw(v)� 14�2 �Â1= ZA1nI+� dv ZI�� dw � � �+ Z �A2 dv ZI�� dw � � � ;where we used �Â1 = 0 for w 2 I�� and v 2 Ar1 n I�� . The second term on the right handside is bounded by CJ(t), and therefore, it remains to estimateZA1nI+� dv ZI+� dw � � �+ ZA1nI+� dv ZI�� dw � � � :Both terms are equal due to the symmetry of V . Thus it is su�cient to estimateZA1nI+� dv ZI+� dwf(w; t)f(v; t)�Mw(v)� 14�2
= ZA1nI+� dv ZI+� dwf(w; t)f(v; t)�(v � 14)� V �(v � 14)� (w � 14)��2

= ZA1nI+� dv ZI+� dwf(w; t)f(v; t)n �(v � 14)� V (v � 14)�2�2V 0�v � 14���v � 14�� V �v � 14�� (w � 14) +O�(w � 14)2�o� m2 (1� a)2 ZA1nI+� f(v; t)�v � 14�2 dv + CS2(t);18



because the second of the three integral terms is zero. FinallyF3(t) � m(1� a)2 ZA1nI+� f(v; t)�v � 14�2 dv + CJ(t) + CS2(t): (21)Summing up (17), (19), (20), and (21), we obtainddtS(t) � �mS(t) +m(1 + "0) �(1� a)2 + a2�S(t) + C(J(t) + S2(t)): (22)Suppose now u 2 A2: (The case for Ar2 is similar by symmetry)Consider @tf(u; t) = �mf(u; t) + ZI dv ZI dwf(w; t)f(v; t)�0(u�Mw(v))= �mf(u; t) + ZI dv ZI�� dw � � � + ZI dv ZInI�� dw � � � = �mf(u; t) + I1(t) + I2(t):If w 2 I�� and v 2 �A1 = A1 [Ar1, then Mw(v) =2 A2. ThereforeI1(t) = ZIn �A1 dv ZI�� dw � � � = Z �A2 dv ZI�� dw � � � ;where �A2 = A2 [Ar2. For �xed w 2 I�� , we consider Mw(v) as a function of v in A2. Dueto Assumption 5.1, (c), we can see that M 0w(v) � 1 + C0 where C0 > 0, thus, Mw(v) isinvertible. Let Mw(v) = z, so v = M�1w (z). Using a change of variables, we getI1(t) = ZI�� dw ZMw( �A2) dz f(w)f �M�1w (z)�M 0w(M�1w (z)) � m1 + C0J(t): (23)If v 2 I+� [ I�� , then Mw(v) =2 A2 andI2(t) = ZInI�� dv ZInI�� dw � � � � C �S2(t) + J2(t)� : (24)Here we used similar computations as in (19). Summing up, we obtain@tf(u; t) � �mf(u; t) + m1 + C0J(t) + C �S2(t) + J2(t)� ; u 2 A2:Since the above estimate is uniform for all u 2 A2, we haveddtJ(t) � � C0m1 + C0J(t) + C �S2(t) + J2(t)� : (25)19



With "0 chosen such that 
 = �2(1 + "0)a(1 � a)� "0�m > 0, we �nally obtain0@S 0(t)J 0(t)1A = 0@�
 00 � C0m1 + C01A �0@S(t)J(t)1A+0@O �J(t) + S2(t)�O �S2(t) + J2(t)�1A :Since S(0) and J(0) are su�ciently small, we obtain that both S and J are exponentiallydecaying. This can be shown by arguments from ODE-theory. An additional linear orderterm in the errors, namely J , appears only in the �rst equation. In the second equationthe error term is quadratic, and thus the error of J behaves like S2. So plugging in thesecond equation into the �rst one gives an error term of order S2, which is much smallerthan the linear term. This completes the proof.5.2 The non-symmetric caseIn this section we consider non-symmetric initial distributions with non-separated support.Most of the initial mass will be concentrated close to opposite positions, say 1=4 and�1=4. We discuss the e�ect of an attracting and repulsive optimal reorientation. Thusthe orientational angle satis�es (7) together with Assumption 5.4.Assumption 5.4 Suppose that the smooth, not necessarily symmetric, orientational angleV satis�es (3).(a) Let V 2 C2([0; 1]) and V 0(0) = A; V 0(12 ) = B for A;B > 0.(b) There exists an L < 16 with jjV jj1 < L such that in [�L2 + 14 ; L2 + 14 ] we haveV 0(�) � �C0 where C0 > 0.(c) There exist 0 < a < 1, 0 < b < 1 and �1 > �L2 + 14 , �2 < L2 + 14 such thata� � V (�) � b� for � 2 [0; �1] anda(� � 1=2) � V (�) � b(� � 1=2) for � 2 [�2; 1=2]:These assumptions imply the existence of �0 > 0 such that(i) a� � V (�) � b� in �0; 14 � L2 + �0�, anda �� � 12� � V (�) � b �� � 12� in �14 + L2 � �0; 12� :(ii) kV k1 < L� �0 < 16 in �14 � L2 ; 14 + L2 �Figure 3 explains our assumption.Next we specify the initial distribution of the cell bundles.20



Figure 3: The orientational angle V for the non-symmetric case.Assumption 5.5 Let I+� = (1=4 � �; 1=4 + �) and I�� = (�1=4 � �;�1=4 + �) for �xed� > 0. We suppose smooth and nonnegative initial conditions f0 : (�1=2; 1=2]!R withRI f0(u)du = m and(a) There exists "1 > 0 such thatZI+� (u� �1(0))2f0(u)du+ ZI�� (u� �2(0))2f0(u)du � "1:where �1(0) = RA1 uf0(u)duRI+� f0(u)du ; �2(0) = RAr1 uf0(u)duRI�� f0(u)du :(b) There exists �2 > 0 such that f0(u) < �2 for u 2 I n (I+� [ I�� ).(c) There exists �3 > 0 such that �1(0) 2 I+�3 and �2(0) 2 I��3 .We assume that � < �02 . De�neA1 = �L� �02 ; 12 � (L� �0)2 � ; A2 = ��(L� �0)2 ; L� �02 �and Ar1 ; Ar2 are their re
ections with respect to the horizontal respectively the verticalaxis.Ar1 = ��12 + L� �02 ;�(L� �0)2 � ; Ar2 = �12 � (L� �0)2 ; 12� [ ��12 ;�12 + L� �02 � :21



Figure 4: The regions A1; Ar1; and A2; Ar2, which are separated.Next we introduce some suitable functionals for our analysis.m1(t) := ZI+� f(u; t)du ; m2(t) := ZI�� f(u; t)du ; J(t) := supA2[Ar2 f(u; t) ;�1(t) := RA1 uf(u; t)dum1(t) ; �2(t) := RAr1 uf(u; t)dum2(t) ;S1(t) := ZA1 (u� �1(t))2 f(u; t)du ; S2(t) := ZAr1 (u� �2(t))2 f(u; t)du:The �rst momentum, denoted by �, is preserved over I, i.e.� := ZI uf(u; t)du = ZI uf(u; 0)du: (26)Our main result for the non-symmetric case isTheorem 5.6 Let Assumptions 5.4 and 5.5 hold and m1(0);m2(0) > 0. Then we cande�ne 0 < �0 = �0(m1(0);m2(0); V ) such that for �; �1; �2; �3 < �0, there exists ~m1; ~m2 with22



~m1 + ~m2 = m and ~�1; ~�2 with ~�1 2 I+�4 ; ~�2 2 I��4 such that mi(t); �i(t) converge to ~mi; ~�i, fort!1, i = 1; 2. Furthermore, Si(t) � e�CtSi(0) andf ! ~m1�(u�~�1) + ~m2�(u�~�2) ; ~m1 ~�1 + ~m2 ~�2 = m� ; ��� ~�2 � ~�1��� = 12 ;where � is given as in (26).Remarks:Assumption 5.4 ensures the main properties we need for the interactions between particlesto prove our theorem.� The particles in region A1 cannot jump to region Ar1 or the other way around, sincethe width of region A2 is of order L; but the potential V , that measures the size ofthe jumps, is smaller than that.� For all interactions between particles v in I+� [ I�� with particles w in A1 [ Ar1the inequalities for the potentials in (c), or the re
ected ones, can be applied. In-deed, for these interactions either v � w 2 ��14 + L2 � �0; 14 � L2 + �0� or v � w 2�14 + L2 � �0; 1� 14 � L2 + �0� :� The particles in I+� [ I�� cannot reach the region A2 [Ar2. Since L < 16 , the width ofthe region A1 (or Ar1) is at least 13 , whereas the required jumps have to be at leastof order 16 � � > 16 � �0 > L� �0 > kV k1 ; which is not possible.See �gure 4 for illustration.Proof. (of Theorem 5.6) Several lemmas and propositions have to be proved to get the�nal result. First we start withAssumption 5.7 Suppose �rst that �1(t) 2 I+�=4, �2(t) 2 I��=4, and m1(t);m2(t) � �0 > 0for 0 < t � t� .Later we will use a continuity argument. First we show a lemma that will be used severaltimes in the following arguments.Lemma 5.8 ZIn(I+� [I�� ) duf(u; t) � C�(S1(t) + S2(t)) + J(t):Proof. As long as Assumption 5.7 is satis�ed, we have1 � C�(u� �1(t))2 for �1(t) 2 I+�=4; u 2 S1 n I+� : (27)1 � C�(u� �2(t))2 for �2(t) 2 I��=4; u 2 S1 n I�� : (28)23



ThereforeZIn(I+� [I�� ) duf(u; t) = ZA1nI+� duf(u; t) + ZAr1nI�� duf(u; t) + ZA2[Ar2 duf(u; t)� C� "ZA1nI+� du(u� �1(t))2f(u; t) + ZAr1nI�� du(u� �2(t))2f(u; t)#+ J(t)� C�(S1(t) + S2(t)) + J(t):Proposition 5.9 ddt (mi(t)) = O(J(t) + S1(t) + S2(t)) for i = 1; 2 (29)Proof. Let �1 = �1(v; w) = 1 on the set f(v; w) 2 I � I : Mw(v) 2 I+� g and otherwisezero. Thenddtm1(t) = �mZI+� f(u; t)du+ ZI+� duZI dv ZI dw �0(u�Mw(v))f(w; t)f(v; t)= �mm1(t) + ZI dv ZI dwf(w; t)f(v; t)�1= �mm1(t) + ZI+� dv ZI dwf(w; t)f(v; t)�1 + ZInI+� dv ZI dwf(w; t)f(v; t)�1: (30)For the second term on the right hand side we haveZI+� dv ZI dwf(w; t)f(v; t)�1 = ZI+� dv ZI+� dw � � � + ZI�� dw � � � + ZIn(I+� [I�� ) dw � � �!= m1(t)m1(t) +m2(t)m1(t) +O(J(t) + S1(t) + S2(t)):Here we have used Lemma 5.8. Since �1 = 0 if v 2 I�� , the third term of the right handside of (30) can be estimated asZInI+� dv ZI dwf(w; t)f(v; t)�1 = ZI dw ZIn(I+� [I�� ) dvf(w; t)f(v; t)�124



� ZI f(w; t)dw ZIn(I+� [I�� ) f(v; t)dv � mJ(t) +Cm(S1(t) + S2(t)):Summing up, we getddtm1(t) = �m1(t)(m�m1(t)�m2(t)) +O(J(t) + S1(t) + S2(t)): (31)Similarly one obtainsddtm2(t) = �m2(t)(m�m1(t)�m2(t)) +O(J(t) + S1(t) + S2(t)): (32)Since m�m1(t)�m2(t) = ZS1nI+� [I�� f(u; t)du � C(S1 + S2 + J); (33)we immediately obtain (29) by Lemma 5.8.Proposition 5.10ddt (S1(t) + S2(t)) � �K (S1(t) + S2(t)) + C ��1(t)� �2(t)� 12�2 +C(J + S21 + S22);(34)where K > 0 is an absolute constant depending on a; b; �; and m.Proof. We �rst consider ddtS1(t). Let �1 denote the characteristic function with �1 = 1on f(w; v) 2 I � I : Mw(v) 2 A1g and otherwise zero. Using RA1(u� �1(t))f(u; t)du = 0,we haveA. Estimate of S1(t):ddtS1(t) = ZA1 (u� �1(t))2 @tf(u; t)du� 2d�1(t)dt ZA1(u� �1(t))f(u; t)du= ZA1 (u� �1(t))2 @tf(u; t)du= �mZA1 (u� �1(t))2 f(u; t)du+ ZI dv ZI dwf(w; t)f(v; t) (Mw(v)� �1(t))2 �1= �mS1(t) + ZI dv ZI dwf(w; t)f(v; t) (Mw(v)� �1(t))2 �125



= �mS1(t) + ZA1 dv ZI dw � � � + ZInA1 dv ZI dw � � � = �mS1(t) + I1(t) + I2(t):A.1. Estimate of I1(t):I1(t) = ZA1 dv ZA1 dw � � �+ ZAr1 dw � � � + ZA2[Ar2 dw � � �! = Ia1 (t) + Ib1(t) + Ic1(t):Among these we estimate the �rst by symmetrization.A.1.(i) Estimate of Ia1 (t):Ia1 (t) = 12 ZA1 dv ZA1 dw�v + V (w � v)� �1(t)�2f(w)f(v)+12 ZA1 dv ZA1 dw�w + V (v � w)� �1(t)�2f(v)f(w)= 12 ZA1 dv ZA1 dwh(v � �1(t))2 + 2(v � �1(t))V (w � v) + (V (w � v))2if(w; t)f(v; t)+12 ZA1 dv ZA1 dwh(w � �1(t))2 + 2(w � �1(t)V (v �w) + (V (v � w))2if(w; t)f(v; t)= S1(t)ZA1 dwf(w; t) � ZA1 dv ZA1 dwV (w � v)�(w � v)� V (w � v)�f(w; t)f(v; t):The �rst term can be estimated viaZA1 dwf(w; t) = ZI+� dwf(w; t) + ZA1nI+� dwf(w; t) = m1(t) +O(S1(t)); (35)where we have used Lemma 5.8. ThusIa1 (t) = m1(t)S1(t) +O(S21(t))� ZA1 dv ZA1 dwQ(w � v)f(w; t)f(v; t);with Q(�) = V (�)(� � V (�)). We splitZA1 ZA1 dvdwQ(w � v)f(w; t)f(v; t) = ZI+� ZI+� dvdwQ(w � v)f(w; t)f(v; t)26



+ZA1nI+� ZI+� :::+ ZI+� ZA1nI+� :::+ ZA1nI+� ZA1nI+� ::: = Q1(t) +Q2(t) +Q3(t) +Q4(t):With (27) used for v and w we obtainjQ4(t)j � C(S1(t))2: (36)On the other hand, for the domains of integration used for Q1; Q2 and Q3 we have thatjw � vj � �1. Therefore, since Q(�) is even and V can be estimated in [0; �1] as given inAssumption 5.4, (c), we obtainQ(�) � b(1� a)�2 for � 2 [��1; �1]:ThusZA1 dv ZA1 dwQ(w � v)f(w; t)f(v; t) � b(1� a)h ZI+� ZI+� dvdw(w � v)2f(w; t)f(v; t)+ZA1nI+� ZI+� dvdw(w � v)2f(w; t)f(v; t) + ZI+� ZA1nI+� dvdw(w � v)2f(w)f(v)i+ZA1nI+� ZA1nI+� dvdwhQ(w � v)� b(1� a)(w � v)2 + b(1 � a)(w � v)2if(w; t)f(v; t)� b(1� a)ZA1 ZA1 dvdw(w � v)2f(w; t)f(v; t)� C�S21(t): (37)For the �rst term of the right hand side we estimate again by expansion (w � v)2 =(w � �1(t)� (v � �1(t)))2, canceling the cross terms and using (35).b(1� a)ZA1 ZA1 dvdw(w � v)2f(w; t)f(v; t) = 2b(1 � a)(m1(t) +O(S1(t)))S1(t):Thus Ia1 (t) � m1(t)S1(t)� 2b(1� a)m1(t)S1(t) + CS21(t):A.1.(ii) Estimate of Ic1(t): It is direct thatIc1(t) � ZA2[Ar2 f(w; t)dw ZA1 f(v; t)dv � CJ(t):The estimate for Ib1(t) is related to an analogous estimate appearing for ddtS2(t). We willdeal with this later. So �rst we look at 27



A.2. Estimate for I2(t):I2(t) = ZInA1 dv ZI dwf(w; t)f(v; t)(Mw(v)� �1(t))2�1= ZA2[Ar2 dv ZI dwf(w; t)f(v; t)(Mw(v) � �1(t))2�1 � CJ(t)due to the de�nition of the characteristic function and since jjV jj1 < L as given inAssumption 5.4 (b). Combining all estimates we obtainddtS1(t) � �mS1(t) +m1(t)S1(t)� 2b(1 � a)m1(t)S1(t) + Ib1(t) + CJ(t) + CS21(t):Next we considerB. Estimate of S2(t):ddtS2(t) = �mS2(t) + ZI dw ZI dvf(w; t)f(v; t) (Mv(w) � �2(t))2 �2;= �mS2(t) + ZAr1 dv ZI dw � � � + ZInAr1 dv ZI dw � � � = �mS2(t) + ~I1(t) + ~I2(t):Here �2 = �2(v; w) = 1 on the set f(w; v) 2 I � I : Mw(v) 2 Ar1g and otherwise zero. Asbefore we split~I1(t) = ZAr1 dv ZAr1 dw � � �+ ZA1 dw � � � + ZA2[Ar2 dw � � �! = ~Ia1 (t) + ~Ib1(t) + ~Ic1(t):Due to the symmetry of the problem we obtain similarly as before~Ia1 (t) � m2(t)S2(t)� 2b(1� a)m2(t)S2(t) + CS22(t);~Ic1(t) � CJ(t) and ~I2 � CJ(t)since �2 = 0 if v 2 A1. Thusddt(S1(t) + S2(t)) � �m(S1(t) + S2(t)) +m1(t)S1(t) +m2(t)S2(t)�2b(1� a)(m1(t)S1(t) +m2(t)S2(t)) + Ib1(t) + ~Ib1(t) +CJ(t) + C(S21(t) + S22(t)):28



AB. (iii) Estimate of Ib1(t) and ~Ib1(t):Exchanging the roles of v and w in the second term in the expressions for Ib1(t) and ~Ib1(t)we obtainIb1(t) + ~Ib1(t) � ZA1 dv ZAr1 dwf(v; t)f(w; t)h(v + V (w � v)� �1(t))2 + (w + V (v � w)� �2(t))2i= ZA1 dv ZAr1 dwf(v; t)f(w; t)h(v � �1(t))2 + (w � �(t))2+2�(v � w)� (�1(t)� �2(t))�V (w � v) + 2(V (w � v))2i= m2(t)S1(t) +m1(t)S2(t) +O(S21(t) + S22(t))�2ZA1 dv ZAr1 dwf(v; t)f(w; t)�(w � v + 1=2) � V (w � v)�V (w � v)+2(�2(t)� �1(t) + 1=2)ZA1 dv ZAr1 dwf(v; t)f(w; t)V (w � v)= m2(t)S1(t) +m1(t)S2(t) +O(S21(t) + S22(t)) +K1(t) +K2(t):For the �rst terms we have assumed (35).Estimate of K2(t):The assumptions on the potential V imply jV (w � v)j = jV (v � w)j � Cjw � v + 1=2j �C(jw � �2(t)j + jv � �1(t)j + j�2(t) � �1(t) + 1=2j). With this and the Cauchy-Schwarzinequality we getK2(t) � C� j�2(t)� �1(t) + 1=2j +pS1(t) +pS2(t)� j�2(t)� �1(t) + 1=2j :Using Young's inequality we obtainK2(t) � "0(S1(t) + S2(t)) + C("0)j�2(t)� �1(t) + 1=2j2:Estimate of K1(t):For K1(t) we �rst split the domains of integration as usualZA1 dv ZAr1 dwf(v; t)f(w; t)h(w � v + 1=2) � V (w � v)iV (w � v)29



= ZI+� dv ZI�� dw � � �+ ZA1nI+� dv ZI�� dw � � �+ ZI+� dv ZAr1nI�� dw � � �+ ZA1nI+� dv ZAr1nI�� dw � � �= Ka2 (t) +Kb2(t) +Kc2(t) +Kd2 (t):We start with the last termjKd2 (t)j � C (S1(t)S2(t)) � C �S21(t) + S22(t)� :All other terms are positive because of Assumption 5.4 and the 1-periodicity of Vb(� + 1=2) � V (�) � a(� + 1=2) in � 2 [�3=4 + L=2� �0;�1=2];b(� + 1=2) � V (�) � a(� + 1=2) in � 2 [�1=2;�1=4 � L=2 + �0]:Thus �(� + 1=2) � V (�)�V (�) � 0. SoIb1(t) + ~Ib1(t) � m2(t)S1(t) +m1(t)S2(t) +O(S21(t) + S22(t))+"(S1(t) + S2(t)) + C"0 j�2(t)� �1(t) + 1=2j2:Finally, due to several cancelations, we obtainddt(S1(t) + S2(t)) � �2b(1� a)(m1(t)S1(t) +m2(t)S2(t)) + "0(S1(t) + S2(t))+C"0 j�2(t)� �1(t) + 1=2j2 + C �J(t) + S21(t) + S22(t)� :Choosing "0 su�ciently small, we get the �nal estimate (34).Proposition 5.11ddt (�1(t)� �2(t)� 1=2) = �B(m1(t) +m2(t))��1(t)� �2(t)� 1=2� (38)+O�S1(t) + S2(t) + J(t) + (�1(t)� �2(t)� 1=2)2�:Proof. We �rst note thatddt�1(t) = RA1 u@tf(u; t)dum1(t) � m01(t) RA1 uf(u; t)dum21(t) :30



For the �rst term on the right hand side of this equation we have1m1(t) ZA1 u@tf(u; t)du = �m�1(t) + 1m1(t) ZI dv ZI dwMw(v)f(w; t)f(v; t)�1= �m�1(t) + 1m1(t) ZA1 dv ZI+� [I�� dwMw(v)f(v; t)f(w; t)�1+ 1m1(t)Z Z (I�I)n(A1�(I+� [I�� ))dvdwMw(v)f(v; t)f(w; t)�1= �m�1(t) +Ka1 (t) +Kb1(t):Here, as before, �1 = 1 on f(w; v) 2 I � I : Mw(v) 2 A1g and zero otherwise. Using thefact that �1 = 0 if v 2 Ar1, we obtainKb1(t) = 1m1(t)Z Z ((InAr1)�I)n(A1�(I+� [I�� ))dvdwMw(v)f(v; t)f(w; t)�1� O(J(t) + S1(t) + S2(t)):For the inequality we have used (27). Similarly, we getddt�2(t) = RAr1 u@tf(u; t)dum2(t) � m02(t) RAr1 uf(u; t)dum22(t)= �m�2 + 1m2 ZAr1 dv ZI+� [I�� dwMw(v)f(v; t)f(w; t)�2+ 1m2(t)Z Z (I�I)n(Ar1�(I+� [I�� ))dvdwMw(v)f(v; t)f(w; t)�2= �m�2 +Ka2 (t) +Kb2(t)� m02(t)m2(t)�2(t):Thus ddt(�1(t)� �2(t)� 1=2) = �m(�1(t)� �2(t)) +Ka1 (t)�Ka2 (t) +Kb1(t)�Kb2(t)31



�m01(t)m1(t)�1(t) + m02(t)m2(t)�2(t):Arguing like for Kb1(t) we haveKb2(t) � O(J(t) + S1(t) + S2(t))and by (31), (32), (33) we obtain����m01(t)m1(t)�1(t)� m02(t)m2(t)�2(t)���� � O(J(t) + S1(t) + S2(t)):Next we estimateKa1 (t)�Ka2 (t) = 1m1(t) ZA1 dv ZI+� [I�� dw (v + V (w � v)) f(v; t)f(w; t)� 1m2(t) ZAr1 dv ZI+� [I�� dw (v + V (w � v)) f(v; t)f(w; t):Here we dropped �1, �2, since they are both equal to one in the regions of integration.Ka1 (t)�Ka2 (t) = (m1(t) +m2(t))(�1(t)� �2(t)) + 1m1 ZA1 dv ZI+� dwV (w � v)f(w; t)f(v; t)+ 1m1 ZA1 dv ZI�� dw::: � 1m2 ZAr1 dv ZI+� dw::: � 1m2 ZAr1 dv ZI�� dw::: : (39)The �rst integral on the right hand side of (39) can be estimated using Assumption 5.4, (a)1m1 ZI+� dv ZI+� dwA(w � v)f(w; t)f(v; t) + 1m1 ZA1nI+� dv ZI+� dwA(w � v)f(w; t)f(v; t)+ 1m1 ZA1 dv ZI+� dwO((v � w))2f(w; t)f(v; t) � O(S1(t)):Here we have used that the �rst term is zero by symmetry. For the second term weestimated A(w� v) < 1 and used (27). For the third integral we used v�w = v� �1(t) +�1(t) � w and expanded. For the last integral in (39) the argumentation is the same asthe one above. For the second integral in (39) we approximateV (w � v) = B(w � v + 12) +O�(w � v + 12)2�and for the third integral we useV (w � v) = B(w � v � 12) +O�(w � v � 12)2� :32



Therefore the sum of these two integrals equalsBm1(t) ZA1 dv ZI�� dw�w � v + 12�f(w; t)f(v; t)� Bm2(t) ZAr1 dv ZI+� dw�w � v � 12�f(w; t)f(v; t)+ZA1 dv ZI�� dw O�(w � v + 12)2�f(w; t)f(v; t) + ZAr1 dv ZI+� dw O�(w � v � 12)2�f(w; t)f(v; t)= B�m1(t)m2(t)�2(t)m1(t) � m1(t)m2(t)�1(t)m1(t) + m1(t)m2(t)2m1(t) �
�B�m1(t)m2(t)�1(t)m2(t) � m1(t)m2(t)�2(t)m2(t) � m1(t)m2(t)2m2(t) �+O�S1(t) + S2(t) + (�2(t)� �1(t) + 12)2�= B(m1(t) +m2(t))(�2(t)� �1(t) + 12) +O�S1(t) + S2(t) + (�2(t)� �1(t) + 12)2�:Here we have used that RA1 G(u; t)du = RI+� G(u; t)du + O(S1(t) + S2(t)) for G(u; t) =uf(u; t) and G(u; t) = f(u; t). The errors in the quadratic terms were estimated byexpansions like (w � v + 12)2 = (w � �2(t)� (v � �1(t)) + (�2(t)� �1(t) + 12))2 and similarequations. So we �nally obtainddt ��1(t)� �2(t)� 12� = �m(�1(t)� �2(t)) + (m1(t) +m2(t))(�1(t)� �2(t))�B(m1(t) +m2(t))��1(t)� �2(t)� 12�+O�S1(t) + S2(t) + J(t) + (�1(t)� �2(t)� 12)2�= �B(m1(t) +m2(t))��1(t)� �2(t)� 12�+O�S1(t) + S2(t) + J(t) + (�1(t)� �2(t)� 12)2�;where we used (33). This completes the proof.Proposition 5.12��� ddt (m1(t)�1(t) +m2(t)�2(t)) ��� � C (J(t) + S1(t) + S2(t)) : (40)33



Proof. Direct calculations show thatddt(m1(t)�1(t) +m2(t)�2(t)) = �m�m1(t)�1(t) +m2(t)�2(t)�+ZI dv ZI dwf(w; t)f(v; t)Mw(v)�1 + ZI dv ZI dwf(w; t)f(v; t)Mw(v)�2= �m�m1(t)�1(t) +m2(t)�2(t)�+ I1(t) + I2(t):Due to the de�nition of �1 we can splitI1(t) = ZI+� dv ZI dwf(w; t)f(v; t)Mw(v)�1 + ZIn(I+� [I�� ) dv ZI dwf(w; t)f(v; t)Mw(v)�1= ZI+� dv ZI+� dw � � �+ ZI�� dw � � �+ ZIn(I+� [I�� ) dw � � �!+ ZIn(I+� [I�� ) dv ZI dw � � � :The third and fourth term are estimated by C(J(t) + S1(t) + S2(t)), and therefore,I1(t) � ZI+� dv ZI+� dwf(w; t)f(v; t)Mw(v) + ZI+� dv ZI�� dwf(w; t)f(v; t)Mw(v)+O(J(t) + S1(t) + S2(t))= m1(t)m1(t)�1(t) +m1(t)m2(t)�1(t) +O(J(t) + S1(t) + S2(t))+ZI+� dv ZI�� dwf(w; t)f(v; t)V (w � v):Due to the symmetry of V (�) the respective RI+� RI+� integration disappears.For I2(t) we have by similar argumentsI2(t) � m2(t)m2(t)�2(t) +m1(t)m2(t)�2(t) + C(J(t) + S1(t) + S2(t))+ZI�� dv ZI+� dwf(w; t)f(v; t)V (w � v):Adding up, the integral terms cancel and we obtainI1(t) + I2(t) � (m1(t) +m2(t))(m1(t)�1(t) +m2(t)�2(t)) +O(J(t) + S1(t) + S2(t))and thus derive the estimate (40) of our proposition.34



Proposition 5.13 ddtJ(t) � � C0m1 + C0J(t) + C(S21(t) + S22(t) + J2(t)): (41)Proof. For u 2 A2 [Ar2 we consider@tf(u; t) = �mf(u; t) + ZI dv ZI dwf(w; t)f(v; t)G0(u�Mw(v))= �mf(u; t) + ZI dv ZI+� [I�� dw � � �+ ZI dv ZInI+� [I�� dw � � �= �mf(u; t) + I1(t) + I2(t):If w 2 I+� [ I�� and v 2 �A1 = A1 [Ar1, then Mw(v) =2 �A2 = A2 [Ar2. ThereforeI1(t) = ZIn �A1 dv ZI+� [I�� dw � � � = Z �A2 dv ZI+� [I�� dw � � � :For �xed w 2 I+� [ I�� , we consider Mw(v) as a function of v in A2. Due to Assumption5.4, (b), we can see that M 0w(v) � 1 + C0 where C0 > 0, thus, Mw(v) is invertible. LetMw(v) = z, so v =M�1w (z). Using a change of variables, we getI1(t) = ZI+� [I�� dw ZMw(A2) dz f(w)f �M�1w (z)�M 0w(M�1w (z)) � m1 + C0J(t): (42)If v 2 I+� [ I�� , then Mw(v) =2 A2, and since jjV jj1 < L < 16I2(t) = ZInI+� [I�� dv ZInI+� [I�� dw � � � � C(S21(t) + S22(t) + J2(t)): (43)Here we used similar computations as in (19). Summing (42) and (43), we obtain@tf(u; t) � �mf(u; t) + m1 + C0J(t) + C(S21(t) + S22(t) + J2(t)); u 2 �A2:Since the above estimate is uniform for all u 2 �A2, we have the estimate (41).Summary of estimates: So far we haveddtJ(t) � ��J(t) + C(S21(t) + S22(t) + J2(t));ddt(S1(t) + S2(t)) � �2�(S1(t) + S2(t)) + C�(�1(t)� �2(t)� 12)2 + J(t) + S21(t) + S22(t)�;35



ddt ����1(t)� �2(t)� 12 ��� � �4�����1(t)� �2(t)� 12 ���+ C�J(t) + S1(t) + S2(t) + (�1(t)� �2(t)� 12)2�;j ddtm1(t)j+ j ddtm2(t)j � C(J(t) + S1(t) + S2(t)); (44)j ddt(m1(t)�1(t) +m2(t)�2(t))j � C(J(t) + S1(t) + S2(t)): (45)And the initial data for our argument arem1(0) � 4�0 ; �2(0) � 4�0 ; J(0) � �1;S1(0) + S2(0) � �2 ; j�1(0) � 1=4j � �32 ; j�2(0) + 1=4j � �32 :So � = �(m; �0; V (�)) is independent of �, whereas C = C(m;V (:); �; �0) depends on �.Let t� be maximally chosen such thatJ(t) � 4�1 exp(��t) ; S1(t) + S2(t) � 4�2 exp(��t)j�1(t)� �2(t)� 1=2j � 4�3 exp(��t)�1(t) 2 I+�4 ; �2(t) 2 I��4 ; m1(t) � �0 ; m2(t) � �0 for t � t� :Local Stability ResultFor �1 = �22; �2 = �23 there exists �0 = �0(�;m; �0; V (:)) such that if �3 � �0 then t� =1.Proof: We integrate the inequalities one after the other. The constant C will changefrom line to line as usual. Then we haveJ(t) � �1 exp(��t) +C Z t0 exp(��(t� s))(�21 + �22) exp(�2�s)ds� (�1 +C(�21 + �22)) exp(��t) � 2�1 exp(��t);S1(t) + S2(t) � �2 exp(�2�t)+C Z t0 exp(�2�(t� s))��23 exp(�2�s) + �22 exp(�2�s) + �1 exp(��s)�ds36



� (�2 + C(�22 + �23)) exp(�2�t) + C�1 exp(��t) � (�2 + C(�1 + �22 + �23)) exp(��t);�����1(t)� �2(t)� 12 ���� � �3 exp(�4�t)+C Z t0 exp(�4�(t� s))�4�2 exp(��2) + �1 exp(��s) + �23 exp(�2�s)�� ��3 + C(�1 + �2 + �23)� exp(��t):Since �1 = �43 and �2 = �23, we obtain for small enough �3J(t) � 2�43 exp(��t) < 4�43 exp(��t);S1(t) + S2(t) � 2�23 exp(��t) < 4�23 exp(��t);j�1(t)� �2(t)� 1=2j � 2�3 exp(��t) < 4�3 exp(��t): (46)From the previous estimates for the masses (44) we obtainjm1(t)�m1(0)j + jm2(t)�m2(0)j � C�23: (47)Due to our assumptions on the initial data this gives m1(t) � �0 and m2(t) � �0 forsu�ciently small �3. Integrating (45) we havejm1(t)�1(t)�m1(0)�1(0) +m2(t)�2(t)�m2(0)�2(0)j � C�3:Approximating mi(t)�i(t) by mi(0)�i(t) for i = 1; 2 in this equation and estimating theresulting error term by using j�1(0)�1=4j � �3=2 and j�2(0)+1=4j � �3=2 as well as (47),we obtain jm1(0)(�1(t)� 1=4) +m2(0)(�2(t) + 1=4)j � C�3 :Combining this inequality with (46), we end up withj�1(t)� 1=4j+ j�2(t) + 1=4j � C�3 :For �3 su�ciently small, which means choosing "1; "2; "3 su�ciently small, we obtain�1(t) 2 I+�8 and �2(t) 2 I��8 . Therefore we can extend the argument for t > t�, which is ourproposition. 37



Asymptotic limit of the solution:After having proved global existence of solutions we can easily derive their long timeasymptotics J(t) + S1(t) + S2(t) < Ke��t as t!1:Therefore, using ddt (m1(t)�1(t) +m2(t)�2(t)) = O (J(t) + S1(t) + S2(t)) as well as��� ddtm1(t)���+ ��� ddtm2(t)��� = O(J(t) + S1(t) + S2(t))we obtain:m1 (t)! m1;1 ; m2 (t)! m2;1 ; m1(t)�1(t) +m2(t)�2(t)! ` as t!1:The last limit can be combined with�1(t)� �2(t)� 12 ! 0 as t!1to obtain �1(t)! �1;1 ; �2(t)! �2;1 as t!1where m1;1�1;1 +m2;1�2;1 = ` ; �1;1 � �2;1 = 12 :Since the �rst moment is preserved, compare (26), we have` = ZI ufu;0du :Finally, since S1(t)! 0; S2(t)! 0; J(t)! 0 as t!1 we obtain:f (u; t)! m1;1�fu=�1;1g +m2;1�fu=�2;1g for t!1:This �nishes the proof of Theorem 5.6.DiscussionIn this paper we studied a kinetic model that describes alignment of cells or �laments.This model is a speci�c case of the integro-di�erential equations discussed in [4], since weassume deterministic interaction between the cell bundles. We obtained several rigorousresults concerning the long time asymptotics of the solutions. If only bundles interactwhich are close in orientation and these interactions try to align them, then we obtain38
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