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Numerical computation of inner eigenvalues using the DunfordCauchy integralWendy KressJune 1, 2007AbstractWhen computing the eigenvalues of a matrix using iterative Krylov subspace methods, convergence isusually best for the extreme eigenvalues. We present a projection technique that enables us to e�cientlycompute the eigenvalues that lie in a speci�ed interval in the interior of the spectrum. To obtain such aprojection, the Dunford Cauchy integral is used. The technique requires fast inversion algorithms whichare available for some classes of matrices like H-matrices.1 IntroductionMost methods for computing eigenvalues of a matrix concentrate on �nding either the complete spectrum ofthe matrix or speci�c eigenvalues { in most cases the extreme eigenvalues. One can, e.g., use Krylov subspacemethods. Given a matrix A, they �nd approximations to A's eigenvectors from a subspace Kk(A; u0) :=span�Au0; : : : ;Aku0	 for some vector u0. In addition, approximate eigenvalues, so called Ritz values, arefound. As k is increased, the Ritz values converge to the eigenvalues of A. Convergence is fastest for thoseeigenvalues belonging to the upper and lower spectrum.When only interested in eigenvalues in the inner region of the spectrum, the basic Krylov subspace methodis not e�cient. We can modify the method in the following way. To guarantee that the Krylov subspacemethod arrives only at the interesting eigenvalues, we change the search space from Kk(A; u0) to Kk(Ap; u0),where Ap is a projection of A onto the space spanned by the eigenvectors corresponding to the interestingeigenvalues. The Krylov method will then �nd only the nonzero eigenvalues and corresponding eigenvectorsof Ap. In Section 3, we will describe the Krylov method in a little more detail. For an overview on Krylovmethods for the numerical computation of eigenvalues see [9]. For other methods for the computation ofeigenvalues, e.g., the QR algorithm, see [4] or [8] which also covers Krylov methods.In this work, we present a technique to e�ciently compute the projection Ap using the Dunford Cauchyintegral. For this formulation, we will require a cheap inversion algorithm for matrices (zI �A) with z 2 C ,which is available for matrices permitting a representation by H-matrices [6], [3], in almost linear complexity.2 Prerequisites and notationsIn the following, we consider A 2 RM�M with real eigenvalues �1 � : : : � �M and we assume that A possessesan orthonormal set of eigenvectors V = [v1; : : : ; vM ]. Consequently, VTAV is diagonal and consists of A'seigenvalues. The above assumptions are ful�lled for real symmetric matrices. Although, in this work, weconsider only matrices of the above kind, the procedure will also work for other diagonalizable matrices, theanalysis being slightly more involved.Given a speci�ed interval, we denote the eigenvalues of A lying in that interval by �i+1; : : : ; �i+n and thecorresponding eigenvectors by vi+1; : : : ; vi+n. We assume that no eigenvalue is exactly equal to the endpointsof the interval.Using scaling and translation, we assume the speci�ed interval to be [�1; 1].
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3 Krylov subspace methods and projection ApIn a Krylov subspace method, we consider the subspace Kk(A; u0) := span�Au0; : : : ;Aku0	 for some initialvector u0 and small k and seek approximate eigenvectors x 2 Kk(A; u0) ful�lling(v;Ax� � x) = 0 ; 8v 2 Kk(A; u0) ; (1)for some value � 2 R. Here, (�; �) denotes the usual scalar product in RM . Such vectors x and values � arecalled Ritz vectors and Ritz values, respectively. If Uk is an orthonormal basis of Kk(A; u0), the Ritz valuesare the eigenvalues of the matrix Sk = UTk AUk, and the Ritz vectors are the eigenvectors of Sk multipliedby Uk. To see this, let � be an eigenvalue of Sk with corresponding eigenvector y. Then taking x = Uky,UTk (Ax� �x) = 0 which is just another formulation of (1). On the other hand, if x and � ful�ll (1), then forall w 2 RM , (Ukw;UkSkUTk x� �x) = 0 and shifting Uk to the second argument of the scalar product leads toSky = �y with y = UTk x.Since Sk is a small matrix, its eigenvalues and eigenvectors can be computed at low cost using, e.g., a QRalgorithm.As mentioned above, a projection Ap of A onto spanfvi+1; : : : ; vi+ng can be used in a modi�cation of aKrylov subspace method. We consider a Krylov subspace method using the subspace Kk(Ap; u0) instead ofKk(A; u0): Find Ritz vectors x 2 Kk(Ap; u0) and Ritz values � such that(v;Ax� � x) = 0 ; 8v 2 Kk(Ap; u0) : (2)The approximate eigenvalues obtained in the Krylov method can only correspond to eigenvalues �i+1; : : : ; �i+n,since the Krylov subspace is a subspace of the space spanned by the eigenvectors vi+1; : : : ; vi+n.4 Dunford Cauchy integralOne way to compute the projection of a matrix is to use the Dunford Cauchy integral. We recall the Cauchyintegral formula: Given a simply closed curve � in the complex plane, we have for x =2 �xp := 12�i I� zz � xdz = � x if x is enclosed by � ;0 if x is not enclosed by � :The Cauchy integral can be extended to matrices in the following way,Ap := 12�i I� z (zI�A)�1dz : (3)The right hand side is called the Dunford Cauchy integral [1]. If we assume that � encloses only the eigenvalues�i+1; : : : ; �i+n, Ap is a projection of A onto the subspace vi+1; : : : ; vi+n. To see this, we note thatA = Vdiag(�1; : : : ; �M )VT :Then Ap = V0@ 12�i I� z(diag(z � �1; : : : ; z � �M ))�1dz1AVT= Vdiag0@ 12�i I� zz � �1 dz; : : : ; 12�i I� zz � �M dz1AVT= V diag (0; : : : ; 0; �i; �i+1; : : : ; �i+n; 0; : : : ; 0)VT ;which is the projection onto the desired subspace.To be more precise about the conditions under which the above integral is well de�ned, let  : [0; 2�]! Cbe a smooth parametrisation of the curve �. 2



Remark 1 The Dunford Cauchy integral (3) exists as a proper integral under the assumption that (!) doesnot coincide with an eigenvalue of A.To numerically compute Ap, we employ the trapezoidal rule to obtain an approximation ~Ap,~Ap = 12�i 2�N N�1Xk=0  �2�kN � 0�2�kN ���2�kN � I�A��1 ; (4)which for periodic functions has the following exponential convergence properties,Theorem 2 If ((z)I�A) is nonsingular in a strip Dd := fz 2 C : jIm(z)j � dg, we haveAp � ~Ap2 � 2M(d)eNd � 1 (5)with M(d) � max�2�(A) Z 2�0 j(! + id)0(! + id)jj(! + id)� �j d! ; (6)where �(A) denotes the spectrum of A.Proof. This result follows directly from the exponential convergence of the trapezoidal rule for periodicfunctions [2], extended to matrices by diagonalization.Equation (4) gives a method to compute an approximate projection of the matrix A which requiresN matrix inversions. Normally, matrix inversion is considered very expensive, but in a number of cases,cheap inversion procedures are available, e.g., in case of H-matrices [5], [7], inversion can be accomplished inO(M log2M) operations.5 Error analysisWe now turn to an error analysis, to determine the number of quadrature points required for a given accuracy.In addition to the number of quadrature points, the error will highly depend on the chosen curve (!). We�rst determine the optimal choice of (!), restricting ourselves to ellipses passing through �1 and 1.5.1 Optimal choice of the integration curve �Let � be parametrised by (!) = cos(!) + i� sin(!): (7)Using scaling and translation, we can assume that the desired eigenvalues of A lie in an interval [�b; b] withb < 1 and that the other eigenvalues of A lie in (�1;�B] [ [B;1) for B > 1 (Figure 1). To determinethe quadrature error, we consider the requirements in Theorem 2. The width of the strip Dd in Theorem2 depends on the parameter �. In our case, the larger we can choose the width d of Dd, the better theconvergence behavior of the trapezoidal rule. In Theorem 3, we show that the largest possible width d� isobtained for �� =p1� �2 with � = max(b;�B2 + pB2 + 82 ) :Geometrically, this is precisely the minimal value of �, for which the distance of (!) to points on the interval(�b; b) is minimal for ! = 0 or ! = �.Theorem 3 For �� =p1� �2, with � = max(b;�B2 + pB2 + 82 ) ;((z)I�A) is nonsingular in a strip Dd� := fz 2 C j jIm(z)j < d�g for maximal possible d� := cosh�1(1=�).3
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Figure 1: Ellipse (!)Proof. To guarantee nonsingular ((z)I�A), we require that (z) does not coincide with an eigenvalue of Afor any z = x+ iy 2 Dd. We have assumed that the spectrum of A lies in the set [�b; b][ (�1;�B][ [B;1).Thus, regularity in a strip Dd� is guaranteed if (z) =2 [�b; b] [ (�1;�B] [ [B;1) for all z 2 Dd� . We haveRe((x+ iy)) = cos(x)�1 + �2 e�y + 1� �2 ey� ;Im((x+ iy)) = sin(x)�1 + �2 e�y � 1� �2 ey� :For x = �=2 and x = 3�=2, Re((x+iy)) = 0. To ensure that (x+iy) 6= 0, we require that � 1+�2 e�y � 1��2 ey� >0, for jyj < d�, leading to � � ed� � e�d�ed� + e�d� : (8)For Re(z) = k�, (z) is purely real. To ful�ll (z) =2 [�b; b] [ (�1;�B] [ [B;1), we require that�1 + �2 ed� + 1� �2 e�d�� > b; (9)�1 + �2 e�d� + 1� �2 ed�� < B: (10)Conditions (9) and (10) become less restrictive, the smaller �. Inserting the lower bound �� = ed��e�d�ed�+e�d� , (9)becomes 2ed� + e�d� = 1cosh d� � b :Inequality (10) becomes e2d� + e�2d�ed� + e�d� � B ;which leads to cosh d� � B4 + pB2 + 84 :4
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Figure 2: Bounds on d depending on �. (12)(dotted), (13) (solid), (14) (dashed)Thus, the maximal choice of d� ful�llscosh d� = min(1b ; B4 + pB2 + 84 ) =: 1� ;and is obtained for �� = sinh d�cosh d� =p1� �2 :5.2 General ellipseFor other �, the strip Dd becomes smaller, and thus the convergence rate will be slower. To illustrate thedependence of d on �, in Figure 2, we plot the lines representing upper bounds on d which need to be ful�lledfor di�erent values of b and B. The derivation of these upper bounds is given in Theorem 4.Theorem 4 Using the notation�1 = maxfb+pb2 � (1� �2); (1 + �)2B +pB2 � (1� �2) ;p1� �2g ;where the minimum is only taken over those terms that are real (e.g., if b2 < (1 � �2), the �rst term is notconsidered), ((z)I�A) is nonsingular in the strip Dd := fz 2 C : jIm(z)j < dg for d satisfyinged � 1 + ��1 : (11)Proof. As in Theorem 3, we require conditions (8), (9), (10) to be ful�lled, leading to� � 1 or ed �r1 + �1� � ; (12)1� �2 � b2 or e�d � b+pb2 � (1� �2)1 + � ; (13)ed � B +pB2 � (1� �2)1 + � : (14)5



In Figure 2, we plot the conditions on d. We take d to be de�ned by the strongest condition.5.3 Convergence rate of the trapezoidal ruleIn Theorem 2, we have stated the exponential convergence of the quadrature error in (4). We now derivebounds on the term M(d) in equation (5). To obtain a bound on M(d), we need the following conjecture,Conjecture 5 We havemax0���1j�j� 1+�2 Z 2�0 s e4� + (�e�)4 � 2�2 cos 4!(cos!(e� + �e��)� 2�)2 + sin2 !(e� � �e��)d! � c log 1=� ; (15)with c � 4:6.This conjecture can be validated by numerical evaluation of the integral. The integral on the left hand sideis maximal for � = 1+�2 and becomes singular for � = 0. In Figure 3 we investigate the growth rate of theintegral for � = 1+�2 as � ! 0. The logarithmic growth is clearly validated and the constant c in Conjecture5 can be estimated by c � 4:6. We have the following error estimate.
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we rewrite (! + i(d� � �)) = 12(ei!e�d�e�(1 + �) + e�i!ed�e��(1� �2)=(1 + �))= 12 �ei!�1e� + e�i! (1� �2)�1 e���= 12 �ei!�1e� + e�i!�2e��� ;and with some calculations, we arrive atj(! + i(d� � �))0(! + i(d� � �))j = 14q(�41e4� + �42e�4�)� 2(�1�2)2 cos 4! :Some transformations lead toj(! + i(d� � �))� �j = 12q(2�� cos!(e��1 + e���2))2 + sin2 !(e��1 � e���2)2 ;and M(d� � �) � max�i2�(A) �12 Z 2�0 vuut e4� + (�2�1 e��)4 � 2(�2�1 )2 cos 4!(cos!(e� + e�� �2�1 )� 2 �i�1 )2 + sin2 !(e� � e�� �2�1 )2 d! :Since j�ij�1 � b�1 � 1+ �2�12 , we can apply Conjecture 5 with � = �2�1 to arrive atM(d� � �) � �1 c2 log 1=� :Choosing � = 1N , and combining this result with (5), we arrive at the theorem.In the above estimates, we have assumed that for the computation of ~Ap in (4), the inverses of ((2�k=N)I�A) are computed exactly. In practice, e.g., with H-matrix techniques, they will only be computed to someaccuracy ". In the following lemma, we show how this error a�ects the accuracy of the approximate projection~Ap.Lemma 7 For !k := 2�kN , k = 0; : : : ; N � 1, denote by A�1!k an approximate inverse of ((!k)I �A) with(!) de�ned by (7). Assume that kA�1!k � ((!k)I�A)�1k2 � " :Then for Âp := 12�i 2�N N�1Xk=0  (!k) 0 (!k)A�1!k ;k ~Ap � Âpk2 � "(1 + �2) :Proof. We havek ~Ap � Âpk2 � "N N�1Xk=0 j (!k) 0 (!k)j= "N N�1Xk=0 q(1 + �4) cos2(!k) sin2(!k) + �2(cos4(!k) + sin4(!k))� "(1 + �2) : 7



� �opt �� err(50) err(100) err�(50) err�(100)2:2 0:92 0:92 1:8 � 10�9 < 10�16 3:1 � 10�8 8:5 � 10�192:1 0:64 0:64 1:1 � 10�6 1:6 � 10�13 1:9 � 10�6 3:3 � 10�132:05 0:44 0:45 1:1 � 10�4 1:6 � 10�9 1:9 � 10�4 3:2 � 10�82:025 0:33 0:32 2:8 � 10�3 1:1 � 10�6 4:9 � 10�2 2:2 � 10�6Table 1: Approximation error kA� ~Ak26 Numerical experimentsThe above results are validated by the following experiments. Above, we have assumed that A's eigenvalueslie in [�b; b] [ (�1;�B] [ [B;1) for b < 1 and B > 1.The parameters of the above section can be scaled to more general subsets (a1; b1)[(�1; a1��][[b1+�;1)by (!) = b1 + a12 + � cos! + i� sin! ;for some � 2 � b1�a12 ; b1�a12 + ��. The optimal ellipse, yielding the smallest quadrature error is obtained for� =p�2 � �2, where� = max8<:b1 � a12 ; �(b1 � a1 + 2�) +q(b1 � a1 + 2�)2 + 8�24 9=; :For optimal �, the error estimate of Theorem 6 becomeskA� ~Ak2 � 4:6� log(N) e ��� + �� �N � 1!�1 =: err�(N) :We investigate the following matrix A 2 RM�MA = 0BBBBBBB@ 2 �1 0 � � � 0�1 2 �1 . . . ...0 . . . . . . . . . 0... . . . �1 2 �10 � � � 0 �1 2
1CCCCCCCA :Its eigenvalues lie in the interval [0; 4]. We consider M = 80.In the �rst example, we project the matrix onto itself, i.e., we investigate only the error in the quadratureerr(N) = A� ~A2. For the ellipse (!) = 2 + � cos! + i� sin! ;we have experimentally determined the optimal choice �opt depending on � and compared this with the resultfrom the previous section, which in this case yields �� = p�2 � 4. In Figure 4, we show the dependence ofthe error on �. The di�erent curves denote di�erent values of � . We clearly see a sharp cusp in the error anda distinct value �opt for which the error is minimal. In Table 1, we see that this value is almost exactly thevalue �� predicted in the previous section. In Figure 5, we show the error for increasing number of quadraturepoints N for di�erent values of �. We see exponential decay of the quadrature error err(N) as N increases andthe superior convergence properties when choosing optimal �. We also investigate the convergence behavior,as the ellipse approaches the extremal eigenvalues (� ! 2). We have used N = 50 and N = 100 quadraturepoints. In Table 1, we give the actual errors err(�) and the errors from the theoretical error bounds, err�(�).Both the optimal choice of � and the convergence rate are as predicted by the theoretical results, the errorsdi�ering by a factor less than two. 8
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Figure 6: The error in the l2-norm for di�erent values of �. � = 0:96 (�), � = 1:01 (�), � = 1:06 (+).� �opt �� err(100) err(200) err�(100) err�(200)0:9604 0:095 0:098 2:6 � 10�4 1:3 � 10�8 2:7 � 10�4 1:1 � 10�81:0104 0:23 0:22 6:7 � 10�10 < 10�16 1:2 � 10�9 2:3 � 10�191:0604 0:14 0:14 8:3 � 10�6 2:2 � 10�11 1:8 � 10�5 4:8 � 10�11Table 2: Approximation error kAp � ~Apk2[3] M. Espig and W. Hackbusch. On the robustness of elliptic resolvents computed by means of the techniqueof hierarchical matrices. Technical Report 11/2007, Max Planck Institute for Mathematics in the Sciences,2007. to appear in: Applied Numerical Mathematics.[4] G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th century. J. Comp. Appl. Math.,123:35{65, 2000.[5] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.Computing, 62:89{108, 1999.[6] W. Hackbusch and M. Bebendorf. Existence of H-matrix approximants to the inverse FE-matrix of ellipticoperators with l1-coe�cients. Numerische Mathematik, 95:1{28, 2003.[7] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing, 64:21{47, 2000.[8] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, 1998.[9] D. C. Sorensen. Numerical methods for large eigenvalue problems. Acta Numerica, pages 519{584, 2002.
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