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Abstract

We argue that the critical behaviour near the point of “gradient catastrophe” of

the solution to the Cauchy problem for the focusing nonlinear Schrödinger equation

iǫΨt + ǫ2

2 Ψxx + |Ψ|2Ψ = 0, ǫ ≪ 1, with analytic initial data of the form Ψ(x, 0; ǫ) =

A(x) e
i
ǫ
S(x) is approximately described by a particular solution to the Painlevé-I equa-

tion.

1 Introduction

The focusing nonlinear Schrödinger (NLS) equation for the complex valued function Ψ =
Ψ(x, t)

iΨt +
1

2
Ψxx + |Ψ|2Ψ = 0 (1.1)

has numerous physical applications in the description of nonlinear waves (see, e.g., the books

[48, 36, 37]). It can be considered as an infinite dimensional analogue of a completely

integrable Hamiltonian system [49], where the Hamiltonian and the Poisson bracket is given

by

Ψt + {Ψ(x),H} = 0

{Ψ(x),Ψ∗(y)} = i δ(x− y) (1.2)

H =
1

2

∫

(

|Ψx|2 − |Ψ |4
)

dx
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(here Ψ∗ stands for the complex conjugate function). Properties of various classes of so-

lutions to this equation have been extensively studied both analytically and numerically

[5, 6, 7, 8, 16, 21, 26, 27, 30, 33, 35, 44, 45]. One of the striking features that distinguishes

this equation from, say, the defocusing case

iΨt +
1

2
Ψxx − |Ψ|2Ψ = 0

is the phenomenon of modulation instability [1, 11, 16]. Namely, slow modulations of the

plane wave solutions

Ψ = Aei(kx−ωt), ω =
1

2
k2 − A2

develop fast oscillations in finite time.

The appropriate mathematical framework for studying these phenomena is the theory of

the initial value problem

Ψ(x, 0; ǫ) = A(x) e
i
ǫ
S(x) (1.3)

for the ǫ-dependent focusing NLS

i ǫΨt +
ǫ2

2
Ψxx + |Ψ|2Ψ = 0. (1.4)

Here ǫ > 0 is a small parameter, A(x) and S(x) are real-valued smooth functions. Introduc-

ing the slow variables

u = |Ψ|2, v =
ǫ

2i

(

Ψx

Ψ
− Ψ∗

x

Ψ∗

)

(1.5)

the equation can be recast into the following system:

ut + (u v)x = 0

(1.6)

vt + v vx − ux +
ǫ2

4

(

1

2

u2
x

u2
− uxx

u

)

x

= 0.

The initial data for the system (1.6) coming from (1.3) do not depend on ǫ:

u(x, 0) = A2(x), v(x, 0) = S ′(x). (1.7)

The simplest explanation of the modulation instability then comes from considering the so-

called dispersionless limit ǫ → 0. In this limit one obtains the following first order quasilin-

ear system

ut +v ux + u vx = 0

vt − ux + v vx = 0







. (1.8)

This is a system of elliptic type because of the condition u > 0. Indeed, the eigenvalues of

the coefficient matrix
(

v u
−1 v

)
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are complex conjugate, λ = v ± i
√
u. So, the Cauchy problem for the system (1.8) is ill-

posed in the Hadamard sense (cf. [34, 7]). Even for analytic initial data the life span of a

typical solution is finite, t < t0. The x- and t-derivatives explode at some point x = x0 when

the time approaches t0. This phenomenon is similar to the gradient catastrophe of solutions

to nonlinear hyperbolic PDEs [2].

For the full system (1.6) the Cauchy problem is well-posed for a suitable class of ǫ-
independent initial data (see details in [17, 47]). However, the well-posedness is not uniform

in ǫ. In practical terms that means that the solution to (1.6) behaves in a very irregular way

in some regions of the (x, t)-plane when ǫ → 0. Such an irregular behaviour begins near

the points (x = x0, t = t0) of the “gradient catastrophe” of the solution to the dispersionless

limit (1.8). The solutions to (1.8) and (1.6) are essentially indistinguishable for t < t0; the

situation changes dramatically near x0 when approaching the critical point. Namely, when

approaching t = t0 the peak near a local maximum1 of u becomes more and more narrow

due to self-focusing; the solution develops a zone of rapid oscillations for t > t0. They

have been studied both analytically and numerically in [8, 16, 21, 24, 26, 27, 35, 44, 45].

However, no results are available so far about the behaviour of the solutions to the focusing

NLS at the critical point (x0, t0).

The main subject of this work is the study of the behaviour of solutions to the Cauchy

problem (1.6), (1.7) near the point of gradient catastrophe of the dispersionless system (1.8).

In order to deal with the Cauchy problem for (1.8) we will assume analyticity2 of the initial

data u(x, 0), v(x, 0). Then the Cauchy problem for (1.8) can be solved for t < t0 via a

suitable version of the hodograph transform (see Section 2 below). An important feature of

the gradient catastrophe for this system is that it happens at an isolated point of the (x, t)-
plane, unlikely the case of KdV or defocusing NLS where the singularity of the hodograph

solution takes place on a curve. We identify this singularity for a generic solution to (1.8)

as the elliptic umbilic singularity (see Section 4 below) in the terminology of R.Thom [43].

This codimension 2 singularity is one of the real forms labeled by the root system of the D4

type in the terminology of V.Arnold et al. [3].

Our main goal is to find a replacement for the elliptic umbilic singularity when the disper-

sive terms are added, i.e., we want to describe the leading term of the asymptotic behaviour

for ǫ→ 0 of the solution to (1.6) near the critical point (x0, t0) of a generic solution to (1.8).

Thus, our study can be considered as a continuation of the programme initiated in [13]

to study critical behaviour of Hamiltonian perturbations of nonlinear hyperbolic PDEs; the

fundamental difference is that the non perturbed system (1.8) is not hyperbolic! However,

many ideas and methods of [13] (see also [12]) play an important role in our considerations.

The most important of these is the idea of universality of the critical behaviour. The

1Regarding initial data with local minima we did not observe cusps related to minima in numerical simu-

lations. We believe they do not exist because of the focusing effect in NLS that pushes maxima to cusps but

seems to smoothen minima.
2We believe that the main conclusions of this paper must hold true also for non analytic initial data; the

numerical experiments of [8] do not show much difference in the properties of solution between analytic and

non analytic cases. However, the precise formulation of our Main Conjecture has to be refined in the non

analytic case.
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general formulation of the universality suggested in [13] for the case of Hamiltonian pertur-

bations of the scalar nonlinear transport equation says that the leading term of the multiscale

asymptotics of the generic solution near the critical point does not depend on the choice of

the solution, modulo Galilean transformations and rescalings. This leading term was identi-

fied in [13] via a particular solution to the fourth order analogue of the Painlevé-I equation

(the so-called P 2
1 equation). The existence of the needed solution to P 2

1 has been rigorously

established in [9]. Moreover, it was argued in [13] that this behaviour is essentially indepen-

dent on the choice of the Hamiltonian perturbation. Some of these universality conjectures

have been partially confirmed by numerical analysis carried out in [21].

The main message of this paper is the formulation of the Universality Conjecture for

the critical behaviour of the solutions to the focusing NLS. Our considerations suggest the

description of the leading term in the asymptotic expansion of the solution to (1.6) near the

critical point via a particular solution to the classical Painlevé-I equation (P-I)

Ωζζ = 6 Ω2 − ζ.

The so-called tritronquée solution to P-I was discovered by P.Boutroux [4] as the unique

solution having no poles in the sector | arg ζ| < 4π/5 for sufficiently large |ζ|. Remarkably,

the very same solution3 arises in the critical behaviour of solutions to focusing NLS!

The paper is organized as follows. In Section 2 we develop a version of the hodograph

transform for integrating the dispersionless system (1.8) before the catastrophe t < t0. We

also establish the shape of the singularity of the solution near the critical point; the latter is

identified in Section 4 with the elliptic umbilic catastrophe of Thom. In Section 3 we develop

a method of constructing formal perturbative solutions to the full system (1.6) before the

critical time. In Section 5 we collect the necessary information about the tritronquée solution

of P-I and formulate the Main Conjecture of this paper. Such a formulation relies on a much

stronger property of the tritronquée solution: namely, we need this solution to be pole-free

in the whole sector | arg ζ| < 4π/5. Numerical evidence for the absence of poles in this

sector is given in Section 6. In Section 7 we analyze numerically the agreement between the

critical behaviour of solutions to focusing NLS and its conjectural description in terms of the

tritronquée solution restricted to certain lines in the complex ζ-plane. In the final Section 8

we present some additional remarks and outline the programme of future research.

Acknowledgments. The authors thank K.McLaughlin for a very instructive discussion. One

of the authors (B.D.) thanks R.Conte for bringing his attention to the tritronquées solutions

of P-I. The results of this paper have been presented by one of the authors (T.G.) at the

Conference “The Theory of Highly Oscillatory Problems”, Newton Institute, Cambridge,

March 26 - 30, 2007. T.G. thanks A.Fokas and S.Venakides for the stimulating discussion

after the talk. The present work is partially supported by the European Science Foundation

Programme “Methods of Integrable Systems, Geometry, Applied Mathematics” (MISGAM),

3It is interesting that the same tritronquée solution (for real ζ only) appears also in the study of certain

critical phenomena in plasma [42]. In the theory of random matrices and orthogonal polynomials a different

solution to P-I arises; see, e.g., [22],[14].
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Universities and Researches (MUR) research grant PRIN 2006 “Geometric methods in the

theory of nonlinear waves and their applications”. CK thanks for hospitality during stays at
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2 Dispersionless NLS, its solutions and critical behaviour

The equations (1.6) are a Hamiltonian system

ut + {u(x), H} = 0

vt + {v(x), H} = 0







with respect to the Poisson bracket originated in (1.2)

{u(x), v(y)} = δ′(x− y), (2.1)

other brackets vanish, with the Hamiltonian

H =

∫ [

1

2

(

u v2 − u2
)

+
ǫ2

8u
u2
x

]

dx. (2.2)

Let us first describe the general analytic solution to the dispersionless system (1.8).

Lemma 2.1 Let u0(x), v0(x) be two real valued analytic functions of the real variable x
satisfying

(

u0
x

)2
+
(

v0
x

)2 6= 0.

Then the solution u = u(x, t), v = v(x, t) to the Cauchy problem

u(x, 0) = u0(x), v(x, 0) = v0(x) (2.3)

for the system (1.8) for sufficiently small t can be determined from the following system

x = v t+ fu

0 = u t+ fv







(2.4)

where f = f(u, v) is an analytic solution to the following linear PDE:

fvv + u fuu = 0. (2.5)

Conversely, given any solution to (2.5) satisfying u2f 2
uu+f 2

uv 6= 0 at some point (u = u1, v =
v1 such that fv(u1, v1) = 0, the system (2.4) determines a solution to (1.8) defined locally

near the point x = x1 := fu(u1, v1) for sufficiently small t.
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Remark 2.2 The solutions to the linear PDE (2.5) correspond to the first integrals of dis-

persionless NLS:

F =

∫

f(u, v) dx,
d

dt
F = 0. (2.6)

Taking them as the Hamiltonians

us + {u(x), F} ≡ ut + (fv)x = 0

vs + {v(x), F} ≡ vt + (fu)x = 0







(2.7)

yields infinitesimal symmetries of the dispersionless NLS:

(ut)s = (us)t , (vt)s = (vs)t . (2.8)

One of the first integrals will be extensively used in this paper. It corresponds to the

Hamiltonian density

g = −1

2
v2 + u(log u− 1). (2.9)

The associated Hamiltonian flow reads

us + vx = 0

vs = ux
u







(2.10)

Eliminating the dependent variable v one arrives at the elliptic version of the long wave limit

of Toda lattice:

uss + (log u)xx = 0.

Due to commutativity (2.8) the systems (1.8) and (2.10) admit a simultaneous solution u =
u(x, t, s), v = v(x, t, s). Any such solution can be locally determined from a system similar

to (2.4)
x = v t+ fu

s = u t+ fv







(2.11)

where f = f(u, v), as above, solves the linear PDE (2.5).

The system (2.11) determines a solution u = u(x, t, s), v = v(x, t, s) provided applica-

bility of the implicit function theorem. The conditions of the latter fail to hold at the critical

point (x0, s0, t0, u0, v0) such that

x0 = v0t0 + fu(u0, v0)

s0 = u0t0 + fv(u0, v0)

fuu(u0, v0) = fvv(u0, v0) = 0, fuv(u0, v0) = −t0

(2.12)
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In the sequel we adopt the following system of notations: the values of the function f and

of its derivatives at the critical point will be denoted by f 0
etc. E.g., the last line of the

conditions (2.12) will read

f 0
uu = f 0

vv = 0, f0
uv = −t0.

Definition 1. We say that the critical point is generic if at this point:

f 0
uuv 6= 0.

Let us the introduce real parameters r, ψ determined by the third derivatives of the function

f evaluated at the critical point,

1

r
(cosψ − i sinψ) = f 0

uuv + i
√
u0f

0
uuu. (2.13)

Due to the genericity assumption

ψ 6= π

2
+ πk.

In order to describe the local behaviour of a solution to the dispersionless NLS/Toda

equations we define a function R(X;S, ψ) of real variables X , S depending on the real

parameter ψ satisfying

(S + cosψ)2 + (X + sinψ)2 6= 0 (2.14)

by the following formula

R(X,S, ψ) = sign [cosψ] (2.15)

×
√

1 +X sinψ + S cosψ +
√

1 + 2(X sinψ + S cosψ) +X2 + S2

Put

P0(X,S, ψ) =
1√
2

[

R(X,S, ψ) cosψ − (X cosψ − S sinψ) sinψ

R(X,S, ψ)

]

− cosψ

(2.16)

Q0(X,S, ψ) =
1√
2

[

(X cosψ − S sinψ) cosψ

R(X,S, ψ)
+R(X,S, ψ) sinψ

]

− sinψ.

Observe that P0(X,S, ψ) and Q0(X,S, ψ) are smooth functions of the real variable X pro-

vided validity of the inequality (2.14).

Lemma 2.3 Given an analytic solution u(x, s, t), v(x, s, t) to the dispersionless NLS/Toda

equations with a generic critical point (x0, s0, t0, u0, v0), and arbitrary real numbers X , S
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satisfying (2.14), T < 0, then there exist the following limits

lim
λ→+0

λ−1/2

[

u(x0 + λ1/2v0T +
λ

2
√
u0

r X T 2, s0 + λ1/2u0T +
λ

2
rS T 2, λ1/2T ) − u0

]

= r T P0 (X,S, ψ)

(2.17)

lim
λ→+0

λ−1/2

[

v(x0 + λ1/2v0T +
λ

2
√
u0

r X T 2, s0 + λ1/2u0T +
λ

2
rS T 2, λ1/2T ) − v0

]

=
r√
u0

T Q0 (X,S, ψ)

where the parameters r, ψ are defined by (2.13).

Proof From the linear PDE (2.5) it follows that

fuvv = −ufuuu − fuu, fvvv = −ufuuv.

Using these formulae we expand the implicit function equations (2.11) near the critical point

in the form

x̄− v0t̄ = v̄ t̄+
1

2

[

f 0
uuu(ū

2 − u0v̄
2) + 2f 0

uuvū v̄
]

+O
(

(|ū|2 + |v̄|2)3/2
)

(2.18)

s̄− u0t̄ = ū t̄+
1

2

[

f 0
uuv(ū

2 − u0v̄
2) − 2u0f

0
uuuū v̄

]

+O
(

(|ū|2 + |v̄|2)3/2
)

where we introduce the shifted variables

x̄ = x− x0, s̄ = s− s0, t̄ = t− t0

ū = u− u0, v̄ = v − v0.

The rescaling

x̄− v0t̄ 7→ λ(x̄− v0t̄)

s̄− u0t̄ 7→ λ(s̄− u0t̄)

t̄ 7→ λ1/2t̄

ū 7→ λ1/2ū

v̄ 7→ λ1/2v̄

(2.19)

in the limit λ→ 0 yields the quadratic equation

z = t̄ w +
1

2
aw2, t̄ 6= 0 (2.20)
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where the complex independent and dependent variables z and w read

z = s̄+ i
√
u0x̄− (u0 + i

√
u0v0)t̄, w = ū+ i

√
u0v̄ (2.21)

and the complex constant a is defined by

a = f 0
uuv + i

√
u0f

0
uuu, (2.22)

therefore
1

a
= r eiψ.

The substitution

X = 2
√
u0
x̄− v0t̄

r t̄2
, S = 2

s̄− u0t̄

r t̄2
,

reduces the quadratic equation to

(

w + t̄ r eiψ
)2

= r2t̄2e2iψ
[

1 + e−iψ(S + iX)
]

.

For t̄ < 0 we choose the following root

w = r t̄ei ψ
[

√

1 + e−i ψ(S + iX) − 1
]

(2.23)

where the branch of the square root is obtained by the analytic continuation of the one taking

positive values on the positive real axis. Equivalently,

w = t̄ r eiψ
[

sign (cosψ)
1√
2

(

√

∆ + 1 + S cosψ +X sinψ + i
X cosψ − S sinψ√

∆ + 1 + S cosψ +X sinψ

)

− 1

]

where

∆ =
√

1 + 2(S cosψ +X sinψ) +X2 + S2.

This gives the formulae (2.15).

The result of the lemma describes the local structure of generic solutions to the dis-

persionless NLS/Toda equations near the critical point. It can also be represented in the

following form

u(x, s, t) ≃ u0 + r T P0(X,S, ψ)

(2.24)

v(x, s, t) ≃ v0 +
1√
u0

r T Q0(X,S, ψ)

where

X = 2
√
u0
x̄− v0t̄

r t̄2
, S = 2

s̄− u0t̄

r t̄2
, T = t̄. (2.25)

9



We want to emphasize that the approximation (2.24) works only near the critical point.

Indeed, for large x→ ±∞ the function u(x, s, t) and v(x, s, t) have the following behaviour

u = −
√

r |x|u1/4
0

√

1 ∓ sinψ + u0 − r t̄ cosψ +O

(

1
√

|x|

)

(2.26)

v = ∓
√

r |x|
u0

1/4
sign (cosψ)

√

1 ± sinψ + v0 −
r√
u0

t̄ sinψ +O

(

1
√

|x|

)

. (2.27)

So, for sufficiently large |x| the function u(x, s, t) defined by (2.24) becomes negative.

The function u has a maximum at the point X = S tanψ, so locally

u ≤ u0 + r T cosψ −
√
r | cosψ|

√

2
S

cosψ
+ r T 2 < u0. (2.28)

At the critical point (x0, s0, t0, u0, v0) the function u develops a cusp. Let us consider only

the particular case S = 0 in order to avoid complicated expressions. In this case the local

behaviour of the function u near the critical point is given by

lim
t̄→−0

u =







u0 −
√

r |x̂|
√

1 − sinψ, x̂ > 0

u0 −
√

r |x̂|
√

1 + sinψ, x̂ < 0

(2.29)

(here x̂ =
√
u0(x̄ − v0t̄)). Thus the parameters r, ψ describe the shape of the cusp at the

critical point.

3 First integrals and solutions of the NLS/Toda equations

Let us first show that any first integral (2.6) of the dispersionless equations can be uniquely

extended to a first integral of the full equations.

Lemma 3.1 Given a solution f = f(u, v) to the linear PDE (2.5), there exists a unique, up

to a total derivative, formal power series in ǫ

hf = f +
∑

k≥1

ǫ2kh
[k]
f (u, v;ux, vx, . . . , u

(2k), v(2k))

such that the integral

Hf =

∫

hf dx

commutes with the Hamiltonian of the NLS equation:

{H,Hf} = 0

10



at every order in ǫ. Explicitly,

hf = f − ǫ2

12

[(

fuuu +
3

2u
fuu

)

u2
x + 2fuuvuxvx − ufuuuv

2
x

]

(3.1)

+ǫ4
{

1

120

[(

fuuuu +
5

2u
fuuu

)

u2
xx + 2fuuuvuxxvxx − ufuuuuv

2
xx

]

− 1

80
fuuuuuxxv

2
x −

1

48u
fuuuvvxxu

2
x −

1

3456u3

(

30fuuu − 9ufuuuu + 12u2f5u + 4u3f6u

)

u4
x

− 1

432u2

(

−3fuuuv + 6ufuuuuv + 2u2f5u v

)

u3
xvx +

1

288u

(

9fuuuu + 9uf5u + 2u2f6u

)

u2
xv

2
x

+
1

2160
(9fuuuuv + 10uf5u v)uxv

3
x −

u

4320
(18f5u + 5uf6u) v

4
x

}

+O(ǫ6)

Here we use short notations

f5u :=
∂5f

∂u5
, f6u :=

∂6f

∂u6
, f5u v :=

∂6f

∂u5∂v
.

Example 1. Taking f = 1
2
(u v2 − u2) one obtains the Hamiltonian of the NLS equation

hf =
1

2
(u v2 − u2) +

ǫ2

8u
u2
x.

In this case the infinite series truncates. It is easy to see that the series in ǫ truncates if

and only if f(u, v) is a polynomial in u. Polynomial in u solutions to the linear PDE (2.5)

correspond to the standard first integrals of the NLS hierarchy.

Example 2. Taking g = −1
2
v2 + u(log u− 1) (cf. (2.9)) one obtains the Hamiltonian of

the Toda equation

hg = −1

2
v2 + u(log u− 1) − ǫ2

24u2

(

u2
x + 2u v2

x

)

−ǫ4
(

u2
xx

240u3
+

v2
xx

60u2
+
uxxv

2
x

40u3
− u4

x

144u5
− u2

xv
2
x

24u4
+

v4
x

360u3

)

+O(ǫ6) (3.2)

written in terms of the function φ = log u in the form

ǫ2φxx + eφ(s+ǫ) − 2eφ(s) + eφ(s−ǫ) = 0.

Lemma 3.2 Any solution to the NLS/Toda equations in the class of formal power series in ǫ
can be obtained from the equations

x = v t+
δHf

δu(x)

(3.3)

s = u t+
δHf

δv(x)
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where f = f(u, v; ǫ) is an arbitrary admissible solution to the linear PDE (2.5) in the class

of formal power series in ǫ,

Hf =

∫

hf dx.

Now, we can apply to the system (3.3) the rescaling (2.19) accompanied by the transfor-

mation

ǫ 7→ λ5/4ǫ. (3.4)

At the limit λ→ 0 we arrive at the following system of equations

s̄− u0t̄ = ū t̄+ f 0
uuv

[

1

2
(ū2 − u0v̄

2) +
ǫ2

6
ūxx

]

− u0f
0
uuu

[

ū v̄ +
ǫ2

6
v̄xx

]

(3.5)

x̄− v0t̄ = v̄ t̄+ f 0
uuu

[

1

2
(ū2 − u0v̄

2) +
ǫ2

6
ūxx

]

+ f 0
uuv

[

ū v̄ +
ǫ2

6
v̄xx

]

.

Using the complex variables z, w defined in (2.21) we can rewrite the system in the following

form:

z reiψ = w t̄ reiψ +
1

2
w2 +

ǫ2

6
wxx. (3.6)

The last observation is that the Toda equations generated by the Hamiltonian Hg =
∫

hg dx
(see Example 2 above) after the scaling limit (2.19), (3.4) yield the Cauchy - Riemann equa-

tions for the function w = w(z),
∂w/∂z̄ = 0.

Therefore the system (3.5) can be recast into the form equivalent to the Painlevé-I (P-I)

equation (see (5.1) below)

z reiψ = w t̄ reiψ +
1

2
w2 − ǫ2

6
u0wzz. (3.7)

Choosing

λ = ǫ4/5

we eliminate ǫ from the equation.

In Section 5 below we will write explicitly the reduction of (3.7) to the Painlevé-I equa-

tion and give a conjectural characterization of the particular solution of the latter.

4 Critical behaviour and elliptic umbilic catastrophe

Separating again the real and complex parts of (3.6) one obtains a system of ODEs

ǫ2

6
UXX +

1

2
(U2 − V 2) + r t̄ (U cosψ − V sinψ) − r (S cosψ −X sinψ) = 0

(4.1)

ǫ2

6
VXX + UV + r t̄ (U sinψ + V cosψ) − r (S sinψ +X cosψ) = 0

12



that can be identified with the Euler - Lagrange equations

δS = 0, S =

∫

L(U, V, UX , VX) dX

with the Lagrangian

L =
ǫ2

12

(

V 2
X − U2

X

)

+
1

6

(

U3 − 3U V 2
)

+
1

2
r t̄
[

(U2 − V 2) cosψ − 2U V sinψ
]

(4.2)

+r (X sinψ − S cosψ)U + r (S sinψ +X cosψ)V.

In the “dispersionless limit” ǫ → 0 the Euler - Lagrange equations reduce to the search of

stationary points of a function (let us also set t̄ = 0)

F =
1

6

(

U3 − 3U V 2
)

+ a+U + a−V (4.3)

where we redenote

a+ = r (X sinψ − S cosψ) , a− = r (S sinψ +X cosψ) .

At a+ = a− = 0 the function F has an isolated singularity at the origin U = V = 0 of the

type D4,− also called elliptic umbilic singularity, according to R.Thom [43]. This singular-

ity appears in various physical problems; we mention here the caustics in the collisionless

dark matter [41] to give just an example. The parameters a+ and a− define two particular

directions on the base of the miniversal unfolding of the elliptic umbilic; the full unfolding

depending on 4 parameters reads

F̂ =
1

6

(

U3 − 3U V 2
)

+
1

2
b(U2 + V 2) + a+U + a−V + c. (4.4)

It would be interesting to study the properties of the modified Euler - Lagrange equations for

the Lagrangian

L̂ = L +
1

2
b(U2 + V 2).

This deformation does not seem to arrive from considering solutions to the NLS hierarchy.

5 The tritronquée solution to the Painlevé-I equation and

the Main Conjecture

In this section we will select a particular solution to the Painlevé-I (P-I) equation

Ωζζ = 6Ω2 − ζ (5.1)

13



Recall [23] that an arbitrary solution to this equation is a meromorphic function on the com-

plex ζ-plane. According to P. Boutroux [4] the poles of the solutions accumulate along the

rays

arg ζ =
2πn

5
, n = 0, ±1, ±2. (5.2)

Boutroux proved that, for each ray there is a one-parameter family of particular solutions

called intégrales tronquées whose lines of poles truncate for large ζ . He proved that the

intégrale tronquée has no poles for large |ζ| within two consecutive sectors of the angle

2π/5 around the ray, and, moreover it has the asymptotic behaviour

Ω = −
(

ζ

6

)1/2
[

1 +O
(

ζ−
3

4
(1−ε)

)]

(5.3)

for a suitable choice of the branch of the square root (see below) and a sufficiently small

ε > 0.

Furthemore, if a solution truncates along any two of the rays (5.2) then it truncates along

three of them. These particular solutions to P-I are called tritronquées. They have no poles

for large |ζ| in four consecutive sectors; their asymptotics for large ζ are given by (5.3). It

suffices to know the tritronquée solution Ω0(ζ) for the sector

| arg ζ| < 4π

5
. (5.4)

In this case the branch of the square root in (5.3) is obtained by the analytic continuation of

the principal branch taking positive values on the positive half axis ζ > 0. The other four

tritronquées solutions are obtained by applying the symmetry

Ωn(ζ) = e
4πin

5 Ω0

(

e
2πin

5 ζ
)

, n = ±1, ±2. (5.5)

The properties of the tritronquées solutions in the finite part of the complex plane were

studied in the important paper of N.Joshi and A.Kitaev [25].

A. Kapaev [28] obtained a complete characterization of the tritronquées solutions in

terms of the Riemann - Hilbert problem associated with P-I. We will briefly sketch here

the main steps of his construction.

The equation (5.1) can be represented as the compatibility condition of the following

system of linear differential equations for a two-component vector valued function Φ =
Φ(λ, ζ)

Φλ =





Ωζ 2λ2 + 2Ωλ− ζ + 2Ω2

2(λ− Ω) −Ωζ



 Φ (5.6)

Φζ = −





0 λ+ 2Ω

1 0



 Φ. (5.7)

14



The canonical matrix solutions Φk(λ, ζ) to the system (5.6) - (5.7) are uniquely determined

by their asymptotic behaviour

Φk(λ, ζ) ∼
1√
2

(

λ1/4 λ1/4

λ−1/4 −λ−1/4

)[

1 − 1√
λ

(

H 0
0 −H

)

(5.8)

+
1

2λ

(

H2 Ω
Ω H2

)

+O
(

λ−3/2
)

]

eθ(λ,ζ)σ3 , |λ| → ∞, λ ∈ Σk

in the sectors

Σk =

{

λ ∈ C | 2π

5

(

k − 3

2

)

< arg λ <
2π

5

(

k +
1

2

)}

, k ∈ Z. (5.9)

Here

θ(λ, ζ) =
4

5
λ5/2 − ζ λ1/2, σ3 =

(

1 0
0 −1

)

, H =
1

2
Ω2
ζ − 2 Ω3 + ζ Ω, (5.10)

the branch cut on the complex λ-plane for the fractional powers of λ is chosen along the

negative real half-line.

The Stokes matrices Sk are defined by

Φk+1(λ, ζ) = Φk(λ, ζ)Sk, λ ∈ Σk ∩ Σk+1. (5.11)

They have the triangular form

S2k−1 =

(

1 s2k−1

0 1

)

, S2k =

(

1 0
s2k 1

)

(5.12)

and satisfy the constraints

Sk+5 = σ1 Sk σ1, k ∈ Z; S1S2S3S4S5 = i σ1 (5.13)

where

σ1 =

(

0 1
1 0

)

.

Due to (5.13) two of the Stokes multipliers sk determine all others; they depend neither on λ
nor on ζ provided Ω(ζ) satisfies (5.1).

In order to obtain a parametrization of solutions to the P-I equation (5.1) by Stokes mul-

tipliers of the linear differential equation (5.6) one has to reformulate the above definitions

as a certain Riemann - Hilbert problem. The solution of the Riemann - Hilbert problem de-

pends on ζ through the asymptotics (5.8). If the Riemann - Hilbert problem has a unique

solution for the given ζ0 ∈ C then the canonical matrices Φk(λ, ζ) depend analytically on

ζ for sufficiently small |ζ − ζ0|; the coefficient Ω = Ω(ζ) will then satisfy (5.1). The poles

of the meromorphic function Ω(ζ) correspond to the forbidden values of the parameter ζ for

which the Riemann - Hilbert problem admits no solution.
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We will now consider a particular solution to the P-I equation specified by the following

Riemann - Hilbert problem. Denote four oriented rays γ0, γ±1, ρ in the complex λ-plane

defined by

γk = {λ ∈ C | arg λ =
2πk

5
}, k = 0, ±1

(5.14)

ρ = {λ ∈ C | arg λ = π}
directed towards infinity. The rays divide the complex plane in four sectors. We are looking

for a piecewise analytic function Φ(λ, ζ) on

λ ∈ C \ (γ−1 ∪ γ0 ∪ γ1 ∪ ρ)
depending on the parameter ζ continuous up to the boundary with the asymptotic behaviour

at |λ| → ∞ of the form (5.8) satisfying the following jump conditions on the rays

Φ+(λ, ζ) = Φ−(λ, ζ)Sk, λ ∈ γk

(5.15)

Φ+(λ, ζ) = Φ−(λ, ζ)Sρ, λ ∈ ρ.

Here the plus/minus subscripts refer to the boundary values of Φ respectively on the left/right

sides of the corresponding oriented ray, the jump matrices are given by

S0 =

(

1 0
i 1

)

, S±1 =

(

1 i
0 1

)

, Sρ =

(

0 −i
−i 0

)

. (5.16)

The following result is due to A.Kapaev4 .

Theorem 5.1 The solution to the above Riemann - Hilbert problem exists and it is unique

for

| arg λ| < 4π

5
, |λ| > R (5.17)

for a sufficiently large positive number R. The associated function

Ω0(ζ) :=
dH(ζ)

dζ
,

(5.18)

H(ζ) :=

[

lim
λ→∞

λ1/2

(

1√
2

(

1 1
1 −1

)

λ−
1

4
σ3Φ(λ, ζ) e−θ(λ,ζ)σ3 − 1

)]

11

is analytic in the domain (5.17), it satisfies P-I and enjoys the asymptotic behaviour

Ω0(ζ) ∼ −
√

ζ

6
, |ζ| → ∞, | arg λ| < 4π

5
. (5.19)

Moreover, any solution of P-I having no poles in the sector (5.17) for some large R > 0
coincides with Ω0(ζ).

4Our solution Ω0(ζ) coincides with y3(x) ≡ y−2(x), x = −ζ, of [28] (see eq. (2.73) of [28]; Kapaev uses

P-I in the form y′′ = 6y2 + x).
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Joshi and Kitaev proved that the tritronquée solution has no poles on the positive real

axis. They found a numerical estimate for the position of the first pole ζ0 of the tritronquée

solution Ω0(ζ) on the negative real axis:

ζ0 ≃ −2.3841687

(cf. also [10]). The tritronquée solution is monotone deacreasing on the interval (ξ0,+∞).
Very little is known about the location of other poles of Ω0(ζ). Our numerical experiments

(see below) suggest the following

Main Conjecture. Part 1. The tritronquée solution Ω0(ζ) has no poles in the sector

| arg λ| < 4π

5
. (5.20)

We are now ready to describe the conjectural universal structure behind the critical be-

haviour of generic solutions to the focusing NLS. For simplicity of the formulation let us

assume cosψ > 0.

Main Conjecture. Part 2. Any generic solution to the NLS/Toda equations near the

critical point behaves as follows

u(x, s, t; ǫ) + i
√
u0v(x, s, t; ǫ) ≃ u0 + i

√
u0v0 − t̄ reiψ + 2 ǫ2/5(3r

√
u0)

2/5e
2iψ

5 Ω0(ζ) +O
(

ǫ4/5
)

(5.21)

ζ =

(

3r

u2
0

)1/5

e
iψ

5

[

s̄− u0t̄+ i
√
u0(x̄− v0t̄) + 1

2
reiψ t̄2

ǫ4/5

]

where Ω0(ζ) is the tritronquée solution to the Painlevé-I equation (5.1).

The above considerations can actually be applied replacing the NLS time flow by any

other flow of the NLS/Toda hierarchy. The local description of the critical behaviour remains

unchanged.

Remark 5.2 Note that the angle of the line ζ(x̄) in (5.21) for t̄ fixed is equal to ψ/5 + π/2,

ψ ∈ [−π, π], ψ 6= ±π/2. Thus the maximal value of argζ is equal to 7π/10 < 4π/5. The

lines in (5.21) consequently do not get close to the critical lines of the tritronquée solution of

Painlevé-I.

6 Numerical analysis of the tritronquée solution of P-I

In this section we will numerically construct the tritronquée solution Ω0, i.e. the tritronquée

solution with asymptotic behavior (5.3). We will drop the index 0 in the following. The

solution will be first constructed on a straight line in the complex plane. In a second step
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we will then explore global properties of these solutions within the limitations imposed by a

numerical approach5.

Let the straight line in the complex plane be given by ζ = ay + b with a, b ∈ C constant

(we choose a to have a non-negative imaginary part) and y ∈ R. The asymptotic conditions

are

Ω ∼ −
√

ζ

6
, (6.1)

for y → ±∞. The root is defined to have its cut along the negative real axis and to as-

sume positive values on the positive real axis. This choice of the root implies the following

symmetry for the solution:

Ω(ζ∗) = Ω∗(ζ). (6.2)

Thus Ω is real on the real axis, see [25].

Numerically it is not convenient to impose boundary conditions at infinity. We thus

assume that the wanted solution can be expanded in a Laurent series in
√
ζ around infinity.

Such an asymptotic expansion is possible for the considered tritronquée solution in the sector

| arg ζ| < 4π/5. The formal series can be written there (see [25]) in the form

Ωf = −
√

ζ

6

∞
∑

k=0

ak
ζ5k/2

, (6.3)

where a0 = 1, and where the remaining coefficients follow from the recurrence relation for

k ≥ 0

ak+1 =
25k2 − 1

8
√

6
ak −

1

2

k
∑

m=1

amak+1−m. (6.4)

This formal series is divergent, the coefficients ak behave asymptotically as ((k − 1)!)2, see

[25] for a detailed discussion.

It is known that divergent series can be used to get numerically acceptable approxima-

tions to the values of the sum by properly truncating the series. Generally the best approx-

imations for the sum result from truncating the series where the terms take the smallest

absolute values (see e.g. [18]). Since we work in Matlab with a precision of 16 digits and

with values of |ζ| ≥ 10, we typically consider up to 10 terms in the series. In this case the

terms corresponding to a10 are of the order of machine precision (10−14 and below).

Thus we have constructed approximations to the numerical values of the tritronquée

solution for large values of |ζ|. These can be used as in [25] to set up an initial value problem

for the P-I equation and to solve this with a standard ODE solver. In fact the approach works

well on the real axis starting from positive values until one comes close to the first singularity

on the negative real axis. It is straightforward to check the results of [25] with e.g. ode45, the

Runge-Kutta solver in Matlab corresponding to the Maple solver used in [25]. If one solves

P-I on a line that avoids the sector | arg ζ| > 4π/5, one could integrate until one reaches once

5Cf. [15] where a similar technique was applied to solve numerically the Painlevé-II equation in the complex

domain.
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more large values of |ζ| for which the asymptotic conditions are known. This would provide

a control of the numerical accuracy of this so-called shooting approach. Shooting methods

are problematic if the second solution to the initial value problem has poles as is the case for

P-I. In this case the numerical errors in the initial data (here due to the asymptotic conditions)

and in the time integration will lead to a large contribution of the unwanted solution close to

its poles which will make the numerical solution useless. It is obvious that P-I has such poles

from the numerical results in [25] and the property (5.5). In [25] the task was to locate poles

in the tritronquée solution, and in this case the shooting approach seems to be the only one

available. Here we are studying, however, the solution on a line in the complex plane where

we know the asymptotic conditions for the affine parameter tending to ±∞.

Thus we use as in [15] the asymptotic conditions on lines avoiding the sector | arg ζ| >
4π/5 to set up a boundary value problem for y = ±ye, ye ≥ 10. The solution in the

interval [−ye, ye] is numerically obtained with a finite difference code based on a collocation

method. The code bvp4c distributed with Matlab, see [40] for details, uses cubic polynomials

in between the collocation points. The P-I equation is rewritten in the form of a first order

system. With some initial guess (we use Ω = −
√

ζ/6 as the initial guess), the differential

equation is solved iteratively by linearization. The collocation points (we use up to 10000)

are dynamically adjusted during the iteration. The iteration is stopped when the equation is

satisfied at the collocation points with a prescribed relative accuracy, typically 10−10. The

solution for a = i and b = 0 is shown in Fig. 1. The values of Ω in between the collocation
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Figure 1: Real (blue) and imaginary part (red) of the tritronquée solution to the Painlevé I

equation for ζ = iy.

points are obtained by interpolation via the cubic polynomials in terms of which the solution
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has been constructed. This interpolation leads to a loss in accuracy of roughly one order of

magnitude with respect to the precision at the collocation points. To test this we determine

the numerical solution via bvp4c for P-I on Chebychev collocation points and check the

accuracy with which the equation is satisfied via Chebychev differentiation, see e.g. [46].

It is found that the numerical solution with a relative tolerance of 10−10 on the collocation

points satisfies the ODE to roughly the same order except at the boundary points where it

is of the order 10−8, see Fig. 2 where we show the residual Res by plugging the numerical

solution into the differential equation for the above example. It is straightforward to achieve

a prescribed accuracy by requiring a certain value for the relative tolerance. Notice that we

are not interested in a high precision solution of P-I here, but in a comparison of solutions

to the NLS equation close to the point of gradient catastrophe of the semiclassical system

with an asymptotic solution in terms of P-I transcendents. For this purpose an accuracy of

the solution of the order of 10−4 will be sufficient in all studied cases.
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Figure 2: Error in the solution of the Painlevé I equation.

The quality of the used boundary conditions via the asymptotic behavior can be checked

by computing the solution for different values of ye. One finds that the difference between

the asymptotic square root and the tritronquée solution is only visible near the origin, see

Fig. 3. For large x it can be seen that the difference between the square root asymptotics

and the tritronquée solution reaches quickly values below the aimed at threshold of 10−4.

It is interesting to note that this difference is actually smaller than the difference between

the tritronquée solution and the truncated formal asymptotic series except at the boundary,

where the latter condition is implemented (see Fig. 3).
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Figure 3: The plot on the left side shows the absolute value of the difference between the

tritronquée solution and the asymptotic condition −
√

ζ/6 for a = i and b = 0. The plot on

the right side shows in blue the same difference for y > 10 and in red the difference between

the tritronquée solution and the truncated asymptotic series.

The dominant behavior of the square root changes if one approaches the critical lines

a = exp(4πi/5), b = 0. As can be seen from Fig. 4, the solution shows oscillations on top

of the square root. The closer one comes to the critical lines, the slower is the fall off of the

amplitude of the oscillations. We conjecture that these oscillations will have on the critical

lines only a slow algebraic fall off towards infinity.

The above approach thus allows the computation of the tritronquée solution for a line

avoiding the sector | arg ζ| > 4π/5 with high accuracy. The picture one obtains by com-

puting Ω along several such lines is that there are indeed no singularities in the sector

| arg ζ| < 4π/5, and that the square root behavior is followed for large |ζ|. To obtain a

more complete picture, we compute the tritronquée solution for | arg ζ| < 4π/5 − 0.05 and

|ζ| < R ( we choose R = 20). The boundary data for |ζ| = R follow as before from the

truncated asymptotic series, the data for arg ζ = ±4π/5 − 0.05 are obtained by computing

the tritronquée solution on the respective lines as above.

To solve the resulting boundary value problem for the P-I equation is, however, computa-

tionally expensive since we have to solve an equation in 2 real dimensions iteratively. Since

the solution we want to construct is holomorphic there, we can instead solve the harmonicity

condition (the two dimensional Laplace equation) for the given boundary conditions. To this

end we introduce polar coordinates |ζ|, arg ζ and use a spectral grid as described in [46]:
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Figure 4: Real (blue) and imaginary part (red) of the tritronquée solution close to the critical

line (for a = exp(i(4π/5 − .05))) with oscillations of slowly decreasing amplitude.

the main point is a doubling of the interval |ζ| ∈ [0, Re] to [−Re, Re] to allow for a better

distribution of the Chebychev collocation points. Since we work with values of argζ < φe,
we cannot use the usual Fourier series approach for the azimuthal coordinate. Instead we

use again a Chebychev collocation method. The found solution in the considered domain

is shown in Fig. 5 and Fig. 6. The quality of the solution can be tested by plugging the

found solution to the Laplace equation into the P-I equation. Due to the low resolution and

problems at the boundary, the accuracy is considerably lower in the two dimensional case

than on the lines. This is, however, not a problem since we need only the one dimensional

solutions for quantitative comparisons with NLS solutions. The two dimensional solutions

give nonetheless strong numerical evidence for the conjecture that the tritronquée solution

has globally no poles in the sector | arg ζ| < 4π/5.

7 Critical behavior in NLS and the tritronquée solution of

P-I: numerical results

In this section we will compare the numerical solution of the focusing NLS equation for

two examples of initial data for values of ǫ between 0.1 and 0.025 with the asymptotic so-

lutions discussed in the previous sections, the semiclassical solution up to the breakup and

the tritronquée solution to the Painlevé I equation. The numerical approach to solve the NLS
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Figure 5: Real part of the tritronquée solution in the sector |ζ| < 20 and | arg ζ| < 4π/5 −
0.05.

equation is discussed in detail in [30]. For values of ǫ below 0.04 we have to use Krasny

filtering [31] (Fourier coefficients with an absolute value below 10−13 are put equal to zero

to avoid the excitation of unstable modes). With double precision arithmetic we could thus

reach ǫ = 0.025, but could not go below.

7.1 Initial data

We consider initial data where u(x, 0) has a single positive hump, and where v(x, 0) is

monotonously decreasing. For initial data of the form u(x, 0) = A2(x) and v(x, 0) = 0
where the function A(x) is analytic with a single positive hump with maximum value A0,

the semiclassical solution of NLS follows from (2.11) with f(u, v) given by

f(u, v) = −2ℑ







iA0
∫

− 1

2
v+i

√
u

dη ρ(η)

√

(η +
1

2
v)2 + u






(7.1)

where

ρ(η) =
η

π

∫ x+(η)

x−(η)

dx
√

A2(x) + η2
,

and where x±(η) are defined by A(x±(η)) = iη. The formula (7.1) follows from results by

Kamvissis, McLaughlin and Miller in [27].
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Figure 6: Imaginary part of the tritronquée solution in the sector |ζ| < 20 and | arg ζ| <
4π/5 − 0.05.

From f(u, v) it is straightforward to recover the initial data from the equations

x = fu, fv = 0. (7.2)

Numerically we study the critical behavior of two classes of initial data, one symmetric with

respect to x which were used in [35], and initial data without symmetry with respect to x
which are built from the initial data studied in [44]. For the former class the corresponding

exact solution of focusing NLS is known in terms of a determinant. Nonetheless we integrate

the NLS equation for these initial data numerically since this approach is not limited to

special cases, but can be used for general smooth Schwartzian initial data as in the latter

case.

7.1.1 Symmetric initial data

We consider the particular class of initial data

u(x, t = 0) = A2
0sech2 x, v(x, t = 0) = −µ tanhx, µ ≥ 0. (7.3)

Introducing the quantity

M =

√

µ2

4
− A2

0,
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we find that the semiclassical solution for these initial data follows from (2.11) with

f(u, v) =
µ

2
v − 1

4
(v − 2M)∆+ − 1

4
(v + 2M)∆− − 1

2
u log u

+
1

2
u log

[

(−1

2
v +M + ∆+)(−1

2
v −M + ∆−)

] (7.4)

where

∆± =

(

(−1

2
v ±M)2 + u

) 1

2

.

For µ = 0 we recover the Satsuma-Yajima [38] initial data that were studied numerically in

[35]. The function f(u, v) takes the form

f(u, v) = ℜ
[

(

−v
2

+ i A0

)

√

u+
(

−v
2

+ i A0

)2

+ u log
(−v

2
+ i A0)

2 +
√

(−v
2

+ iA0)2 + u√
u

]

,

(7.5)

which can also be recovered from (7.1) by setting ρ = i. The critical point is given by

u0 = 2A2
0, v0 = 0, x0 = 0, t0 =

1

2A0

. (7.6)

Furthermore we have

f 0
uuu = 0, f0

uuv =
1

4A3
0

, r = 4A3
0, ψ = 0, (7.7)

where r, ψ are defined in (2.13). For A0 = 1 the initial data (7.3) coincides with the one

studied in [44] by A.Tovbis, S.Venakides and X.Zhou. In the particular case µ = 2, A0 = 1
the function f(u, v) in (7.1) simplifies to

f(u, v) = v − v

2

√

1

4
v2 + u+ u log





−1
2
v +

√

1
4
v2 + u

√
u



 . (7.8)

In this case the critical point is given by

v0 = 0, u0 = 2 + µ, t0 =
1

2 + µ
, x0 = 0.

Furthermore,

f 0
uuu = 0, f0

uuv =
2

(µ+ 2)3
, r =

(µ+ 2)3

2
, ψ = 0.
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7.1.2 Non-symmetric initial data

Recall that we are interested here in Cauchy data in the Schwartz class of rapidly decreasing

functions. The above initial data are symmetric with respect to x, u is an even and v an odd

function in x. To obtain a situation which is manifestly not symmetric, we use the fact that if

f is a solution to (2.5), the same holds for derivatives and anti-derivatives of f with respect

to v and for any linear combination of those. If fv is an even function in v, this will obviously

not be the case for a linear combination of f and fv.

As a specific example, we consider the linear combination

f = f1 + αf2, α = const,

where f1 coincides with (7.8), and where

f2 = 2u

√

1

4
v2 + u− 2

3

(

1

4
v2 + u

)3/2

+ u v log





−1
2
v +

√

1
4
v2 + u

√
u



 . (7.9)

The function f2 is obtained from the integration f2,v = f1 − v. The critical point is given in

this case by

u0 = 4(1 − 16α2), v0 = −16α, x0 =
1

2
log

1 + 4α

1 − 4α
, t0 =

1

4
− α

2
log

1 + 4α

1 − 4α
;

thus we have |α| < 1/4. Furthermore,

f 0
uuv = − 4α2 − 1/8

4
√

1 − 16α2
, f0

uuu =
α

4
√

1 − 16α2
,

such that

r = 8u0, ψ = − arctan
α
√

1 − 16α2

1/8 − 4α2
.

We determine the initial data corresponding to f for a given value of |α| < αc =
0.20838 . . ., where αc is defined by t0(αc) = 0, i.e., where the critical point occurs at the ini-

tial time, by solving (7.2) for u, v in dependence of x. This is done numerically by using the

algorithm of [32] which is implemented as the function fminsearch in Matlab. The algorithm

provides an iterative approach which converges in our case rapidly if the starting values are

close enough to the solution, which is achieved by choosing u and v corresponding to f1 as

an initial guess. For α close to αc we observe numerically a steepening of the initial pulse

which will lead to a shock front in the limit α → αc. For the computations presented here,

we consider the case α = 0.1 which leads to the initial data shown in Fig. 7.

The initial data are computed in the way described above to the order of the Krasny filter

on the interval x ∈ [−15, 11] on Chebychev collocation points. Standard interpolation via

Chebychev polynomials is then used to interpolate the resulting data to a Fourier grid. To

avoid a Gibbs phenomenon at the interval ends due to the non-periodicity of the data, we use
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Figure 7: Initial data for the NLS equations without symmetry with respect to x.

a Fourier grid on the interval [−10π, 10π] to ensure that the function u takes values of the

order of the Krasny filter. For x < −15 and x > 11, the function u is exponentially small

which implies the zero-finding algorithm will no longer provide the needed precision. Thus

we determine the exponential tails of the solution to leading order analytically. We find for

x→ −∞

u ∼ v2
+ exp

(

2(x− αv+)

αv+ + 1

)

,

v ∼ v+ − v+ exp

(

2(x− αv+)

αv+ + 1

)(

2 log(v+) +
2(x− αv+)

αv+ + 1

)

, (7.10)

and for x→ +∞

u ∼ v2
− exp

(

−2(x+ α)

αv− + 1

)

v ∼ v− − v− exp

(

−2(x+ α)

αv− + 1

)(

2 log(−v−) − 2(x+ α)

αv− + 1

)

, (7.11)

where v± = (
√

1 ± α − 1)/α. The initial data for the NLS equation in the form Ψ =√
u exp(iS/ǫ) are then found by integrating v on the Chebychev grid by standard integration

of Chebychev polynomials. The exponential tails for S follow from (7.10) and (7.11). The

matching of the tails to the Chebychev interpolant is not smooth and leads to a small Gibbs

phenomenon. The Fourier coefficients decrease, however, to the order of the Krasny filter
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which is sufficient for our purposes. Thus we obtain the non-symmetric initial data with

roughly the same precision as the analytic symmetric data.

7.2 Semiclassical solution

For times t ≪ t0, the semiclassical solution gives a very accurate asymptotic description

for the NLS solution. The situation is similar to the Hopf and the KdV equation [19]. We

find for the symmetric initial data for t = tc/2 that the L∞ norm of the difference between

the solutions decreases as ǫ2. More precisely a linear regression analysis in the case of

symmetric initial data (for the values ǫ = 0.03, 0.04, . . . , 0.1) for the logarithm of this norm

leads to an error proportional to ǫa with a = 1.94, a correlation coefficient rc = 0.9995 and

standard error σa = 0.03. In the non-symmetric case, we find a = 1.98, rc = 0.999996 and

σa = 0.003.

Close to the critical time the semiclassical solution only provides a satisfactory descrip-

tion of the NLS solution for large values of |x − x0|. In the breakup region it fails to be

accurate since it develops a cusp at x0 whereas the NLS solution stays smooth. This behavior

can be well seen in Fig. 8 for the symmetric initial data. The largest difference between the
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Figure 8: The blue line is the function u of the solution to the focusing NLS equation for the

initial data u(x, 0) = 2 sechx, v(x, 0) = 0 and ǫ = 0.04 at the critical time, and the red line

is the corresponding semiclassical solution given by formulas (2.4). The green line gives the

multiscales solution via the tritronquée solution of the Painlevé I equation.

semiclassical and the NLS solution is always at the critical point. We find that the L∞ norm
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of the difference scales roughly as ǫ2/5 as suggested by the Main Conjecture. More precisely

we find a scaling proportional to ǫa with a = 0.38 and rc = 0.999997 and σa = 4.2 ∗ 10−4.

For the non-symmetric initial data, we find a = 0.36, rc = 0.9999 and σa = 0.002. The

corresponding plot for u can be seen in Fig. 9.
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Figure 9: The blue line is the function u of the solution to the focusing NLS equation for

the non-symmetric initial data and ǫ = 0.04 at the critical time, and the red line is the corre-

sponding semiclassical solution given by formulas (2.4). The green line gives the multiscales

solution via the tritronquée solution of the Painlevé I equation.

The function v for the same situation as in Fig. 8 is shown in Fig. 10. It can be seen that

the semiclassical solution is again a satisfactory description for |x − x0| large, but fails to

be accurate close to the breakup point. The phase for the non-symmetric initial data can be

seen in Fig. 11. In the following we will always study the scaling for the function u without

further notice.

7.3 Multiscales solution

It can be seen in Fig. 8 and Fig. 10 that the multiscales solution (5.21) in terms of the

tritronquée solution to the Painlevé I equation gives a much better asymptotic description

to the NLS solution at breakup time close to the breakup point than the semiclassical solu-

tion for the symmetric initial data. For larger values of |x − x0|, the semiclassical solution

provides, however, the better approximation. The rescaling of the coordinates in (5.21) sug-

gests to consider the difference between the NLS and the multiscales solution in an interval
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Figure 10: The blue line is the function v of the solution to the focusing NLS equation for

the initial data u(x, 0) = 2 sechx, v(x, 0) = 0 and ǫ = 0.04 at the critical time, and the red

line is the corresponding semiclassical solution given by formulas (2.4). The green line gives

the multiscales solution via the tritronquée solution of the Painlevé I equation.

x̄ ∈ [−γǫ4/5, γǫ4/5] (we choose here γ = 1, but within numerical accuracy the result does

not depend on varying γ around this value). These intervals can be seen in Fig. 12. We find

that the L∞ norm of the difference between these solutions in this interval scales roughly

like ǫ4/5. More precisely we have a scaling ǫa with a = 0.76 (rc = 0.998 and σa = 0.019).

For the non-symmetric initial data, the situation at the critical point can be seen in Fig. 9

and Fig. 11. Again the multiscales solution (5.21) gives a much better description close to

the critical point than the semiclassical solution. However, the approximation is here much

better on the side with weak slope for u than on the side with strong slope. We consider

again the L∞-norm of the difference between the multiscales and the NLS solution in the

interval x̄ ∈ [−γǫ4/5, γǫ4/5]. The scaling behavior of the solution can be seen in Fig. 13. For

γ = 1 we find a = 0.71, rc = 0.998 and σa = 0.02. These values do not change much for

larger γ. For smaller γ there are not enough points to provide a valid statistics. The value

of a smaller than the predicted 4/5 is seemingly due to the strong asymmetry in the quality

of the approximation of NLS by the multiscales solution as can be seen from Fig. 9. In the

considered interval, the deviation is already so big that the scaling no longer holds as in the

symmetric case. To study the scaling with a reliable statistics would, however, require the

use of a considerably higher resolution which would be computationally too expensive.

Going beyond the critical time, one finds that the real part of the NLS solution continues
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Figure 11: The blue line is the function v of the solution to the focusing NLS equation

for the non-symmetric initial data and ǫ = 0.04 at the critical time, and the red line is

the corresponding semiclassical solution given by formulas (2.4). The green line gives the

multiscales solution via the tritronquée solution of the Painlevé I equation.

to grow before the central hump breaks up into several humps. Notice that the multiscales

solution always leads to a function u that is smaller than the corresponding function of the

NLS solution at breakup and before. This changes for times after the breakup as can be

inferred from Fig. 14 which shows the time dependence of the NLS and the corresponding

multiscales solution for the non-symmetric initial data. The approximation is always best at

the critical time.

To study the quality of the approximation (5.21), we use rescaled times. The scaling of

the coordinates in (5.21) suggests to consider the NLS solution close to breakup at the times

t±(ǫ) with

t±(ǫ) = t0 + u0/r −
√

(u0/r)2 ± ǫ4/5β, (7.12)

where β is a constant (we consider β = 0.1). We will only study the symmetric initial data in

this context. Before breakup we obtain the situation shown in Fig. 15. It can be seen that the

multiscales solution always provides a better description close to x0 than the semiclassical

solution, and that the quality improves in this respect with decreasing ǫ. We find that the L∞
norm of the difference scales in this case as ǫa with a = 0.55 (rc = 0.994 and σa = 0.03).

The situation for times after breakup can be inferred from Fig. 16. Close to the central

region the multiscales solution shows a clear difference to the NLS solution. But it is inter-
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Figure 12: The blue line is the solution to the focusing NLS equation for the initial data

u0(x) = 2 sechx at the critical time, and the green line gives the multiscales solution via the

tritronquée solution of the Painlevé I equation. The plots are shown for two values of ǫ at the

critical time.

esting to note that the ripples next to the central hump are well approximated by the Painlevé

I solution. The L∞ norm of the difference between the two solutions scales roughly like ǫ.
More precisely we find a scaling ǫa with a = 1.02 (rc = 0.9999 and σa = 7.7 ∗ 10−3).

8 Concluding remarks

In this paper we have started the study of the critical behavior of generic solutions of the fo-

cusing nonlinear Schrödinger equation. We have formulated the conjectural analytic descrip-

tion of this behavior in terms of the tritronquée solution to the Painlevé-I equation restricted

to certain lines in the complex plane. We provided analytical as well as numerical evidence

supporting our conjecture. In subsequent publications we plan to further study the Main

Conjecture of the present paper by applying techniques based, first of all, on the Riemann -

Hilbert problem method [27, 44, 45] and the theory of Whitham equations (see [19] for the

numerical implementation of the Whitham procedure in the analysis of oscillatory behavior

of solutions to the KdV equations). The latter will also be applied to the asymptotic descrip-

tion of solutions inside the oscillatory zone. Furthermore we plan to study the possibility

of extending the Main Conjecture to the critical behavior of solutions to the Hamiltonian

perturbations of more general first order quasilinear systems of elliptic type. Last but not
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Figure 13: The blue line is the solution to the focusing NLS equation for the non-symmetric

initial data at the critical time, and the green line gives the multiscales solution via the

tritronquée solution of the Painlevé I equation. The plots are shown for two values of ǫ
at the critical time.

least, it would be of interest to study the distribution of poles of the tritronquée solution in

the sector | arg ζ| > 4π
5

and to compare these poles with the peaks of solutions to NLS inside

the oscillatory zone. The elliptic asymptotics obtained by Kitaev [29] might be useful for

studying these poles for large |ζ|.
In this paper we did not study the behaviour of solutions to NLS near the boundary u = 0.

Such a study is postponed for a subsequent publication.
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Figure 14: The blue line is the solution to the focusing NLS equation for the non-symmetric

initial data for ǫ = 0.04 for various times, and the magenta line gives the multiscales solution

via the tritronquée solution of the Painlevé I equation. The plot in the middle shows the

behavior at the critical time.
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1995.

[3] V.I.Arnold,V.V.Goryunov, O.V.Lyashko,V.A.Vasil’ev, Singularity Theory. I. Dynamical

systems. VI, Encyclopaedia Math. Sci. 6, Springer, Berlin, 1993.

[4] P.Boutroux, Recherches sur les transcendants de M. Painlevé et l’étude asymptotique
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