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Abstract

To efficiently calculate only part of the spectrum of a matrix, one can use a projection onto a suitable
subspace. In this work, we present a technique to efficiently calculate such a projection without knowledge
of the spectrum. The technique requires only few matrix-matrix products and inversions, which for some
classes of matrices, like the H-matrices, can be computed in almost linear complexity.

1 Introduction

Iterative techniques for determining the spectrum of a matrix like the power iteration, the QR algorithm or
the Rayleigh-Ritz procedure converge fastest for the extreme spectrum, i.e., the smallest or largest eigenvalues.
For an overview over the available methods for the computation of eigenvalues, e.g., the QR algorithm, see
[3], or [6] for Krylov methods like the Rayleigh-Ritz procedure.

When interested in the eigenvalues in a specified interval (a, b), which may lie anywhere in the spectrum of
A, these methods may not be very efficient. One way to accelerate the convergence of such iterative schemes is
to first calculate a projection Ap onto the space spanned by the corresponding eigenvectors. Having obtained
such a projection, one can use it in a modified Rayleigh-Ritz procedure.

In this paper, we describe an efficient procedure to obtain an approximation Ãp of the projection Ap. The
projection is attained without requiring prior knowledge of the spectrum of A, except that we will assume the
eigenvalues to be real. Such a projection can then be used to compute the eigenvalues in the interval (a, b)
and the corresponding eigenvectors very efficiently.

A prerequisite for the efficiency is the availability of cheap matrix-matrix multiplication, matrix-inversion
and application of the inverse. This is for example given by H-matrices techniques [1], [4], [2].

In addition to using the projection to determine the eigenvalues of the matrix A, one can use a slightly
different procedure to construct the sign function, mapping the positive spectrum of A to 1 and the negative
to −1 (cf. [5]). This will be briefly described in Section 7.

2 Prerequisites and notations

In the following, we will assume that all eigenvalues of A are real and that A possesses an orthonormal set
of eigenvectors V = [v1, . . . , vM ]. Consequently, VT AV is diagonal and consists of A’s eigenvalues, which we
denote by λ1 ≤ . . . ≤ λM .

The existence of such an orthonormal matrix V is not necessary for the method to work. We here assume
it to simplify the analysis. It is sufficient for A to be diagonalisable.

Given an interval (a, b), we denote the eigenvalues of A lying in (a, b) by λi+1, . . . , λi+n and the corre-
sponding eigenvectors by vi+1, . . . , vi+n. We assume that (a, b) is chosen such that no eigenvalue is exactly
equal to a or b.

3 An approximation of the projection operator

Given an interval (a, b), let X : R → R be the projection

X (λ) =
{

λ for λ ∈ (a, b) ,
0 otherwise.
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An approximation of the projection X is given by X̃ : R → R

X̃ (λ) =
λ

1 + T (λ)2
�

with T (λ) =
2λ − (b + a)

b − a

for � ∈ N. For large �, X̃ (λ) is a good approximation to the projection. To see this, we observe that for
a < λ < b, |T (λ)| < 1. Thus, for large �, X̃ (λ) ≈ λ. On the other hand, if λ > b or λ < a, |T (λ)| > 1, yielding
X̃ (λ) ≈ 0 for large �.

The function X̃ can be extended to matrices, in a straightforward way,

T (A) = (2A − (b + a)I)/(b − a) ,

Ãp := X̃ (A) = (I + T (A)2
�

)−1A . (1)

When applying Ãp to a vector, the components in the direction of vi+1, . . . , vi+n remain almost unchanged
while the components in the other directions are very small.

The special structure of the operator X̃ is chosen, because it can be computed with only � matrix-matrix
multiplications and one matrix inversion.

In Figure 1, we give an example of the result of the operator X̃ . The eigenvalues of the original matrix
A are depicted by crosses and the eigenvalues of Ãp by diamonds. The eigenvalues close to the points a and
b are mapped to values somewhere in between 0 and their original values, while the eigenvalues away from a
and b are mapped almost exactly to either 0 or their original values.

a

b

Figure 1: Spectrum of A (crosses) and Ãp (diamonds), � = 5

One obstacle that will keep this method from working well is the observation that the entries of I+T (A)2
�

might become very large very quickly and rounding effects will make the method collapse.
Before we address this further and offer a solution to this problem, let us investigate the error X̃ − X . To

determine the error, we compare X̃ (λ) with either λ or 0, depending on whether λ ∈ (a, b) or not. First, to
see how the quality of the projection of the entire matrix can be estimated by the error in the projection of
the eigenvalues, we have the following lemma.

Lemma 1 Let the eigenvalues of A be denoted by λj. For λj ∈ (a, b), let
∣∣∣X̃ (λj) − λj

∣∣∣ < ε, and for λj /∈ (a, b)

let
∣∣∣X̃ (λj)

∣∣∣ < ε. Then ∥∥∥Ap − Ãp

∥∥∥
2
≤ ε ,

where Ap = X (A) is the exact projection.

Proof. We have Ãp = VT diag(X̃ (λ1), . . . , X̃ (λM ))V. Thus using

Ap − Ãp = VT diag(−X̃ (λ1), . . . , λi+1 − X̃ (λi+1), . . . , λi+n − X̃ (λi+n), . . . ,−X̃ (λM ))V
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and the orthogonality of V, leads to the statement of the lemma.
Let us now consider the conditions on � to achieve a certain accuracy ε in the approximate projection

X̃ (λ). An a priori estimate of the error will require some knowledge of the position of the eigenvalues close to
a and b. Remember that we denoted by λi and λi+1 the eigenvalues of A enclosing a and by λi+n and λi+n+1

those enclosing b.

Theorem 2 Let δj = 2
b−a min{|λj − a| , |λj − b|}. If we choose � such that

2� ≥ max

⎧⎨
⎩

log
(

ε
|λi|−ε

)
log( 1

1+δi
)

,
log

(
ε

|λi+1|−ε

)
log(1 − δi+1)

,
log

(
ε

|λi+n|−ε

)
log(1 − δi+n)

,
log

(
ε

|λi+n+1|−ε

)
log( 1

1+δi+n+1
)

⎫⎬
⎭ , (2)

then ∥∥∥Ap − Ãp

∥∥∥
2
≤ ε .

Proof. Let λ be an eigenvalue of A. We denote by δ the distance of λ to the endpoints a and b scaled by
2

b−a . If λ ∈ (a, b), the error is given by

∣∣∣X̃ (λ) − λ
∣∣∣ =

T (λ)2
�

1 + T (λ)2� |λ| .

The largest error is attained for values of λ close to either a or b, i.e., λi+1 or λi+n. Then T (λ) ≤ 1 − δ and

|X̃ (λ) − λ| ≤ (1−δ)2
�

1+(1−δ)2� |λ|. The requirement |X̃ (λ) − λ| ≤ ε leads to a lower bound on �,

2� ≥
log

(
ε

|λ|−ε

)
log(1 − δ)

.

If on the other hand λ /∈ (a, b), we have

∣∣∣X̃ (λ)
∣∣∣ =

|λ|
1 + T (λ)2� .

Again, the largest error is attained for values of λ close to either a or b, i.e., λi or λi+n+1. Then |T (λ)| ≤ 1+ δ

and |X̃ (λ)| ≤ |λ|
1+(1+δ)2� . The requirement |X̃ (λ)| ≤ ε leads to

2� ≥
log

(
ε

|λ|−ε

)
log( 1

1+δ )
.

Applying Lemma 1 finishes the proof.

4 A preprocessing step

As mentioned above, rounding errors might cause problems in the above procedure. The matrix I + T (A)2
�

might become nearly singular. The eigenvalues of I + T (A)2
�

are 1 + T (λj)2
�

, thus they lie between 1 and

max1≤j≤M

{
1 + T (λj)2

�
}

= maxj=1,M

{
1 + T (λj)2

�
}
. If the condition number of I + T (A)2

�

is close to the
reciprocal of machine-epsilon, 1/εm, the inverse cannot be calculated with good precision. Thus, we require∣∣∣1 + T (λj)2

�
∣∣∣ ≈ |T (λj)|2

� ≤ 1/εm. This leads to the requirement

2� ≤ min

⎧⎨
⎩

log 1/εm

log
∣∣∣2λM−(b+a)

b−a

∣∣∣ ,
log 1/εm

log
∣∣∣ 2λ1−(b+a)

b−a

∣∣∣

⎫⎬
⎭ . (3)

The closer λM and λ1 are to b and a, respectively, the larger we can choose �. Note that with such a bound on
�, the achievable accuracy will depend on the extreme eigenvalues of A. It is not desirable to have an upper
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bound on � that depends on the size of the largest and smallest eigenvalues of A. In this section, we describe
a preprocessing procedure that modifies the eigenvalues of A, so that the resulting eigenvalues are closer to a
and b, leaving the inner eigenvalues almost unchanged. This is done by the following operator X̃0, which we
here give for scalars, but which can be extended to matrices in the same way as the operator X̃ .

T0(λ) =
2λ − (β + α)

β − α
, X̃0(λ) =

1 + T0(λ)2
�

1 + T0(λ)2�+1
λ ,

where α < a < b < β. We denote Anew := X̃0(A). In Figure 2, the effect of this operator is shown. It changes

β

α

Figure 2: Spectrum of A (crosses) and Anew (diamonds)

the eigenvalues outside of [α, β) to β, leaving the eigenvalues in the interval (α, β) almost unchanged. Note
that we have to take care in choosing α different from any eigenvalue of A, since otherwise I + T0(A)2

�+1

becomes singular.
The preprocessing can be used to successively dampen the eigenvalues of A to a region slightly larger

than the interval (a, b). For this, in a first step, we only reduce the eigenvalues larger than b by choosing
α considerably smaller than λ1 and b < β < λM . We then apply the procedure to −Anew, now taking
α < −λmax(Anew), again considerably smaller, and −a < β < −λmin(Anew). This procedure is repeated until
the eigenvalues of Anew are in [a− η, b + η] for sufficiently small η. Then the original procedure (1) is applied
to Anew .

Before we formulate the final algorithm, in the following theorem we determine the change of the eigenvalues
before and after one preprocessing step. We want the eigenvalues less than β to change only slightly. Also,
the eigenvalues larger than β should be mapped to a value that is very close to β.

Theorem 3 Denote by λ− < β < λ+ the eigenvalues of Anew closest to β. Let δ± = 2
β−α |λ± − β|. If we

choose � such that

2� ≥ max

⎧⎪⎪⎨
⎪⎪⎩

log ε
λ−δ−

log(1 − δ−)
,

log
(

ε
λ+

−1+β

1−(β+ε/λ+)(1+δ+)

)

log(1 + δ+)

⎫⎪⎪⎬
⎪⎪⎭

, (4)

then for α < λ1 sufficiently small, after one preprocessing step,
∥∥Aexact

new − Anew

∥∥
2
≤ ε ,

where Aexact
new = VT diag(λ1, . . . , λ−, β, . . . , β)V is the matrix, where all eigenvalues greater than β are replaced

by β.

Proof. The error will be maximal for those eigenvalues close to α and β. When choosing α sufficiently small,
the error will be maximal for the eigenvalues close to β. Let λ be an eigenvalue of A. Then for λ < β, the
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error is determined by

X̃0(λ) − λ =
T0(λ)2

l

(1 − T0(λ)) λ

1 + T0(λ)2�+1
.

The error is largest for λ close to β. Consider λ− = β − (β−α)δ−
2 . The requirement

|X̃0(λ−) − λ−| =
(1 − δ−)2

�

δ−
1 + (1 − δ−)2�+1

λ− ≤ ε

leads to

(1 − δ−)2
�

δ− ≤ ε

λ−

(
1 + (1 − δ−)2

�+1
)
≈ ε

λ−

⇒ 2� ≥
log ε

λ−δ−

log(1 − δ−)
.

For λ > β, the error is determined by considering the deviation of the new eigenvalues from β:

X̃0(λ) − β =
(1 + T0(λ)2

� − β(1 + T (λ)2
�+1))λ

1 + T (λ)2�+1
.

The largest error is attained for λ− = β + (β−α)δ−
2 where we have T (λ+) = 1 + δ+ and

X (λ+) − β =
(1 + (1 + δ+)2

� − β(1 + (1 + δ+)2
�+1

))

1 + (1 + δ+)2
�+1

λ+ ≤ ε

⇒ 2� ≥
log

(
ε

λ+
−1+β

1−(β+ε/λ+)(1+δ+)

)

log(1 + δ+)
.

Again, a similar reasoning as in Lemma 1 yields the statement of the lemma.
Again, to avoid rounding and cancellation, we require

2� ≤ log 1/εm

log
∣∣∣ 2λmax(A)−(β+α)

β−α

∣∣∣ . (5)

The above error estimates have assumed exact inversion and application of the inverse. In H-matrix techniques,
the inverse is only calculated approximately, and the matrix-matrix multiplication results in an error. If we
assume that the matrix inversion and matrix-matrix multiplication is performed with an error ε, the additional
error in each preprocessing step is bounded by (2� + 5)ε and the additional error in the final step is bounded
by (� + 4)ε. We are now ready to give the complete projection algorithm including preprocessing steps.

Anew := A;
while β − b > η or a − α > η do
begin choose α, β with α < λmin(Anew), b < β < λmax(Anew);

choose � according to (4), (5) ;
Anew := - preproc(Anew,α,β,�);
choose α, β with α < λmin(Anew), b < β < λmax(Anew);
choose � according to (4), (5) ;
Anew := - preproc(Anew,α,β,�)

end;
choose � according to (2), (3);
Anew := final(Anew,a,b,�);

with the functions
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size A a b η∗ η max λnew−λproj

λ #M · M #M−1

30 × 30 11.5 25.5 0.308 3.08 2.7e − 02 34 6
1.26 1.8e − 02 57 9
0.616 4.85e − 06 74 11
0.308 1.17e − 06 93 13

2.5 12.5 0.013 0.105 1.45e − 02 117 15
0.055 1.0e − 03 129 16
0.026 1.97e − 05 167 19

100 × 100 11.5 25.5 0.22 3.08 7.4e − 02 34 6
1.26 8.8e − 03 57 9
0.616 1.48e − 04 74 11
0.308 1.11e − 06 93 13

2.5 12.5 0.074 0.105 1.79e − 05 117 15
0.055 1.29e − 06 129 16
0.026 1.71e − 05 167 19

Table 1: Approximate projection of A

function preproc(A,α,β,�)
begin Atemp := (2*A - (β + α)*I)/(β − α);

Atemp2 := Atemp*Atemp;
for i = 2 to � do Atemp2 := Atemp2*Atemp2;
preproc := invers(I + Atemp2*Atemp)*(I + Atemp2)*A

end;

function final(A,α,β,�)
begin Atemp := (2*A - (β + α)*I)/(β − α);

Atemp2 := Atemp*Atemp;
for i = 2 to � do Atemp2 := Atemp2*Atemp2;
final := invers(I + Atemp2)*A

end;

5 Numerical experiments

We test the procedure for the M × M matrix

A = 10 ·

⎛
⎜⎜⎜⎝

2 −1 0 · · ·
−1 2 −1 0
. . . . . . . . . . . .
· · · 0 −1 2

⎞
⎟⎟⎟⎠ .

Its eigenvalues lie between 0 and 40.
For the preprocessing, we choose β = b+ λmax(A)−b

2 , i.e., we decrease the distance between b and the largest
eigenvalue of A by a factor 2, and α = λmin(A)− b−a

2 . We continue with the preprocessing until β = b+η. The
results of the numerical tests are summarized in Table 1. We chose two different values for M to investigate
the performance of the method when the distance of the eigenvalues to a and b decreases. We performed
tests for two different values of a and b. In the table, η∗ denotes the distance of the original eigenvalues to a
and b (this distance determines the smallest value for η we should choose for the preprocessing). In the fifth
column, we give the largest relative error compared to the exact projection. The factor � is chosen as large as
possible and the seventh and eighth columns give the number of matrix-matrix multiplications required, and
the number of matrix inversions, respectively. In Figure 3, we depict the relative error of the projection by
showing the error in the eigenvalues, where on the x-axis, the original eigenvalues are shown.
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(a) M = 30, a = 11.5, b = 25.5
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(b) M = 30, a = 2.5, b = 12.5
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(c) M = 100, a = 11.5, b = 25.5
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(d) M = 100, a = 2.5, b = 12.5

Figure 3: Relative error in the eigenvalues

6 Modified Rayleigh-Ritz procedure

We have presented a method to obtain an approximate projection of A onto the space of eigenvectors cor-
responding to eigenvalues inside an interval (a, b). As mentioned in the introduction, this projection can be
used in a modified Rayleigh-Ritz procedure to determine the eigenvalues of A inside (a, b).

For this let Uk = [u1, . . . , uk] be orthonormal and its columns span a subspace of the image of Ãp. The
vectors ui can be obtained by starting with a random vector u0, and we obtain ui from orthonormalising
the space spanned by Ãpu0, . . . , Ãk

pu0. Consider now the k × k matrix Sk = UT
k AUk. Its eigenvalues and

eigenvectors are called Ritz values and Ritz vectors. For increasing k, the Ritz values converge towards the
eigenvalues of A in the interval (a, b) and applying Uk to the Ritz vectors will yield approximate eigenvectors
of A. Thus in order to obtain approximate eigenvalues of A in the interval (a, b), it is sufficient to find the
eigenvalues of the usually much smaller matrix Sk.
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7 Sign function

Defining PA := (I + T (A)2
�

)−1, with T (A) as in (1), gives an operator that maps the eigenvalues in (a, b) to
1 and the eigenvalues outside of (a, b) to 0. We can use the operators P+ and P+, defined by taking a = 0
and b > λM for P+ and a < λ1 and b = 0 for P−, to construct an approximation to the sign function

sign(A) = P+ − P−

which maps the positive spectrum to 1 and the negative to −1.

8 Concluding Remarks

The procedure gives very good results for the eigenvalues that are not too close to a or b, respectively. One
strategy can be to choose the interval (a, b) slightly larger than what is desired, and when we have computed
the Ritz values using the matrix Ãp, we discard the extreme ones. The above error analysis can then be
relaxed considerably.

A prerequisite for the efficiency is the availability of cheap matrix-matrix multiplication, matrix-inversion
and application of the inverse. This is for example given by H-matrices techniques [4], [2].
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