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Abstract

Our concern in this paper lies with trace spaces for weighted Sobolev

spaces, when the weight is a power of the distance to a point at the

boundary. For a large range of powers we give a full description of the

trace space.
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1 Introduction and main result

We consider integer order weighted Sobolev spaces with weights equal to a
power of the distance to a point of the boundary and more general weights
modelled upon such weights. Our concern in this paper lies with a character-
ization of trace spaces of these weighted Sobolev spaces. Rather surprisingly
there are not too many trace theorems for weighted Sobolev spaces even
though traces belong to the fundamental concepts both in the theory and
applications, and they have been studied for a very long time. One of the
major reasons is that there are no straightforward analogs of methods known
from the non-weighted theory, which allow a description of values on man-
ifolds of lower dimensions. Note in passing that the study of traces has
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2 1 INTRODUCTION AND MAIN RESULT

been closely connected with extension of integer order spaces to spaces with
non-integer derivatives, and it was one of the motivation for establishing the
general theory of Besov spaces.

The non-weighted theory for the W k
p was studied in many papers and it

can be found in a number of well known monographs. We shall make no
attempt to make an account of that; let us collect just some of the important
references. The pioneering works by Aronszajn [4] and Slobodetskii [25] for
the Hilbert case and the papers by Gagliardo [11] and Stein [26] should be
mentioned. The theory for p = 2 based on abstract methods can be found
in Lions and Magenes’ monograph [18]. The case of general p is treated
for instance in monographs by Nečas [20], Adams [2], Kufner, John and
Fuč́ık [16], Bergh and Löfström [5], Triebel [28]. An immense work has been
done by the Soviet school (Lizorkin, Besov, Nikol’skii, Il’in, Uspenskii, and
many others). We refer to [28] for a large list of references.

Spaces with weights which equal to a power of the distance to the bound-
ary appeared in many papers; let us refer at least to [14] and [15]. A standard
approach consists in taking the trace space as a factor space (modulo equal-
ity on the boundary). Nikol’skii in his monograph [21] (especially its second
edition) established a trace theorem for these Sobolev weighted spaces: For a
suitable range of parameters and under assumption on the regularity on ∂Ω,
the boundary of Ω, he identified the trace space with an unweighted Besov
space with a modified smoothness parameter—the effect of the weight on the
domain (Hardy’s inequality behind the scenes).

Let us recall the very basic setting of the trace problem. For simplicity
we shall consider spaces on R

n and traces on R
n−1, that is, on ∂R

n
+, the

boundary of R
n
+. By virtue of extension theorems the Sobolev space on R

n
+

equals (up to equivalence of norms) to the restriction of the corresponding
Sobolev space on R

n, equipped with the factornorm (modulo equality on R
n
+).

This can be transferred to spaces on a smooth domain Ω and its boundary
∂Ω in a standard way—using resolution of unity and local coordinates. Let
s > 0 be a non-integer and denote by [s] the integer part of s. Let 1 < p ≤ ∞.
Then the Sobolev-Slobodetskii space W s

p = W s
p (Rn) is defined as the linear

space of all functions f ∈ Lp(R
n) with

‖f |W s
p (Rn)‖ = ‖f‖Lp(Rn)

+
∑

|α|=[s]

(∫

Rn

∫

Rn

|Dαf(x) −Dαf(y)|p

|x− y|(s−[s])p+N
dxdy

)1/p

<∞.

(Note that this is a special case of a general Besov space Bs
p,q(R

n) for p = q.)
Here and in the following we shall use the notation ‖f |X‖ instead of ‖f‖X
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whenever it might improve legibility of the text. Recall that C(Rn
+)∩W 1

p (Rn
+)

is dense in W 1
p (Rn

+). One can prove that there is a bounded linear operator

tr : W 1
p (Rn) → W 1−1/p

p (∂R
n
+)

such that tr f(y′) = f(y′) for every y′ ∈ ∂R
n
+ and every f ∈ C(Rn

+). This
gives a natural meaning to values of a general f ∈ W 1

p (Rn
+) on ∂R

n
+. More-

over, it is well known that there exists a bounded linear operator

ext : W 1−1/p
p (∂R

n
+) → W 1

p (Rn
+)

such that ext ◦ tr = id on W
1−1/p
p (∂R

n
+). Theorems of this kind are now well-

known in a general setting of Besov and Lizorkin-Triebel spaces; we refer to
[28].

Now let w be a weight function (shortly a weight) in R
n, that is, w ∈ L1,loc

and w > 0 a.e. in R
n. Let W k

p (w) = W k
p (Rn, w) be the weighted Sobolev

space, i.e. the space of all functions f , which together with their generalized
derivatives Dαf up to the order k belong to

Lp(w) = Lp(R
n;w) =

{
f : ‖f‖p

Lp(w) =

∫

Rn

|f(x)|pw(x) dx <∞

}
,

with the norm

‖f |W k
p (w)‖ =

∑

|α|≤k

‖Dαf |Lp(w)‖.

Only special weights (of type (1 + |x|2)r/2 and their generalizations) and
rather sophisticated methods permit to conclude that a function f belongs
to W k

p (w) if and only if fw1/p ∈ W k
p (χΩ) = W k

p , see [24] and [7] for the so
called W n classes (one has to assume that the weighted space in question can
be extended to the whole of R

n, too). In particular, the class W n excludes
singularities so that another approach must be used for weights vanishing
or blowing-up at the boundary. The situation is now well understood for
weights, which equal to a power of the distance to the boundary. (Note also
that such weights can be used to characterize zero traces, even in case of a
quite general boundary; see e.g. [13].) The trace theorem for such weights was
proved by Nikol’skii in [21] with help of real analysis methods. Let us recall
Nikol’skii’s result. Assume that Ω is a domain with a sufficiently smooth
boundary Γ (as to the required smoothness we refer to [21] for details) and
let

̺(x) = dist(x,Γ), x ∈ Ω.
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For k ∈ N, 1 ≤ p ≤ ∞, and γ ∈ R, denote by W k
p,γ the weighted Sobolev

space with the norm

‖f |W k
p,γ‖ = ‖f‖Lp(Ω) +

∑

|α|=k

‖(Dαf)̺−γ‖Lp(Ω).

Suppose that
0 < k + γ − 1/p < k.

Then
W k

p,γ(Ω) →֒ W k+γ−1/p
p (Γ)

and, moreover, there exists a bounded extension operator

extγ : W k+γ−1/p
p (Γ) → W k

p,γ(Ω).

A by far more general setting—spaces on fractals with this type of weights—
was recently considered by Piotrowska in [22].

In the following we shall make use of a Fourier analytic approach to
Sobolev spaces and their weighted generalizations, therefore we recall the
most important definitions and fix the notation.

Let {ϕj}
∞
j=0 is the smooth (dyadic) decomposition of unity (see [28], [5]):

suppϕj ⊆ {2j−1 ≤ |ξ| ≤ 2j+1} for j ∈ N0 and suppϕ0 ⊆ B1(0) and ϕj(ξ) =
ϕ1(2

−j+1ξ) for j ∈ N.
For 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s ∈ R

1 the Besov space Bs
p q = Bs

p q(R
n)

is the space of all f ∈ S ′(Rn) with the finite norm

‖f |Bs
p q‖ =

( ∞∑

k=0

2ksq‖F−1(ϕkf̂)‖q
Lp

)1/q

(1.1)

if q <∞ and with the finite norm

‖f |Bs
p∞‖ = sup

k
2ks‖F−1(ϕkf̂)‖Lp

(1.2)

if q = ∞. Replacing the Lp space in the above definitions by Lp(w) we
get a formal definition of the weighted Besov space Bs

p q(R
n;w). Here S(Rn)

denotes the space of smooth rapidly decreasing functions f : R
n → C and

S ′(Rn) = (S(Rn))′ its dual.
We shall also use the Bessel potential spaces Hs

p = Hs
p(R

n) and their
weighted clones: For s real and 1 < p <∞,

Hs
p(R

n) =
{
f ∈ S ′(Rn) :

∥∥F−1
[
(1 + |ξ|2)s/2Ff

]∥∥
Lp
<∞

}
,

Hs
p(R

n;w) =
{
f ∈ S ′(Rn) :

∥∥F−1
[
(1 + |ξ|2)s/2Ff

]∥∥
Lp(w)

<∞
}
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normed in the obvious way.
For Lipschitz domains there exists a universal extension operator working

on Sobolev, Besov and Bessel potential spaces (and also on the Lizorkin-
Triebel spaces, even for all real s, see Rychkov [23]); this means that many
relevant properties of spaces on Lipschitz domains follow from the claims on
the whole of R

n. That is, one can work either with a formal definition of
spaces on domains as factorspaces of spaces on R

n modulo equality on the
domain in question or with a space on the domain with a usual intrinsic norm
(if it is available). This can be partly extended to weighted spaces with the
Muckenhoupt weights. Recall that a weight w belongs to the Muckenhoupt
class Ap(R

n) (1 < p <∞) if

sup
Q

(
1

|Q|

∫

Q

w(x) dx

)(
1

|Q|

∫

Q

w(x)1/(p−1) dx

)p−1

<∞, (1.3)

where the supremum is taken over all cubes Q ⊂ R
n with edges parallel to

the coordinate axes. We shall write simply Ap if no misunderstanding can
occur. Note in passing that x′ 7→ |x′|α belongs to Aq in R

n−1 if and only if
−(n− 1) < α < (q − 1)(n− 1) (see e.g. [8]).

We also refer to Chua [6] for an extension theorem for Sobolev spaces
on domains and to Rychkov [23] as to the formulae for the norm in Sobolev
spaces with Ap weights in terms of a weighted Littlewood-Paley decomposi-
tion. Specifically, for a positive integer k, 1 < p <∞, and w ∈ Ap,

‖f |W k
p (Rn;w)‖ ∼

∥∥∥∥
( ∞∑

k=0

22jk|F−1(ϕkf̂)(x)|2
)1/2∥∥∥∥

Lp(w)

.

This holds even for a bigger class of the so called local Ap weights (see [23])
(one requires the condition (1.3) only for small cubes).

In Section 4 we also make use of weighted Sobolev spaces of negative order.
It well-known that for 1 < p < ∞ and w ∈ Ap, the dual space of Lp(w) is

given by Lp′(w
′) where 1

p
+ 1

p′
= 1 and w′ = w− 1

p−1 ∈ Ap′ . Accordingly, for a
positive integer k we define

W−k
q (Rn;w) :=

(
W k

q′(R
n;w′)

)′
.

For more details about weighted spaces of negative order we refer to [23].
To avoid technicalities we shall not deal with the case of Lipschitz domains

and we will concentrate on the basic case of a Sobolev space on R
n and a

trace on the boundary of a half-space R
n
+.

Our main result is:
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THEOREM 1.1 Let α ∈ (−(n− 1), (q − 1)(n− 1)). Then

trRn−1 W 1
q (Rn

+; |x|α) = B
1− 1

q

qq (Rn−1; |x′|α).

For the precise definition of the function spaces we refer to Section 2 below.
The structure of the paper is as follows: In Section 2 we prove some

preliminary results concerning weighted spaces. Then in Section 3 the proof
of the Theorem 1.1 for α > 0 is given, based on a suitable estimate of the
solution operator to a Dirichlet boundary value problem. Finally, in Section 4
the case α < 0 is proved by a duality argument.

2 Preliminary results on weighted function

spaces

By Garcia-Cuerva and Rubio de Francia [12], Theorem 3.9. the following
weighted version of the Hörmander-Mikhlin multiplier theorem holds.

THEOREM 2.1 Let m ∈ Cn(Rn \ {0}) fulfill the property

|∂αm(ξ)| ≤ K|ξ|−|α|, for every ξ ∈ R
n \ {0}, |α| = 0, 1, ..., n,

for some constant K > 0. Then T defined by

T̂ f = mf̂ for f ∈ S(Rn)

extends to a continuous operator on Lq
w(Rn) for every q ∈ (1,∞) and w ∈ Aq.

In [12] this theorem is stated for an even larger class of multipliers m. The
assertion on the operator norm is not mentioned explicitly, but it follows
from the same proof.

Moreover, recall that a smooth function p : R
n × R

n → C is in the pseu-
dodifferential symbol class Sm

1,0(R
n × R

n), m ∈ R, if and only if for every
α, β ∈ N

n
0 there is a constant Cα,β such that

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β〈ξ〉

m−|α|

uniformly in x, ξ ∈ R
n, where 〈ξ〉 := (1 + |ξ|2)

1

2 . Moreover, Sm
1,0(R

n × R
n) is

a Fréchet space e.g. with respect to the semi-norms

|p|
(N)
Sm

1,0
= sup

|α|+|β|≤N

sup
x,ξ∈Rn

|∂α
ξ ∂

β
xp(x, ξ)|〈ξ〉

−m+|α|,
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cf. e.g. [17, 27]. It is well-known that 〈ξ〉m ∈ Sm
1,0(R

n × R
n), i.e., for every

α ∈ N
n
0

|∂α
ξ 〈ξ〉

m| ≤ Cα〈ξ〉
m−|α| (2.1)

uniformly in ξ ∈ R
n. This can e.g. be proved by using the fact that f(a, ξ) :=

|(a, ξ)|m, (a, ξ) ∈ R
n+1\{0}, is a smooth and homogeneous function of degree

m.

For p ∈ Sm
1,0(R

n × R
n) the associated pseuododifferential operator is de-

fined by

p(x,Dx)f =

∫

Rn

eix·ξp(x, ξ)f̂(ξ)
dξ

(2π)n
, f ∈ S(Rn), (2.2)

where f̂ = F [f ](ξ) and Dx = 1
i
∂x. Then p(x,Dx) can be extended to a

bounded operator on weighted Bessel potential spaces by the following result
due to Marschall [19, Theorem 1]:

THEOREM 2.2 Let 1 < q < ∞, s ∈ R, w ∈ Aq, and let p ∈ Sm
1,0(R

n ×
R

n), m ∈ R. Then p(x,Dx) defined as above extends to a bounded linear

operator p(x,Dx) : Hs+m
q (Rn;w) → Hs

q (R
n;w). Moreover, there exists N =

N(s,m, n, q) ∈ N0 and C = C(s,m, n, q) > 0 such that

‖p(x,Dx)|L(Hs+m
q (Rn;w), Hs

q (R
n;w))‖ ≤ C|p|

(N)
Sm

1,0

uniformly in p ∈ Sm
1,0(R

n × R
n).

Proof: The first part follows directly from [19, Theorem 1]. The second
part follows easily from the linearity of the mapping Sm

1,0(R
n × R

n) ∋ p 7→
p(x,Dx) ∈ L(Hs+m

q (Rn;w), Hs
q (R

n;w)) and the fact that the mapping is
bounded, which can be easily checked by observing that all constants in the
proof of [19, Theorem 1] only depend on some semi-norm |p|

(N)
Sm

1,0
with a suffi-

ciently large N ∈ N0.

Let ω ∈ Aq(R
n), let ϕj, j ∈ N0, be a dyadic decomposition of unity as

in the introduction and let s ∈ R, 1 ≤ p, q ≤ ∞. Note that ϕj, j ∈ N0, can
be chosen such that ϕj(ξ) = (ϕ1(2

−j+1ξ) for all j ≥ 1. In particular, this
implies

|∂α
ξ ϕj(ξ)| ≤ Cα2−j|α| (2.3)

uniformly in j ∈ N0 and for all α ∈ N0.
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With the notation as in (2.2) we can define weighted Besov space by

Bs
pq(R

n;ω) =
{
f ∈ S ′(Rn) : ‖f‖Bs

pq(Rn;ω) <∞
}
,

‖f‖Bs
pq(Rn;ω) =

(
∞∑

j=0

2sqj‖ϕj(Dx)f‖
q
Lp(Rn;ω)

)1/q

with the obvious modifications if q = ∞. We note that Bs
pq(R

n;ω) is a retract
of ℓsq(N0;L

p(Rn;ω)), where

ℓsq(N0;X) =
{

(aj)j∈N0
∈ XN0 : ‖(aj)j∈N0

‖ℓs
q(N0;X) <∞

}
,

‖(aj)j∈N0
‖ℓs

q(N0;X) =

(
∞∑

j=0

2sjq‖ak‖
q
X

) 1

q

if q <∞,

‖(aj)j∈N0
‖ℓs

∞
(N0;X) = sup

j∈N0

2sj‖aj‖X .

More precisely, the retractions and coretractions are given by

R : ℓsq(N0;L
p(Rn;ω)) → Bs

pq(R
n;ω), R((aj)j∈N0

) =
∞∑

j=0

ψj(Dx)aj,

S : Bs
pq(R

n;ω) → ℓsq(N0;L
p(Rn;ω)), Sf = (ϕj(Dx)f)j∈N0

,

where ψj(ξ) = ϕj−1(ξ) + ϕj(ξ) + ϕj+1(ξ), j ∈ N0, and ϕ−1(ξ) ≡ 0.

2.1 Interpolation of weighted Besov spaces

Lemma 2.3 Let 1 < q <∞, s ∈ R, and let ω ∈ Aq(R
n). Then

Bs
q1(R

n;ω) →֒ Hs
q (R

n;ω) →֒ Bs
q∞(Rn;ω).

Proof: First of all,

|∂α
ξ (〈ξ〉sϕj(ξ))| ≤ Cα,s2

sj〈ξ〉−|α|

for all α ∈ N
n
0 , s ∈ R, because of (2.1), (2.3), and since c2j ≤ |ξ| ≤ C2j on

suppϕj. Hence

‖〈Dx〉
sϕj(Dx)f‖Lq(Rn;ω) ≤ Cs2

sj‖f‖Lq(Rn;ω) (2.4)

by the Mikhlin multiplier theorem for weighted Lq-spaces, Theorem 2.1, or
Theorem 2.2 with Cs independent of j ∈ N0. Since ϕj(Dx)f = ϕj(Dx)(ϕj−1(Dx)f+
ϕj(Dx)f + ϕj+1(Dx)f),

‖〈Dx〉
sϕj(Dx)f‖Lq(Rn;ω) ≤ Cs2

sj‖ϕj−1(Dx)f +ϕj(Dx)f +ϕj+1(Dx)f‖Lq(Rn;ω)
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Therefore

‖f‖Hs
q (Rn;ω) ≤

∞∑

j=0

‖〈Dx〉
sϕj(Dx)f‖Lq(Rn;ω)

≤ C

∞∑

j=0

2sj‖ϕj−1(Dx)f + ϕj(Dx)f + ϕj+1(Dx)f‖Lq(Rn;ω)

≤ C‖f‖Bs
q1

(Rn;ω).

Moreover,

‖f‖Bs
q∞(Rn;ω) = sup

j∈N0

2sj‖〈Dx〉
−sϕj(Dx)〈Dx〉

sf‖Lq(Rn;ω)

≤ C‖〈Dx〉
sf‖Lq(Rn;ω) = C‖f‖Hs

q (Rn;ω)

by (2.4), which finishes the proof.

Lemma 2.4 Let s0, s1 ∈ R, s0 6= s1, 1 < p < ∞, 1 ≤ q, q0, q1 ≤ ∞,

θ ∈ (0, 1), and let s = (1 − θ)s0 + θs1. Then

(Bs0

pq0
(Rn;ω), Bs1

pq1
(Rn;ω))θ,q = Bs

pq(R
n;ω)

for any weight function ω ∈ Ap.

Proof: Use that B
sj

pqj(R
n;ω) is a retract of ℓ

sj

qj (N0;L
p(Rn;ω)) and apply [5,

Theorem 5.6.1].

Corollary 2.5 Let 1 < q < ∞, s0, s1 ∈ R, s0 6= s1, θ ∈ (0, 1) and let

s = (1 − θ)s0 + θs1 and let ω ∈ Aq(R
n). Then

(Hs0

q (Rn;ω), Hs1

q (Rn;ω))θ,q = Bs
qq(R

n;ω).

Proof: The corollary follows directly from Lemma 2.3 and Lemma 2.4.

Corollary 2.6 Let 1 < q <∞ and let ω = ω(x′) ∈ Aq(R
n−1). Then

trRn−1 W 1
q (Rn

+;ω) = (Lq(Rn−1;ω),W 1
q (Rn−1;ω))1− 1

q
,q = B

1− 1

q

qq (Rn−1;ω)
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Proof: The first equality follows from

W 1
q (Rn

+;ω) = Lq(R+;W 1
q (Rn−1;ω)) ∩W 1

q (R+;Lq(Rn−1;ω))

and Lions’ trace method for real interpolation, cf. [5, Corollary 3.12.3] or
apply [3, Chapter III, Corollary 4.10.2]. The second equality follows from the
previous corollary and the fact that W 1

q (Rn;ω) = H1
q (Rn;ω) = {f ∈ S ′(Rn) :

〈Dx〉f ∈ Lq(Rn;ω)}, cf. Fröhlich [10, Lemma 3.1] or [9].

2.2 An Embedding for Lq(Rn; |x|α)

Let (M,B, µ) be a measure space and let Lp,∞, 1 ≤ p < ∞, be the cor-
responding weak Lp-space (the Marcinkiewicz space) as e.g. defined in [5,
Section 1.3].

Lemma 2.7 Let 1 ≤ p, p1, p2 < ∞ such that 1
p

= 1
p1

+ 1
p2

. Then there exists

C > 0 such that

‖fg‖Lp,∞(M,µ) ≤ C‖f‖Lp1,∞(M,µ)‖g‖Lp2,∞(M,µ).

Proof: Since the mapping (f, g) 7→ fg is bilinear, it is sufficient to consider
the case ‖f‖Lp1,∞(M,µ), ‖g‖Lp2,∞(M,µ) ≤ 1. Let α = p1

p2
. Then we either have

|f(x)| ≥ |g(x)|α or |f(x)| < |g(x)|α. Hence

µ ({x : |f(x)g(x)| ≥ λ}) ≤ µ
(
{x : |f(x)|1+α ≥ λ}

)
+ µ

(
{|g(x)|1+

1

α ≥ λ}
)

≤ λ−
p1

1+α + λ−
αp2
1+α = 2λ−p

for every λ > 0, which finishes the proof.

Corollary 2.8 Let 1 < q <∞ and let 0 ≤ α < (q − 1)n. Then

Lq(Rn; |x|α) →֒ Lr,∞(Rn) where
1

r
=

1

q
+

α

qn
. (2.5)

Proof: Let p = qn
α

. Then |x|−
α
q ∈ Lp,∞(Rn) and therefore

‖f‖Lr,∞(Rn) ≤ ‖|x|−
α
q ‖Lp,∞(Rn)‖|x|

α
q ‖Lq,∞(Rn) ≤ C‖f‖Lq(Rn;|x|α).
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For the following we denote

Bs
pq,(r)(R

n, ω) =
{
f ∈ S ′(Rn) : ‖f |Bs

pq,(r)(R
n;ω)‖ <∞

}
,

‖f |Bs
pq,(r)(R

n;ω)‖ =

(
∞∑

j=0

‖ϕj(Dx)f |L
p,r(Rn;ω)‖q

)1/q

with the obvious modification if q = ∞, where 1 ≤ p, q, r ≤ ∞ and s ∈ R,
cf. [28, Section 2.4.1]. We need the following simple lemma.

Lemma 2.9 Let s0, s1 ∈ R, 1 ≤ q0, q1, r0, r1 ≤ ∞, q0 6= q1, θ ∈ (0, 1), and

let s = (1 − θ)s0 + θs1,
1
q

= 1−θ
q0

+ θ
q1

. Then

(Bs0

q0q0,(r0)(R
n;ω), Bs1

q1q1,(r1)(R
n;ω))θ,q = Bs

qq(R
n;ω).

Proof: First of all, we note that B
sj

qjqj ,(rj)
(Rn;ω) and Bs

qq(R
n;ω) are retracts

of ℓ
sj

qj (N0;L
qj ,rj(Rn;ω)), ℓsq(N0;L

q(Rn;ω)), resp., with respect to the same
retraction mappings. Hence the statement follows from

(
ℓs0

q0
(N0;L

q0,r0(Rn;ω)), ℓs1

q1
(N0;L

q1,r1(Rn;ω))
)

θ,q

= ℓsq(N0; (L
q0,r0(Rn;ω), Lq1,r1(Rn;ω)))θ,q) = ℓsq(N0;L

q(Rn;ω))

where we have used [5, Theorem 5.6.2] and [5, Theorem 5.3.1].

The following theorem is a key result for the proof of Theorem 1.1.

THEOREM 2.10 Let s ∈ R, 1 < q <∞, and let 0 < α < (q − 1)n. Then

B
s+α

q

qq (Rn; |x|α) →֒ Bs
qq(R

n) ∩Hs
q (R

n). (2.6)

Proof: By Corollary 2.8 Lq(Rn; |x|α) →֒ Lr,∞(Rn) for all 0 < α < (q − 1)n
and 1

r
= 1

q
+ α

qn
. Using the generalized Marcinkiewicz interpolation theorem,

cf. [5, Theorem 5.3.2] for different values of q yields

Lq,r(Rn; |x|α) →֒ Lr(Rn) where
1

r
=

1

q
+

α

qn
(2.7)

for all 0 < α < (q − 1)n. Hence for all 0 < α < (q − 1)n and 1
r

= 1
q

+ α
qn

B
s+α

q

qq,(r)(R
n; |x|α) →֒ B

s+α
q

rq (Rn) →֒ Bs
qq(R

n) ∩Hs
q (R

n)
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due to [28, Section 2.8.2, Equation (2) and (18)]. Hence using Lemma 2.9

for B
s+α

q

qq,(r)(R
n; |x|α) with different values of q together with

(Bs
q0q0

(Rn), Bs
q1q1

(Rn))θ,q = Bs
qq(R

n), (Hs
q0

(Rn), Hs
q1

(Rn))θ,q = Hs
q (R

n),
(2.8)

where 1
q

= 1−θ
q0

+ θ
q1

, cf. [28, Theorem 2.4.1] and [5, Theorem 6.4.5], we con-

clude (2.6).

3 Proof for positive α

If 0 < α < (q − 1)(n− 1), then |x|α ≥ |x′|α and therefore

trW 1
q (Rn

+; |x|α) ⊆ trW 1
q (Rn

+; |x′|α) = B
1− 1

q

qq (Rn−1; |x′|α) (3.1)

by Corollary 2.6. Hence it remains to prove the converse inclusion. To
this end we use the following extension operator: We denote by u = KDa,
a ∈ S(Rn−1), the solution of

(1 − ∆)u = 0 in R
n
+ ,

u|∂Rn
+

= a on R
n−1.

Using partial Fourier transformation ã(ξ′) = Fx′ 7→ξ′ [a](ξ
′) the solution u =

KDa can be easily calculated as

u(x′, xn) = KDa = F−1
ξ′ 7→x′

[
e−〈ξ′〉xn ã(ξ′)

]
, x = (x′, xn) ∈ R

n
+.

Note that 〈ξ′〉 = (1+ |ξ′|2)
1

2 as above. It is well known that the symbol-kernel

k̃(ξ′, xn) := e−〈ξ′〉xn satisfies the following estimate

sup
xn≥0

|xs
n∂

l
xn
∂α

ξ′ k̃(ξ
′, xn)| ≤ Cα,s,l〈ξ

′〉l−s−|α| (3.2)

uniformly in ξ′ ∈ R
n−1 and for all α ∈ N

n−1
0 , s ≥ 0, l ∈ N0, see e.g. [1,

Lemma 2.9]. Using the latter estimate we show

Lemma 3.1 Let 1 < q < ∞, let s ≥ 0, and let ω ∈ Aq(R
n−1). Then

xs
n (∇KD, KD) extends to a bounded operator

xs
n

(
∇KD

KD

)
: B

1− 1

q

qq (Rn−1;ω) → Lq(R+;Bs
qq(R

n−1;ω) ∩Hs
q (R

n−1;ω)).
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Proof: First of all,

(
∇KD

KD

)
a = F−1

ξ′ 7→x′








iξ′

−〈ξ′〉
1



 e−〈ξ′〉xn ã(ξ′)



 ≡ F−1
ξ′ 7→x′

[
k̃′(ξ′, xn)ã(ξ′)

]
.

Here k̃′(ξ′, xn) satisfies

|∂α
ξ′ k̃

′(ξ′, xn)| ≤ Cα,s,l〈ξ
′〉1−s−|α||xn|

−s (3.3)

uniformly in ξ′ ∈ R
n−1, xn > 0, and for all α ∈ N

n−1
0 , s ≥ 0, l ∈ N0,

by virtue of (3.2), (2.1), and the product rule. Hence for every xn > 0
k̃′(ξ′, xn) ∈ S1−s

1,0 (Rn−1 × R
n−1) is a pseudodifferential symbol with semi-

norms bounded by C|xn|
−s. Hence

‖∇KDa(., xn)‖
H

s− 1
p

q (Rn−1;ω)
≤ C|xn|

−s‖a‖
H

1− 1
p

q (Rn−1;ω)

by Theorem 2.2. Replacing s by s+ 1
p

we conclude

‖xs
n∇KDa(., xn)‖Hs

q (Rn−1;ω) ≤ C|xn|
− 1

p‖a‖
H

1− 1
p

q (Rn−1;ω)
.

Since ‖f‖Lp,∞(R+) ≤ ‖t−
1

p‖Lp,∞‖f‖L∞ ≤ C supt>0 t
1

p |f(t)|, we get

‖xs
n∇KDa(., xn)‖Lp,∞(R+;Hs

q (Rn−1;ω)) ≤ C‖a‖
H

1− 1
p

q (Rn−1;ω)
.

Using real interpolation for different values of p and setting p = q afterwards,
we conclude

xs
n∇KD : B

1− 1

q

qq (Rn−1;ω) → Lq(R+;Hs
q (R

n−1;ω)),

where we have used Corollary 2.5, [28, Section 1.18.6, Theorem 2], and (2.8).
One more real interpolation with different values of q yields

xs
n∇KD : B

1− 1

q

qq (Rn−1;ω) → Lq(R+;Bs
qq(R

n−1;ω)),

which completes the proof.

Proof of Theorem 1.1, case α > 0: Using Lemma 3.1 with s = 0,

we conclude KD : B
1− 1

q

qq (Rn−1, |x′|α) → W 1
q (Rn

+; |x′|α). Moreover, applying
Lemma 3.1 with s = α

q
, we conclude

x
α
q

n

(
∇KD

KD

)
: B

1− 1

q

qq (Rn−1, |x′|α) → Lq(R+;B
α
q

qq(R
n−1; |x′|α))) →֒ Lq(Rn

+),

where we have also used Theorem 2.10. Hence KD : B
1− 1

q

qq (Rn−1, |x′|α) →
W 1

q (Rn
+;xα

n). Since |x|α ≤ Cα (|x′|α + xα
n), the result for α > 0 follows.
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4 The result for negative α

The case α < 0 is derived from the case α ≥ 0 by a duality argument. More
precisely, we use the following abstract lemma.

Lemma 4.1 Let ω1, ω2 ∈ Aq be given such that one has trRn−1 W 1
q (Rn

+;ω1) =
trRn−1 W 1

q (Rn
+;ω2) with equivalent norms. Then

trRn−1 W 1
q′(R

n
+;ω′

1) = trRn−1 W 1
q′(R

n
+;ω′

2) (4.1)

with equivalent norms, where 1
q

+ 1
q′

and ω′
j = ω

− 1

q−1

j .

Proof: Let g ∈
(
trRn−1 W 1

q′(R
n
+;ω′

1)
)′

then

G := [φ 7→ 〈g, φ〉Rn−1 ] ∈
(
W 1

q′(R
n;ω′

1)
)′

= W−1
q (Rn;ω1)

with ‖g‖“

tr
Rn−1 W 1

q′
(Rn

+
;ω′

1
)
”

′ = ‖G‖W−1
q (Rn;ω1).

By [9] one has that (1 − ∆) : W 1
q (Rn;ωj) → W−1

p (Rn;ωj), j = 1, 2 is an
isomorphism. Since G has its support in R

n−1, it follows that (1−∆)−1G is
a weak solution to the boundary value problem

(1 − ∆)(1 − ∆)−1G = 0 on Ω and (1 − ∆)−1G ∈ trRn−1 W 1
q (Rn

+;ω1),

where Ω = R
n
+ or Ω = R

n
−. By the a priori estimate of this boundary value

problem in [9] one has

‖(1 − ∆)−1G‖W 1
q (Rn;ω1) ≤ c‖ trRn−1(1 − ∆)−1G‖tr

Rn−1 W 1
q (Rn

+
;ω1).

Thus we may estimate using the assumption (4.1)

‖g‖“

tr
Rn−1 W 1

q′
(Rn

+
;ω′

1
)
”

′ = ‖G‖W−1
q (Rn;ω1) ≤ c‖(1 − ∆)−1G‖W 1

q (Rn;ω1)

≤ c‖ trRn−1(1 − ∆)−1G‖tr
Rn−1 W 1

q (Rn;ω1)

≤ c‖ trRn−1(1 − ∆)−1G‖tr
Rn−1 W 1

q (Rn;ω2)

≤ c‖(1 − ∆)−1G‖W 1
q (Rn;ω2)

≤ c‖G‖W−1
q (Rn;ω2) = c‖g‖“

tr
Rn−1 W 1

q′
(Rn

+
;ω′

2
)
”

′ .

Interchanging the roles of ω1 and ω2, we obtain the reverse estimate

‖g‖“

tr
Rn−1 W 1

q′
(Rn

+
;ω′

2
)
”

′ ≤ c‖g‖“

tr
Rn−1 W 1

q′
(Rn

+
;ω′

1
)
”

′
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for some c > 0. We have shown that

(
trRn−1 W 1

q′(R
n
+;ω′

2)
)′

=
(
trRn−1 W 1

q′(R
n
+;ω′

1)
)′
.

Thus, since trRn−1 W 1
q′(R

n
+;ω′

j), j = 1, 2, is a factor space of the reflexive
Banach space W 1

q′(R
n
+;ω′

2) with respect to a closed subspace, it is reflexive
and we obtain

trRn−1 W 1
q′(R

n
+;ω′

1) = trRn−1 W 1
q′(R

n
+;ω′

2)

as asserted.

Corollary 4.2 Let −(n− 1) < α < 0. Then

trRn−1 W 1
q (Rn

+; |x|α) = B
1− 1

q

qq (Rn−1; |x′|α).

Proof: Let β := − α
q−1

= −(q′−1)α. Then 0 < β < (n−1)(q′−1). Thus we
are in the range of indices that have already been considered and one obtains
from the results of Section 3 that

trRn−1 W 1
q′(R

n
+; |x|β) = B

1− 1

q′

q′q′ (Rn−1; |x′|β) = trRn−1 W 1
q′(R

n
+; |x′|β),

using Corollary 2.6 and |x′|β ∈ Aq′(R
n−1). Thus by Lemma 4.1 we obtain

trRn−1 W 1
q (Rn

+; |x|α) = trRn−1 W 1
q (Rn

+; |x′|α) = B
1− 1

q

qq (Rn−1; |x′|β),

where we again applied Corollary 2.6. This finishes the proof of Theorem
1.1.
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