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In this paper, without assuming strict positivity of amplifier functions, boundedness of ac-
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1 Introduction and model description

It is well known that Cohen-Grossberg neural networks, proposed by Cohen and Gross-

berg (1983), have been extensively studied both in theory and applications. They have been

successfully applied to signal processing, pattern recognition and associative memory, etc.

The success of these applications relies on understanding the underlying dynamical behavior

of the models. A thorough analysis of the dynamics is a necessary step towards a practical

design of neural networks. Such model can be formalized as follows:

dxi(t)

dt
= ai(xi(t))

[

− di(xi(t)) +
n

∑

j=1

aijgj(xj(t)) + Ii

]

, i = 1, · · · , n, (1)

where xi(t) denotes the state of the i-th neuron, ai(·) is the amplifier function of the i-th

neuron, di(·) is the behave function of the i-th neuron, and gj(·) is the activation function of

the i-th neuron, aij is the real weight coefficient for the connection between neuron i and j,

and Ii is constant input to the i-th neuron.

As mentioned by Civalleri, Gilli, and Pabdolfi (1993), in hard implementation, time de-

lays inevitably occur due to the finite switching speed of the amplifiers and propagation

time. What’s more, to process moving images, one must introduce time delay in the signals

transmitted among the cells. Neural networks with time delay have much more complicated

dynamics due to the incorporation of delay. Then, we should consider the delayed Cohen-

Grossberg neural networks, which can be formalized as follows:

dxi(t)

dt
= ai(xi(t))

[

− di(xi) +
n

∑

j=1

aijgj(x(t)) +
n

∑

j=1

bijgj(xj(t − τ)) +Ii

]

,

i = 1, · · · , n (2)

in addition, where bij is the real weight coefficient for the delayed connection between

neuron i and j and τ is the time delay.

This model is very generalized including a large class of existing neural field and evolution
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models. For instance, if assuming ai(ρ) > 0 for all ρ ∈ R and i = 1, · · · , n, then this model

can contain the famous Hopfield neural networks, which can be written as:

dxi(t)

dt
= −dixi(t) +

n
∑

j=1

aijgj(xj(t)) +
n

∑

j=1

bijgj(xj(t − τ)) + Ii, i = 1, · · · , n,

with letting ai(ρ) = 1, for all ρ ∈ R and i = 1, · · · , n and di(ρ) = diρ for given di > 0,

i = 1, · · · , n. Recently, the global stability of this kind of Cohen-Grossberg neural networks

(with assuming strictly positive amplifier functions) has been widely studied in the recent

decades. See Lu & Chen (2003), Wang & Zou (2002), Cao & Liang (2004), Liao, Li, &

Wong (2004), Chen & Rong (2003,2004), Hwang, Cheng, & Liao (2003), Wang (2005), Lu

& Chen (2005) for examples.

However, all the results obtained in these papers were based on the assumption that ampli-

fier function ai(·) is always positive (see Lu a& Chen (2003, 2005), Chen & Rong (2003)),

even greater than some positive number ai(·) ≥ ai > 0 (see Wang & Zou (2002), Cao &

Liang (2004), Liao, Li, & Wong (2004), Chen & Rong (2004), Wang (2005)). But in their

original paper, Grossberg (1980), Cohen & Grossberg (1983), Grossberg (1988), they pro-

posed this model as a kind of competitive-cooperation dynamical system for decision rules,

pattern formation, and parallel memory storage. Hereby, each state of neuron xi might be

the population size, activity, or concentration, etc. of the ith species in the system, which is

always nonnegative for all time. To guarantee the positivity of the states, one should assume

ai(ρ) > 0 for all ρ > 0 and ai(0) = 0 for all i = 1, · · · , n (for more detailed, see Lemma

1 in this paper). It is clear that this subset of Cohen-Grossberg neural networks includes

the famous Velterra-Lotka competitive-cooperation equations which can be formalized as

follows:

dxi

dt
= Aixi

(

Ii −
n

∑

j=1

aijxj

)

, i = 1, · · · , n

with letting ai(ρ) = Aiρ, for all ρ > 0 and given Ai > 0, and gi(ρ) = ρ, i = 1, · · · , n. To our

best knowledge, Cohen & Grossberg (1983) and Grossberg (1988) provided the pioneering
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study on the dynamics of such neural network model with assuming ai(ρ) > 0 for all ρ > 0

and ai(0) = 0 for all i = 1, · · · , n and without considering any time delay.

The aim of this paper is to continue studying the dynamics of Cohen-Grossberg neural

networks without assuming the strict positivity of ai(·), symmetry of connection matrix,

or boundedness of activation functions, but with considering a time delay. Hereby, we fo-

cus our study of the dynamical behaviors on the first orthant: Rn
+ = {(x1, · · · , xn)⊤ ∈

Rn : xi ≥ 0, i = 1, · · · , n} and introduce the concept of Rn
+-global stability, which means

that we consider all trajectories initiated in the first orthant Rn
+ instead of the whole space

Rn. We point out that an asymptotically stable nonnegative equilibrium is closely related

to the solution of a Nonlinear Complementary Problem (NCP). Based on the Linear Ma-

trix Inequality (LMI) technique (more details about LMI, see Boyd, Ghaoui, Feron, and

Balakrishnana (1994)) and the theory of Nonlinear Complementary Problem (NCP) (more

details about NCP, we refer to Megiddo, Kojima (1977)), a sufficient condition for existence

and uniqueness of nonnegative equilibrium is given. Moreover, the Rn
+-global asymptotic

stability and exponential stability of the equilibrium are investigated, too.

This paper is organized as follows. In Section 2, we present some denotations, definitions

and lemmas, which are used throughout the paper. In Section 3, we discuss existence and

uniqueness of the nonnegative equilibrium by solution of a NCP. We discuss global stability

in Section 4. A numerical example verifying our criteria and comparing them with previous

works is provided in Section 5. We conclude this paper in Section 6.

2 Preliminaries

In this paper, we use the following denotations. A⊤ denotes the matrix transpose of A. As

denotes the symmetric part of matrix A: 1
2
(A + A⊤). A > 0 denotes that A is symmetric

and positive definite. It is similar to denote A ≥ 0, A < 0, and A ≤ 0. Rn
+ = {x =

(x1, x2, · · · , xn)⊤ : xi ≥ 0, i = 1, · · · , n} denotes the first orthant. We denote the smallest
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and largest element of a set K = {t1, t2, · · · , tm} by min K and maxK respectively. λ(A)

denotes the spectrum set of matrix A. ‖ · ‖ denotes some norm of vector and matrix. In

particular, ‖ · ‖2 denotes the 2− norm by the way that ‖x‖2 =

√

n
∑

i=1
|xi|2 for any x =

(x1, · · · , xn) ∈ Rn and ‖A‖2 =
√

maxλ(A⊤A) for any A ∈ Rn,n.

We consider the Cohen-Grossberg neural network system with a time delay formalized as

(2). Let x(t) = (xi(t), x2(t), · · · , xn(t))⊤, d(x) = (di(xi), d2(x2), · · · , dn(xn))⊤, g(x) =

(g1(x1), g2(x2), · · · , gn(xn))⊤, a(x) = diag{a1(x1), a2(x2), · · · , an(xn)}, A = (aij), B =

(bij) ∈ Rn,n, and I = (I1, I2, · · · , In)⊤. Then, the system (2) can be rewritten in matrix

form:

dx(t)

dt
= a(x)

[

− d(x) + Ag(x(t)) + Bg(x(t − τ)) + I

]

(3)

For the amplifier and activation functions, we have the following assumptions.

(1) a(·) ∈ A1: If every ai(ρ) is continuous with ai(0) = 0, and ai(ρ) > 0, whenever ρ > 0

(2) a(·) ∈ A2: a(·) ∈ A1, and for any ǫ > 0,
∫ ǫ
0

dρ
ai(ρ)

= +∞ holds for all i = 1, · · · , n;

(3) a(·) ∈ A3 : a(·) ∈ A1, and for any ǫ > 0,
∫ ∞
ǫ

ρdρ
ai(ρ)

= +∞ holds for all i = 1, · · · , n;

(4) a(·) ∈ A4 : a(·) ∈ A1, and for any ǫ > 0,
∫ ǫ
0

ρdρ
ai(ρ)

< +∞ holds for all i = 1, · · · , n;

(5) d(·) ∈ D: If di(·) is continuous and satisfies

di(ξ) − di(ζ)

ξ − ζ
≥ Di for all ξ 6= ζ

where Di are positive constants, i = 1, · · · , n;

(6) g(·) ∈ G: If gi(·) satisfies

0 ≤
gi(ξ) − gi(ζ)

ξ − ζ
≤ Gi for ξ 6= ζ

where Gi are positive constants, i = 1, · · · , n.

Remark 1 It can be seen that if ai(·) has the form ai(ρ) = ρα for some α > 0, then

a(ρ) ∈ A1. If α ≥ 1, then a(ρ) ∈ A2. If α ≤ 2, then a(ρ) ∈ A3. If α < 2, then

a(ρ) ∈ A4. However, it should be emphasized that in this paper, we do not assume that
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ai(ρ) > ai > 0, which is required in Lu & Chen (2003, 2005), Wang & Zou (2002), Cao &

Liang (2004), Liao, Li, & Wong (2004), Chen & Rong (2003, 2004), Hwang, Cheng, & Liao

(2003), Wang (2005) and many others. Therefore, the results obtained in these papers fail

to analyze dynamical behaviors of the Cohen-Grossberg neural networks without assuming

ai(ρ) > ai > 0.

First, we give following definition of positive solution by the component ways.

Definition 1 A solution x(t) of the system (3) is said being a positive solution, if for every

positive initial condition φ(t) > 0, t ∈ [−τ, 0], the trajectory x(t) = (x1(t), · · · , xn(t))⊤

satisfies that xi(t) > 0 holds for all t ≥ 0 and i = 1, · · · , n.

Lemma 1 (Positive Solution) If a(·) ∈ A2, then the solution of the system (3) is a positive

solution.

proof: Suppose that the initial value φ(t) = (φ1(t), · · · , φn(t))⊤ with all φi(t) > 0 for

i = 1, · · · , n and t ∈ [−τ, 0]. If for some t0 > 0 and some index i0, xi0(t0) = 0. Then, by

the assumption a(·) ∈ A2, we have

t0
∫

0

[

− di(xi(t)) +
n

∑

j=1

aijgj(xj(t)) +
n

∑

j=1

bijgj(xj(t − τ)) + Ii

]

dt

=

t0
∫

0

ẋi(t)dt

ai(xi(t))
= −

φi(0)
∫

0

dρ

ai(ρ)
= −∞

which is impossible due to the continuity of xi(·) on [0, t0]. Hence, xi(t) 6= 0 holds for all

t ≥ 0 and i = 1, · · · , n. This implies that xi(t) > 0 for all t ≥ 0 and i = 1, · · · , n. ♯

By this lemma, we can actually concentrate our study on the first orthant Rn
+. Then, we

can go on investigating the equilibrium of the system (3) in Rn
+. If a(·) ∈ A1, then any

equilibrium in Rn
+ of the system (2) is a solution of the following equations:

xi

[

fi(x) − Ii

]

= 0, i = 1, · · · , n (4)
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where fi(x) = di(xi) −
n
∑

j=1
(aij + bij)gj(xj), i = 1, · · · , n. Though the equations (4) might

possess multiple solutions, we can show that an asymptotically stable nonnegative equilib-

rium is just a solution of a nonlinear complementary problem (NCP).

Proposition 1 Suppose a(·) ∈ A1. If x∗ = (x∗
i , · · · , x

∗
n)⊤ ∈ Rn

+ is an equilibrium of the

system (3) and asymptotically stable, then it must be a solution of the following nonlinear

complementary problem (NCP), i.e.,

x∗
i ≥ 0 fi(x

∗) − Ii ≥ 0 x∗
i (fi(x

∗) − Ii) = 0, i = 1, · · · , n (5)

where fi(x) = di(xi) −
n
∑

j=1
(aij + bij)gj(xj), i = 1, · · · , n.

Proof: Suppose that x∗ ∈ Rn
+ is an asymptotically stable equilibrium of the system (3).

Then x∗
i > 0 or x∗

i = 0. In case x∗
i > 0, we have fi(x

∗
i ) − Ii = 0. If x∗

i = 0, we claim

that fi(x
∗
i ) − Ii ≥ 0. Otherwise, if fi0(x

∗) − Ii0 < 0 for some index i0, then ẋi0(t) =

ai(xi0(t))
[

−fi0(xi0(t))+Ii0

]

> 1
2
ai(xi0(t))

[

−fi0(x
∗)+Ii0

]

> 0 when xi0(t) is sufficiently

close to x∗, which implies that xi0(t) will never converge to 0. Therefore, x∗ is unstable. ♯

To study the solution of the equation (4), we should introduce the concept generalized of

Nonlinear Complementarity Problem (NCP).

Definition 2 A NCP is to find x∗, i = 1, · · · , n satisfying

x∗
i ≥ 0 fi(x

∗) − Ii ≥ 0 x∗
i (fi(x

∗) − Ii) = 0 for all i = 1, · · · , n (6)

where f = (f1(x), · · · , fn(x))⊤ : Rn
+ → Rn is continuous and Ii ∈ R, i = 1, · · · , n.

The following theorem gives a necessary and sufficient condition for the existence and

uniqueness of the solution of a NCP.

Theorem 1 (Theorem 2.3 in Megiddo and Kojima (1977)) The NCP (6) has a unique

solution for every I ∈ Rn if and only if F (x) is norm-coercive, i.e.,

lim
‖x‖→∞

‖F (x)‖ = ∞
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and locally univalent, where F (x) : Rn → Rn is defined as follows:

F (x) = f(x+) + x−

x+ = (x+
1 , x+

2 , · · · , x+
n )⊤, x− = (x−

1 , x−
2 , · · · , x−

n )⊤, and

x+
i =























xi xi ≥ 0

0 xi < 0

x−
i =























xi xi ≤ 0

0 xi > 0

for i = 1, · · · , n

Thus, we can propose the definition of a nonnegative equilibrium of the system (3) as fol-

lows.

Definition 3 x∗ is said to be a nonnegative equilibrium of the system (3) in the NCP

sense, if x∗ is the solution of the Nonlinear Complementarity Problem (NCP) (5); moreover,

if x∗
i > 0, for all i = 1, · · · , n, then x∗ is said to be a positive equilibrium of system (3). In

this case, x∗ must satisfy

d(x∗) − (A + B)g(x∗) + I = 0, x∗
i > 0, i = 1, · · · , n

where 0 = (0, · · · , 0)⊤ ∈ Rn.

Definition 4 A nonnegative equilibrium x∗ of the system (3) in the NCP sense is said to

be Rn
+-globally asymptotically stable if for any positive initial condition φi(t) > 0 holds for

all t ∈ [−τ, 0] and i = 1, · · · , n, the trajectory x(t) of the system (3) satisfies lim
t→∞

x(t) = x∗;

moreover, if there exist constants M > 0 and ǫ > 0 such that

‖x(t) − x∗‖ ≤ Me−ǫt t ≥ 0,

then x∗ is said to be Rn
+-exponentially stable.

Finally, the following two matrix inequality lemmas are needed in the later sections.

Lemma 2 (See Lemma 2 by Forti & Tesi (1995)) Let D = diag{D1, · · · , Dn}, G =
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diag{G1, · · · , Gn}. If there exists a positive definite diagonal matrix P = diag{P1, P2, · · · , Pn}

such that

{P [DG−1 − T ]}s > 0

holds, then for any positive definite diagonal matrix D̄ ≥ D and nonnegative definite di-

agonal matrix K satisfying 0 ≤ K ≤ G, we have det(D̄ − TK) 6= 0, i.e., D̄ − TK is

nonsingular.

Lemma 3 For given positive diagonal Rn,n matrices D and G and given Rn,n matrices A

and B, if there exist a positive definite diagonal matrix P and a positive definite symmetric

matrix Q such that

Z1 =













2PDG−1 − PA − A⊤P − Q −PB

−B⊤P Q













> 0 (7)

holds, then we have

(1) (See Lemma 2 in Lu, Rong, & Chen (2003)).

{

P [DG−1 − (A + B)]
}s

> 0 (8)

(2) There exists a constant β > 0 such that

Z2 =























2βD −βA −βB

−βA⊤ 2PDG−1 − PA − A⊤P − Q −PB

−βB⊤ −B⊤P Q























> 0 (9)

Proof: Proof of Item 1. (For the convenience of readers, we place the proof here). By Shur

Complement (see Boyd, Ghaoui, Feron, & Balakrishnana (1994)), the LMI (7) is equivalent

to 2PDG−1 − PA − A⊤P − PBQ−1B⊤P − Q > 0. Then, we have 2PDG−1 − (PA +
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A⊤P ) > PBQ−1B⊤P + Q. By the inequality [Q−1/2(PB)⊤ − Q1/2]⊤[Q−1/2(PB)⊤ −

Q1/2] ≥ 0, we have PBQ−1B⊤P + Q ≥ PB + B⊤P . So, it becomes2PDG−1 > PA +

A⊤P + PB + B⊤P , i.e.,

{

P [DG−1 − (A + B)]
}s

> 0.

Proof of Item 2. Let γ1 = min λ(Z1) and β be a positive constant satisfying 0 < β <

min{ γ1

4‖A‖2
2
‖D−1‖2

, γ1

4‖B‖2
2
‖D−1‖2

}. Then, we have

[x⊤, y⊤, z⊤]Z2























x

y

z























≥ 2βx⊤Dx − 2βx⊤Ay − 2βx⊤Bz + γ1y
⊤y + γ1z

⊤z

= β[
1

2
D1/2x − 2D−1/2Ay]⊤[

1

2
D1/2x − 2D−1/2Ay]

+β[
1

2
D1/2x − 2D−1/2Bz]⊤[

1

2
D1/2x − 2D−1/2Bz]

+[γ1y
⊤y − 4βy⊤A⊤D−1Ay] + [γ1z

⊤z − 4βy⊤B⊤D−1Bz] +
3

2
βx⊤Dx

≥ [γ1y
⊤y − 4βy⊤A⊤D−1Ay] + [γ1z

⊤z − 4βz⊤B⊤D−1Bz] +
3

2
βx⊤Dx > 0

which means that the matrix Z2 is positive definite. This completes the proof. ♯

3 Existence and uniqueness of the nonnegative equilibrium

In this section, we discuss existence and uniqueness of the nonnegative equilibrium in the

NCP sense.

Theorem 2 (Existence and Uniqueness of Nonnegative Equilibrium) Suppose a(·) ∈ A2,

d(·) ∈ D, and g(·) ∈ G. Let D = diag{D1, · · · , Dn} and G = diag{G1, · · · , Gn}. If there

exists a positive definite diagonal matrix P = diag{P1, P2, · · · , Pn} such that
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{

P [DG−1 − (A + B)]
}s

> 0 (10)

holds, then for each I ∈ Rn, there exists a unique nonnegative equilibrium of the system (3)

in the NCP sense.

Proof: Let

fi(x) = di(xi) −
n

∑

j=1

(aij + bij)gj(xj), i = 1, · · · , n, f(x) = (f1(x), · · · , fn(x))⊤

F (x) = f(x+) + x−

where x+ and x− are defined as in Theorem 1.

According to Theorem 1, we only need to prove that F (x) is norm-coercive and local uni-

valent. First, we prove F (x) is local univalent. For any x = (x1, · · · , xn) ∈ Rn, without loss

of generality, by some rearrangement of xi, we can assume xi > 0, if i = 1, · · · , p; xi < 0,if

i = p + 1, · · · , m; xi = 0, if i = m + 1, · · · , n, for some integers p ≤ m ≤ n. Moreover, if

y ∈ Rn is sufficiently close to x ∈ Rn, without loss of generality, we can also assume

yi > 0, i = 1, · · · , p

yi < 0, i = p + 1, · · · , m

yi > 0, i = m + 1, · · · , m1

yi < 0, i = m1, · · · , m2

yi = 0, i = m2 + 1, · · · , n

for some integers m ≤ m1 ≤ m2 ≤ n. It can be seen that

(x+
i − y+

i )(x−
i − y−

i ) = 0, for i = 1, · · · , n (11)

and

F (x) − F (y)= d(x+) − d(y+) − (A + B)[g(x+) − g(y+)] + (x− − y−)

= [D̄ − (A + B)K](x+ − y+) + (x− − y−)

where D̄ = diag{d̄i, · · · , d̄n} and K = diag{K1, · · · , Kn} with
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d̄i =























di(x
+

i
)−di(y

+

i
)

x+

i
−y+

i

x+
i 6= y+

i

Di otherwise

Ki =























gi(x
+

i
)−gi(y

+

i
)

x+

i
−y+

i

x+
i 6= y+

i

Gi otherwise

i = 1, · · · , n

Then, d̄i ≥ Di and Ki ≤ Gi, i = 1, · · · , n, because d(·) ∈ D and g(·) ∈ G.

If F (x) − F (y) = 0, then we have

x− − y− = −[D̄ − (A + B)K](x+ − y+) (12)

By the equations (11), without loss of generality, we can assume

x+ − y+ =













z1

0













x− − y− =













0

z2













where z1 ∈ Rk and z2 ∈ Rn−k, for some integer k.

Write

D̄ − (A + B)K =













R11 R12

R21 R22













where R11 ∈ Rk,k, R12 ∈ Rk,n−k, R21 ∈ Rn−k,k, and R22 ∈ Rn−k,n−k. The equation (12)

can be rewritten as













0

z2













= −













R11 R12

R21 R22

























z1

0













which implies R11z1 = 0. By Lemma 2, R11 is nonsingular,which implies z1 = 0 and

x+ = y+. Similarly, we can prove x− = y−. Therefore, x = y, which means that F (x) is

locally univalent.
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Second, we will prove that F (x) is norm-coercive. Suppose that there exists a sequence

{xm = (xm,1, · · · , xm,n)⊤}∞m=1 such that lim
m→∞

‖xm‖2 = ∞. Then, there exists some index i

such that lim
m→∞

|di(x
+
m,i) + x−

m,i| = ∞, which implies that lim
m→∞

‖g(x+
m)‖2 = ∞.

Some simple algebraic manipulations lead to

g(x+)⊤PF (x) =
n

∑

i=1

gi(x
+
i )Pidi(x

+
i ) − g(x+)⊤P (A + B)g(x+) +

n
∑

i=1

gi(x
+
i )Pix

−
i

≥ g(x+)⊤{P [DG−1 − (A + B)]}sg(x+)

≥αg(x+)⊤g(x+)

where α = min λ(
{

P [DG−1 − (A + B)]
}s

) > 0. Therefore,

‖F (xm)‖2 ≥ α‖P‖−1
2 ‖g(x+

m)‖2 → ∞

which implies that F (x) is norm-coercive. Combining with theorem 1, Theorem 2 is proved.

♯

Following corollary is a direct consequence of Theorem 2 and Lemma 3.

Corollary 1 Suppose a(·) ∈ A2, d(·) ∈ D, and g(·) ∈ G. Let D = diag{D1, · · · , Dn}

and G = diag{G1, · · · , Gn}. If there exist a positive definite diagonal matrix P and a

positive definite symmetric matrix Q such that













2PDG−1 − PA − A⊤P − Q −PB

−B⊤P Q













> 0

holds, then there exists a unique nonnegative equilibrium for the system (3) in the NCP

sense.

Remark 2 It seems that conditions for the existence of nonnegative equilibrium in the

NCP sense is similar to those for Hopfield neural networks (For example, see Lemma 2 in

Lu, Rong, & Chen (2003)). However, the equilibrium for the Hopfield neural networks dis-
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cussed in (Lu, Rong, & Chen (2003)) is different than the nonnegative equilibrium discussed

in this paper.

4 R
n

+-global asymptotic stability of the nonnegative equilibrium

In this section, we discuss the global asymptotic stability of the nonnegative equilibrium

defined in previous section. Let x∗ be the nonnegative equilibrium of the system (3) in the

NCP sense and y(t) = x(t) − x∗. Thus, the system (2) can be rewritten as

dyi(t)

dt
= a∗

i (yi(t))
[

− d∗
i (yi(t)) +

n
∑

j=1

aijg
∗
j (yj(t)) +

n
∑

j=1

bijg
∗
j (yj(t − τ)) + Ji

]

(13)

or in matrix form

dy(t)

dt
= a∗(y(t))

[

− d∗(y(t)) + Ag∗(y(t)) + Bg∗(y(t− τ)) + J

]

(14)

where for i = 1, · · · , n,

a∗
i (s)= ai(s + x∗

i ), a∗(y) = diag{a∗
1(y1), · · · , a

∗
n(yn)}

d∗
i (s)= d∗

i (s + x∗
i ) − d∗

i (x
∗
i ), d∗(y) = (d∗

1(y1), · · · , d
∗
n(yn))

⊤

g∗
i (s)= g∗

i (s + x∗
i ) − g∗

i (x
∗
i ), g∗(y) = (g∗

1(y1), · · · , g
∗
n(yn))⊤,

Ji =























−di(x
∗
i ) +

n
∑

j=1
(aij + bij)gj(x

∗
j ) + Ii x∗

i = 0

0 x∗
i > 0

J = (J1, · · · , Jn)⊤

Since x∗ is the nonnegative equilibrium of (3) in the NCP sense, i.e., the solution of NCP

(6), Ji ≤ 0 holds for all i = 1, · · · , n which implies that g∗
i (yi(t))Ji ≤ 0 holds for all

i = 1, · · · , n and t ≥ 0.

Theorem 3 (Rn
+-Global Asymptotic Stability of the Nonnegative Equilibrium) Suppose

a(·) ∈ A2
⋂

A3
⋂

A4, d(·) ∈ D, and g(·) ∈ G. Let D = diag{D1, · · · , Dn} and G =
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diag{G1, · · · , Gn}. If there exist a positive definite diagonal matrix P and a positive definite

symmetric matrix Q such that













2PDG−1 − PA − A⊤P − Q −PB

−B⊤P Q













> 0 (15)

holds , then the unique nonnegative equilibrium x∗ for the system (3) in the NCP sense is

Rn
+-globally asymptotically stable.

Proof : Without loss of generality, we assume

x∗
i = 0, i = 1, 2, · · · , p

x∗
i > 0, i = p + 1, · · · , n

for some integer p. By assumptions A3 and A4, it can be seen that

yi(t)
∫

0

ρdρ

a∗
i (ρ)

< +∞

+∞
∫

0

ρdρ

a∗
i (ρ)

= +∞

yi(t)
∫

0

g∗
i (ρ)dρ

a∗
i (ρ)

< +∞

hold for i = 1, · · · , n and t ≥ 0.

Let β, P , Q be the constant and matrices defined in Lemma 3 such that

Z =























2βD −βA −βB

−βA⊤ 2PDG−1 − PA − A⊤P − Q −PB

−βB⊤ −B⊤P Q























> 0

and define
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V (t)= 2β
n

∑

i=1

yi(t)
∫

0

ρdρ

a∗
i (ρ)

+ 2
n

∑

i=1

Pi

yi(t)
∫

0

g∗
i (ρ)dρ

a∗
i (ρ)

+

t
∫

t−τ

g∗⊤(y(s))Qg∗(y(s))ds

It is easy to see that V (t) is positive definite and radial unbounded.

Noting g∗
i (yi(t))Ji ≤ 0, then

dV (t)

dt
= 2β

n
∑

i=1

yi(t)
[

− d∗
i (yi(t)) +

n
∑

j=1

aijg
∗
j (yj(t)) +

n
∑

j=1

bijg
∗
j (yj(t − τ)) + Jj

]

+2
n

∑

i=1

Pig
∗
i (yi(t))

[

− d∗
i (yi(t)) +

n
∑

j=1

aijg
∗
j (yj(t)) +

n
∑

j=1

g∗
j (yj(t − τ)) + Jj

]

+g∗⊤(y(t))Qg∗(y(t)) − g∗⊤(y(t − τ))Qg∗(y(t − τ))

≤ −2β
[

y⊤(t)Dy(t) − y⊤(t)Ag∗(y(t)) − y⊤(t)Bg∗(y(t− τ)
]

−2
[

g∗⊤(y(t))PDG−1g∗(y(t)) − g∗⊤(y(t))PBg∗(y(t)) − g∗⊤(y(t))PBg∗(y(t− τ))
]

+g∗⊤(y(t))Qg∗(y(t)) − g∗⊤(y(t − τ))Qg∗(y(t − τ))

=−[y⊤(t), g∗⊤(y(t)), g∗⊤(y(t− τ))]Z























y(t)

g∗(y(t))

g∗(y(t − τ))























≤−δy⊤(t)y(t)

where δ = min λ(Z) > 0. Therefore, lim
t→∞

‖y(t)‖2 = 0. ♯

If the equilibrium is strictly positive, then the convergence is exponential.

Theorem 4 (Rn
+-Global Exponential Stability) Suppose a(·) ∈ A2

⋂

A3
⋂

A4, d(·) ∈

D, and g(·) ∈ G. Let D = diag{D1, · · · , Dn} and G = diag{G1, · · · , Gn}. If there exist a

positive definite diagonal matrix P and a positive definite symmetric matrix Q such that
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2PDG−1 − PA − A⊤P − Q −PB

−B⊤P Q













> 0

holds and x∗ is the positive equilibrium of the system (3), then x∗ is Rn
+-globally exponen-

tially stable; moreover, the converge rate can be estimated by O(e−γt), where γ > 0 is

determined by the following matrix inequality























2βa(x∗)D − 4γβIn − 4γa−1(x∗)G −βa(x∗)A −βa(x∗)B

−βA⊤a(x∗) 2PDG−1 − PA − A⊤P − Qe2γτ −PB

−βB⊤a(x∗) −B⊤P Q























> 0

for some β > 0.

Proof: By Theorem 3, we have lim
t→∞

x(t) = x∗. Because x > 0, then ai(x
∗
i ) > 0, and

fi(x
∗) − Ii = 0 hold for all i = 1, · · · , n. Namely, for the system (13), Ji = 0 holds for

i = 1, · · · , n.

Let

L(t) = 2βy⊤(t)y(t)e2γt + 2
n

∑

i=1

Pie
2γt

yi(t)
∫

0

g∗
i (ρ)dρ

a∗
i (ρ)

+

t
∫

t−τ

g∗⊤(y(s))Qg∗(y(s))e2γ(s+τ)ds

Differentiating L(t), we have

dL(t)

dt
= 4βγe2γty⊤(t)y(t) + 2βe2γty(t)a∗(y(t))

[

− d∗(y(t)) + Ag∗(y(t)) + Bg∗(y(t− τ))
]

+4γe2γt

yi(t)
∫

0

g∗
i (ρ)dρ

a∗
i (ρ)

+ 2e2γtg∗⊤(y(t))P
[

− d∗(y(t)) + Ag∗(y(t)) + Bg∗g(y(t− τ))
]

+g∗⊤(y(t))Qg∗(y(t))e2γ(t+τ) − g∗⊤(y(t− τ))Qg∗(y(t − τ))e2γt

Due to the convergence of x(t), there exist a small ε > 0 and T > 0 such that for all
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i = 1, · · · , n and t ≥ T , we have

yi(t)
∫

0

g∗
i (ρ)dρ

a∗
i (ρ)

≤ Giy
2
i (t)(ai(x

∗) − ε)−1

and the following matrix, denoted by H ,























2βa∗(y(t))D − 4γβIn − 4γ(a(x∗) − ε)−1G −βa∗(y(t))A −βa∗(y(t))B

−βA⊤a∗(y(t)) 2PDG−1 − PA − A⊤P − Qe2γτ −PB

−βB⊤a∗(y(t)) −B⊤P Q























is positive definite. Then

dL(t)

dt
≤ [y⊤(t), g∗⊤(y(t)), g∗⊤(y(t − τ))]H(t)























y(t)

g∗(y(t))

g∗(y(t− τ))























≤ 0

holds for all t ≥ T . We have L(t) ≤ L(T ). This implies ‖y(t)‖2 = O(e−γt). ♯

Remark 3 If all the components of the equilibrium x∗ are positive, then x∗ is Rn
+-exponentially

stable. This is because there exists a sufficiently large T such that all ai(xi(t)) > η > 0 for

i = 1, · · · , n and t ≥ T , where η is a positive constant. Instead, if some components of x∗

are zero, then x(t) converges to x∗. However, the convergence is not exponential in general.

For example, consider the following system:























du(t)
dt

= u(t)[−u(t)]

u(0) = 1

(16)

18



It can be seen that the system (16) satisfies conditions in Theorem 3, but does not satisfy

the conditions in Theorem 4. Its solution is u(t) = 1
t+1

, which converges to zero but not

exponentially.

5 Comparison and numerical example

In Chen & Rong (2003), the authors investigated global stability of delayed Cohen-Grossberg

neural networks where amplifier functions are assumed strictly positive. By this way, there

was not of much difference to deal with Cohen-Grossberg neural networks from cellular

or Hopfield neural networks which do not contain any amplifier functions. The same linear

matrix inequality as (15) were presented to guarantee the existence, uniqueness, and global

stability of the equilibrium. In this paper, we consider that the amplifier functions are not

always positive and can be zero. Thus, the Cohen-Grossberg neural networks have richer

dynamical behaviors.

In the following, we compare the following two Cohen-Grossberg neural networks with a

time delay:

dxi(t)

dt
= xi(t)

[

− di(xi(t)) +
n

∑

j=1

aijgj(xj(t)) +
n

∑

j=1

bijgj(xj(t − τ)) + Ii

]

i = 1, · · · , n (17)

dxi(t)

dt
= bi(xi(t))

[

− di(xi(t)) +
n

∑

j=1

aijgj(xj(t)) +
n

∑

j=1

bijgj(xj(t − τ)) + Ii

]

i = 1, · · · , n, (18)

where bi(ρ) > 0 for all ρ ∈ R, i = 1, · · · , n. First, from Lemma 1, one can see that the

first orthant Rn
+ is invariant through the evolution (17) under the assumption A2. Instead,

the first orthant Rn
+ is not invariant for the system (18). Second, in the paper (Lu, Rong, &

Chen (2003)), it was proved that under the assumption that bi(s) > 0 and LMI (15), the
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system (18) has a unique equilibrium which is the solution of the equations

−di(xi) +
n

∑

j=1

aijgj(xj) +
n

∑

j=1

bijgj(xj) + Ii = 0, i = 1, · · · , n (19)

However, the system (17) has at most 2n equilibria, which are the multiple solutions of the

equations

xi[−di(xi) +
n

∑

j=1

aijgj(xj) +
n

∑

j=1

bijgj(xj) + Ii] = 0, i = 1, · · · , n (20)

Among these equilibria, only one equilibrium is the solution of the corresponding NCP (5),

which is Rn
+-globally asymptotically stable in Rn

+. In particular, if the LMI (15) is satisfied

and each component of the unique equilibrium of the system (18) is nonnegative, then it

must be the unique nonnegative equilibrium of the system (17) in the NCP sense and glob-

ally asymptotically stable. Otherwise, in case the unique equilibrium of the system (18) has

some negative components, the nonnegative equilibrium of the system (17) in the NPC sense

has at least a zero component. The following proposition summarize these comparisons.

Proposition 2 Suppose that bi(s) > 0 for all s ∈ R, i = 1, · · · , n, di(·) ∈ D, and gi(·) ∈ G,

and the LMI (15) is satisfied. Denote the unique equilibrium of the system (18) by x0, the

equilibrium set of the system (17) by Ω, and the unique nonnegative equilibrium of the

system (17) in the NCP sense by x∗. Thus, we conclude

(1) For any index set J ⊂ {1, · · · , n}, there exists an equilibrium xJ ∈ Ω of the system

(17) such that xJ
i = 0, i ∈ J;

(2) If all components of x0 are nonnegative, then x0 = x∗;

(3) If some components of x0 are negative, then x∗ must have some zero components.

Proof: We only need to prove item 1. The remaining claims are direct consequences from

the Theorems 1-4 in this paper and that in Chen, Rong (2003).

Without loss of generality, we assume J = {1, 2, · · · , p}, where p ≤ n. We consider the

following equations
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xi = 0 i ∈= 1, · · · , p

−dixi +
p
∑

j=1
(aij + bij)gj(xj) +

n
∑

j=p+1
(aij + bij)gj(0) + Ii = 0, i = p + 1, · · · , n

(21)

Applying Theorem 1 in Lu, Rong, & Chen (2003) to the complementary set J c of J , we

conclude that (21) has a unique equilibrium xJ = [xJ
1 , · · · , xJ

p , xJ
p+1, · · · , x

J
n], where x1 =

· · · = xp = 0. Let J range all the possible subset of {1, · · · , n}, we obtain all 2n equilibria

of the system (17), which completes the proof. ♯

In the following, we present a numerical example to verify the theoretical results obtained

above and compare the dynamics of the systems (17) and (18).

Consider the dynamical behaviors of the following two systems:































































dx1(t)
dt

= x1(t)
[

− 6x1(t) + 2g(x1(t)) − g(x2(t))

+3g(x1(t − 2)) + g(x2(t − 2)) + I1

]

dx2(t)
dt

= x2(t)
[

− 6x2(t) − 2g(x1(t))

+3g(x2(t)) + 1
2
g(x1(t − 2)) + 2g(x2(t − 2)) + I2

]

(22)































































du1(t)
dt

= 1
|u1(t)|+1

[

− 6u1(t) + 2g(u1(t))

−g(u2(t)) + 3g(u1(t − 2)) + g(u2(t − 2)) + I1

]

du2(t)
dt

= 1
|u2(t)|+1

[

− 6u2(t) − 2g(u1(t))

+3g(u2(t)) + 1
2
g(u1(t − 2)) + 2g(u2(t − 2)) + I2

]

(23)

where g(ρ) = 1
2
(ρ + arctan(ρ)) and I = (I1, I2)

⊤ is the constant inputs which will be

determined below. And,
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D = 6 ×













1 0

0 1













, G =













1 0

0 1













, A =













2 −1

−2 3













, B =













3 1

1
2

2













.

By the Matlab LMI and Control Toolbox, we obtain

P =













0.2995 0

0 0.3298













, Q =













1.0507 0.3258

0.3258 0.9430













The eigenvalues of

Z =













2PDG−1 − PA − A⊤P − Q −PB

−B⊤P Q













are 2.6490, 1.1343, 0.5302, and 0.0559, which implies Z is positive definite. By Theorem 3,

for any I ∈ R2, the system (22) has a unique nonnegative equilibrium x∗ in the NCP sense

which is R2
+-globally asymptotically stable. By Theorem 1 in Lu, Rong, & Chen (2003),

for any I ∈ R2, system (23) has a unique equilibrium x0 which is globally asymptotically

stable in R2.

In case I = (1, 0.1)⊤. The equilibria of the system (22) are (0, 0)⊤, (0.7414, 0)⊤, (0, 0.0992)⊤,

and (0.7414,−0.7062)⊤. Among them, x∗ = (0.7414, 0)⊤ is the nonnegative equilibrium of

the system (22) in the NCP sense and x0 = (0.7414,−0.7062) is the unique equilibrium of

the system (23). Pick initial condition φ1(t) = 7
2
(cos(t)+1) and φ2(t) = e−t, for t ∈ [−2, 0].

Figure 1 shows that the solution of the system (22) converges to x∗ = (0.7414, 0)⊤, while

the solution of the system (23) converges to x0 = (0.7414,−0.7062)

If I = (8, 10)⊤, then x0 = (3.1908, 2.7770)⊤, which implies x∗ = x0. Pick initial condition

φ1(t) = sin(t)+7 and φ2(t) = −2t+1, for t ∈ [−2, 0]. Figure 2 indicates that the solutions

of both systems (22) and (23) converge to the same equilibrium (3.1908, 2.7770)⊤.
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If I = (−8,−10)⊤, then the equilibria of the system (22) are (0, 0)⊤, (0,−3.7951)⊤,

(−3.1908, 0)⊤, and (−3.1908,−2.7770)⊤. One can see that x∗ = (0, 0)⊤ is the nonneg-

ative equilibrium of the system (22) in the NCP sense and x0 = (−3.1908,−2.7770)⊤ is

the unique equilibirum of the system (23). Pick initial condition φ1(t) = 7 and φ2 = 1 for

all t ∈ [−2, 0]. Figure 3 indicates that the solution of the system (22) converges to x∗, while

the solution of the system (23) converges to x0.

6 Conclusions

In this paper, we investigate the dynamics of the positive solutions of the Cohen-Grossberg

neural networks with a time delay. Based on the theory of NCP and the LMI technique, a

condition is obtained guaranteeing existence, uniqueness, and global stability of the non-

negative equilibrium in the NCP sense. If the equilibrium is positive, then the stability is

globally exponential. Numerical example verifies the viability of the theoretical results.
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Figure 1: Dynamical behaviors of system (22), (23) with I = (1, 0.1)⊤ .
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Figure 2: Dynamical behaviors of system (22), (23) with I = (8, 10)⊤ .
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Figure 3: Dynamical behaviors of system (22), (23) with I = (−8,−10)⊤ .
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