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Abstract

We provide a new proof of a regularity theorem for systems of nonlinear

elliptic equations with the quadratic nonlinearity in dimension two.

1 Introduction

Rivière [17] proved the following remarkable result.

Theorem 1 Let D ⊂ R
2 be an open set. If Ωi

j ∈ L2(D, R2), Ωi
j = −Ωj

i , i, j =
1, 2, . . . ,m and u = (u1, u2, . . . , um) ∈ W 1,2(D, Rm) solves the system of equations

−∆ui =
m

∑

j=1

Ωi
j · ∇uj, i = 1, 2, . . . ,m, (1)

then u is continuous.

This result solves a conjecture of Heinz about regularity of solutions to the pre-
scribed bounded mean curvature equation and a conjecture of Hildebrandt about reg-
ularity of all critical points of continuously differentiable elliptic conformally invariant
Lagrangians in dimension two. In particular it provides a new proof of Hélein’s theorem
[11, 13] about regularity of two dimensional harmonic mappings into arbitrary compact
manifolds.

An important example is provided by the equation of prescribed mean curvature

∆u = 2H(u)ux1
∧ ux2

, (2)
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where u ∈ W 1,2(D, R3), D ⊂ R
2 and H ∈ L∞(R3). Heinz conjectured that under these

assumptions u is continuous. Let ∇⊥ = (−∂y, ∂x). It is easy to see that (2) can be
rewritten in the form

−∆ui =
3

∑

j=1

Ωi
j · ∇uj, i = 1, 2, 3,

where

Ω = (Ωi
j)i,j=1,2,3 = H(u)





0 ∇⊥u3 −∇⊥u2

−∇⊥u3 0 ∇⊥u1

∇⊥u2 −∇⊥u1 0





and therefore the Heinz conjecture directly follows from Rivière’s theorem.

The antisymmetry condition Ωj
i = −Ωi

j is crucial in Theorem 1 because a well
known example of Frehse [8] (cf. [17]) shows that without this condition solutions to
the system (1) may be discontinuous.

Our aim is to prove the following result.

Theorem 2 Let D ⊂ R
2 be an open set. Let Hjk = (H i

jk)i=1...,m : R
m → R

m, 1 ≤ j <
k ≤ m, be a family of bounded Lipschitz mappings. If u ∈ W 1,2(D, Rm) is a solution to
the system

−∆u =
∑

1≤j<k≤m

Hjk(u) duj ∧ duk (3)

i.e.
−∆ui =

∑

1≤j<k≤m

H i
jk(u) duj ∧ duk i = 1, 2, . . . , m (4)

then u ∈ C2,α
loc for all 0 < α < 1.

Here duj ∧ duk = uj
x1

uk
x2

− uk
x1

uj
x2

. It is well known that to prove Theorem 2, it is
enough to prove continuity of u. Once it is known that u is continuous, one proves first
higher integrability of |∇u|, using Gehring’s lemma. A routine bootstrap argument
gives then the claim of Theorem 2.

Theorem 2 cannot be deduced from that of Rivière because the system of equations
does not possess antisymmetric structure. On the other hand the Lipschitz continuity
of functions H i

jk is a very strong condition. This is a price we have to pay for the lack
of the antisymmetry; in the case of the H-surface equation (2) Theorem 2 gives the
following result which is, however, weaker than that of Rivière.

Corollary 3 (Bethuel [2]) Let H : R
3 → R be a bounded Lipschitz function. Assume

that u ∈ W 1,2(D, R3) is a weak solution of the H-surface equation (2). Then, u ∈
C2,α

loc (D) for every α < 1.
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Two different proofs of Bethuel’s theorem presented in [2], [18] can easily be gen-
eralized to cover Theorem 2, so the result is not really new, but what is new is the
proof. The common feature of all proofs is a heavy use of delicate analytic tools: the
duality of Hardy space and BMO (inspired by Coifman et al. [5]), Lp estimates for
Hodge decomposition and its variants, interpolation in Lorentz spaces etc. Our proof
is more elementary. It still employs the the duality of Hardy space and BMO, but even
that can be replaced by an elementary argument (we will comment on it later on).

All known proofs seem to be purely 2-dimensional (including Rivière’s result). That
is, they all break down when one tries to adapt them to the case of higher-dimensional
H-systems,

−div (|∇u|n−2∇u) = H(u)ux1
∧ ux2

∧ . . . ∧ uxn
, (5)

where u ∈ W 1,n(Ω, Rn+1) for some domain Ω ⊂ R
n, or to the system of n-harmonic

maps into compact manifolds,

−div (|∇u|n−2∇u) ⊥ Tu(x)N a.e., u(x) ∈ N a.e.

Our motivation was to give one more argument, fairly general, and to see whether it
can be generalized to obtain full regularity of W 1,n weak solutions of H-system (5) for
n > 2.

The main difficulty in proving regularity of the solutions to the system (3) stems
from the fact that the right hand side of (3) is only in L1 and we cannot use u as a test
function. Instead, we follow an idea of Lewis [14] (cf. [6], [7], [15], [16], [19]) and we
built a ct-Lipschitz test function which coincides with u on the set where the maximal
function of the gradient is less than or equal to t, see [1]. This method is combined
here with the proof given in [18].

The notation is mostly standard. The integral average over a ball will be denoted
by

uB =

∫

B

u dx =
1

|B|

∫

B

u dx

and C will denote a general constant that can change its value in a single string of
estimates. The symbol B will be used to denote a ball.
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third author had been enjoying the hospitality of the Department of Mathematics of the
University of Pittsburgh. Piotr HajÃlasz was supported by the NSF grant DMS–0500966.
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2 Proof of Theorem 2

Some of the steps of the proof are similar to analogous steps in [18] and they will be
sketched only.

Lemma 4 Assume that u ∈ W 1,2(D, Rm) is a weak solution of the system (3). There
exist numbers r0 > 0, ε ∈ (0, 1) and λ ∈ (0, 1) such that for all a ∈ D and all radii
r < min(r0,

1
4
dist (a, ∂D)) the following decay inequality holds:

M2−ε(a, r) ≤ λM2−ε(a, 4r), (6)

where

M2−ε(a, r) : = sup
1

̺ε

∫

B(z,̺)

|∇u|2−ε dx ,

the supremum being taken over all z, ̺ such that B(z, ̺) ⊂ B(a, r).

Once this lemma is proved, iterations of inequality (6) lead to

∫

B(a,r)

|∇u|2−ε dx ≤ C
( r

R

)ε+γ
∫

B(a,R)

|∇u|2−ε dx, γ > 0,

where γ is some positive constant depending only on λ. Thus, by Dirichlet Growth
Theorem, u is locally Hölder continuous. Therefore it remains to prove the lemma.

The proof of Lemma 4 has two separate stages. First, we test system (3) with
functions that are good Lipschitz approximations of u (i.e., they agree with u on the set
where the maximal function of the gradient of u is not too large). This yields an estimate
for the integral of |∇u|2 on, roughly speaking, sets of the form {x : M |∇u|(x) ≤ t}.

The second stage is to average this estimate w.r.t. t, with weight equal to t−1−ε,
and to obtain an averaged Caccioppoli inequality . Then, we show that any function u
satisfying this averaged Caccioppoli inequality must also satisfy (6). In this last step,
is not at all important that u solves (2).

3 Proof of Lemma 4

Fix a and r > 0 such that Br ≡ B(a, r) ⊂ B4r = B(a, 4r) ⋐ D. The choice of r0, ε and
λ shall be specified later on.

It suffices to prove that

1

rε

∫

B(a,r)

|∇u|2−ε ≤ λM2−ε(a, 4r). (7)
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Indeed, for B(z, ̺) ⊂ B(a, r), (7) gives

1

̺ε

∫

B(z,̺)

|∇u|2−ε ≤ λM2−ε(z, 4̺) ≤ λM2−ε(a, 4r)

and hence (6) follows after taking supremum over all B(z, ̺) ⊂ B(a, r). If
∫

B2r

|∇u|2−ε > 8

∫

Br

|∇u|2−ε ,

then
1

rε

∫

Br

|∇u|2−ε <
2ε

8

1

(2r)ε

∫

B2r

|∇u|2−ε ≤
1

4
M2−ε(a, 2r)

and hence (7) follows with λ = 1/4. Therefore we can assume that
∫

B2r

|∇u|2−ε ≤ 8

∫

Br

|∇u|2−ε. (8)

We will frequently use the following well known lemma.

Lemma 5 If u ∈ W 1,p
loc (Rn), then

|u(x) − u(y)| ≤ C|x − y|(M |∇u|(x) + M |∇u|(y)) a.e.

and
|u(x) − uB| ≤ CrM |∇u|(x) for a.e. x ∈ B,

where r is the radius of the ball B and M |∇u| is the Hardy-Littlewood maximal function
of |∇u|.

For the proof see for example [7], [9], [14], [15].

Step 1. Choice of test functions. Fix t > 0 and a cutoff function ϕ ∈ C∞
0 (B2r) such

that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Br and |∇ϕ| ≤ C/r.

Set
g(x) = |ϕ(x)| |∇u(x)| + |u(x) − uB2r

| |∇ϕ(x)| .

We define g ≡ 0 in R
2 \ B2r. Let

Ft : = {x ∈ B2r : Mg(x) ≤ t}

and ũ(x) = ϕ(x)
(

u(x) − uB2r

)

. We claim that ũ is Lipschitz continuous with constant
ct on (R2 \ B2r) ∪ Ft.

Case 1. Let x, y ∈ Ft. Then, since |∇ũ| ≤ g, we have

|ũ(x) − ũ(y)| ≤ C|x − y|
(

M |∇ũ|(x) + M |∇ũ|(y)
)

≤ Ct|x − y|
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by definition of Ft.

Case 2. Assume that x ∈ Ft, y ∈ R
2 \ B2r. Let ̺ : = 2dist (x, ∂B2r). Since ũ equals

zero on a large part of the ball B(x, ̺), Poincaré inequality yields

|ũB(x,̺)| ≤ C̺

∫

B(x,̺)

|∇ũ| ≤ C̺Mg(x) ≤ C|x − y|t .

Therefore

|ũ(x) − ũ(y)| = |ũ(x)| ≤ |ũ(x) − ũB(x,̺)| + |ũB(x,̺)|

≤ C̺M |∇ũ|(x) + Ct|x − y|

≤ Ct|x − y| .

This proves the claim. We now extend ũ : Ft ∪ (R2 \ B2r) → R
m to a Lipschitz

continuous function ut : R
2 → R

m such that ut ∈ Lip(Ct), |∇ut| ≤ Ct, ut ≡ ũ in
Ft ∪ (R2 \ B2r) — so that, in particular, ut ≡ 0 off B2r.

Step 2. We use ut as a testing function for system (3). This gives
∫

Ft

∇u · ∇ut dx ≤ Ct

∫

B2r\Ft

|∇u| dx

+

∣

∣

∣

∣

∣

∑

1≤j<k≤m

∫

R2

Hjk(u) · ut duj ∧ duk

∣

∣

∣

∣

∣

.

and next
∫

Ft

|∇u|2ϕdx ≤

∫

Ft

|∇u| |∇ϕ| |u − uB2r
| dx (9)

+ Ct

∫

B2r\Ft

|∇u| dx + |It|,

where

It : =
∑

1≤j<k≤m

∫

R2

Hjk(u) · ut duj ∧ duk . (10)

Inequality (9) holds for all t > 0. To obtain estimates for (3) involving local norms
of |∇u| in Morrey spaces, we multiply (9) by t−1−ε and integrate with respect to t ∈
(t0,∞), for an appropriately chosen number t0. Before doing that, however, we record
a crucial estimate for It.

Step 3. Estimating the critical nonlinearity. We claim that

|It| ≤ C · Kε ·

(
∫

B2r

|∇ut|
2+ε dx

)1/(2+ε)

, (11)
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where
Kε : = M2−ε(a, 4r)1/(2−ε)rε/(2+ε)‖∇u‖L2(B2r). (12)

This estimate follows from the duality of Hardy space H1 and the space BMO
of functions of bounded mean oscillation. Here are some details. It is the sum of
expressions I i

jk, where

I i
jk =

∫

R2

H i
jk(u) ui

t duj ∧ duk .

We estimate each such integral, integrating by parts. Let ζ1 ≡ 1 on B2r, |∇ζ1| ≤ 2/r,
ζ1 ≡ 0 off B3r. We have

|I i
jk| ≤

∣

∣

∣

∣

∫

R2

ζ1(u
j − uj

B2r
)d[H i

jk(u)ui
t] ∧ duk

∣

∣

∣

∣

≤ C‖ζ1(u
j − uj

B2r
)‖BMO ‖∇[H i

jk(u)ui
t]‖L2(B2r) ‖∇uk‖L2(B2r)

≤ CM2−ε(a, 4r)1/(2−ε) ‖∇[H i
jk(u)ui

t]‖L2(B2r) ‖∇uk‖L2(B2r).

The first inequality follows from Fefferman’s duality theorem and the result of Coifman
Lions Meyer and Semmes [5]. The second inequality is an elementary estimate of the
local BMO norm of u; see [18] for details.

Since we estimate the BMO norm in terms of the Morrey norm of the gradient, the
above inequality can be proved in an elementary way bypassing Fefferman’s theorem,
see [3], [4], [10].

Further,

‖∇[H i
jk(u)ui

t]‖L2 ≤ ‖H‖∞‖∇ut‖L2(B2r) + ‖∇H‖∞‖∇u‖L2(B2r)‖ut‖L∞(B2r)

≤ Crε/(2+ε)(1 + ‖∇u‖L2(B2r))

(
∫

B2r

|∇ut|
2+ε dx

)1/(2+ε)

.

(To obtain the last line, we apply Hölder inequality to deal with ‖∇ut‖L2 , and Sobolev
imbedding theorem to deal with ‖ut‖L∞ . The point here is that ut is a priori more
regular than u is.)

One can fix r0 > 0 such that ‖∇u‖L2(B2r) ≤ 1 for all r < r0; claim (11) follows.

Step 4. Averaging. We now rewrite (9) as
∫

Ft

|∇u|2ϕdx ≤

∫

Ft

|∇u| |∇ϕ| |u − uB(a,2r)| dx (13)

+ Ct

∫

B2r\Ft

|∇u| dx

+ CKε ·

(
∫

B2r

|∇ut|
2+ε dx

)1/(2+ε)

,
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multiply both sides of (13) by t−1−ε and integrate w.r.t. t ∈ (t0,∞), setting

t0 : = δ

(
∫

Br

|∇u|2−ε dx

)1/(2−ε)

. (14)

(Here, δ is a small constant independent of ε.) We obtain an averaged Caccioppoli
inequality of the form

J1 ≤ C1(J2 + J3 + J4), (15)

where

J1 =

∫ ∞

t0

t−1−ε

∫

Ft

|∇u|2ϕ dx dt , (16)

J2 =

∫ ∞

t0

t−1−ε

∫

Ft

|∇u| |∇ϕ| |u − uB2r
| dx dt , (17)

J3 =

∫ ∞

t0

t−ε

∫

B2r\Ft

|∇u| dx dt , (18)

J4 = Kε

∫ ∞

t0

t−1−ε

(
∫

B2r

|∇ut|
2+ε dx

)1/(2+ε)

dt . (19)

Step 5. Estimates of J1–J4. Tedious but elementary estimates of J1–J4 (involving only
the Fubini theorem, Hölder, Young and Poincaré inequalities, and the Hardy–Little-
wood maximal theorem) yield the following inequalities:

J1 ≥
C2

ε

∫

Br

|∇u|2−ε dx , (20)

J2 ≤
C3

ε

(
∫

B2r\Br

|∇u|2−ε dx

)
1

2−ε

(
∫

Br

|∇u|2−ε dx

)
1−ε

2−ε

≤
C4

ε

∫

B2r\Br

|∇u|2−ε dx +
C2

4C1ε

∫

Br

|∇u|2−ε dx , (21)

J3 ≤ C5

∫

Br

|∇u|2−ε dx , (22)

J4 ≤ C6(ε)r
ε‖Du‖L2(B2r)M2−ε(a, 4r) , (23)

where the constants C1, C2, C3, C4, C5 do not depend on ε, whereas C6 = C6(ε) does.

The details of these estimates are given in the next Section. Here we just show how
to conclude the proof of Lemma 4, assuming these estimates.

Step 6. Conclusion. Inserting the above estimates into (15), we obtain
∫

Br

|∇u|2−ε dx ≤ C7

∫

B2r\Br

|∇u|2−ε dx +
1

4

∫

Br

|∇u|2−ε dx (24)

+ C8ε

∫

Br

|∇u|2−ε dx + C9(ε)r
ε‖Du‖L2(B2r)M2−ε(a, 4r) .
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Now we add C7

∫

Br

|∇u|2−ε dx to both sides to “fill the hole” on the right hand side
and after elementary calculations we arrive at

1

rε

∫

Br

|∇u|2−ε ≤
C72

ε

C7 + 1

1

(2r)ε

∫

B2r

|∇u|2−ε +
1
4

+ C8ε

C7 + 1

1

rε

∫

Br

|∇u|2−ε

+
C9(ε)‖Du‖L2(B2r)

C7 + 1
M2−ε(a, 4r)

≤
C72

ε + 1
4

+ C8ε + C9(ε)‖Du‖L2(B2r)

C7 + 1
M2−ε(a, 4r).

We now fix ε so small that

C72
ε +

1

4
+ C8ε < C7 +

1

2

and then r0 = r0(ε) so small that

C9(ε)‖Du‖L2(B2r) <
1

4

for all points a ∈ D and all radii r < r0(ε). Now (7) follows with λ = (C7+3/4)/(C7+1).
This completes the proof of the lemma. 2

4 Averaged Caccioppoli inequality: proofs of (20)–

(23)

In this Section we provide details of Step 5 of the proof from the previous Section.
Numerous estimates are based on the inequalities

∫

B2r

(Mg)2−ε dx ≤ C

∫

B2r

g2−ε dx ≤ C

∫

B2r

|∇u|2−ε dx ≤ C

∫

Br

|∇u|2−ε dx . (25)

All constant can be chosen independently of ε. The first estimate follows from Hardy–
Littlewood maximal theorem, the second one — from Poincaré inequality. The last one
is just the assumption (8).

Estimate of J1. Recall that Ft = {x ∈ B(a, 2r) : Mg(x) ≤ t}. Since ϕ ≡ 1 on Br,
Fubini’s theorem yields

J1 =

∫ ∞

t0

t−1−ε

∫

Ft

|∇u|2ϕdx dt ≥

∫

Br∩{Mg>t0}

|∇u|2ϕ

∫ ∞

Mg(x)

t−1−ε dt dx

=
1

ε

∫

Br

|∇u|2(Mg)−ε dx −
1

ε

∫

Br∩{Mg≤t0}

|∇u|2(Mg)−ε dx

=: J11 − J12 .
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We apply Hölder inequality and (25) to estimate J11. We have

∫

Br

|∇u|2−ε dx
(H)

≤

(
∫

Br

|∇u|2(Mg)−ε dx

)
2−ε

2
(

∫

Br

(Mg)2−ε dx

)
ε

2

(25)

≤ C

(
∫

Br

|∇u|2(Mg)−ε dx

)
2−ε

2
(

∫

Br

|∇u|2−ε dx

)
ε

2

.

(with some constant C that is independent from ε.) Thus,

J11 ≥
C0

ε

∫

Br

|∇u|2−ε dx .

To estimate J12 we note that |∇u| ≤ g ≤ Mg in Br. Hence,

|J12| ≤
1

ε
t2−ε
0 |Br| =

1

ε
δ2−ε

∫

Br

|∇u|2−ε dx .

Choosing δ < min(1
2
, C0/2), we obtain δ2−ε < δ < C0/2. Combining the estimates of

J11 and J12, we finish the proof of (20).

Estimate of J2. Using Fubini’s theorem, we have

J2 ≤

∫ ∞

0

t−1−ε

∫

Ft

|∇u| |∇ϕ| |u − uB2r
| dx dt

=

∫

B2r

|∇u| |∇ϕ| |u − uB2r
|

∫ ∞

Mg(x)

t−1−ε dt dx

=
1

ε

∫

B2r

|∇u| |∇ϕ| |u − uB2r
| (Mg)−ε dx

≤
1

ε

∫

B2r

|∇u| |∇ϕ|1−ε |u − uB2r
|1−ε dx

≤
C

ε

(
∫

B2r\Br

|∇u|2−ε dx

)
1

2−ε

(
∫

Br

|∇u|2−ε dx

)
1−ε

2−ε

.

(Note that |∇ϕ| |u − uB2r
| ≤ g ≤ Mg. In the last line, we apply Hölder and Poincaré

inequalities combined with assumption (8).) By a standard application of Young’s
inequality, (21) follows.
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Estimate of J3. Since t < Mg(x) in the complement of Ft, we obtain

J3 ≤

∫ ∞

0

t−ε

∫

B2r\Ft

|∇u| dx dt

=
1

1 − ε

∫

B2r

|∇u| (Mg)1−ε dx

(H)

≤
1

1 − ε

(
∫

B2r

|∇u|2−ε dx

)
1

2−ε

(
∫

B2r

(Mg)2−ε dx

)
1−ε

2−ε

≤ C

∫

Br

|∇u|2−ε dx .

To obtain the last line, one applies inequalities (25).

Estimate of J4. This is the heart of the matter. We split

J4 = Kε

∫ ∞

t0

t−1−ε

(
∫

B2r

|∇ut|
2+ε dx

)1/(2+ε)

dt

≤ Kε

∫ ∞

t0

t−1−ε

(
∫

Ft

|∇ũ|2+ε dx

)1/(2+ε)

dt

+ Kε

∫ ∞

t0

t−1−ε · Ct · |B2r \ Ft|
1/(2+ε) dt

=: Kε(J41 + J42).

We used the fact that ∇ut = ∇ũ in Ft and |∇ut| ≤ Ct everywhere, in particular
in B2r \ Ft. To estimate J41 observe that |∇ũ| ≤ g ≤ Mg ≤ t in Ft and hence
|∇ũ|2+ε ≤ t2ε|∇ũ|2−ε. Moreover the Poincaré inequality gives

(
∫

Ft

|∇ũ|2−ε

)
1

2+ε

≤ C

(
∫

B2r

|∇u|2−ε

)
1

2+ε

.

Hence

J41 ≤

∫ ∞

t0

t−1−εt
2ε

2+ε

(
∫

Ft

|∇ũ|2−ε dx

)
1

2+ε

dt

≤ C(ε)t
−ε+ 2ε

2+ε

0

(
∫

B2r

|∇u|2−ε

)
1

2+ε

≤ C(ε)r
2ε

2

4−ε2

(
∫

Br

|∇u|2−ε

)
1−ε

2−ε

.

The last constant depends also on δ, but δ depends on general constants only, so there
is no need to write dependence on δ explicitly.

11



To estimate J42 first observe that Cavalieri’s principle and (25) give

(2 − ε)

∫ ∞

0

t1−ε|B2r \ Ft| dt =

∫

B2r

(Mg)2−ε dx ≤ C

∫

Br

|∇u|2−ε dx.

Hence

J42 ≤ C

∫ ∞

t0

t−ε|B2r \ Ft|
1

2+ε dt

≤ C

(
∫ ∞

t0

(

t−ε− 1−ε

2+ε

)
2+ε

1+ε

)
1+ε

2+ε

(
∫ ∞

t0

t1−ε|B2r \ Ft| dt

)
1

2+ε

≤ C(ε)

(

t
1+(−ε− 1−ε

2+ε
) 2+ε

1+ε

0

)
1+ε

2+ε

(
∫

Br

|∇u|2−ε dx

)
1

2+ε

= C(ε)r
2ε

2

4−ε2

(
∫

Br

|∇u|2−ε

)
1−ε

2−ε

.

Now (23) follows from the definition of Kε. This completes the whole proof. 2
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[12] F. Hélein, Phenomena of compensation and estimates for partial differential
equations. Proceedings of the ICM’1998. Documenta Math. 1998, Extra Vol. III,
21–30.
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