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Tensor deomposition in eletroni struturealulations on 3D Cartesian gridsS. R. Chinnamsetty�, H.-J. Flad�, V. Khoromskaia�,and B.N. Khoromskij�� Max-Plank-Institute for Mathematis in the Sienes,Inselstr. 22-26, D-04103 Leipzig, Germany.� Christian-Albrehts-Universit�at zu Kiel,Christian-Albrehts-Platz 4, 24098 Kiel, Germany.Corresponding author fvekhg�mis.mpg.de (V. Khoromskaia)AbstratIn this paper we propose a novel approah based on the ombination of Tuker-typeand anonial tensor deomposition tehniques for the eÆient numerial approxima-tion of funtions and operators in eletroni struture alulations. In partiular, westudy potential appliations of tensor approximations for the numerial solution ofHartree-Fok and Kohn-Sham equations on 3D Cartesian grids.Low-rank orthogonal Tuker-type tensor approximations are investigated for ele-tron densities and Hartree potentials of simple moleules, where exponential onver-gene with respet to the Tuker rank is observed. This enables an eÆient tensor-produt onvolution sheme for the omputation of the Hartree potential using aolloation-type approximation via pieewise onstant basis funtions on a uniformn�n�n grid. Combined with Rihardson extrapolation, our approah exhibits O(h3)onvergene with h = O(n�1), and requires O(3rn+ r3) storage, where r denotes theTuker rank of the eletron density with r � n almost uniformly in n (spei�ally,r = O(log n)). For example, Hartree-Fok alulations for the CH4 moleule, with apseudopotential on the C atom, ahieved auraies of the order of 10�5 hartree witha grid-size n of several hundreds. For large 3D grids (n � 128), the tensor-produtonvolution sheme markedly outperforms the 3D� FFT in both the omputing timeand storage requirements.AMS Subjet Classi�ation: 65F30, 65F50, 65N35, 65F10Key words: Tuker-type tensor deomposition, Hartree-Fok equation, disrete onvolution,orthogonal adaptive tensor-produt basis.1 IntrodutionA suessful strategy to redue the omputational omplexity in eletroni struture alu-lations is based on a series of low-rank tensor-produt deompositions ranging from many-1



eletron wavefuntions and related quantities, like eletron densities, up to Coulomb poten-tials representing inter-eletroni interations and external potentials due to atomi nulei.Let us just mention linear ombinations of Slater determinants, Gaussian-type orbital (GTO)basis sets, and the ommonly employed Gaussian-transform of the Coulomb potential for theevaluation of integrals involving GTO basis funtions. We refer to the monographs [20, 7℄for a detailed exposition of these subjets. Furthermore, separable approximations of energydenominators, following the pioneering work of Alml�of and H�aser [1, 15℄, beame a popularapproah to redue the omputational e�ort in many-body perturbation theory. Reently,alternative approahes based on \optimal" tensor-produt approximations (with respet toertain norms) have been disussed in the literature. Here and in the following we refer to\optimal" in the sense of the best possible separable approximation of a funtionf(x) � RXk=1 h1;k(x1)h2;k(x2) : : : hd;k(xd); x 2 Rd (1.1)for a given rank R, without any onstraints imposed on the univariate omponents hi;k withi = 1; : : : ; d. This format has been frequently denoted as anonial deomposition in the lit-erature. Initiated by the work of Beylkin and Mohlemkamp [4, 5℄, \optimal" tensor-produtapproximations for various potentials and more general integral operators, with possible ap-pliations in quantum hemistry, have been disussed in the literature, f. Refs. [19, 12, 13, 14℄and referenes therein.We fous on the tensor-produt approximation of eletron densities and the omputa-tion of Hartree-potentials whih represents a major bottlenek for the numerial solutionof Hartree-Fok and Kohn-Sham equations. Traditionally, GTO basis sets have been exten-sively used for this purpose in quantum hemistry. Approximation of the eletron density ina so-alled auxiliary GTO basis and subsequent analyti evaluation of the Hartree-potentialbeame known as density-�tting or resolution of the identity method, f. Refs. [9, 11, 26℄,and turned out to be an essential improvement for the omputational eÆieny. Althoughsuh kind of approah utilizes the separability of GTO basis sets, it seems that possiblegeneralizations onerning this issue are rarely disussed in the literature. An interestingexeption is a paper by Alml�of [2℄ who onsidered possible tensor produt onepts for aneÆient evaluation of the Fok matrix. Reently a density �tting sheme based on \opti-mal" tensor produt approximations (1.1) has been studied in Ref. [6℄. It turned out thatsigni�ant improvements beyond GTO basis sets an be ahieved, however the unonstraintoptimization of univariate omponents represents a generially ill-posed problem and rathersophistiated optimization tehniques are neessary in order to ahieve the required highauraies.In this paper we propose a novel approah based on the ombination of Tuker-typeand anonial tensor deomposition tehniques for the eÆient numerial approximationof funtions and operators in eletroni struture alulations. The Tuker format posesorthogonality onstraints on the univariate omponents whih turns the optimization into awell-posed problem. Primarily, the Tuker-type deomposition was applied in hemometrisand independent omponent analysis, and it was generally treated as a method for statistialdata proessing [29℄ with moderate auray requirements. Potential appliations for largesale problems in quantum hemistry have been already shown reently in Ref. [25℄ whereone an �nd a thorough desription of tensor operations in the Tuker format.2



The main result of the paper is the eÆient and aurate omputation of the fully disreterepresentation to the Hartree potential on the Cartesian n� n� n grid (further denoted byn
3) via the fast tensor-produt onvolution [24, 25℄ at the ost of O(R1R2n) operations.Here R1; R2 denote the separation rank of the Coulomb potential and eletron density, re-spetively. For a preise de�nition of these ranks we refer to Setion 3. We want to mentionthat R1; R2 only weakly depend on the grid spaing and an be onsidered as almost uni-formly bounded in the univariate problem size n, f. our disussion in Setion 2. It shouldbe also noted that the input data for the disrete onvolution produt are usually givenwith an initial rank R >> R1. Applying the two-level sheme [25℄, we �rst ompute itsrank-r Tuker approximation and then reompress the small size ore tensor by the rank-R1anonial deomposition.An essential new feature of this sheme is that onvolutions require only 1D�FFTsinstead of 3D�FFTs as in traditional approahes (for example, a large variety of plane waveand wavelet based methods exhibiting linear saling in the number N3 = n3 of grid points, seee.g. the BigDFT program [21, 22℄.) Therefore, it is possible to perform onvolutions involvingtensor produt approximations with muh lower omplexity with respet to the grid size N3(see Remark 2.1). Furthermore, storage of the full 3D�grid is no longer required whihprovides another potentially signi�ant advantage with respet to onventional methodsof O(N3) omplexity. The latter might beome omputationally infeasible just beause ofstorage limitations for very large systems or high grid resolutions.For simpliity we restrited ourselves to the Hartree-Fok method. We want to mentionhowever that the tehniques to be disussed in the following an be as well applied to Kohn-Sham equations in DFT. The Hartree-Fok method provides a mean-�eld approximationfor the ground state of many-eletron systems. This implies the solution of a nonlineareigenvalue problem ��12� + Vnu + VH � Vx� i(x) = �i  i(x); (1.2)for the N=2 lowest eigenvalues �i and spatial eigenfuntions  i (i = 1; :::; N=2), in the aseof a losed-shell N eletron system. The Hartree-Fok equation (1.2) orresponds to anonlinear single-partile Shr�odinger equation in R3 where the potentials VH and Vx representa mean-�eld ating on a single eletron whih is generated by the remaining N � 1 eletronsin the system. Furthermore, an external potential Vnu ontains the bare Coulomb- orpseudopotentials of the nulei. Within the present work, we fous on the omputation of theHartree potential VH(x) := ZR3 �(y)jx� yj dy; (1.3)whih orresponds to a onvolution of the Coulomb potential with the total eletron density�(y) = 2 N=2Xb=1  b(y) �b (y): (1.4)The remaining term is the nonloal exhange operator(Vx a) (x) := N=2Xb=1 ZR3  a(y) �b (y)jx� yj  b(x) dy; (1.5)3



whih has to be replaed by a loal exhange-orrelation potential in the Kohn-Sham equa-tions.The paper is organized as follows. In Setion 2 we introdue the orthogonal Tukerdeomposition and study Tuker approximations for all-eletron densities of several simplemoleules in order to demonstrate exponential onvergene with respet to the tensor rank.In Setion 3, using sin quadrature based approximations to the Coulomb potential [13, 18,23℄, we onsider the omputation of Hartree potentials within a fully disrete tensor-produtolloation sheme (f. [24℄) on a 3D Cartesian grid. A numerial example is provided forthe CH4 moleule using a pseudopotential at the C atom. Finally, in Setion 4 we reoverthe Galerkin matrix of the approximate Hartree potential in a GTO basis and alulate theorresponding errors in the Hartree-Fok energy.2 Tuker-type approximation of eletron densitiesWe introdue the linear spae of real-valued d-th order tensorsA = [ai1:::id℄ 2 RI ; I = I1 � : : :� Id; I` = f1; :::; n`g; ` = 1; :::; dwith the salar produt de�ned ashA;Bi := X(i1;:::;id)2I ai1:::idbi1:::id for A;B 2 RI : (2.1)The orresponding Eulidean norm is given by kAk :=phA;Ai:For given vetors U (`) 2 RI` with omponents U (`) = fu(`)i` gi`2I`, we use the notion of theouter produt \
" of vetors, whih form the anonial rank-1 tensorU = U (1) 
 : : :
 U (d) 2 RI ;de�ned by entries ui1:::id = u(1)i1 � � �u(d)id :In the Tuker-type deomposition, we approximate any tensor A 2 RI up to a givenauray " > 0, by a tensor A(r) with r = (r1; : : : ; rd) de�ned byA(r) = r1Xk1=1 : : : rdXkd=1 bk1:::kd � V (1)k1 
 : : :
 V (d)kd � A; bk1:::kd 2 R; (2.2)where V (`)k` 2 RI` (` = 1; :::; d), and B = fbkg 2 Rr1�:::�rd is alled the ore tensor. HerefV (`)k` ; 1 � k` � r`g are linear independent vetors for eah �xed `, hene without loss ofgenerality, we assume that they are mutually orthogonal, i.e., V(`) = [V (`)1 V (`)2 : : : V (`)r` ℄ 2Rn`�r` are orthogonal matries.The representation (2.2) means that for given set of rank parameters r` � n` (` = 1; :::; d),any tensor an be deomposed approximately into r1r2 : : : rd outer produts (respetively, rd4



if r1 = : : : = rd = r), whih requires only r1 + � � �+ rd anonial omponents V (`)k` of size n`and rd oeÆients fbkg for its representation. The important parameterr = max` fr`gis alled the Tuker rank. To make the approximation numerially eÆient, we have tosatisfy the ondition r` � n` (` = 1; :::; d), whih is usually the ase in eletroni struturealulations.The anonial deomposition (CANDECOMP) or parallel fators (PARAFAC) model(shortly, CP model) represents a tensor by a sum of rank-1 non-orthogonal omponents asfollows A(R) = RXk=1 k � U (1)k 
 : : :
 U (d)k ; k 2 R; (2.3)with normalised omponents U (`)k 2 RI` (` = 1; :::; d). The minimal parameter R in theabove representation is alled the rank (or anonial rank) of a tensor.Below we onsider approximating properties of the orthogonal Tuker-type representa-tions (2.2) in R3 for eletron densities of some simple moleules. We apply the alternatingleast-squares (ALS) iterative sheme desribed in [8, 25℄ to ompute the low-rank tri-linearapproximations for eletron densities of the H atom, LiH, CH4, C2H6 and H2O moleules.Remark 2.1 The Tuker model applied to a fully populated tensor of size n
3 has the om-plexity of order O(n4) (storage and omputational time). If the input tensor is alreadypresented in the rank-R CP format then the orresponding anonial-to-Tuker ALS methodwith the Tuker rank r has the omplexity in the range O(rRn)�O(r2Rn), depending on theproblem setting (see x2.4.2 in [25℄). Notie that the so-alled adaptive ross approximationmethod of omplexity O(r3n) was reently proposed in [27℄.In Setions 3 and 4 both the Tuker-type and CP deompositions are used in the fastomputation of the onvolution produt in R3 appearing as the main ingredient in the Fokoperator.As the �rst step, the approximate referene orbitals and eletron densities of the men-tioned moleules are omputed by the standard quantum hemistry pakage MOLPRO [30℄in the form of an expansion by \Cartesian Gaussian" basis funtions, i.e.,g(x) = R0Xk=1 �k(x1 � Ak)`k(x2 � Bk)mk(x3 � Ck)nk exp(��k�2k) (2.4)with �2k = (x1 � Ak)2 + (x2 � Bk)2 + (x3 � Ck)2; x = (x1; x2; x3)T 2 R3 ;where the exponents �k have been taken from standard VDZ basis sets [10℄.We assume that any partiular moleule is imbedded in a ertain �xed omputationalbox [�A;A℄3 with a suitable A > 0. Let !3 � [�A;A℄3 be a uniform n � n � n tensor-produt grid (shortly n
3) indexed by I = I1 � I2 � I3. For a given ontinuous funtiong : [�A;A℄3 ! R, we introdue the olloation-type funtion related tensor of order 3 by5
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Figure 2.1: Convergene of the Tuker approximation for the eletron density of LiH withrespet to the EFN norm for di�erent grid sizes n = 65; 129 and 193 and �xed box sizeA = 7 bohr.A0 � A(g) := [ai1i2i3 ℄(i1;i2;i3)2I 2 Rn�n�n with ai1i2i3 := g(x(1)i1 ; x(2)i2 ; x(3)i3 );where (x(1)i1 ; x(2)i2 ; x(3)i3 ) 2 !3 are the grid olloation points. In our appliations, the fun-tion g is de�ned by (2.4) using the set of separable \Cartesian Gaussian" funtions. Thereonstruted 3-rd order tensor A0 is approximated by a rank r = (r; r; r) Tuker-type rep-resentation for a sequene of rank-parameters r = 1; 2; : : : ; r0. The orthogonal omponentsand the orresponding ore tensor of the size r
3 are then used for the reonstrution of theapproximating tensor A(r) � A0. All numerial multi-linear approximations are performedin MATLAB, release 7.3.For every rank-r Tuker-type approximation, we ompute the relative error with respetto the Eulidean norm, as well as the relative maximum error:E(r)FN = kA0 �A(r)kjjA0jj ; E(r)C := maxi2I ja0;i � ar;ijmaxi2I ja0;ij : (2.5)The relative di�erene of the norms denoted byE(r)FE = kA0k � kA(r)kjjA0jj � kA0 �A(r)k2kA0k2 ;an be used as a stopping riteria. The ALS iteration is terminated if the value of E(r)FEreahes the mahine preision.The eletron densities of the onsidered moleules are �rst omputed in the form�(x) := KXa=1  2a(x) = KXa=1  R0Xk=1 Pk;a(x)e�k(x�xk)2!2 ; (2.6)where K is the number of eletron pairs and R0 is the number of GTO basis funtions givenby expansion (2.4) for orbitals  a(x). For eah partiular moleule we use the following6
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Figure 2.2: Approximation error in EFN and EC norms versus Tuker rank for the eletrondensities of a) CH4, b) C2H6 and ) H2O with n = 65.physially relevant parameters: A = 10 bohr, R0 = 10 for H atom, A = 7 bohr, R0 = 34for LiH, A = 5 bohr, R0 = 55 for CH4, A = 5:8 bohr, R0 = 96 for C2H6 and A = 10 bohr,R0 = 41 for H2O.Reall that in the ase of the H atom the orbital and eletron density are given expliitlyby �(x) = C� exp(��jxj) with x 2 R3with � = 1 for the orbital and � = 2 for the eletron density.
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Figure 2.3: Orthogonal vetors V (1)k , k = 1; :::; 4, for the rank-10 orthogonal Tuker approx-imation of the eletron density for a) the H atom and b) for the LiH moleule.We approximate the funtion (2.6) using the Tuker model. Figure 2.1 gives the approx-imation error with respet to the Tuker rank r for the LiH eletron densities omputedby (1.4) and (2.4) for di�erent grid sizes n
3. We see that for a �xed approximation errorthe Tuker rank remains to be almost independent on the univariate problem size n. Theapproximation errors shown in Figure 2.2 verify exponential onvergene of the orthogonal7
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Figure 2.4: Entries of the ore tensor 6
3 and the orthogonal vetors V (3)k , k = 1; :::; 6of the rank-6 Tuker-type deomposition of the eletron density for the C2H6 moleule.Numbers given for every slie of ore-tensor entries orrespond to the maximum of jbkj forthe orresponding slie.Tuker approximation (in the rank-parameter r) of eletron densities reahing the relativeauray � 10�5 for CH4, H2O and C2H6 with r = 16.The examples of orthogonal vetors V (`)k (k = 1; :::; 4, ` = 1; 3), of the tensor-produtdeomposition for the H atom, LiH and C2H6 moleules shown in Figures 2.3 and 2.4 resemblethe shape of the deomposed eletron density along the orresponding spatial axis. Due toorthogonality of the deomposition, the Tuker model appears to be suitable for onstrutinglow dimensional problem-dependent orthogonal basis. Entries of the ore tensor presented inFigure 2.4 are the weights bk1k2k3 of the orresponding outer produts of orthogonal vetorsV (1)k1 
 V (2)k2 
 V (3)k3 , whih ompose the summands of A(r) in (2.2) for k` � 6.Numerial experiments demonstrate high approximation power of the problem-dependentorthogonal tensor-produt basis. For example, let B10 be the ore tensor of the rank r = 10Tuker-type approximation of the eletron density for the CH4 moleule, while ~Bp representsthe prinipal p � p� p subtensor of B10. We observe that the ontribution of the subspaespanfV (`)k gpk=1, (` = 1; 2; 3) to the relative Eulidean norm kB10� ~BpkkB10k , is signi�ant even forsmall p. In fat, already with p = 3, the ontribution from the �rst three orthogonal ompo-nents, e.g., for 1 � k � 3, represents the relative `2-error with an auray of about 0:01%.This means that the adaptive orthogonal basis obtained via the Tuker-type approximationwith moderate rank already represents the important physial quantities with satisfatoryauray.The eletron densities of CH4 and C2H6 are onsidered in the ubes [�7; 7℄3 and[�5:8; 5:8℄3, orrespondingly, on a uniform n
3 grid of size n = 65. Figures 2.5 a) and )visualise the eletron density of CH4 in a plane ontaining the C atom and of C2H6 in aplane plane ontaining two C and two H atoms, orrespondingly. Figures 2.5 b) and d)visualise the absolute approximation error for the eletron densities � of these moleules inthe orresponding planes for r = 16. In spite of large values of � at the usp regions (� 60units) we observe a rather uniform distribution of the absolute value of the approximationerror of the order � 10�4� 10�5 a.u. in the omputational domain. This is a typial feature8



−5
0

5
−5

0
5

0

50

a)          CH
4
  

−5
0

5

−5
0

5
0

50

c)          C
2
 H

6
 

−5
0

5

−5
0

5
0

2

4

x 10
−4

d)          C
2
 H

6
,  abs.error, r=16

−5
0

5
−5

0
5

0

1

2

x 10
−5

b)        CH
4
, abs. error , r=16

Figure 2.5: Eletron densities and absolute errors of rank r = 16 Tuker-type approximationsfor CH4 and C2H6 moleules.of the orthogonal Tuker deomposition. For H2O with even larger usp (� 148 units) at theorigin, we see in Figure 2.2 ) that the onvergene of � for this moleule approximated inthe volume [�10; 10℄3 gives the relative auray � 10�5 with the rank r = 16. Finally, we
2 4 6 8 10 12 14 16 18

10
−4

10
−2

10
0

Tucker rank

er
ro

r

a)  Hartree Potential,CH
4

 

 

E
FN

E
C

2 4 6 8 10 12 14 16 18

10
−4

10
−2

10
0

Tucker rank

er
ro

r

b)  Hartree Potential,  C
2
 H

6

 

 

E
FN

E
C

2 4 6 8 10 12 14 16 18

10
−4

10
−2

10
0

Tucker rank

c)  Hartree Potential,  H
2
 O

 

 

E
FN

E
C

Figure 2.6: Approximation error in EFN and EC norms versus Tuker rank for the Hartreepotentials of a) CH4, b) C2H6 and ) H2O.present the onvergene behaviour of the Tuker-type approximation applied to the Hartreepotentials of CH4, C2H6 and H2O moleules (see Figure 2.6) whih indiates exponentialonvergene in the Tuker rank r.Our numerial results demonstrate the eÆieny of low-rank orthogonal Tuker approx-imations to the eletron densities of the onsidered moleules. They show exponential on-vergene upon the Tuker rank r with a onvergene rate whih is almost independent of9



the resolution level depending on the grid size n (theoretial results indiate r = O(logn)).The low rank tensor approximations of orbitals and eletron densities an be further utilisedfor low-omplexity alulations of funtionals and operators of physial relevane, e.g., theeletron-eletron and eletron-ion ontributions to the total energy, the Hartree and exhangepotentials, as well as to loal exhange-orrelation potentials in the Kohn-Sham equation. Asan example, in the next setion we onsider the omputation of the low-rank tensor approx-imation of the Hartree potential using tensor deompositions of all funtions and operatorsinvolved.3 Computing the Hartree potential by tensor-produtonvolutionWe onsider the omputation of the Hartree potentialVH(x) = ZR3 �(y)jx� yjdy; x 2 R3 (3.1)by the disrete multi-dimensional tensor-produt onvolution on uniform grids in R3 , de-sribed in Ref. [24℄. The onvolution produt is de�ned byw(x) := (f � g)(x) := ZR3 f(y)g(x� y)dy f; g 2 L2(R3):Our partiular hoie is g(x) = 1jxj, f(x) = �(x), x 2 R3 . Due to the physial prerequisites(orbitals and eletron density have exponential deay) the funtion f �g is omputed in some�xed box 
 = [�A;A℄3 and f has its support in 
.We apply the standard olloation sheme to disretise the onvolution produt. Firstwe introdue the equidistant tensor grid !3;n := !1 � !2 � !3 of olloation points fxmg in
, m 2 M := f1; :::; n + 1g3. Here !` := f�A + (m � 1)h : m = 1; :::; n + 1g (` = 1; :::; 3)with mesh-size h = 2A=n.For given pieewise onstant basis funtions f�ig, i 2 I := f1; :::; ng3, assoiated with!3;n, let fi = f(yi) be the representation oeÆients of f in f�ig,f(y) �Xi2I fi�i(y);where yi is the midpoint of the grid-ell numbered by i 2 I. Now the olloation shemereads as f � g � fwmgm2M; wm :=Xi2I fi ZR3 �i(y)g(xm � y)dy; xm 2 !3:As a �rst step, we preompute the oeÆientsgi = ZR3 �i(y)jyj dy; i 2 I:10



The oeÆient tensor G = fgig 2 RI for the Coulomb potential 1jx�yj is approximated inthe rank-R CP tensor format (see Setion 2) using optimised sin-quadratures [13, 18, 24℄,where the rank parameter R = O(j log "j logn) depends logarithmially on both the requiredauray and the problem-size n. In all omputations presented below it was enough tohoose the tensor rank in the range R 2 [10; 20℄ to provide the desired auray. The 3-thorder tensor F = ffig 2 RI is approximated either in the rank r = (r; r; r) Tuker formator via the CP model with tensor rank R2.Following [24, 25℄, we ompute wm by opying the orresponding portion of the disreteonvolution in R3F � G := fzjg; zj :=Xi2I figj�i+1; j 2 J := f1; :::; 2n� 1g3; (3.2)entred at j = n.Let F be represented in the Tuker format (2.2). Then (3.2) is represented in the tensor-produt form F � G = RXk=1 rXm=1 kbm1:::m3 �U (1)k � V (1)m1 �
 :::
 �U (3)k � V (3)m3 � :
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Figure 3.1: Absolute approximation error in the Hartree potential VH for the pseudo-densityof CH4 in the subinterval 
 = [�7; 7℄�f0g�f0g (left) and the redued error by Rihardsonextrapolation involving two grids (right).The 1D onvolutions U (`)k �V (`)m` 2 R2n�1 an be omputed on an equidistant grid by FFT inO(n logn) operations. This leads to the overall omplexityNC�T = O(3rRn logn +Rr3): (3.3)11



Likewise, approximating F in the rank-R1 CP format (see (2.3)) enables us to omputeF � G in the formF � G = RXk=1 R1Xm=1 kbm �U (1)k � V (1)m �
 :::
 �U (3)k � V (3)m � ;whih leads to the ost NC�C = O(RR1n logn):As an example we onsider the CH4 moleule. In order to test the performane ofour approah for the high auray demands of quantum hemial alulations, it beomesneessary to use a pseudopotential on the C atom. We have used a semiloal energy-adjustedpseudopotential and orresponding basis set of Dolg et al. [3℄. This enables us to ahievethe desired auraies on grids !3;n already for values of n that an be easily handled by ourMATLAB ode. Tensor approximations of full potentials will require the fast onvolutionshemes appliable to loally re�ned grids, see e.g. Refs. [16, 17, 24, 25℄.The pseudo-density for the CH4 moleule obtained from a Hartree-Fok alulation isgiven by (2.6), where K = 4 is the number of pseudo-orbitals, R0 = 50 and polynomialdegree(Pk;i) � 2. In the following we represent the onvolving tensor �(x) in the anonialformat. In this way, the produts of two Gaussians an be written in the form of singleGaussians bye��(x�a)2 � e��(x�b)2 = e� � e�(x�)2 ; � = ��(a� b)2�+ � ;  = �+ �;  = a� + b��+ � ;whih leads to the following bound on the initial rank of the input tensorR2 � R0(R0 + 1)2 = 1275: (3.4)We approximate VH(x), x 2 !3;n, in (3.1) via a tensor-produt olloation onvolutionsheme by V (n)H on the n
3 tensor-grid !3;n in the referene ube [�A;A℄3, A = 10:6 bohr.The left part of Figure 3.1 gives the approximation error VH � V (n)H for the sequene ofgrids with n = 112; 224; 448. It indiates that the disrete onvolution has an aurayof order O(h2) in the relevant physial domain orresponding to the essential support of�(x) (see [24℄ for detailed error estimates). Following [24℄, we then apply the Rihardsonextrapolation tehnique to obtain higher auray approximations of order O(h3) withoutextra omputational ost. The orresponding Rihardson extrapolant V (n)H;Rih approximatingVH(x) over a pair of nested grids !3;n and !3;2n, and de�ned on the \oarse" n
3-grid, isgiven by V (n)H;Rih = (4 � V (2n)H � V (n)H )=3 in the grid-points on !3;n:The right part of �gure 3.1 shows the e�et of the Rihardson extrapolation on a sequeneof grids !3;n with n = 112; 224; 448.Next we demonstrate the omputational eÆieny of fully disrete tensor produt onvo-lution to ompute the approximate Hartree potential V (n)H on a sequene of grids !3;n withn = 32; 64; 128; :::; 512. We use the same input data as above (orresponding to the CH4moleule) with initial rank R2 = 1275. To redue the anonial rank, we apply the two-level12



Table 3.1: Ellapsed CPU time (se.) to ompute the disrete onvolution on n
3 grids forthe tensor-produt sheme ConvCC and 3D�FFT on a Sun Fire X4600 omputer with 2,6GHz proessor. n3 323 643 1283 2563 51233D�FFT 0:06 0:41 4:3 55; 4 582; 8ConvCC 0:51 0:73 1:26 3:05 10:01sheme as desribed in [25℄: �rst, we ompute the rank-r Tuker deomposition of the inputtensor and build the orresponding rank-r2 CP representation (with r = 15); seond, wereompress it to the redued rank R02 = 120 < r2 using the sliewise SVD of small r� r ma-tries. Table 3.1 ompares the ellapsed time to ompute the disrete onvolution on n
3 gridby using the 3D�FFT (asymptoti omplexity O(8n3 logn)) and the fast tensor-produtsheme of omplexity NCC = O(R02R1n logn) desribed above. We reall that R1 2 [10; 20℄denotes the tensor rank of the Coloumb oeÆient tensor in R3 .Note that in both 3D�FFT based and tensor-produt onvolution shemes on the n
3grid one requires the double-size FFT with grid-size 2n � 1. Sine the tensor-produt on-volution requires only 1D�FFT (negligible ost in the range n � 104), the double problemsize 2n� 1 does not lead to severe restritions on CPU-time and on the storage spae in thease of fast tensor-produt sheme.Our results indiate that the tensor-produt onvolution outperforms the onventional3D�FFT for large problems (n � 128). But even more important, it has muh less restritivememory onsumptions of order O(RR1n logn) ompared with O(n3 logn). In partiular, the3D�FFT already runs out of memory on the grid !3;512, hene, in the table above, we givethe extrapolated CPU-time � 500:0 se in this ase.4 Coulomb matrix and Hartree-Fok energy omputa-tionIn the following, we apply the tensor-produt sheme [25℄ to ompute the Coulomb matrix ofthe Hartree potential for the CH4 moleule in a GTO basis set. The remaining parts of theFok operator are omputed by the MOLPRO pakage in a onventional way. The Coulombmatrix for VH with respet to the set of normalized \Cartesian Gaussians" fgkg is given byJkm := Z gk(x)gm(x)VH(x)dx; k;m = 1; : : : R0: (4.1)Figure 4.1 a) visualises the exat Coulomb matrix elements Jkm. The error En betweenJkm and its approximation obtained by the disrete olloation sheme for alulating theHartree potential VH is given in Figure 4.1 b). Results on high auray alulations basedon Rihardson extrapolation are illustrated in Figure 4.2.Let F = fFkmg = f(gk; F gm)L2g be the Galerkin matrix of the Fok operator with respetto the normalised Gaussian basis fgkg and M = fMkmg = f(gk; gm)L2g (k;m = 1; :::; R0)13



Figure 4.1: a) Coulomb matrix Jkm for CH4 omputed for the GTO basis set k;m = 1; : : : R0.b) Absolute error of the disrete approximation using Rihardson extrapolation involving thegrids with n = 400 and 800.be the orresponding overlap matrix. We substitute the Galerkin matrix J = fJkmgR0k;m=1from (4.1), whih represents the approximate Hartree potential V (n)H in the basis fgkg, intothe Fok matrix F = Flin + J +K;where Flin = f(gk; (�12�+VN)gm)L2gR0k;m=1 and K = f(gk; Vxgm)L2gR0k;m=1 represent the linearpart of the Fok operator and the exhange potential, respetively.Now the total energy of the system is omputed by solving the eigenvalue problemF	a = �aM	a; a = 1; :::; K;for the �rst K = N=2 smallest eigenvalues �a (for the CH4 moleule with pseudopoten-tial K = 4). For this omputation we apply the MOLPRO pakage. The total energy isalulated by EHF = 2 KXa=1 �a � KXa=1 � eJa � eKa�with eJa = ( a; VH a)L2 and eKa = ( a;Vex a)L2 (a = 1; :::; N=2) being the so-alledCoulomb and exhange integrals, respetively, omputed with respet to the orbitals  a(a = 1; :::; N=2) (ompare with (4.1)). The orresponding errors in the Hartree-Fok energyEHF and of individual eigenvalues for di�erent grids are given in Table 4.1.Let En 2 RR0�R0 be the error in the Coulomb matrix fJkmg. Notie that both matriesfJkmg and En are symmetri up to round-o� errors. We onsider the approximation errorin the eigenvalues �a, a = 1; :::; K. In this way, we introdue the error estimator E1(En) tothe energy error based on the k � k1-evaluation of the error matrix En alulated byE1(En) = maxj=1;:::;R0 R0Xi=1 j(En)ijj:Our numerial results presented in Table 4.2 indiate that the error estimator E1(En) givesa quite aurate upper bound to the approximate total energy. The seond row of Table14
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Figure 4.2: Absolute error in the diagonal Coulomb matrix elements for a) n = 112, 224 andb) n = 224, 448. ) Absolute error in the diagonal Coulomb matrix elements omputed byRihardson extrapolation on the pairs of grids (224; 448) and (400; 800).Table 4.1: Error of the Hartree-Fok energy EHF (hartree) and of individual eigenvalues �iomputed on di�erent grids, denoted by Æn, for the CH4 moleule. The values for Æ(n;2n)represent the Rihardson extrapolation error for pairs of grids of size n and 2n, wheren = 112, 224 and n = 224, 448, respetively.Exat value Æ112 Æ224 Æ448 Æ(112;224) Æ(224;448)�1 �0:95072154 0:0148 3:73 � 10�3 9:37 � 10�4 1:53 � 10�5 6:05 � 10�6�2; �3; �4 �0:54457593 0:0121 3:03 � 10�3 7:62 � 10�4 1:57 � 10�5 5:21 � 10�6EHF -7.84226746 0:0113 2:86 � 10�2 7:19 � 10�3 1:08 � 10�4 3:53 � 10�54.2 illustrates the validity of the error estimator E2(En) based on the disrete k � k2-normevaluation, E2(En) = kEnk2:Analysis of both estimators an be found, for example, in [28℄. In partiular, for eahindividual eigenvalue we havej�a � �(n)a j � E2(En); j�a � �(n)a j � ond(P )E1(En);where the matrix P is de�ned from the diagonalisation proedure M�1=2FM�1=2 = PDP Twith the diagonal matrix D. In our ase we have ond(P ) � 3:46. In Table 4.1 we presentthe approximation errors Æn and the orresponding extrapolated errors Æ(n;2n) for the singleeigenvalue �1 and the three degenerate eigenvalues �2 = �3 = �4.From Table 4.2 we observe that the error estimators E2(En) and E1(En) an be utilisedfor an a priori error estimation to the total energy based only on preomputed error boundsto the Fok matrix.
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Table 4.2: Comparison of error estimators E1 and E2 for Rihardson extrapolated Coulombmatrix elements. n (112; 224) (224; 448)E1(En) 1:1212 � 10�4 3:742 � 10�5E2(En) 6:9 � 10�5 2:40 � 10�55 ConlusionsWe have investigated adaptive orthogonal tensor produt approximations for some quantitiesof interest in Hartree-Fok and density funtional theory. In partiular, we studied theonvergene rate upon the tensor rank for eletron densities, Coulomb and Hartree potentialsas well as for the Hartree-Fok energy for a number of simple moleules.For the onsidered moleules, the ALS iterative sheme to ompute the orthogonalTuker-type deomposition has demonstrated robust behaviour providing exponentially fastonvergene in the tensor rank r. It is a remarkable fat that the orthogonal tensor-produtansatz typially provides rather \uniformly distributed" max-norm errors, so that the tensorapproximand �ts the initial eletron density equally well at the near- and far-�eld regionsof the nulear usps as shown in Figures 2.5. Contrary to the orthogonal deomposition,the auray of the anonial approximation usually notieably deteriorates near the nulearusps [6℄. The orthogonal univariate omponents of the Tuker-type deomposition resem-ble the shape of the deomposed eletron density along the orresponding axis and appearto be suitable for the onstrution of a low-dimensional problem-adapted set of orthogonalbasis funtions. We observe that due to the fast deay in the entries of the ore tensor theTuker-type approximation with moderate rank already represents the physial quantity withsatisfatory auray.The onvolution integral representing the Hartree potential is omputed by the fullydisrete tensor-produt olloation sheme ombined with the Rihardson extrapolation on asequene of grids. Our approah exhibits O(h3) onvergene with h = O(n�1), and requiresO(3rn + r3) storage, where r denotes the Tuker rank of the eletron density with r � nalmost uniformly in n (spei�ally, r = O(logn)). This method ensures, in partiular for theCH4-moleule, the relative auray of the order of 10�6 on the �ne n
3 grid with n � 500.It requires low omputational resoures sine the orresponding three-dimensional disreteonvolution transform is performed via 1D tensor-produt FFT. This leads to sublinearomplexity O(n log3 n) instead of the ost of the onventional 3D-FFT, O(n3 logn). In thisway, the presented approah o�ers a prinipal step towards the numerial solution of theHartree-Fok/Kohn-Sham equations in the fully disrete tensor-produt format with linearsaling in the univariate grid-size n of a 3D Cartesian grid.Aknowledgments. The authors gratefully aknowledge Prof. W. Hakbush (Leipzig)and Prof. R. Shneider (Berlin) for useful disussions and valuable omments. This workwas partially supported by the DFG (SPP 1145).16
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