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Tensor de
omposition in ele
troni
 stru
ture
al
ulations on 3D Cartesian gridsS. R. Chinnamsetty�, H.-J. Flad�, V. Khoromskaia�,and B.N. Khoromskij�� Max-Plan
k-Institute for Mathemati
s in the S
ien
es,Inselstr. 22-26, D-04103 Leipzig, Germany.� Christian-Albre
hts-Universit�at zu Kiel,Christian-Albre
hts-Platz 4, 24098 Kiel, Germany.Corresponding author fvekhg�mis.mpg.de (V. Khoromskaia)Abstra
tIn this paper we propose a novel approa
h based on the 
ombination of Tu
ker-typeand 
anoni
al tensor de
omposition te
hniques for the eÆ
ient numeri
al approxima-tion of fun
tions and operators in ele
troni
 stru
ture 
al
ulations. In parti
ular, westudy potential appli
ations of tensor approximations for the numeri
al solution ofHartree-Fo
k and Kohn-Sham equations on 3D Cartesian grids.Low-rank orthogonal Tu
ker-type tensor approximations are investigated for ele
-tron densities and Hartree potentials of simple mole
ules, where exponential 
onver-gen
e with respe
t to the Tu
ker rank is observed. This enables an eÆ
ient tensor-produ
t 
onvolution s
heme for the 
omputation of the Hartree potential using a
ollo
ation-type approximation via pie
ewise 
onstant basis fun
tions on a uniformn�n�n grid. Combined with Ri
hardson extrapolation, our approa
h exhibits O(h3)
onvergen
e with h = O(n�1), and requires O(3rn+ r3) storage, where r denotes theTu
ker rank of the ele
tron density with r � n almost uniformly in n (spe
i�
ally,r = O(log n)). For example, Hartree-Fo
k 
al
ulations for the CH4 mole
ule, with apseudopotential on the C atom, a
hieved a

ura
ies of the order of 10�5 hartree witha grid-size n of several hundreds. For large 3D grids (n � 128), the tensor-produ
t
onvolution s
heme markedly outperforms the 3D� FFT in both the 
omputing timeand storage requirements.AMS Subje
t Classi�
ation: 65F30, 65F50, 65N35, 65F10Key words: Tu
ker-type tensor de
omposition, Hartree-Fo
k equation, dis
rete 
onvolution,orthogonal adaptive tensor-produ
t basis.1 Introdu
tionA su

essful strategy to redu
e the 
omputational 
omplexity in ele
troni
 stru
ture 
al
u-lations is based on a series of low-rank tensor-produ
t de
ompositions ranging from many-1



ele
tron wavefun
tions and related quantities, like ele
tron densities, up to Coulomb poten-tials representing inter-ele
troni
 intera
tions and external potentials due to atomi
 nu
lei.Let us just mention linear 
ombinations of Slater determinants, Gaussian-type orbital (GTO)basis sets, and the 
ommonly employed Gaussian-transform of the Coulomb potential for theevaluation of integrals involving GTO basis fun
tions. We refer to the monographs [20, 7℄for a detailed exposition of these subje
ts. Furthermore, separable approximations of energydenominators, following the pioneering work of Alml�of and H�aser [1, 15℄, be
ame a popularapproa
h to redu
e the 
omputational e�ort in many-body perturbation theory. Re
ently,alternative approa
hes based on \optimal" tensor-produ
t approximations (with respe
t to
ertain norms) have been dis
ussed in the literature. Here and in the following we refer to\optimal" in the sense of the best possible separable approximation of a fun
tionf(x) � RXk=1 h1;k(x1)h2;k(x2) : : : hd;k(xd); x 2 Rd (1.1)for a given rank R, without any 
onstraints imposed on the univariate 
omponents hi;k withi = 1; : : : ; d. This format has been frequently denoted as 
anoni
al de
omposition in the lit-erature. Initiated by the work of Beylkin and Mohlemkamp [4, 5℄, \optimal" tensor-produ
tapproximations for various potentials and more general integral operators, with possible ap-pli
ations in quantum 
hemistry, have been dis
ussed in the literature, 
f. Refs. [19, 12, 13, 14℄and referen
es therein.We fo
us on the tensor-produ
t approximation of ele
tron densities and the 
omputa-tion of Hartree-potentials whi
h represents a major bottlene
k for the numeri
al solutionof Hartree-Fo
k and Kohn-Sham equations. Traditionally, GTO basis sets have been exten-sively used for this purpose in quantum 
hemistry. Approximation of the ele
tron density ina so-
alled auxiliary GTO basis and subsequent analyti
 evaluation of the Hartree-potentialbe
ame known as density-�tting or resolution of the identity method, 
f. Refs. [9, 11, 26℄,and turned out to be an essential improvement for the 
omputational eÆ
ien
y. Althoughsu
h kind of approa
h utilizes the separability of GTO basis sets, it seems that possiblegeneralizations 
on
erning this issue are rarely dis
ussed in the literature. An interestingex
eption is a paper by Alml�of [2℄ who 
onsidered possible tensor produ
t 
on
epts for aneÆ
ient evaluation of the Fo
k matrix. Re
ently a density �tting s
heme based on \opti-mal" tensor produ
t approximations (1.1) has been studied in Ref. [6℄. It turned out thatsigni�
ant improvements beyond GTO basis sets 
an be a
hieved, however the un
onstraintoptimization of univariate 
omponents represents a generi
ally ill-posed problem and rathersophisti
ated optimization te
hniques are ne
essary in order to a
hieve the required higha

ura
ies.In this paper we propose a novel approa
h based on the 
ombination of Tu
ker-typeand 
anoni
al tensor de
omposition te
hniques for the eÆ
ient numeri
al approximationof fun
tions and operators in ele
troni
 stru
ture 
al
ulations. The Tu
ker format posesorthogonality 
onstraints on the univariate 
omponents whi
h turns the optimization into awell-posed problem. Primarily, the Tu
ker-type de
omposition was applied in 
hemometri
sand independent 
omponent analysis, and it was generally treated as a method for statisti
aldata pro
essing [29℄ with moderate a

ura
y requirements. Potential appli
ations for larges
ale problems in quantum 
hemistry have been already shown re
ently in Ref. [25℄ whereone 
an �nd a thorough des
ription of tensor operations in the Tu
ker format.2



The main result of the paper is the eÆ
ient and a

urate 
omputation of the fully dis
reterepresentation to the Hartree potential on the Cartesian n� n� n grid (further denoted byn
3) via the fast tensor-produ
t 
onvolution [24, 25℄ at the 
ost of O(R1R2n) operations.Here R1; R2 denote the separation rank of the Coulomb potential and ele
tron density, re-spe
tively. For a pre
ise de�nition of these ranks we refer to Se
tion 3. We want to mentionthat R1; R2 only weakly depend on the grid spa
ing and 
an be 
onsidered as almost uni-formly bounded in the univariate problem size n, 
f. our dis
ussion in Se
tion 2. It shouldbe also noted that the input data for the dis
rete 
onvolution produ
t are usually givenwith an initial rank R >> R1. Applying the two-level s
heme [25℄, we �rst 
ompute itsrank-r Tu
ker approximation and then re
ompress the small size 
ore tensor by the rank-R1
anoni
al de
omposition.An essential new feature of this s
heme is that 
onvolutions require only 1D�FFTsinstead of 3D�FFTs as in traditional approa
hes (for example, a large variety of plane waveand wavelet based methods exhibiting linear s
aling in the number N3 = n3 of grid points, seee.g. the BigDFT program [21, 22℄.) Therefore, it is possible to perform 
onvolutions involvingtensor produ
t approximations with mu
h lower 
omplexity with respe
t to the grid size N3(see Remark 2.1). Furthermore, storage of the full 3D�grid is no longer required whi
hprovides another potentially signi�
ant advantage with respe
t to 
onventional methodsof O(N3) 
omplexity. The latter might be
ome 
omputationally infeasible just be
ause ofstorage limitations for very large systems or high grid resolutions.For simpli
ity we restri
ted ourselves to the Hartree-Fo
k method. We want to mentionhowever that the te
hniques to be dis
ussed in the following 
an be as well applied to Kohn-Sham equations in DFT. The Hartree-Fo
k method provides a mean-�eld approximationfor the ground state of many-ele
tron systems. This implies the solution of a nonlineareigenvalue problem ��12� + Vnu
 + VH � Vx� i(x) = �i  i(x); (1.2)for the N=2 lowest eigenvalues �i and spatial eigenfun
tions  i (i = 1; :::; N=2), in the 
aseof a 
losed-shell N ele
tron system. The Hartree-Fo
k equation (1.2) 
orresponds to anonlinear single-parti
le S
hr�odinger equation in R3 where the potentials VH and Vx representa mean-�eld a
ting on a single ele
tron whi
h is generated by the remaining N � 1 ele
tronsin the system. Furthermore, an external potential Vnu
 
ontains the bare Coulomb- orpseudopotentials of the nu
lei. Within the present work, we fo
us on the 
omputation of theHartree potential VH(x) := ZR3 �(y)jx� yj dy; (1.3)whi
h 
orresponds to a 
onvolution of the Coulomb potential with the total ele
tron density�(y) = 2 N=2Xb=1  b(y) �b (y): (1.4)The remaining term is the nonlo
al ex
hange operator(Vx a) (x) := N=2Xb=1 ZR3  a(y) �b (y)jx� yj  b(x) dy; (1.5)3



whi
h has to be repla
ed by a lo
al ex
hange-
orrelation potential in the Kohn-Sham equa-tions.The paper is organized as follows. In Se
tion 2 we introdu
e the orthogonal Tu
kerde
omposition and study Tu
ker approximations for all-ele
tron densities of several simplemole
ules in order to demonstrate exponential 
onvergen
e with respe
t to the tensor rank.In Se
tion 3, using sin
 quadrature based approximations to the Coulomb potential [13, 18,23℄, we 
onsider the 
omputation of Hartree potentials within a fully dis
rete tensor-produ
t
ollo
ation s
heme (
f. [24℄) on a 3D Cartesian grid. A numeri
al example is provided forthe CH4 mole
ule using a pseudopotential at the C atom. Finally, in Se
tion 4 we re
overthe Galerkin matrix of the approximate Hartree potential in a GTO basis and 
al
ulate the
orresponding errors in the Hartree-Fo
k energy.2 Tu
ker-type approximation of ele
tron densitiesWe introdu
e the linear spa
e of real-valued d-th order tensorsA = [ai1:::id℄ 2 RI ; I = I1 � : : :� Id; I` = f1; :::; n`g; ` = 1; :::; dwith the s
alar produ
t de�ned ashA;Bi := X(i1;:::;id)2I ai1:::idbi1:::id for A;B 2 RI : (2.1)The 
orresponding Eu
lidean norm is given by kAk :=phA;Ai:For given ve
tors U (`) 2 RI` with 
omponents U (`) = fu(`)i` gi`2I`, we use the notion of theouter produ
t \
" of ve
tors, whi
h form the 
anoni
al rank-1 tensorU = U (1) 
 : : :
 U (d) 2 RI ;de�ned by entries ui1:::id = u(1)i1 � � �u(d)id :In the Tu
ker-type de
omposition, we approximate any tensor A 2 RI up to a givena

ura
y " > 0, by a tensor A(r) with r = (r1; : : : ; rd) de�ned byA(r) = r1Xk1=1 : : : rdXkd=1 bk1:::kd � V (1)k1 
 : : :
 V (d)kd � A; bk1:::kd 2 R; (2.2)where V (`)k` 2 RI` (` = 1; :::; d), and B = fbkg 2 Rr1�:::�rd is 
alled the 
ore tensor. HerefV (`)k` ; 1 � k` � r`g are linear independent ve
tors for ea
h �xed `, hen
e without loss ofgenerality, we assume that they are mutually orthogonal, i.e., V(`) = [V (`)1 V (`)2 : : : V (`)r` ℄ 2Rn`�r` are orthogonal matri
es.The representation (2.2) means that for given set of rank parameters r` � n` (` = 1; :::; d),any tensor 
an be de
omposed approximately into r1r2 : : : rd outer produ
ts (respe
tively, rd4



if r1 = : : : = rd = r), whi
h requires only r1 + � � �+ rd 
anoni
al 
omponents V (`)k` of size n`and rd 
oeÆ
ients fbkg for its representation. The important parameterr = max` fr`gis 
alled the Tu
ker rank. To make the approximation numeri
ally eÆ
ient, we have tosatisfy the 
ondition r` � n` (` = 1; :::; d), whi
h is usually the 
ase in ele
troni
 stru
ture
al
ulations.The 
anoni
al de
omposition (CANDECOMP) or parallel fa
tors (PARAFAC) model(shortly, CP model) represents a tensor by a sum of rank-1 non-orthogonal 
omponents asfollows A(R) = RXk=1 
k � U (1)k 
 : : :
 U (d)k ; 
k 2 R; (2.3)with normalised 
omponents U (`)k 2 RI` (` = 1; :::; d). The minimal parameter R in theabove representation is 
alled the rank (or 
anoni
al rank) of a tensor.Below we 
onsider approximating properties of the orthogonal Tu
ker-type representa-tions (2.2) in R3 for ele
tron densities of some simple mole
ules. We apply the alternatingleast-squares (ALS) iterative s
heme des
ribed in [8, 25℄ to 
ompute the low-rank tri-linearapproximations for ele
tron densities of the H atom, LiH, CH4, C2H6 and H2O mole
ules.Remark 2.1 The Tu
ker model applied to a fully populated tensor of size n
3 has the 
om-plexity of order O(n4) (storage and 
omputational time). If the input tensor is alreadypresented in the rank-R CP format then the 
orresponding 
anoni
al-to-Tu
ker ALS methodwith the Tu
ker rank r has the 
omplexity in the range O(rRn)�O(r2Rn), depending on theproblem setting (see x2.4.2 in [25℄). Noti
e that the so-
alled adaptive 
ross approximationmethod of 
omplexity O(r3n) was re
ently proposed in [27℄.In Se
tions 3 and 4 both the Tu
ker-type and CP de
ompositions are used in the fast
omputation of the 
onvolution produ
t in R3 appearing as the main ingredient in the Fo
koperator.As the �rst step, the approximate referen
e orbitals and ele
tron densities of the men-tioned mole
ules are 
omputed by the standard quantum 
hemistry pa
kage MOLPRO [30℄in the form of an expansion by \Cartesian Gaussian" basis fun
tions, i.e.,g(x) = R0Xk=1 �k(x1 � Ak)`k(x2 � Bk)mk(x3 � Ck)nk exp(��k�2k) (2.4)with �2k = (x1 � Ak)2 + (x2 � Bk)2 + (x3 � Ck)2; x = (x1; x2; x3)T 2 R3 ;where the exponents �k have been taken from standard VDZ basis sets [10℄.We assume that any parti
ular mole
ule is imbedded in a 
ertain �xed 
omputationalbox [�A;A℄3 with a suitable A > 0. Let !3 � [�A;A℄3 be a uniform n � n � n tensor-produ
t grid (shortly n
3) indexed by I = I1 � I2 � I3. For a given 
ontinuous fun
tiong : [�A;A℄3 ! R, we introdu
e the 
ollo
ation-type fun
tion related tensor of order 3 by5
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Figure 2.1: Convergen
e of the Tu
ker approximation for the ele
tron density of LiH withrespe
t to the EFN norm for di�erent grid sizes n = 65; 129 and 193 and �xed box sizeA = 7 bohr.A0 � A(g) := [ai1i2i3 ℄(i1;i2;i3)2I 2 Rn�n�n with ai1i2i3 := g(x(1)i1 ; x(2)i2 ; x(3)i3 );where (x(1)i1 ; x(2)i2 ; x(3)i3 ) 2 !3 are the grid 
ollo
ation points. In our appli
ations, the fun
-tion g is de�ned by (2.4) using the set of separable \Cartesian Gaussian" fun
tions. There
onstru
ted 3-rd order tensor A0 is approximated by a rank r = (r; r; r) Tu
ker-type rep-resentation for a sequen
e of rank-parameters r = 1; 2; : : : ; r0. The orthogonal 
omponentsand the 
orresponding 
ore tensor of the size r
3 are then used for the re
onstru
tion of theapproximating tensor A(r) � A0. All numeri
al multi-linear approximations are performedin MATLAB, release 7.3.For every rank-r Tu
ker-type approximation, we 
ompute the relative error with respe
tto the Eu
lidean norm, as well as the relative maximum error:E(r)FN = kA0 �A(r)kjjA0jj ; E(r)C := maxi2I ja0;i � ar;ijmaxi2I ja0;ij : (2.5)The relative di�eren
e of the norms denoted byE(r)FE = kA0k � kA(r)kjjA0jj � kA0 �A(r)k2kA0k2 ;
an be used as a stopping 
riteria. The ALS iteration is terminated if the value of E(r)FErea
hes the ma
hine pre
ision.The ele
tron densities of the 
onsidered mole
ules are �rst 
omputed in the form�(x) := KXa=1  2a(x) = KXa=1  R0Xk=1 Pk;a(x)e�k(x�xk)2!2 ; (2.6)where K is the number of ele
tron pairs and R0 is the number of GTO basis fun
tions givenby expansion (2.4) for orbitals  a(x). For ea
h parti
ular mole
ule we use the following6
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Figure 2.2: Approximation error in EFN and EC norms versus Tu
ker rank for the ele
trondensities of a) CH4, b) C2H6 and 
) H2O with n = 65.physi
ally relevant parameters: A = 10 bohr, R0 = 10 for H atom, A = 7 bohr, R0 = 34for LiH, A = 5 bohr, R0 = 55 for CH4, A = 5:8 bohr, R0 = 96 for C2H6 and A = 10 bohr,R0 = 41 for H2O.Re
all that in the 
ase of the H atom the orbital and ele
tron density are given expli
itlyby �(x) = C� exp(��jxj) with x 2 R3with � = 1 for the orbital and � = 2 for the ele
tron density.
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Figure 2.3: Orthogonal ve
tors V (1)k , k = 1; :::; 4, for the rank-10 orthogonal Tu
ker approx-imation of the ele
tron density for a) the H atom and b) for the LiH mole
ule.We approximate the fun
tion (2.6) using the Tu
ker model. Figure 2.1 gives the approx-imation error with respe
t to the Tu
ker rank r for the LiH ele
tron densities 
omputedby (1.4) and (2.4) for di�erent grid sizes n
3. We see that for a �xed approximation errorthe Tu
ker rank remains to be almost independent on the univariate problem size n. Theapproximation errors shown in Figure 2.2 verify exponential 
onvergen
e of the orthogonal7
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Figure 2.4: Entries of the 
ore tensor 6
3 and the orthogonal ve
tors V (3)k , k = 1; :::; 6of the rank-6 Tu
ker-type de
omposition of the ele
tron density for the C2H6 mole
ule.Numbers given for every sli
e of 
ore-tensor entries 
orrespond to the maximum of jbkj forthe 
orresponding sli
e.Tu
ker approximation (in the rank-parameter r) of ele
tron densities rea
hing the relativea

ura
y � 10�5 for CH4, H2O and C2H6 with r = 16.The examples of orthogonal ve
tors V (`)k (k = 1; :::; 4, ` = 1; 3), of the tensor-produ
tde
omposition for the H atom, LiH and C2H6 mole
ules shown in Figures 2.3 and 2.4 resemblethe shape of the de
omposed ele
tron density along the 
orresponding spatial axis. Due toorthogonality of the de
omposition, the Tu
ker model appears to be suitable for 
onstru
tinglow dimensional problem-dependent orthogonal basis. Entries of the 
ore tensor presented inFigure 2.4 are the weights bk1k2k3 of the 
orresponding outer produ
ts of orthogonal ve
torsV (1)k1 
 V (2)k2 
 V (3)k3 , whi
h 
ompose the summands of A(r) in (2.2) for k` � 6.Numeri
al experiments demonstrate high approximation power of the problem-dependentorthogonal tensor-produ
t basis. For example, let B10 be the 
ore tensor of the rank r = 10Tu
ker-type approximation of the ele
tron density for the CH4 mole
ule, while ~Bp representsthe prin
ipal p � p� p subtensor of B10. We observe that the 
ontribution of the subspa
espanfV (`)k gpk=1, (` = 1; 2; 3) to the relative Eu
lidean norm kB10� ~BpkkB10k , is signi�
ant even forsmall p. In fa
t, already with p = 3, the 
ontribution from the �rst three orthogonal 
ompo-nents, e.g., for 1 � k � 3, represents the relative `2-error with an a

ura
y of about 0:01%.This means that the adaptive orthogonal basis obtained via the Tu
ker-type approximationwith moderate rank already represents the important physi
al quantities with satisfa
torya

ura
y.The ele
tron densities of CH4 and C2H6 are 
onsidered in the 
ubes [�7; 7℄3 and[�5:8; 5:8℄3, 
orrespondingly, on a uniform n
3 grid of size n = 65. Figures 2.5 a) and 
)visualise the ele
tron density of CH4 in a plane 
ontaining the C atom and of C2H6 in aplane plane 
ontaining two C and two H atoms, 
orrespondingly. Figures 2.5 b) and d)visualise the absolute approximation error for the ele
tron densities � of these mole
ules inthe 
orresponding planes for r = 16. In spite of large values of � at the 
usp regions (� 60units) we observe a rather uniform distribution of the absolute value of the approximationerror of the order � 10�4� 10�5 a.u. in the 
omputational domain. This is a typi
al feature8
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Figure 2.5: Ele
tron densities and absolute errors of rank r = 16 Tu
ker-type approximationsfor CH4 and C2H6 mole
ules.of the orthogonal Tu
ker de
omposition. For H2O with even larger 
usp (� 148 units) at theorigin, we see in Figure 2.2 
) that the 
onvergen
e of � for this mole
ule approximated inthe volume [�10; 10℄3 gives the relative a

ura
y � 10�5 with the rank r = 16. Finally, we
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Figure 2.6: Approximation error in EFN and EC norms versus Tu
ker rank for the Hartreepotentials of a) CH4, b) C2H6 and 
) H2O.present the 
onvergen
e behaviour of the Tu
ker-type approximation applied to the Hartreepotentials of CH4, C2H6 and H2O mole
ules (see Figure 2.6) whi
h indi
ates exponential
onvergen
e in the Tu
ker rank r.Our numeri
al results demonstrate the eÆ
ien
y of low-rank orthogonal Tu
ker approx-imations to the ele
tron densities of the 
onsidered mole
ules. They show exponential 
on-vergen
e upon the Tu
ker rank r with a 
onvergen
e rate whi
h is almost independent of9



the resolution level depending on the grid size n (theoreti
al results indi
ate r = O(logn)).The low rank tensor approximations of orbitals and ele
tron densities 
an be further utilisedfor low-
omplexity 
al
ulations of fun
tionals and operators of physi
al relevan
e, e.g., theele
tron-ele
tron and ele
tron-ion 
ontributions to the total energy, the Hartree and ex
hangepotentials, as well as to lo
al ex
hange-
orrelation potentials in the Kohn-Sham equation. Asan example, in the next se
tion we 
onsider the 
omputation of the low-rank tensor approx-imation of the Hartree potential using tensor de
ompositions of all fun
tions and operatorsinvolved.3 Computing the Hartree potential by tensor-produ
t
onvolutionWe 
onsider the 
omputation of the Hartree potentialVH(x) = ZR3 �(y)jx� yjdy; x 2 R3 (3.1)by the dis
rete multi-dimensional tensor-produ
t 
onvolution on uniform grids in R3 , de-s
ribed in Ref. [24℄. The 
onvolution produ
t is de�ned byw(x) := (f � g)(x) := ZR3 f(y)g(x� y)dy f; g 2 L2(R3):Our parti
ular 
hoi
e is g(x) = 1jxj, f(x) = �(x), x 2 R3 . Due to the physi
al prerequisites(orbitals and ele
tron density have exponential de
ay) the fun
tion f �g is 
omputed in some�xed box 
 = [�A;A℄3 and f has its support in 
.We apply the standard 
ollo
ation s
heme to dis
retise the 
onvolution produ
t. Firstwe introdu
e the equidistant tensor grid !3;n := !1 � !2 � !3 of 
ollo
ation points fxmg in
, m 2 M := f1; :::; n + 1g3. Here !` := f�A + (m � 1)h : m = 1; :::; n + 1g (` = 1; :::; 3)with mesh-size h = 2A=n.For given pie
ewise 
onstant basis fun
tions f�ig, i 2 I := f1; :::; ng3, asso
iated with!3;n, let fi = f(yi) be the representation 
oeÆ
ients of f in f�ig,f(y) �Xi2I fi�i(y);where yi is the midpoint of the grid-
ell numbered by i 2 I. Now the 
ollo
ation s
hemereads as f � g � fwmgm2M; wm :=Xi2I fi ZR3 �i(y)g(xm � y)dy; xm 2 !3:As a �rst step, we pre
ompute the 
oeÆ
ientsgi = ZR3 �i(y)jyj dy; i 2 I:10



The 
oeÆ
ient tensor G = fgig 2 RI for the Coulomb potential 1jx�yj is approximated inthe rank-R CP tensor format (see Se
tion 2) using optimised sin
-quadratures [13, 18, 24℄,where the rank parameter R = O(j log "j logn) depends logarithmi
ally on both the requireda

ura
y and the problem-size n. In all 
omputations presented below it was enough to
hoose the tensor rank in the range R 2 [10; 20℄ to provide the desired a

ura
y. The 3-thorder tensor F = ffig 2 RI is approximated either in the rank r = (r; r; r) Tu
ker formator via the CP model with tensor rank R2.Following [24, 25℄, we 
ompute wm by 
opying the 
orresponding portion of the dis
rete
onvolution in R3F � G := fzjg; zj :=Xi2I figj�i+1; j 2 J := f1; :::; 2n� 1g3; (3.2)
entred at j = n.Let F be represented in the Tu
ker format (2.2). Then (3.2) is represented in the tensor-produ
t form F � G = RXk=1 rXm=1 
kbm1:::m3 �U (1)k � V (1)m1 �
 :::
 �U (3)k � V (3)m3 � :
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Figure 3.1: Absolute approximation error in the Hartree potential VH for the pseudo-densityof CH4 in the subinterval 
 = [�7; 7℄�f0g�f0g (left) and the redu
ed error by Ri
hardsonextrapolation involving two grids (right).The 1D 
onvolutions U (`)k �V (`)m` 2 R2n�1 
an be 
omputed on an equidistant grid by FFT inO(n logn) operations. This leads to the overall 
omplexityNC�T = O(3rRn logn +Rr3): (3.3)11



Likewise, approximating F in the rank-R1 CP format (see (2.3)) enables us to 
omputeF � G in the formF � G = RXk=1 R1Xm=1 
kbm �U (1)k � V (1)m �
 :::
 �U (3)k � V (3)m � ;whi
h leads to the 
ost NC�C = O(RR1n logn):As an example we 
onsider the CH4 mole
ule. In order to test the performan
e ofour approa
h for the high a

ura
y demands of quantum 
hemi
al 
al
ulations, it be
omesne
essary to use a pseudopotential on the C atom. We have used a semilo
al energy-adjustedpseudopotential and 
orresponding basis set of Dolg et al. [3℄. This enables us to a
hievethe desired a

ura
ies on grids !3;n already for values of n that 
an be easily handled by ourMATLAB 
ode. Tensor approximations of full potentials will require the fast 
onvolutions
hemes appli
able to lo
ally re�ned grids, see e.g. Refs. [16, 17, 24, 25℄.The pseudo-density for the CH4 mole
ule obtained from a Hartree-Fo
k 
al
ulation isgiven by (2.6), where K = 4 is the number of pseudo-orbitals, R0 = 50 and polynomialdegree(Pk;i) � 2. In the following we represent the 
onvolving tensor �(x) in the 
anoni
alformat. In this way, the produ
ts of two Gaussians 
an be written in the form of singleGaussians bye��(x�a)2 � e��(x�b)2 = e� � e�
(x�
)2 ; � = ��(a� b)2�+ � ; 
 = �+ �; 
 = a� + b��+ � ;whi
h leads to the following bound on the initial rank of the input tensorR2 � R0(R0 + 1)2 = 1275: (3.4)We approximate VH(x), x 2 !3;n, in (3.1) via a tensor-produ
t 
ollo
ation 
onvolutions
heme by V (n)H on the n
3 tensor-grid !3;n in the referen
e 
ube [�A;A℄3, A = 10:6 bohr.The left part of Figure 3.1 gives the approximation error VH � V (n)H for the sequen
e ofgrids with n = 112; 224; 448. It indi
ates that the dis
rete 
onvolution has an a

ura
yof order O(h2) in the relevant physi
al domain 
orresponding to the essential support of�(x) (see [24℄ for detailed error estimates). Following [24℄, we then apply the Ri
hardsonextrapolation te
hnique to obtain higher a

ura
y approximations of order O(h3) withoutextra 
omputational 
ost. The 
orresponding Ri
hardson extrapolant V (n)H;Ri
h approximatingVH(x) over a pair of nested grids !3;n and !3;2n, and de�ned on the \
oarse" n
3-grid, isgiven by V (n)H;Ri
h = (4 � V (2n)H � V (n)H )=3 in the grid-points on !3;n:The right part of �gure 3.1 shows the e�e
t of the Ri
hardson extrapolation on a sequen
eof grids !3;n with n = 112; 224; 448.Next we demonstrate the 
omputational eÆ
ien
y of fully dis
rete tensor produ
t 
onvo-lution to 
ompute the approximate Hartree potential V (n)H on a sequen
e of grids !3;n withn = 32; 64; 128; :::; 512. We use the same input data as above (
orresponding to the CH4mole
ule) with initial rank R2 = 1275. To redu
e the 
anoni
al rank, we apply the two-level12



Table 3.1: Ellapsed CPU time (se
.) to 
ompute the dis
rete 
onvolution on n
3 grids forthe tensor-produ
t s
heme ConvCC and 3D�FFT on a Sun Fire X4600 
omputer with 2,6GHz pro
essor. n3 323 643 1283 2563 51233D�FFT 0:06 0:41 4:3 55; 4 582; 8ConvCC 0:51 0:73 1:26 3:05 10:01s
heme as des
ribed in [25℄: �rst, we 
ompute the rank-r Tu
ker de
omposition of the inputtensor and build the 
orresponding rank-r2 CP representation (with r = 15); se
ond, were
ompress it to the redu
ed rank R02 = 120 < r2 using the sli
ewise SVD of small r� r ma-tri
es. Table 3.1 
ompares the ellapsed time to 
ompute the dis
rete 
onvolution on n
3 gridby using the 3D�FFT (asymptoti
 
omplexity O(8n3 logn)) and the fast tensor-produ
ts
heme of 
omplexity NCC = O(R02R1n logn) des
ribed above. We re
all that R1 2 [10; 20℄denotes the tensor rank of the Coloumb 
oeÆ
ient tensor in R3 .Note that in both 3D�FFT based and tensor-produ
t 
onvolution s
hemes on the n
3grid one requires the double-size FFT with grid-size 2n � 1. Sin
e the tensor-produ
t 
on-volution requires only 1D�FFT (negligible 
ost in the range n � 104), the double problemsize 2n� 1 does not lead to severe restri
tions on CPU-time and on the storage spa
e in the
ase of fast tensor-produ
t s
heme.Our results indi
ate that the tensor-produ
t 
onvolution outperforms the 
onventional3D�FFT for large problems (n � 128). But even more important, it has mu
h less restri
tivememory 
onsumptions of order O(RR1n logn) 
ompared with O(n3 logn). In parti
ular, the3D�FFT already runs out of memory on the grid !3;512, hen
e, in the table above, we givethe extrapolated CPU-time � 500:0 se
 in this 
ase.4 Coulomb matrix and Hartree-Fo
k energy 
omputa-tionIn the following, we apply the tensor-produ
t s
heme [25℄ to 
ompute the Coulomb matrix ofthe Hartree potential for the CH4 mole
ule in a GTO basis set. The remaining parts of theFo
k operator are 
omputed by the MOLPRO pa
kage in a 
onventional way. The Coulombmatrix for VH with respe
t to the set of normalized \Cartesian Gaussians" fgkg is given byJkm := Z gk(x)gm(x)VH(x)dx; k;m = 1; : : : R0: (4.1)Figure 4.1 a) visualises the exa
t Coulomb matrix elements Jkm. The error En betweenJkm and its approximation obtained by the dis
rete 
ollo
ation s
heme for 
al
ulating theHartree potential VH is given in Figure 4.1 b). Results on high a

ura
y 
al
ulations basedon Ri
hardson extrapolation are illustrated in Figure 4.2.Let F = fFkmg = f(gk; F gm)L2g be the Galerkin matrix of the Fo
k operator with respe
tto the normalised Gaussian basis fgkg and M = fMkmg = f(gk; gm)L2g (k;m = 1; :::; R0)13



Figure 4.1: a) Coulomb matrix Jkm for CH4 
omputed for the GTO basis set k;m = 1; : : : R0.b) Absolute error of the dis
rete approximation using Ri
hardson extrapolation involving thegrids with n = 400 and 800.be the 
orresponding overlap matrix. We substitute the Galerkin matrix J = fJkmgR0k;m=1from (4.1), whi
h represents the approximate Hartree potential V (n)H in the basis fgkg, intothe Fo
k matrix F = Flin + J +K;where Flin = f(gk; (�12�+VN)gm)L2gR0k;m=1 and K = f(gk; Vxgm)L2gR0k;m=1 represent the linearpart of the Fo
k operator and the ex
hange potential, respe
tively.Now the total energy of the system is 
omputed by solving the eigenvalue problemF	a = �aM	a; a = 1; :::; K;for the �rst K = N=2 smallest eigenvalues �a (for the CH4 mole
ule with pseudopoten-tial K = 4). For this 
omputation we apply the MOLPRO pa
kage. The total energy is
al
ulated by EHF = 2 KXa=1 �a � KXa=1 � eJa � eKa�with eJa = ( a; VH a)L2 and eKa = ( a;Vex a)L2 (a = 1; :::; N=2) being the so-
alledCoulomb and ex
hange integrals, respe
tively, 
omputed with respe
t to the orbitals  a(a = 1; :::; N=2) (
ompare with (4.1)). The 
orresponding errors in the Hartree-Fo
k energyEHF and of individual eigenvalues for di�erent grids are given in Table 4.1.Let En 2 RR0�R0 be the error in the Coulomb matrix fJkmg. Noti
e that both matri
esfJkmg and En are symmetri
 up to round-o� errors. We 
onsider the approximation errorin the eigenvalues �a, a = 1; :::; K. In this way, we introdu
e the error estimator E1(En) tothe energy error based on the k � k1-evaluation of the error matrix En 
al
ulated byE1(En) = maxj=1;:::;R0 R0Xi=1 j(En)ijj:Our numeri
al results presented in Table 4.2 indi
ate that the error estimator E1(En) givesa quite a

urate upper bound to the approximate total energy. The se
ond row of Table14
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Figure 4.2: Absolute error in the diagonal Coulomb matrix elements for a) n = 112, 224 andb) n = 224, 448. 
) Absolute error in the diagonal Coulomb matrix elements 
omputed byRi
hardson extrapolation on the pairs of grids (224; 448) and (400; 800).Table 4.1: Error of the Hartree-Fo
k energy EHF (hartree) and of individual eigenvalues �i
omputed on di�erent grids, denoted by Æn, for the CH4 mole
ule. The values for Æ(n;2n)represent the Ri
hardson extrapolation error for pairs of grids of size n and 2n, wheren = 112, 224 and n = 224, 448, respe
tively.Exa
t value Æ112 Æ224 Æ448 Æ(112;224) Æ(224;448)�1 �0:95072154 0:0148 3:73 � 10�3 9:37 � 10�4 1:53 � 10�5 6:05 � 10�6�2; �3; �4 �0:54457593 0:0121 3:03 � 10�3 7:62 � 10�4 1:57 � 10�5 5:21 � 10�6EHF -7.84226746 0:0113 2:86 � 10�2 7:19 � 10�3 1:08 � 10�4 3:53 � 10�54.2 illustrates the validity of the error estimator E2(En) based on the dis
rete k � k2-normevaluation, E2(En) = kEnk2:Analysis of both estimators 
an be found, for example, in [28℄. In parti
ular, for ea
hindividual eigenvalue we havej�a � �(n)a j � E2(En); j�a � �(n)a j � 
ond(P )E1(En);where the matrix P is de�ned from the diagonalisation pro
edure M�1=2FM�1=2 = PDP Twith the diagonal matrix D. In our 
ase we have 
ond(P ) � 3:46. In Table 4.1 we presentthe approximation errors Æn and the 
orresponding extrapolated errors Æ(n;2n) for the singleeigenvalue �1 and the three degenerate eigenvalues �2 = �3 = �4.From Table 4.2 we observe that the error estimators E2(En) and E1(En) 
an be utilisedfor an a priori error estimation to the total energy based only on pre
omputed error boundsto the Fo
k matrix.
15



Table 4.2: Comparison of error estimators E1 and E2 for Ri
hardson extrapolated Coulombmatrix elements. n (112; 224) (224; 448)E1(En) 1:1212 � 10�4 3:742 � 10�5E2(En) 6:9 � 10�5 2:40 � 10�55 Con
lusionsWe have investigated adaptive orthogonal tensor produ
t approximations for some quantitiesof interest in Hartree-Fo
k and density fun
tional theory. In parti
ular, we studied the
onvergen
e rate upon the tensor rank for ele
tron densities, Coulomb and Hartree potentialsas well as for the Hartree-Fo
k energy for a number of simple mole
ules.For the 
onsidered mole
ules, the ALS iterative s
heme to 
ompute the orthogonalTu
ker-type de
omposition has demonstrated robust behaviour providing exponentially fast
onvergen
e in the tensor rank r. It is a remarkable fa
t that the orthogonal tensor-produ
tansatz typi
ally provides rather \uniformly distributed" max-norm errors, so that the tensorapproximand �ts the initial ele
tron density equally well at the near- and far-�eld regionsof the nu
lear 
usps as shown in Figures 2.5. Contrary to the orthogonal de
omposition,the a

ura
y of the 
anoni
al approximation usually noti
eably deteriorates near the nu
lear
usps [6℄. The orthogonal univariate 
omponents of the Tu
ker-type de
omposition resem-ble the shape of the de
omposed ele
tron density along the 
orresponding axis and appearto be suitable for the 
onstru
tion of a low-dimensional problem-adapted set of orthogonalbasis fun
tions. We observe that due to the fast de
ay in the entries of the 
ore tensor theTu
ker-type approximation with moderate rank already represents the physi
al quantity withsatisfa
tory a

ura
y.The 
onvolution integral representing the Hartree potential is 
omputed by the fullydis
rete tensor-produ
t 
ollo
ation s
heme 
ombined with the Ri
hardson extrapolation on asequen
e of grids. Our approa
h exhibits O(h3) 
onvergen
e with h = O(n�1), and requiresO(3rn + r3) storage, where r denotes the Tu
ker rank of the ele
tron density with r � nalmost uniformly in n (spe
i�
ally, r = O(logn)). This method ensures, in parti
ular for theCH4-mole
ule, the relative a

ura
y of the order of 10�6 on the �ne n
3 grid with n � 500.It requires low 
omputational resour
es sin
e the 
orresponding three-dimensional dis
rete
onvolution transform is performed via 1D tensor-produ
t FFT. This leads to sublinear
omplexity O(n log3 n) instead of the 
ost of the 
onventional 3D-FFT, O(n3 logn). In thisway, the presented approa
h o�ers a prin
ipal step towards the numeri
al solution of theHartree-Fo
k/Kohn-Sham equations in the fully dis
rete tensor-produ
t format with linears
aling in the univariate grid-size n of a 3D Cartesian grid.A
knowledgments. The authors gratefully a
knowledge Prof. W. Ha
kbus
h (Leipzig)and Prof. R. S
hneider (Berlin) for useful dis
ussions and valuable 
omments. This workwas partially supported by the DFG (SPP 1145).16



Referen
es[1℄ J. Alml�of, Elimination of energy denominators in M�ller-Plesset perturbation theory bya Lapla
e transform approa
h. Chem. Phys. Lett. 181 (1991) 319{320.[2℄ J. Alml�of, Dire
t methods in ele
troni
 stru
ture theory. In D. R. Yarkony, Ed., ModernEle
troni
 Stru
ture Theory, Vol. II, (World S
ienti�
, Singapore, 1995) pp. 110{151.[3℄ A. Bergner, M. Dolg, W. K�u
hle, H. Stoll and H. Preuss, Ab initio energy-adjustedpseudopotentials for elements of groups 13-17. Mol. Phys. 80 (1993) 1431-1441.[4℄ G. Beylkin and M.J. Mohlenkamp, Numeri
al operator 
al
ulus in higher dimensions.Pro
. Natl. A
ad. S
i. USA 99 (2002) 10246{10251.[5℄ G. Beylkin and M.J. Mohlenkamp, Algorithms for numeri
al analysis in high dimension.SIAM J. S
i. Comput. 26 (6) (2005) 2133-2159.[6℄ S.R. Chinnamsetty, M. Espig, W. Ha
kbus
h, B.N. Khoromskij, and H.-J. Flad, Tensorprodu
t approximation with optimal rank in quantum 
hemistry. J. Chem. Phys., 127,084110 (2007).[7℄ P.G. Ciarlet and C. Le Bris, eds.: Handbook of Numeri
al Analysis, Vol. X, Computa-tional Chemistry. Elsevier, Amsterdam, 2003.[8℄ L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1 and rank-(R1; :::; RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21(2000) 1324-1342.[9℄ B.I. Dunlap, Robust and variational �tting. Phys. Chem. Chem. Phys. 2 (2000), 2113-2116 .[10℄ T.H. Dunning Jr., Gaussian basis sets for use in 
orrelated mole
ular 
al
ulations. I.The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (1989), 1007-1023.[11℄ K. Ei
hkorn, O. Treutler, H. �Ohm, M. H�aser and R. Ahlri
hs, Auxiliary basis sets toapproximate Coulomb potentials. Chem. Phys. Lett. 240 (1995), 283-290.[12℄ H.-J. Flad, W. Ha
kbus
h, B.N. Khoromskij, and R. S
hneider, Con
ept of data-sparsetensor-produ
t approximation in many-parti
le models. Kiel 2007 (in preparation).[13℄ W. Ha
kbus
h and B.N. Khoromskij, Low-rank Krone
ker produ
t approximation tomulti-dimensional nonlo
al operators. Part I. Separable approximation of multi-variatefun
tions. Computing 76 (2006), 177-202.[14℄ W. Ha
kbus
h, B.N. Khoromskij and E.E. Tyrtyshnikov, Hierar
hi
al Krone
ker tensor-produ
t approximations. J. Numer. Math. 13 (2005), 119{156.[15℄ M. H�aser and J. Alml�of, Lapla
e transform te
hniques in M�ller-Plesset perturbationtheory. J. Chem. Phys. 96 (1992) 489{494.17



[16℄ W. Ha
kbus
h, Fast and exa
t proje
ted 
onvolution for non-equidistant grids. Comput-ing 80 (2007), 137-168.[17℄ W. Ha
kbus
h, Fast and Exa
t Proje
ted Multi-dimensional Convolution for Fun
tionsDe�ned in Lo
ally Re�ned Grids. MPI MIS, Leipzig 2007, in progress.[18℄ W. Ha
kbus
h and B.N. Khoromskij, Tensor-produ
t Approximation to Oper-ators and Fun
tions in High dimension. Journal of Complexity (2007), doi:10.1016/j.j
o.2007.03.007.[19℄ R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum
hemistry: Basi
 theory and initial appli
ations. J. Chem. Phys. 121, 11587{11598,2004.[20℄ T. Helgaker, P. J�rgensen and J. Olsen, Mole
ular Ele
troni
-Stru
ture Theory. Wiley,New York, 1999.[21℄ L. Genovese, T. Deuts
h, A. Neelov, S. Goede
ker and G. Beylkin, EÆ
ient solutionof Poisson's equation with free boundary 
onditions. Preprint arXiv:
ond-mat/0605371v1, 15 May 2006.[22℄ S.A. Ghasemi, A. Neelov, and S. Goedeker, A Parti
le-Parti
le, Parti
le-Density (P 3D)algorthm for the 
al
ulation of el
trostati
 intera
tions of parti
les with slab-like geom-etry. Preprint arXiv:0707.2569v1, 17 July 2007.[23℄ B.N. Khoromskij, Stru
tured Rank-(r1; :::; rd) De
omposition of Fun
tion-related Ten-sors in Rd . Comp. Meth. in Applied Math., 6(2) (2006), 194-220.[24℄ B.N. Khoromskij, Multi-linear approximation of higher-dimensional 
onvolution in lin-ear 
ost. MPI MIS Leipzig, 2007, in progress.[25℄ B.N. Khoromskij and V. Khoromskaia, Low Rank Tu
ker Tensor Approximation to theClassi
al Potentials. Central European J. of Math., 5(3) (2007), 1-28.[26℄ F.R. Manby, P.J. Knowles and A.W. Lloyd, The Poisson equation in density �tting forthe Kohn-Sham Coulomb problem. J. Chem. Phys. 115 (2001), 9144-9148.[27℄ I. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov, Tu
ker dimensionality redu
tionof three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl., 2007, to appear.[28℄ J. Stoer and R. Bulirs
h, Numeris
he Mathematik 2, Springer, Berlin, 1990.[29℄ L.R. Tu
ker, Some mathemati
al notes on three-mode fa
tor analysis. Psy
hometrika31 (1966), 279-311.[30℄ H.-J. Werner, P.J. Knowles et al. MOLPRO, version 2002.10, a pa
kage of ab initioprograms for ele
troni
 stru
ture 
al
ulations.
18


