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Abstract

In this paper we propose a novel approach based on the combination of Tucker-type
and canonical tensor decomposition techniques for the efficient numerical approxima-
tion of functions and operators in electronic structure calculations. In particular, we
study potential applications of tensor approximations for the numerical solution of
Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids.

Low-rank orthogonal Tucker-type tensor approximations are investigated for elec-
tron densities and Hartree potentials of simple molecules, where exponential conver-
gence with respect to the Tucker rank is observed. This enables an efficient tensor-
product convolution scheme for the computation of the Hartree potential using a
collocation-type approximation via piecewise constant basis functions on a uniform
n x n x n grid. Combined with Richardson extrapolation, our approach exhibits O(h?)
convergence with h = O(n'), and requires O(3rn + r3) storage, where r denotes the
Tucker rank of the electron density with r < n almost uniformly in n (specifically,
r = O(logn)). For example, Hartree-Fock calculations for the CH4 molecule, with a
pseudopotential on the C atom, achieved accuracies of the order of 107 hartree with
a grid-size n of several hundreds. For large 3D grids (n > 128), the tensor-product
convolution scheme markedly outperforms the 3D— FFT in both the computing time
and storage requirements.

AMS Subject Classification: 65F30, 65F50, 656N35, 65F10
Key words: Tucker-type tensor decomposition, Hartree-Fock equation, discrete convolution,
orthogonal adaptive tensor-product basis.

1 Introduction

A successful strategy to reduce the computational complexity in electronic structure calcu-
lations is based on a series of low-rank tensor-product decompositions ranging from many-



electron wavefunctions and related quantities, like electron densities, up to Coulomb poten-
tials representing inter-electronic interactions and external potentials due to atomic nuclei.
Let us just mention linear combinations of Slater determinants, Gaussian-type orbital (GTO)
basis sets, and the commonly employed Gaussian-transform of the Coulomb potential for the
evaluation of integrals involving GTO basis functions. We refer to the monographs [20, 7]
for a detailed exposition of these subjects. Furthermore, separable approximations of energy
denominators, following the pioneering work of Alml6f and Héser [1, 15], became a popular
approach to reduce the computational effort in many-body perturbation theory. Recently,
alternative approaches based on “optimal” tensor-product approximations (with respect to
certain norms) have been discussed in the literature. Here and in the following we refer to
“optimal” in the sense of the best possible separable approximation of a function

1) % S k() hap(ws) - hag(aa), x € R (1.1)

for a given rank R, without any constraints imposed on the univariate components h; ; with
1 =1,...,d. This format has been frequently denoted as canonical decomposition in the lit-
erature. Initiated by the work of Beylkin and Mohlemkamp [4, 5], “optimal” tensor-product
approximations for various potentials and more general integral operators, with possible ap-
plications in quantum chemistry, have been discussed in the literature, cf. Refs. [19, 12, 13, 14]
and references therein.

We focus on the tensor-product approximation of electron densities and the computa-
tion of Hartree-potentials which represents a major bottleneck for the numerical solution
of Hartree-Fock and Kohn-Sham equations. Traditionally, GTO basis sets have been exten-
sively used for this purpose in quantum chemistry. Approximation of the electron density in
a so-called auxiliary GTO basis and subsequent analytic evaluation of the Hartree-potential
became known as density-fitting or resolution of the identity method, cf. Refs. [9, 11, 26],
and turned out to be an essential improvement for the computational efficiency. Although
such kind of approach utilizes the separability of GTO basis sets, it seems that possible
generalizations concerning this issue are rarely discussed in the literature. An interesting
exception is a paper by Almlof [2] who considered possible tensor product concepts for an
efficient evaluation of the Fock matrix. Recently a density fitting scheme based on “opti-
mal” tensor product approximations (1.1) has been studied in Ref. [6]. It turned out that
significant improvements beyond GTO basis sets can be achieved, however the unconstraint
optimization of univariate components represents a generically ill-posed problem and rather
sophisticated optimization techniques are necessary in order to achieve the required high
accuracies.

In this paper we propose a novel approach based on the combination of Tucker-type
and canonical tensor decomposition techniques for the efficient numerical approximation
of functions and operators in electronic structure calculations. The Tucker format poses
orthogonality constraints on the univariate components which turns the optimization into a
well-posed problem. Primarily, the Tucker-type decomposition was applied in chemometrics
and independent component analysis, and it was generally treated as a method for statistical
data processing [29] with moderate accuracy requirements. Potential applications for large
scale problems in quantum chemistry have been already shown recently in Ref. [25] where
one can find a thorough description of tensor operations in the Tucker format.



The main result of the paper is the efficient and accurate computation of the fully discrete
representation to the Hartree potential on the Cartesian n x n x n grid (further denoted by
n®¥) via the fast tensor-product convolution [24, 25] at the cost of O(R;Ryn) operations.
Here R;, Ry denote the separation rank of the Coulomb potential and electron density, re-
spectively. For a precise definition of these ranks we refer to Section 3. We want to mention
that Ry, Ry only weakly depend on the grid spacing and can be considered as almost uni-
formly bounded in the univariate problem size n, cf. our discussion in Section 2. It should
be also noted that the input data for the discrete convolution product are usually given
with an initial rank R >> R;. Applying the two-level scheme [25], we first compute its
rank-r Tucker approximation and then recompress the small size core tensor by the rank-R;
canonical decomposition.

An essential new feature of this scheme is that convolutions require only 1D—FFTs
instead of 3D—FFTs as in traditional approaches (for example, a large variety of plane wave
and wavelet based methods exhibiting linear scaling in the number N3 = n? of grid points, see
e.g. the BigDF T program [21, 22].) Therefore, it is possible to perform convolutions involving
tensor product approximations with much lower complexity with respect to the grid size N
(see Remark 2.1). Furthermore, storage of the full 3D—grid is no longer required which
provides another potentially significant advantage with respect to conventional methods
of O(N3) complexity. The latter might become computationally infeasible just because of
storage limitations for very large systems or high grid resolutions.

For simplicity we restricted ourselves to the Hartree-Fock method. We want to mention
however that the techniques to be discussed in the following can be as well applied to Kohn-
Sham equations in DFT. The Hartree-Fock method provides a mean-field approximation
for the ground state of many-electron systems. This implies the solution of a nonlinear
eigenvalue problem

(=5 + Vi Vi = V2 ) ) = e, (12)

for the N/2 lowest eigenvalues ¢; and spatial eigenfunctions ¢; (i = 1,..., N/2), in the case
of a closed-shell N electron system. The Hartree-Fock equation (1.2) corresponds to a
nonlinear single-particle Schrodinger equation in R?® where the potentials Vi and V,, represent
a mean-field acting on a single electron which is generated by the remaining N — 1 electrons
in the system. Furthermore, an external potential V,,,. contains the bare Coulomb- or
pseudopotentials of the nuclei. Within the present work, we focus on the computation of the

Hartree potential
p(y)
Vi (x ::/ dy, 1.3
() re X =Y (1.3)

which corresponds to a convolution of the Coulomb potential with the total electron density

N/2
p(y) =2 G(y)v;(y). (1.4)

b=1

The remaining term is the nonlocal exchange operator
N/2
ba(¥) 5 (y)

Vatha) (%) := ————(x)dy, L5
(Vatba) (x) ;_W — h(x) (1.5)



which has to be replaced by a local exchange-correlation potential in the Kohn-Sham equa-
tions.

The paper is organized as follows. In Section 2 we introduce the orthogonal Tucker
decomposition and study Tucker approximations for all-electron densities of several simple
molecules in order to demonstrate exponential convergence with respect to the tensor rank.
In Section 3, using sinc quadrature based approximations to the Coulomb potential [13, 18,
23], we consider the computation of Hartree potentials within a fully discrete tensor-product
collocation scheme (cf. [24]) on a 3D Cartesian grid. A numerical example is provided for
the CH4 molecule using a pseudopotential at the C atom. Finally, in Section 4 we recover
the Galerkin matrix of the approximate Hartree potential in a GTO basis and calculate the
corresponding errors in the Hartree-Fock energy.

2 Tucker-type approximation of electron densities
We introduce the linear space of real-valued d-th order tensors

A=la;. ] €R, T=5Lx...x1y I={1,..,n}, t=1,..d
with the scalar product defined as

(A, B) = Z @i,..i,0i, .5, for A Be R”. (2.1)

(i],...,’id)EI

The corresponding Euclidean norm is given by ||A]l := /(A, A).

For given vectors U¥ € R’* with components U = {ugf)}iﬂelﬂ, we use the notion of the
outer product “®” of vectors, which form the canonical rank-1 tensor

U=UVg. oUDeR,

defined by entries
(M (d)

Wiy g = Uy, * - Uy

In the Tucker-type decomposition, we approximate any tensor A € R up to a given
accuracy € > 0, by a tensor Ay with r = (r1,...,74) defined by

1

rd
A=Y Y b e eV A b eR (22

k=1  ky=1

where Vk(f) e R (¢ =1,..,d), and B = {b} € R'**" ig called the core tensor. Here
{Vk(f), 1 < ky < ry} are linear independent vectors for each fixed ¢, hence without loss of

generality, we assume that they are mutually orthogonal, i.e., V() = [VI(Z)VQ(Z) e V,n(f)] €
R™ " are orthogonal matrices.

The representation (2.2) means that for given set of rank parameters r, < n, (£ = 1, ..., d),
any tensor can be decomposed approximately into 775 . . .74 outer products (respectively, r?



if ry =...=rq =r), which requires only r; 4+ - - - + r4 canonical components Vk(f) of size ny
and r? coefficients {by} for its representation. The important parameter

r= m{gx{n}

is called the Tucker rank. To make the approximation numerically efficient, we have to
satisfy the condition r, < n, (¢ = 1,...,d), which is usually the case in electronic structure
calculations.

The canonical decomposition (CANDECOMP) or parallel factors (PARAFAC) model
(shortly, CP model) represents a tensor by a sum of rank-1 non-orthogonal components as

follows
R

A(r) :ch-U,El)®...®U,gd), cr € R (2.3)
k=1

with normalised components U,El) € R (¢ = 1,....d). The minimal parameter R in the
above representation is called the rank (or canonical rank) of a tensor.

Below we consider approximating properties of the orthogonal Tucker-type representa-
tions (2.2) in R? for electron densities of some simple molecules. We apply the alternating
least-squares (ALS) iterative scheme described in [8, 25] to compute the low-rank tri-linear
approximations for electron densities of the H atom, LiH, CH,, CsHg and H,O molecules.

Remark 2.1 The Tucker model applied to a fully populated tensor of size n®* has the com-
plezity of order O(n*) (storage and computational time). If the input tensor is already
presented in the rank-R CP format then the corresponding canonical-to-Tucker ALS method
with the Tucker rank r has the complezity in the range O(rRn) <+ O(r?Rn), depending on the
problem setting (see §2.4.2 in [25]). Notice that the so-called adaptive cross approzimation
method of complezity O(r*n) was recently proposed in [27).

In Sections 3 and 4 both the Tucker-type and CP decompositions are used in the fast
computation of the convolution product in R* appearing as the main ingredient in the Fock
operator.

As the first step, the approximate reference orbitals and electron densities of the men-
tioned molecules are computed by the standard quantum chemistry package MOLPRO [30]
in the form of an expansion by “Cartesian Gaussian” basis functions, i.e.,

9(x) = 3 sl = A (2 — By)™ (a5 — G expl—an}) (24)

with
G o= (11— AR’ + (10— Bp)* + (13 — Cp)?, x= (21,79, 75)" € R,

where the exponents a;, have been taken from standard VDZ basis sets [10].

We assume that any particular molecule is imbedded in a certain fixed computational
box [—A, A]* with a suitable A > 0. Let ws C [—A, A]® be a uniform n x n X n tensor-
product grid (shortly n®?) indexed by Z = I, x I, x I5. For a given continuous function
g:[-A, A = R, we introduce the collocation-type function related tensor of order 3 by
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Figure 2.1: Convergence of the Tucker approximation for the electron density of LiH with
respect to the EFpy norm for different grid sizes n = 65, 129 and 193 and fixed box size
A =T bohr.

1 (2 (3))

ir 2 Viy » Lig

Ao = A(9) = [@iyinis)(ir insiz)er € R with a4, = g(z

where (TEI),TEZQ),TES)) € wsg are the grid collocation points. In our applications, the func-
tion ¢ is defined by (2.4) using the set of separable “Cartesian Gaussian” functions. The
reconstructed 3-rd order tensor Ay is approximated by a rank r = (r, r,r) Tucker-type rep-
resentation for a sequence of rank-parameters r = 1,2,...,ry. The orthogonal components
and the corresponding core tensor of the size r®3 are then used for the reconstruction of the
approximating tensor Ay ~ Ap. All numerical multi-linear approximations are performed
in MATLAB, release 7.3.

For every rank-r Tucker-type approximation, we compute the relative error with respect

to the Euclidean norm, as well as the relative maximum error:

n _ A= Awll
B = ,
o [ Ao

The relative difference of the norms denoted by

) _ Mol — I[Anl _ Ao — Awl*
A T A
0 0

Eg) — maX;ez |a'0,z' - flr,z'|

(2.5)

maX;cz ‘aﬂ,i

&

can be used as a stopping criteria. The ALS iteration is terminated if the value of Eg},ﬁ
reaches the machine precision.
The electron densities of the considered molecules are first computed in the form

p(x) == Zlﬂﬁ(:ﬁ) = Z ( l Pk’a(gj)e)‘k(w:rkh) | (2.6)

a=1 a=1

where K is the number of electron pairs and R, is the number of GTO basis functions given
by expansion (2.4) for orbitals ¢,(x). For each particular molecule we use the following
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Figure 2.2: Approximation error in Fry and F- norms versus Tucker rank for the electron
densities of a) CHy, b) CoHg and ¢) HyO with n = 65.

physically relevant parameters: A = 10 bohr, Ry = 10 for H atom, A = 7 bohr, Ry = 34
for LiH, A = 5 bohr, Ry = 55 for CHy4, A = 5.8 bohr, Ry = 96 for CoHg and A = 10 bohr,
R[] = 41 for HQO
Recall that in the case of the H atom the orbital and electron density are given explicitly
by
$(x) = Cpexp(—alx|) with x € R’

with a = 1 for the orbital and a = 2 for the electron density.

a) Hydrogen b) LiH
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Figure 2.3: Orthogonal vectors Vk(l), k=1,...,4, for the rank-10 orthogonal Tucker approx-
imation of the electron density for a) the H atom and b) for the LiH molecule.

We approximate the function (2.6) using the Tucker model. Figure 2.1 gives the approx-
imation error with respect to the Tucker rank 7 for the LiH electron densities computed
by (1.4) and (2.4) for different grid sizes n®®. We see that for a fixed approximation error
the Tucker rank remains to be almost independent on the univariate problem size n. The
approximation errors shown in Figure 2.2 verify exponential convergence of the orthogonal
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Figure 2.4: Entries of the core tensor 6% and the orthogonal vectors Vk(3), k=1,..6
of the rank-6 Tucker-type decomposition of the electron density for the CyHg molecule.
Numbers given for every slice of core-tensor entries correspond to the maximum of |by| for
the corresponding slice.

Tucker approximation (in the rank-parameter r) of electron densities reaching the relative
accuracy ~ 1075 for CHy, H,O and CyHg with » = 16.

The examples of orthogonal vectors Vk(l) (k =1,..,4, £ = 1,3), of the tensor-product
decomposition for the H atom, LiH and Cy;Hg molecules shown in Figures 2.3 and 2.4 resemble
the shape of the decomposed electron density along the corresponding spatial axis. Due to
orthogonality of the decomposition, the Tucker model appears to be suitable for constructing
low dimensional problem-dependent orthogonal basis. Entries of the core tensor presented in
Figure 2.4 are the weights by, ,k, 0f the corresponding outer products of orthogonal vectors
Vk(:) ® Vk(;) ® Vk(j), which compose the summands of A in (2.2) for k; < 6.

Numerical experiments demonstrate high approximation power of the problem-dependent
orthogonal tensor-product basis. For example, let By be the core tensor of the rank r = 10
Tucker-type approximation of the electron density for the CH, molecule, while l;?,, represents
the principal p x p x p subtensor of B;y. We observe that the contribution of the subspace

span{VkM) t_1, (£ =1,2,3) to the relative Euclidean norm %
small p. In fact, already with p = 3, the contribution from the first three orthogonal compo-
nents, e.g., for 1 < k < 3, represents the relative /2-error with an accuracy of about 0.01%.
This means that the adaptive orthogonal basis obtained via the Tucker-type approximation
with moderate rank already represents the important physical quantities with satisfactory
accuracy.

The electron densities of CH; and CyHg are considered in the cubes [—7,7]* and
[—5.8,5.8]%, correspondingly, on a uniform n®?* grid of size n = 65. Figures 2.5 a) and c)
visualise the electron density of CH4 in a plane containing the C atom and of Cy;Hg in a
plane plane containing two C and two H atoms, correspondingly. Figures 2.5 b) and d)
visualise the absolute approximation error for the electron densities p of these molecules in
the corresponding planes for r = 16. In spite of large values of p at the cusp regions (~ 60
units) we observe a rather uniform distribution of the absolute value of the approximation
error of the order ~ 107* <+ 1075 a.u. in the computational domain. This is a typical feature

, 1s significant even for
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Figure 2.5: Electron densities and absolute errors of rank r = 16 Tucker-type approximations
for CH,; and CyHg molecules.

of the orthogonal Tucker decomposition. For H,O with even larger cusp (~ 148 units) at the
origin, we see in Figure 2.2 ¢) that the convergence of p for this molecule approximated in
the volume [—10, 10]® gives the relative accuracy ~ 107° with the rank r = 16. Finally, we

b) Hartree Potential, C2 Hs
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Figure 2.6: Approximation error in Fny and E¢ norms versus Tucker rank for the Hartree
potentials of a) CHy, b) CyHg and ¢) HyO.

present the convergence behaviour of the Tucker-type approximation applied to the Hartree
potentials of CH;, CyHg and HyO molecules (see Figure 2.6) which indicates exponential
convergence in the Tucker rank 7.

Our numerical results demonstrate the efficiency of low-rank orthogonal Tucker approx-
imations to the electron densities of the considered molecules. They show exponential con-
vergence upon the Tucker rank r with a convergence rate which is almost independent of



the resolution level depending on the grid size n (theoretical results indicate r = O(logn)).
The low rank tensor approximations of orbitals and electron densities can be further utilised
for low-complexity calculations of functionals and operators of physical relevance, e.g., the
electron-electron and electron-ion contributions to the total energy, the Hartree and exchange
potentials, as well as to local exchange-correlation potentials in the Kohn-Sham equation. As
an example, in the next section we consider the computation of the low-rank tensor approx-
imation of the Hartree potential using tensor decompositions of all functions and operators
involved.

3 Computing the Hartree potential by tensor-product
convolution

We consider the computation of the Hartree potential

Vi (z) = / Ply) dy, z=eR (3.1)

R [T — Y|

by the discrete multi-dimensional tensor-product convolution on uniform grids in R?, de-
scribed in Ref. [24]. The convolution product is defined by

w(e) = (f*g)a) = | JWglx vy f.g€ L*(RY).

Our particular choice is g(z) = =, f(z) = p(z), € R®. Due to the physical prerequisites

T bl
(orbitals and electron density ha\‘/e‘ exponential decay) the function f g is computed in some
fixed box 0 = [ A, A]® and f has its support in €.

We apply the standard collocation scheme to discretise the convolution product. First
we introduce the equidistant tensor grid ws, = w; X wy X wy of collocation points {zy} in
QmeM:={1,.,n+1}* Herew,:={-A+(m—-1h:m=1,...,n+1} ({=1,..,3)
with mesh-size h = 24 /n.

For given piecewise constant basis functions {¢;}, i € Z := {1,...,n}
wa.n, let fi = f(yi) be the representation coefficients of f in {¢;},

fly) =D fidily),

ieZ

3 associated with

where y; is the midpoint of the grid-cell numbered by i € Z. Now the collocation scheme
reads as

g~ {Wmtmerts Wm = fi [ $i(y)g(Tm — y)dy, Tm € ws.
ez /R
As a first step, we precompute the coefficients

g;i = ¢i(y)dy, iel.
Y

R3

10



The coefficient tensor G = {¢;} € R? for the Coulomb potential ﬁ is approximated in
the rank-R CP tensor format (see Section 2) using optimised sinc-quadratures [13, 18, 24],
where the rank parameter R = O(]loge|logn) depends logarithmically on both the required
accuracy and the problem-size n. In all computations presented below it was enough to
choose the tensor rank in the range R € [10,20] to provide the desired accuracy. The 3-th
order tensor F = {f;} € R” is approximated either in the rank r = (r,r,r) Tucker format
or via the CP model with tensor rank R,.

Following [24, 25|, we compute w,, by copying the corresponding portion of the discrete

convolution in R3

FxG:={z}, z:= Zfigj,ﬂ_l, je g ={1,....2n—1}3 (3.2)

i€z

centred at j = n.
Let F be represented in the Tucker format (2.2). Then (3.2) is represented in the tensor-
product form

FxG = i Z Wb (U VD) @ @ (U VD).

k=1 m=1

abs. Richardson error for VH
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Figure 3.1: Absolute approximation error in the Hartree potential V}; for the pseudo-density
of CHy in the subinterval Q = [-7,7] x {0} x {0} (left) and the reduced error by Richardson
extrapolation involving two grids (right).

The 1D convolutions U,gl) * Vn(fﬂ) € R?"~! can be computed on an equidistant grid by FFT in
O(nlogn) operations. This leads to the overall complexity

Newr = O(3rRnlogn + Rr?). (3.3)

11



Likewise, approximating F in the rank-R; CP format (see (2.3)) enables us to compute
F % G in the form

R Ry
FeGg=33 abn (0" Vi) & .o (U « VD),
k=1 m=1

which leads to the cost

Newo = O(RRynlogn).

As an example we consider the CH4 molecule. In order to test the performance of
our approach for the high accuracy demands of quantum chemical calculations, it becomes
necessary to use a pseudopotential on the C atom. We have used a semilocal energy-adjusted
pseudopotential and corresponding basis set of Dolg et al. [3]. This enables us to achieve
the desired accuracies on grids ws, already for values of n that can be easily handled by our
MATLAB code. Tensor approximations of full potentials will require the fast convolution
schemes applicable to locally refined grids, see e.g. Refs. [16, 17, 24, 25].

The pseudo-density for the CH; molecule obtained from a Hartree-Fock calculation is
given by (2.6), where K = 4 is the number of pseudo-orbitals, Ry = 50 and polynomial
degree(Py;) < 2. In the following we represent the convolving tensor p(z) in the canonical
format. In this way, the products of two Gaussians can be written in the form of single
Gaussians by

- N2 - 2 - AV )\5((] — b)2 (I,)\ + bﬂ
Mz—a)®  —B(z—b)° _ o ,—v(z—c) — — A\ —
e e e’ e ; ) +p,c '
4 A+ Y b A+

which leads to the following bound on the initial rank of the input tensor

Ro(Ry + 1)

Ry < 5

— 1275, (3.4)

We approximate Vy(z), € ws,, in (3.1) via a tensor-product collocation convolution
scheme by VF(,n) on the n®? tensor-grid ws, in the reference cube [—A, A]*, A = 10.6 bohr.

The left part of Figure 3.1 gives the approximation error Vg — V}(I") for the sequence of
grids with n = 112, 224, 448. 1t indicates that the discrete convolution has an accuracy
of order O(h?) in the relevant physical domain corresponding to the essential support of
p(x) (see [24] for detailed error estimates). Following [24], we then apply the Richardson
extrapolation technique to obtain higher accuracy approximations of order O(h?*) without
extra computational cost. The corresponding Richardson extrapolant VI({T’ZI)M}L approximating
Vi (x) over a pair of nested grids ws, and wss,, and defined on the “coarse” n®3-grid, is
given by
Vp(,f‘;zich = 4=V —viM)/3 in the grid-points on ws,.

The right part of figure 3.1 shows the effect of the Richardson extrapolation on a sequence
of grids wg ,, with n = 112,224, 448.

Next we demonstrate the computational efficiency of fully discrete tensor product convo-
lution to compute the approximate Hartree potential VF(,n) on a sequence of grids ws, with
n = 32,64,128,...,512. We use the same input data as above (corresponding to the CH,
molecule) with initial rank Ry = 1275. To reduce the canonical rank, we apply the two-level

12



Table 3.1: Ellapsed CPU time (sec.) to compute the discrete convolution on n®? grids for
the tensor-product scheme C'onvece and 3D—FFT on a Sun Fire X4600 computer with 2,6
GHz processor.

| n® | 323 | 64% [ 128° | 2567 | 5127 |
3D—FFT [ 0.06 | 0.41 | 4.3 55,4]582,8
Convce | 0.51 [ 0.73 | 1.26 || 3.05 | 10.01

scheme as described in [25]: first, we compute the rank-r Tucker decomposition of the input
tensor and build the corresponding rank-r? CP representation (with » = 15); second, we
recompress it to the reduced rank R, = 120 < 72 using the slicewise SVD of small 7 x r ma-
trices. Table 3.1 compares the ellapsed time to compute the discrete convolution on n®3 grid
by using the 3D—FFT (asymptotic complexity O(8n*logn)) and the fast tensor-product
scheme of complexity Neo = O(RyRinlogn) described above. We recall that Ry € [10, 20]
denotes the tensor rank of the Coloumb coefficient tensor in R3.

Note that in both 3D—FFT based and tensor-product convolution schemes on the n®3
grid one requires the double-size FF'T with grid-size 2n — 1. Since the tensor-product con-
volution requires only 1D—FFT (negligible cost in the range n < 10%), the double problem
size 2n — 1 does not lead to severe restrictions on CPU-time and on the storage space in the
case of fast tensor-product scheme.

Our results indicate that the tensor-product convolution outperforms the conventional
3D—FFT for large problems (n > 128). But even more important, it has much less restrictive
memory consumptions of order O(RRynlogn) compared with O(n?logn). In particular, the
3D—FFT already runs out of memory on the grid ws 512, hence, in the table above, we give
the extrapolated CPU-time ~ 500.0 sec in this case.

4 Coulomb matrix and Hartree-Fock energy computa-
tion

In the following, we apply the tensor-product scheme [25] to compute the Coulomb matrix of
the Hartree potential for the CH4 molecule in a GTO basis set. The remaining parts of the
Fock operator are computed by the MOLPRO package in a conventional way. The Coulomb
matrix for V; with respect to the set of normalized “Cartesian Gaussians” {gx} is given by

Tem = /gk(x)gm(X)VH(X)dx, k,m=1,...Ry. (4.1)

Figure 4.1 a) visualises the exact Coulomb matrix elements .Ji,. The error F, between
Jrm and its approximation obtained by the discrete collocation scheme for calculating the
Hartree potential Vi is given in Figure 4.1 b). Results on high accuracy calculations based
on Richardson extrapolation are illustrated in Figure 4.2.

Let F = {Fim} = {(9gk, Fgm) 12} be the Galerkin matrix of the Fock operator with respect
to the normalised Gaussian basis {gr} and M = {Myn} = {(9k, 9m)12} (k,m = 1,..., Ry)

13



Figure 4.1: a) Coulomb matrix Ji,, for CH4 computed for the GTO basis set k,m =1,... Ry.
b) Absolute error of the discrete approximation using Richardson extrapolation involving the
grids with n = 400 and 800.

be the corresponding overlap matrix. We substitute the Galerkin matrix J = {ka}f:“;n:]

from (4.1), which represents the approximate Hartree potential VIS")

the Fock matrix

in the basis {gx}, into

F =Fiin+ T+ K,

where Fi;, = {( gk, (—%A#—VN)gm)Lz}kR;‘;n:l and K = {(gx, Vmgm)ﬁz}ﬁ‘;n:l represent the linear
part of the Fock operator and the exchange potential, respectively.
Now the total energy of the system is computed by solving the eigenvalue problem

FU, =AMV, a=1,.. K,

for the first K = N/2 smallest eigenvalues A, (for the CHy molecule with pseudopoten-
tial K = 4). For this computation we apply the MOLPRO package. The total energy is

calculated by
K K
EHF‘ - 22)\0, - Z <j:1 - féa)
a=1 a=1

with J, = (Ya, Vatba) 2 and K, = (Yo, Veza)rz (@ = 1,...,N/2) being the so-called
Coulomb and exchange integrals, respectively, computed with respect to the orbitals ),
(a=1,...,N/2) (compare with (4.1)). The corresponding errors in the Hartree-Fock energy
Eyr and of individual eigenvalues for different grids are given in Table 4.1.

Let E, € Rffox® he the error in the Coulomb matrix {Ji,,}. Notice that both matrices
{Jkm} and E,, are symmetric up to round-off errors. We consider the approximation error
in the eigenvalues \,, a = 1, ..., K. In this way, we introduce the error estimator & (FE,) to
the energy error based on the || - ||;-evaluation of the error matrix F,, calculated by

(60 = s, SICE|

Our numerical results presented in Table 4.2 indicate that the error estimator £, (F,) gives
a quite accurate upper bound to the approximate total energy. The second row of Table
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a) -3 b) -6 C)

0.015 3x 10 gX 10

—112 —224

—224 448

0.01 2 S S S
0.005 1
0O di 20, 40 00 20 40 O0 20 40
iagonal elements

Figure 4.2: Absolute error in the diagonal Coulomb matrix elements for a) n = 112, 224 and
b) n = 224, 448. ¢) Absolute error in the diagonal Coulomb matrix elements computed by
Richardson extrapolation on the pairs of grids (224, 448) and (400, 800).

Table 4.1: Error of the Hartree-Fock energy Fppr (hartree) and of individual eigenvalues \;
computed on different grids, denoted by d,, for the CHy molecule. The values for 6, on)
represent the Richardson extrapolation error for pairs of grids of size n and 2n, where
n =112, 224 and n = 224, 448, respectively.

‘ ‘ Exact value ‘ 0112 ‘ 0924 ‘ 0448 H 5(112,224) ‘ 5(224,448) ‘
A | —0.95072154 | 0.0148 | 3.73-1073 [ 9.37-10"* || 1.53-107° | 6.05- 10~°

Ao, Az, Ay | —0.54457593 | 0.0121 | 3.03-1072 | 7.62-10"* || 1.57-107° | 5.21-107°
Epr | -7.84226746 | 0.0113 | 2.86- 102 | 7.19-107% || 1.08 - 10~* | 3.53- 107"

4.2 illustrates the validity of the error estimator £ (FE,) based on the discrete || - |[o-norm
evaluation,

&(En) = [ Enll2-

Analysis of both estimators can be found, for example, in [28]. In particular, for each
individual eigenvalue we have

Ao — A < E(EL), [N — A < cond(P)E\(E,),

where the matrix P is defined from the diagonalisation procedure M~Y2FM~1/?2 = PDPT
with the diagonal matrix D. In our case we have cond(P) =~ 3.46. In Table 4.1 we present
the approximation errors d,, and the corresponding extrapolated errors d(, 2,y for the single
eigenvalue \; and the three degenerate eigenvalues Ay = A3 = \4.

From Table 4.2 we observe that the error estimators £ (E,) and & (E,) can be utilised
for an a priori error estimation to the total energy based only on precomputed error bounds
to the Fock matrix.
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Table 4.2: Comparison of error estimators & and &, for Richardson extrapolated Coulomb
matrix elements.

| (112,224) | (224,448) |
[ 1.1212-10 " [ 3.742- 10 |
| 69-10°] 240-107 |

| n

‘ n )
En)

| &(E,

5 Conclusions

We have investigated adaptive orthogonal tensor product approximations for some quantities
of interest in Hartree-Fock and density functional theory. In particular, we studied the
convergence rate upon the tensor rank for electron densities, Coulomb and Hartree potentials
as well as for the Hartree-Fock energy for a number of simple molecules.

For the considered molecules, the ALS iterative scheme to compute the orthogonal
Tucker-type decomposition has demonstrated robust behaviour providing exponentially fast
convergence in the tensor rank r. It is a remarkable fact that the orthogonal tensor-product
ansatz typically provides rather “uniformly distributed” max-norm errors, so that the tensor
approximand fits the initial electron density equally well at the near- and far-field regions
of the nuclear cusps as shown in Figures 2.5. Contrary to the orthogonal decomposition,
the accuracy of the canonical approximation usually noticeably deteriorates near the nuclear
cusps [6]. The orthogonal univariate components of the Tucker-type decomposition resem-
ble the shape of the decomposed electron density along the corresponding axis and appear
to be suitable for the construction of a low-dimensional problem-adapted set of orthogonal
basis functions. We observe that due to the fast decay in the entries of the core tensor the
Tucker-type approximation with moderate rank already represents the physical quantity with
satisfactory accuracy.

The convolution integral representing the Hartree potential is computed by the fully
discrete tensor-product collocation scheme combined with the Richardson extrapolation on a
sequence of grids. Our approach exhibits O(h?®) convergence with h = O(n™'), and requires
O(3rn + r?) storage, where r denotes the Tucker rank of the electron density with r < n
almost uniformly in n (specifically, 7 = O(logn)). This method ensures, in particular for the
CHj-molecule, the relative accuracy of the order of 107¢ on the fine n®? grid with n ~ 500.
It requires low computational resources since the corresponding three-dimensional discrete
convolution transform is performed via 1D tensor-product FFT. This leads to sublinear
complexity O(nlog®n) instead of the cost of the conventional 3D-FFT, O(n®logn). In this
way, the presented approach offers a principal step towards the numerical solution of the
Hartree-Fock/Kohn-Sham equations in the fully discrete tensor-product format with linear
scaling in the univariate grid-size n of a 3D Cartesian grid.

Acknowledgments. The authors gratefully acknowledge Prof. W. Hackbusch (Leipzig)

and Prof. R. Schneider (Berlin) for useful discussions and valuable comments. This work
was partially supported by the DFG (SPP 1145).

16



References

1]

2]

[11]

[12]

[13]

[14]

[15]

J. Almlof, Elimination of energy denominators in Mgller-Plesset perturbation theory by
a Laplace transform approach. Chem. Phys. Lett. 181 (1991) 319 320.

J. Almlof, Direct methods in electronic structure theory. In D. R. Yarkony, Ed., Modern
Electronic Structure Theory, Vol. II, (World Scientific, Singapore, 1995) pp. 110 151.

A. Bergner, M. Dolg, W. Kiichle, H. Stoll and H. Preuss, Ab initio energy-adjusted
pseudopotentials for elements of groups 13-17. Mol. Phys. 80 (1993) 1431-1441.

G. Beylkin and M.J. Mohlenkamp, Numerical operator calculus in higher dimensions.
Proc. Natl. Acad. Sci. USA 99 (2002) 10246-10251.

G. Beylkin and M.J. Mohlenkamp, Algorithms for numerical analysis in high dimension.
SIAM J. Sci. Comput. 26 (6) (2005) 2133-2159.

S.R. Chinnamsetty, M. Espig, W. Hackbusch, B.N. Khoromskij, and H.-J. Flad, Tensor
product approzimation with optimal rank in quantum chemistry. J. Chem. Phys., 127,
084110 (2007).

P.G. Ciarlet and C. Le Bris, eds.: Handbook of Numerical Analysis, Vol. X, Computa-
tional Chemistry. Elsevier, Amsterdam, 2003.

L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1 and rank-
(Ry, ..., Rn) approzimation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21
(2000) 1324-1342.

B.I. Dunlap, Robust and variational fitting. Phys. Chem. Chem. Phys. 2 (2000), 2113-
2116 .

T.H. Dunning Jr., Gaussian basis sets for use in correlated molecular calculations. 1.
The atoms boron through neon and hydrogen. J. Chem. Phys. 90 (1989), 1007-1023.

K. Eichkorn, O. Treutler, H. Ohm, M. Hiser and R. Ahlrichs, Auziliary basis sets to
approzimate Coulomb potentials. Chem. Phys. Lett. 240 (1995), 283-290.

H.-J. Flad, W. Hackbusch, B.N. Khoromskij, and R. Schneider, Concept of data-sparse
tensor-product approzimation in many-particle models. Kiel 2007 (in preparation).

W. Hackbusch and B.N. Khoromskij, Low-rank Kronecker product approximation to
multi-dimensional nonlocal operators. Part 1. Separable approzimation of multi-variate
functions. Computing 76 (2006), 177-202.

W. Hackbusch, B.N. Khoromskij and E.E. Tyrtyshnikov, Hierarchical Kronecker tensor-
product approzimations. J. Numer. Math. 13 (2005), 119-156.

M. Haser and J. Almlof, Laplace transform techniques in Mgller-Plesset perturbation
theory. J. Chem. Phys. 96 (1992) 489 494.

17



[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

W. Hackbusch, Fast and exact projected convolution for non-equidistant grids. Comput-
ing 80 (2007), 137-168.

W. Hackbusch, Fast and Fzact Projected Multi-dimensional Convolution for Functions
Defined in Locally Refined Grids. MPI MIS, Leipzig 2007, in progress.

W. Hackbusch and B.N. Khoromskij, 7Tensor-product Approrimation to Oper-
ators and Functions in High dimension. Journal of Complexity (2007), doi:
10.1016/j.jc0.2007.03.007.

R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum
chemistry: Basic theory and initial applications. J. Chem. Phys. 121, 11587 11598,
2004.

T. Helgaker, P. Jgrgensen and J. Olsen, Molecular Electronic-Structure Theory. Wiley,
New York, 1999.

L. Genovese, T. Deutsch, A. Neelov, S. Goedecker and G. Beylkin, Efficient solution
of Poisson’s equation with free boundary conditions. Preprint arXiv:cond-mat /0605371
vl, 15 May 2006.

S.A. Ghasemi, A. Neelov, and S. Goedeker, A Particle-Particle, Particle-Density (P*D)
algorthm for the calculation of elctrostatic interactions of particles with slab-like geom-
etry. Preprint arXiv:0707.2569v1, 17 July 2007.

B.N. Khoromskij, Structured Rank-(ry,...,rq) Decomposition of Function-related Ten-
sors in R?. Comp. Meth. in Applied Math., 6(2) (2006), 194-220.

B.N. Khoromskij, Multi-linear approzimation of higher-dimensional convolution in lin-
ear cost. MPI MIS Leipzig, 2007, in progress.

B.N. Khoromskij and V. Khoromskaia, Low Rank Tucker Tensor Approximation to the
Classical Potentials. Central European J. of Math., 5(3) (2007), 1-28.

F.R. Manby, P.J. Knowles and A.W. Lloyd, The Poisson equation in density fitting for
the Kohn-Sham Coulomb problem. J. Chem. Phys. 115 (2001), 9144-9148.

[. V. Oseledets, D. V. Savostianov, E. E. Tyrtyshnikov, Tucker dimensionality reduction
of three-dimensional arrays in linear time. STAM J. Matrix Anal. Appl., 2007, to appear.

J. Stoer and R. Bulirsch, Numerische Mathematik 2, Springer, Berlin, 1990.

L.R. Tucker, Some mathematical notes on three-mode factor analysis. Psychometrika
31 (1966), 279-311.

H.-J. Werner, P.J. Knowles et al. MOLPRO, version 2002.10, a package of ab initio
programs for electronic structure calculations.

18



