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1. Introduction

The Bose-Hubbard Model with nearest-neighbour hopping is defined on
a cubic lattice Z

d of dimension d by the Hamiltonian

H =
1

2

∑

x,y∈Zd: |x−y|=1

(a∗x − a∗y)(ax − ay) + λ
∑

x

nx(nx − 1), (1.1)

where the operators a∗x and ax are creation and annihilation operators sat-
isfying the usual bosonic commutation relations

[ax, a
∗
y] = δx,y.

The operators nx = a∗xax are the local number operators.

In [1] a long-range-hopping version of this model was analysed. It is given
by the Hamiltonian

HV =
1

2V

V
∑

x,y=1

(a∗x − a∗y)(ax − ay) + λ
∑

x

nx(nx − 1) (1.2)

on a complete graph of V sites. In particular, the following variational
expression for the pressure was derived:

p(β,µ, λ) =

sup
r≥0

{

− r2 +
1

β
ln Tr exp

[

β
(

(µ+ λ− 1)n − λn2 + r(a+ a∗)
)]}

.

(1.3)
The derivation made use of the so-called approximating Hamiltonian method
introduced by Bogoliubov Jr. [3] and made rigorous by Zagrebnov et al. [4],
see also [5]. Here we present a new derivation of this formula using the C∗-
algebraic method of Petz, Raggio and Verbeure [2], which is inspired in part
by Varadhan’s theorem in probabilistic large deviation theory, and in part by
work of Fannes, Spohn and Verbeure [6]. Our C∗-algebraic approach corre-
sponds to variational expressions for thermodynamic functionals of classical
Gibbs measures [7], and in particular we are using the variational expres-
sion for the relative entropy (see [8] for classical probability theory). As a
result we obtain a variational expression for the pressure where we optimize
over states of the infinite system. Due to the symmetry (lack of geometry)
on the complete graph this expression can be simplified to (1.3) using the
well-known Størmer theorem. Hence, our results here are a quantum anal-
ogy of recent results for classical statistical mechanical models on complete
graphs using exchangeability [9]. The analysis in [2] concerns quantum spin
models and the extension to the Bose-Hubbard model requires a number of
technical considerations. Many of these can be found in the book by Ohya
and Petz [10], but we present some of the proofs here nonetheless in order
to make this paper more self-contained.
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Section 2 contains the proof of our variational formula (1.3). In Section 3
we briefly present some of the features of the model again, mainly in order to
correct some minor but irritating errors in the analysis of [1]. In Section 4,
we show that some of the C∗-algebraic formalism extends to the nearest-
neighbour hopping model, resulting in a variational formula for the pressure
analogous to the well-known formula for spin models. This formula does
not appear to have been written down before. As the variation is over the
set of all translation-invariant states on the lattice, it is difficult to analyse,
however, just as in the case of spin models.

2. C∗-algebraic derivation

We follow the technique of Petz, Raggio and Verbeure [2]. The Hamilton-
ian is invariant under the permutation group. We write it as

HV = −V
( 1

V

V
∑

x=1

a∗x
)( 1

V

V
∑

y=1

ay

)

+

V
∑

x=1

hx, (2.1)

where
hx = nx + λnx(nx − 1).

For finite V we thus assume that a CCR algebra AV is given generated by
creation and annihilation operators a∗x and ax (x ∈ {1, . . . , V }) and with
standard representation on the Fock space FV .

Next we define a reference state ωV on the Fock space FV as the product
state ωV =

⊗V
x=1 ωx, where ωx has the density matrix

ρωx =
exp[β(µnx − hx)]

Tr exp[β(µnx − hx)]
.

Let

A =
∞
⋃

V=1

AV (2.2)

be the (quasi-local) CCR algebra for the complete lattice N, where the clo-
sure is taken with respect to the norm topology.

Lemma 2.1. Suppose that φ is a regular permutation-invariant state on A
such that φ(nx) < +∞ for all x ∈ {1, . . . , V }. Then

lim
V→∞

φ
(( 1

V

V
∑

x=1

a∗x
)( 1

V

V
∑

y=1

ay

))

= φ(a∗1a2).

Proof. Notice that we can define φ(nx) as the supremum

φ(nx) = sup
N≥1

φ(P
(x)
N nx),
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where P
(x)
N is the projection on the subspace of Fx with nx ≤ N . Ob-

viously, this is independent of x by permutation invariance. The formula
φ
((

1
V

∑V
x=1 a

∗
x

)(

1
V

∑V
y=1 ay

))

should be interpreted in a similar way:

φ
(( 1

V

V
∑

x=1

a∗x
)( 1

V

V
∑

y=1

ay

))

= sup
N≥1

φ
( 1

V 2
P VN

V
∑

x,y=1

a∗xayP
V
N

)

,

where

P VN =
⊗

x∈V
P

(x)
N .

We now write

φ
(( 1

V

V
∑

x=1

a∗x
)( 1

V

V
∑

y=1

ay

))

=

= sup
N≥1

1

V 2

{

V
∑

x=1

φ
(

P VN nx
)

+
∑

x 6=y
φ
(

P VN a
∗
xayP

V
N

)

}

.

The first term is clearly bounded by 1
V φ(nx) and hence tends to zero. By

permutation invariance, the second term equals

V − 1

V
φ

(

P VN a
∗
1a2P

V
N

)

.

We conclude by proving that the limit (first N → ∞ and subsequently
V → ∞) of this expression exists and equals

φ(a∗1a2) = lim
N→∞

φ(P
(1)
N a∗1P

(1)
N P

(2)
N a2P

(2)
N ). (2.3)

To this end we write

φ(P VN1
a∗1a2P

V
N1

) − φ(P VN2
a∗1a2P

V
N2

)

= φ
(

(P VN1
− P VN2

)a∗1a2P
V
N1

)

+ φ
(

P VN2
a∗1a2(P

V
N1

− P VN2
)
)

and treat each term separately. Both terms are similar; we consider only
the first. We have

|φ
(

(P VN1
− P VN2

)a∗1a2P
V
N1

)

|

≤
[

φ
(

(P VN1
− P VN2

)a∗1a1(P
V
N1

− P VN2
)
)]1/2 [

φ
(

P VN1
a∗2a2P

V
N1

)]1/2
.

The second factor is obviously bounded by φ(n2)
1/2. In the first factor we

can write

P VN1
− P VN2

= (P
(1)
N1

− P
(1)
N2

) ⊗ P
(2)
N1

⊗ · · · ⊗ P
(V )
N1

+ · · · + P
(1)
N2

⊗ · · · ⊗ P
(V−1)
N2

⊗ (P
(V )
N1

− P
(V )
N2

).
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With the observation that P VN1
− P VN2

commutes with a∗1a1 we get

φ((P VN1
− P VN2

)a∗1a1(P
V
N1

− P VN2
))

≤ φ((P
(1)
N1

− P
(1)
N2

)a∗1a1(P
(1)
N1

− P
(1)
N2

)) + (V − 1)φ(P
(x)
N1

− P
(x)
N2

),

and therefore the limit of P VN a
∗
xayP

V
N exists. Similarly, one proves that

∣

∣

∣
φ(P VN1

a∗1a2P
V
N1

) − φ(P
(1)
N a∗1P

(1)
N P

(2)
N a2P

(2)
N )

∣

∣

∣
→ 0

for fixed V . Taking the limit N → ∞ and subsequently V → ∞ the result
follows. �

Remark 2.2. Since φ is regular, its restriction φV to each AV is regular, and
the number operators nx are well-defined. Moreover, the corresponding GNS
representation is equivalent with the Fock representation by Von Neumann’s
theorem [11]. In particular, φV is normal for all V , i.e. φ is locally normal.
Thus φV has a density matrix ρφV

.

Lemma 2.1 gives the mean energy for our model. Next we are concerned
with the relative entropy with respect to our reference state ωV . It is well-
known that the relative entropy

S(φV ‖ωV ) = Tr [ρφV
(ln ρφV

− ln ρωV
)]

is convex and superadditive [10]. A precise definition of S(φ ‖ω) for states
on a Von Neumann algebra was given by Araki [12, 13]. Given the stan-
dard representation π of B(FV ) (the GNS representation with respect to the
tracial state) one has

S(φV ‖ωV ) = −〈ΦV | ln ∆ΩV ,ΦV
|ΦV 〉, (2.4)

where
∆ΩV ,ΦV

= π(ρωV
)π′(ρφV

)−1

is the relative modular operator. Here ΦV = ρ
1/2
φV

and ΩV = ρ
1/2
ωV respectively,

and hence φV (A) = 〈ΦV |π(A)ΦV 〉 and ωV (A) = 〈ΩV , π(A)ΩV 〉. If EΩ,Φ is
the corresponding resolution of the identity, then we can write

S(φV ‖ωV ) = −

∫ 1

0
lnλ 〈ΦV |EΩV ,ΦV

(dλ) |ΦV 〉

−

∫ ∞

1
lnλ 〈ΦV |EΩV ,ΦV

(dλ) |ΦV 〉. (2.5)

Here we have separated the two integration domains to indicate that the
second integral is always convergent, whereas the first should be interpreted
as

− inf
δ>0

∫ 1

δ
lnλ 〈ΦV |EΩV ,ΦV

(dλ) |ΦV 〉

and determines whether S(φV ‖ωV ) is finite or infinite. Note that
S(φV ‖ωV ) = +∞ if ΦV 6≤ supp (ωV ).
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An equivalent definition was introduced by Uhlmann [14]:

S(φV ‖ωV ) = − lim
t↓0

1

t

(

‖∆
t/2
ΩV ,ΦV

ΦV ‖
2 − 1

)

. (2.6)

This is easily seen to be equivalent using Lebesgue’s monotone convergence
theorem. We now prove the following variational formula for the relative
entropy (compare [8, Lemma 3.2.13] for classical probability theory):

Theorem 2.3. For any state φV on B(FV ),

S(φV ‖ωV ) = sup
A∈B(FV ) : A∗=A

{

βφV (A) − ln Tr eβ(µN−PV
x=1 hx+A)

}

+ V ln Tr eβ(µn1−h1).

Proof. We first prove that S(φV ‖ωV ) is greater than the right-hand side.
Let A ∈ B(FV ) be self-adjoint. Then we can define the perturbed state ψV
by

ρψV
=

eβ(µN−PV
x=1 hx+A)

Tr eβ(µN−PV
x=1 hx+A)

.

We write

ZA,V = Tr eβ(µN−PV
x=1 hx+A)

and ZV = Tr eβ(µN−PV
x=1 hx in the following. We employ a change of state

(measure) method [8] with respect to the reference state ωV and the per-
turbed reference state ψV . The non-commutativity of our random variables
is an additional difficulty. But the Du Hamel formula gives

〈ΦV |∆
t
ΨV ,ΦV

|ΦV 〉

= Z−t
A,V Z

t
V

〈

ΦV |
(

1l − β

∫ t

0
dτ π(e−βτH

A
V AeβτH

0
V

)

π(ρtωV
)π′(φ−tV )|ΦV

〉

.

(2.7)
where

HA
V = −µN +

V
∑

x=1

hx −A,

and where H0
V = −µN +

∑V
x=1 hx is the non-interacting part of the Hamil-

tonian in (2.1). Differentiating we get

d

dt

∣

∣

t=0+〈ΦV |∆
t
ΨV ,ΦV

|ΦV 〉 = − lnZA,V + lnZV − β〈ΦV |π(A)ΦV 〉

+
d

dt

∣

∣

t=0+〈ΦV |∆
t
ΩV ,ΦV

|ΦV 〉

(2.8)

and hence

S(φV ‖ψV ) = S(φV ||ωV ) − βφV (A) + ln
Tr eβ(µN−PV

x=1 hx+A)

Tr eβ(µN−PV
x=1 hx)

. (2.9)
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The desired inequality now follows from the positivity of the relative en-
tropy. (Notice that this follows immediately from lnλ ≤ 1 − λ and

∫

λ〈ΦV |EΨV ,ΦV
(dλ) |ΦV 〉 = 〈ΦV |∆ΨV ,ΦV

|ΦV 〉

= 〈ΦV |π(ρψV
)π′(ρφV

)−1 |ΦV 〉 = Tr(ρψV
) = 1

by a simple approximation.)

To prove the converse inequality, first assume that c1ωV ≤ φV ≤ c2ωV
for constants 0 < c1 < c2 < +∞. Then there exists a bounded relative
Hamiltonian A such that

ρφV
=

eβ(µN−PV
x=1 hx+A)

Tr eβ(µN−PV
x=1 hx+A)

,

that is,

ρφV
=

e−βH
A
V

Tr e−βH
A
V

and ρωV
=

e−β(HA
V +A)

Tr e−β(HA
V +A)

.

Indeed, it follows easily that Dom(ln ρφV
) = Dom(ln ρωV

) and A = ln ρφV
−

ln ρωV
is bounded. The identity (2.9) with φV = ψV then yields

S(φV ‖ωV ) = βφV (A)− lnTr eβ(µN−PV
x=1 hx+A) +V ln Tr eβ(µn1−h1). (2.10)

The general case then follows from the lower semi continuity of the relative
entropy [10]:

S(φV ‖ωV ) ≤ lim inf
V→∞

S(φV,ǫ ‖ωV ).

Indeed, first assuming φV ≤ λωV we can put φV,ǫ = (1 − ǫ)φV + ǫωV to
conclude that the theorem holds in this case. In the general case, we use

the approximation ρφV,ǫ
=

PǫρφV
Pǫ

Tr[PǫρφV
Pǫ]
. �

It is proved in [10], Corollary 5.21, that

S(φ ‖ω1 ⊗ ω2) ≥ S(φ1 ‖ω1) + S(φ2 ‖ω2). (2.11)

The relative entropy is therefore superadditive:

S(φV 1+V 2 ‖ωV1 ⊗ ωV2) ≥ S(φV1 ‖ωV1) + S(φV2 ‖ωV2). (2.12)

It follows that the mean entropy

s(φ ‖ω) := lim
V→∞

1

V
S(φV ‖ωV )

exists. We now have the following ‘level-III’ variational expression for the
pressure. Here level-III refers to the fact that in the variational formula
we optimise over states of the infinite system [7]. The set of all regular
translation-invariant states on A is denoted by S(A), and the set of all reg-
ular translation-invariant and permutation-invariant states on A by SΠ(A).
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Theorem 2.4.

p(β, µ, λ) := lim
V→∞

1

βV
ln Tr eβ(µN−HV )

= sup
φ∈SΠ :

φ(nx)<+∞

{

φ(a∗1a2) −
1

β
s(φ ‖ω)

}

+
1

β
ln Tr eβ(µn1−h1).

Here the supremum is taken over all regular translation- and permutation-
invariant states φ on A such that φ(nx) < +∞ for all x ∈ N.

Proof. We denote

vV =
( 1

V

V
∑

x=1

a∗x
)( 1

V

V
∑

y=1

ay

)

and

PV =
1

β
ln Tr eβ(µN−PV

x=1 hx+V vV )

so that

p(β, µ, λ) = lim
V→∞

1

V
PV .

We approximate vV using a cut-off, and call this bounded operator also vV .
By Theorem 2.3

S(φV ‖ωV ) ≥ βV φV (vV ) − ln Tr eβ(µN−PV
x=1 hx+V vV ) + V lnTr eβ(µn1−h1).

This implies, using Lemma 2.1, that

lim inf
V→∞

1

V
PV ≥ sup

φ:φ(nx)<+∞

{

φ(a∗1a2) −
1

β
s(φ ‖ω)

}

+
1

β
ln Tr eβ(µn1−h1).

To prove the converse we seek an approximate maximiser. This is stan-
dard. We let

ψ̃V = ψV ⊗ ψV ⊗ . . .

be the infinite tensor product of states and define

ψ̄V =
1

V

V
∑

j=1

ψ̃V ◦ τj−1,
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where τj is the translation over j. This is a permutation-invariant state. We
estimate the expectation of the energy density:

ψ̄V (a∗1a2) =
1

V

V
∑

k=1

ψ̃V (a∗kak+1)

=
1

V

V−1
∑

k=1

ψV (a∗kak+1) +
1

V
ψV (a∗V )ψV (a1)

=
1

V 2

V
∑

x=1

V
∑

y=1; y 6=x
ψV (a∗xay) +

1

V
ψV (a∗V )ψV (a1)

=
1

V 2

V
∑

x,y=1

ψV (a∗xay) −
1

V
ψV (a∗1a1) +

1

V
|ψV (a1)|

2.

(2.13)

Lemma 2.1 and the Cauchy-Schwarz inequality |ψV (a1)|
2 ≤ ψV (a∗1a1) then

imply that

|ψ̄V (a∗1a2) − ψV (vV )| → 0 as V → ∞. (2.14)

It is known that the entropy is convex in both arguments [10]. In partic-
ular, we have

s(λφ1 + (1 − λ)φ2 ‖ω) ≤ λs(φ1 ‖ω) + (1 − λ)s(φ2 ‖ω).

On the other hand, by a simple approximation, we have

S(λφ1,V + (1 − λ)φ2,V ‖ωV ) = − λ〈Φ1,V | ln ∆ΦV ,ΩV
|Φ1,V 〉

− (1 − λ)〈Φ2,V | ln ∆ΦV ,ΩV
|Φ2,V 〉,

where φV = λφ1,V + (1 − λ)φ2,V . Using the fact that π(ρΩV
) and π′(ρφV

)
respectively π′(ρφ1,V

), π′(ρφ2,V
), commute and the operator monotonicity of

the inverse and the logarithm, we have

π′(ρφV
) ≥ λπ′(ρφ1,V

) =⇒ ∆ΩV ,ΦV
≤ λ−1∆ΩV ,Φ1,V

=⇒ ln ∆ΩV ,ΦV
≤ ln ∆ΩV ,Φ1,V

− lnλ.

Of course, a similar inequality holds w.r.t. φ2,V . Therefore

S(λφ1,V + (1 − λ)φ2,V ‖ωV ) ≥ λS(φ1,V ‖ωV ) + (1 − λ)S(φ2,V ‖ωV )

+ λ lnλ+ (1 − λ) ln(1 − λ).

In the limit, we find in combination with the convexity above, that the mean
relative entropy is affine in the first variable:

s(λφ1 + (1 − λ)φ2 ‖ω) = λs(φ1 ‖ωV ) + (1 − λ)s(φ2 ‖ω). (2.15)

Applying this to the state ψ̄V we get

s(ψ̄V ‖ω) =
1

V

V
∑

k=1

s(ψ̃V ◦ τk−1|ω)
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provided the right-hand side exists. However, by the translation-invariance
of ω, the right-hand side can be written as

1

V

V
∑

k=1

s(ψ̃V ◦ τk−1‖ω) = lim
n→∞

1

nV 2

V
∑

k=1

S((ψV )⊗n ◦ τk−1‖ωnV )

= lim
n→∞

1

nV
S((ψV )⊗n ‖ (ωV )⊗n)

=
1

V
S(ψV ‖ωV ).

We therefore have
(

ψ̄V (a∗1a2) −
1

β
s(ψ̄V ‖ω)

)

−
(

ψV (vV ) −
1

βV
S(ψV ‖ωV )

)

→ 0 (2.16)

as V → ∞. On the other hand, by Theorem 2.3 as above (see Eq. (2.10)),

S(ψV ‖ωV ) = βV ψV (vV ) − ln
Tr eβ(µN−PV

x=1 hx+V vV )

Tr eβV (µn1−h1)

= βψV (vV ) − βPV βV + ln Tr eβ(µn1−h1).

(2.17)

�

The variational expression for the pressure can now be simplified by de-
composing the state φ into an integral of extremal permutation-invariant
states:

Theorem 2.5.

p(β, µ, λ) = sup
σ∈S(A1) :
σ(n1)<+∞

{

|σ(a1)|
2 −

1

β
S(σ ‖ω1)

}

+
1

β
ln Tr eβ(µn1−h1),

(2.18)
where the supremum is now taken over regular states σ of A1 such that
σ(n1) < +∞.

Proof. The set of permutation invariant states Sπ(A) is a convex compact
set in the weak∗-topology, and it is metrizable because A is separable. By
Choquet’s theorem [17], we can therefore decompose an arbitrary state φ
into an integral

φ =

∫

ext (Sπ(A))
ψ µ(dψ)

over the extremal points of Sπ(A). Here µ is a probability measure on
ext (Sπ(A)). But, by Størmer’s theorem [15], the extremal permutation
invariant states are the product states

ψσ = σ ⊗ σ ⊗ . . . ,

where σ is a state of A1. Thus,

φ =

∫

S(A1)
ψσ µ(dσ).
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Moreover, since φ(nx) < ∞, we have that σ(n1) < ∞ for µ-almost every σ.
It follows that

φ(a∗1a2) =

∫

σ(a∗1)σ(a1)µ(dσ) =

∫

|σ(a1)|
2 µ(dσ).

For the entropy term we use the following lemma [17, Lemma 9.7]:

Lemma 2.6. Suppose that X is a compact convex subset of a locally convex
topological vector space. Let f : X → R be an affine, lower semi continuous
function on X, and suppose that µ is a (Radon) probability measure on X,
x0 =

∫

xµ(dx). Then
∫

f(x)µ(dx) = f(x0).

Since the relative entropy (and hence the mean relative entropy) is lower
semi continuous and affine, the lemma applies and we have

s(φ ‖ω) =

∫

s(ψσ ‖ω)µ(dσ).

However, since ω is also a product measure, s(ψσ ‖ω) = S(σ ‖ω1). The
Theorem now follows. �

Remark 2.7. Notice that the subset of regular states is also closed in the
set of all states on A by the Banach-Steinhaus theorem. Indeed, if φα is
a net of regular states converging to φ in weak∗-topology then φα(W (tf))
converges uniformly on compact sets t ∈ [a, b], where W (tf) is the Weyl
operator for f ∈ C

V .

In the following we write a instead of a1 and n for n1. Our variational
expression for the pressure can be further reduced to

Theorem 2.8.

p(β, µ, λ) = sup
z∈C

{|z|2 − I(z)} +
1

β
ln Tr eβ(µn−h), (2.19)

where the rate function I(z) is given by

I(z) = sup
ν∈C

{

ν̄z + νz̄ −
1

β
ln

Tr eβ(µn−h+(νa∗+ν̄a))

Tr eβ(µn−h)

}

. (2.20)

To prove this, we first need a lemma:

Lemma 2.9. Denote

p̃(ν) =
1

β
ln Tr eβ(µn−h+(νa∗+ν̄a)). (2.21)

This function is convex and satisfies

p̃(ν) ∼ |ν|4/3 as |ν| → ∞. (2.22)
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Proof of Lemma 2.9. Differentiating, we have

p̃′(ν) = 〈a∗〉H(ν),

where
H(ν) = −µn+ h− νa∗ − ν̄a.

Differentiating again, we get, as in [1], with ν = x+ iy,

∂2

∂x2
p̃(ν) =

( ∂

∂ν
+

∂

∂ν̄

)2
p̃(ν) = β

(

a+ a∗ − 〈a+ a∗〉 | a+ a∗ − 〈a+ a∗〉
)

H(ν)
,

∂2

∂y2
p̃(ν) = −

( ∂

∂ν
−

∂

∂ν̄

)2
p̃(ν) = β

(

a− a∗ −〈a− a∗〉 | a− a∗ − 〈a− a∗〉
)

H(ν)
,

and
∂2

∂x∂y
p̃(ν) = i

( ∂

∂ν
+

∂

∂ν̄

)( ∂

∂ν
−

∂

∂ν̄

)

p̃(ν)

= iβ
(

a+ a∗ − 〈a+ a∗〉 | a∗ − a− 〈a∗ − a〉
)

H(ν)
.

It follows by the Cauchy-Schwarz inequality that the corresponding matrix
is positive-definite.

To prove the asymptotic behaviour, we first remark that

νa∗ + ν̄a ≤ 2|ν|(n + 1)1/2

and hence

p̃(ν) ≤
1

β
ln Tr eβ(µn−h+2|ν|(n+1)1/2)

=
1

β
ln

∞
∑

n=0

eβ((µ−1)n−λn(n−1)+2|ν|
√
n+1) = O(|ν|4/3).

For the reverse inequality we use one half of the Berezin-Lieb bounds [18]:

Tr e−H(ν) ≥

∫

dz dz̄

π
e−〈z |H(ν) | z〉.

Here |z〉 stands for the coherent state

|z〉 = e−
1
2
|z|2

∞
∑

n=0

zn(a∗)n

n!
|0〉.

Since
〈z| a |z〉 = z, 〈z| a∗ |z〉 = z̄,

〈z|n |z〉 = |z|2,

and
〈z| (a∗)2a2 |z〉 = |z|4,

we get

Tr e−H(ν) ≥

∫

dz dz̄

π
eβ((µ−1)|z|2−λ|z|4+ν̄z+νz̄) = O(|ν|4/3).

�
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Proof of Theorem 2.8. Take A to be an approximation of νa∗ + ν̄a in
Theorem 2.3. We get, writing

p(ν) =
1

β
ln Tr eβ(µn−h+(νa∗+ν̄a)),

the inequality

|φ(a)|2 −
1

β
S(φV ‖ωV ) ≤ |φ(a)|2 − φ(νa∗ + ν̄a) + p(ν) − p(0)

and since ν is arbitrary,

|φ(a)|2 −
1

β
S(φ ‖ω) ≤ |φ(a)|2 − I(φ(a)).

Conversely, suppose that z is a maximiser for sup{|z|2 − I(z)}. For any
ν ∈ C, define the state φν by

ρφν =
eβ(µn−h+(νa∗+ν̄a))

Tr eβ(µn−h+(νa∗+ν̄a))

and choose ν such that φν(a) = z. It follows from the above lemma that
such ν exists. Then

sup
φ

{

|φ(a)|2 −
1

β
S(φ ‖ω)

}

≥ |φν(a)|
2 − S(φν ||ω)

= |z|2 − φν(νa
∗ + ν̄a) + p(ν) − p(0)

= |z|2 − I(z).

�

We finally rewrite the expression in the form (1.3). With a gauge trans-
formation it is easy to see that I(z) only depends on |z| and we have

p(β, µ, λ) = sup
x≥0

{

x2 − I(x)
}

+ p(0) (2.23)

and
I(x) = sup

r≥0
{2rx− p(r)} + p(0). (2.24)

Now let r ≥ 0 be given, and suppose that xmax is a maximiser of the expres-
sion (2.23). Then

p(β, µ, λ) = x2
max − I(xmax) + p(0) ≤ x2

max − 2rxmax + p(r)

and choosing r = xmax,

p(β, µ, λ) ≤ −x2
max + p(xmax) ≤ sup

r≥0
{−r2 + p(r)}.

On the other hand, if r0 is a maximiser of the right-hand side, then

r0 =
1

2

d

dr
p(r)

∣

∣

r=r0

and hence
I(r0) = 2r20 − p(r0) + p(0).
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Inserting, we get

sup
r≥0

{−r2 + p(r)} = −r20 + p(r0) = r20 − I(r0) + p(0) ≤ p(β, µ, λ).

Hence, we have shown the formula (1.3) for the infinite range Bose-Hubbard
model (2.1).

3. Analysis of the phase diagram

The phase diagram of the model was analysed in [1]. The same model,
but with disorder, was analysed in [16] where it was found that the disorder
gives rise to new phenomena. Unfortunately, [1] contains a few errors, which
we wish to correct here. First of all, the critical values of lambda are not
given by (2.14) of [1], but instead

λc,k = 2k + 1. (3.1)

This was already remarked in [16], see Remark 4.1. Indeed, although a gap
exists for λ > λk given by (2.14) in [1], the limiting value of µ(β, λ) lies in
this gap only if λ > λc,k.

There was also a mistake in the program to compute the p− V diagrams
of Fig. 5 and 6 in [1], as well as the condensation fractions of Fig. 7 and 8.
We include corrected graphs below:
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The critical inverse temperature as a function
of the density for a number of values of λ.

The P-V diagram for λ = 5.
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The P-V diagram for λ = 5 at higher pressures.

The condensation fraction as a function of the density for λ = 5.
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4. The nearest-neighbour hopping model

As in the case of quantum spin models, there is also a variational formula
for the pressure of the translation-invariant Bose-Hubbard model, analogous
to Theorem 2.4:

Theorem 4.1. The pressure of the nearest-neighbour hopping Bose-Hubbard
model is given by

p(β, µ, λ) = sup
φ:φ(nx)<+∞

{

d
∑

ν=1

φ(a∗0aeν + a∗eν
a0) −

1

β
s(φ ‖ω)

}

+
1

β
ln Tr eβ(µn̂−h0),

(4.1)

where the supremum is over all regular translation-invariant states φ on
the CCR algebra such that φ(nx) < +∞, and ω is the product state ω =
⊗

x∈Zd ωx with

ρωx =
1

Z0
eβ(µn̂x−hx)

and
hx = d n̂x − λn̂x(n̂x − 1).

The derivation of this formula is completely analogous to that of Theo-
rem 2.4. The main difference is that the infinite-volume limit now has to
taken in the sense of Van Hove. For the case of spin models, see for example
[19] or [20]. This variational formula does not seem to have been written
down before, though it has to be said that it is not clear how useful this
formula is. The analogous formula for spin models has so far not been very
useful for analysing the phase diagram. One possible application is perhaps
the cluster variation approximation, see [21], [22], [23], [24].
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