
Max-Plank-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

On a diffuse interface model for a two-phase flow

of compressible viscous fluids

by

Helmut Abels, and Eduard Feireisl

Preprint no.: 74 2007





On a diffuse interface model for a two-phase

flow of compressible viscous fluids

Helmut Abels ∗ Eduard Feireisl†

Max Planck Institute for Mathematics in Science
Inselstraße 22, 04103 Leipzig, Germany

Mathematical Institute of the Academy of Sciences of the Czech Republic
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Abstract
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framework of the general research programme of the Academy of Sciences of the Czech
Republic, Institutional Research Plan AV0Z10190503

1



1 Introduction and Main Result

We consider the flow of two macroscopically immiscible, viscous com-
pressible Newtonian fluids filling a bounded domain Ω ⊂ R

3. Classical
models assume that both fluids are separated by a surface Γ(t) and cap-
illary forces are modeled by the so-called Young-Laplace law

[n · T] = σHn on Γ(t)

which relates the jump of the norm-component of the stress tensor n · T

to the mean-curvature vector Hn of the interface Γ(t). This is a well-
accepted law for situations sufficiently close to equilibrium. On the other
hand, when the interface Γ(t) develops singularities during the flow e.g.
due to droplet formation or coalescence, this classical model breaks down.
In order to describe a general two-phase flow with droplet formation and
coalescence of several droplet, diffuse interface models were developed,
which take a (partial) mixing of the two macroscopically immiscible fluids
and a small mesoscopic length-scale into account. We refer to Anderson
and McFadden [3] for a review on that topic.

In the present contribution we study a variant of a model by Lowen-
grub and Truskinovsky [20], which can also be found in [3, Pages 151-152].
This model consists of a system of equations

̺∂tu + ̺u · ∇u − div S + ∇p = − div

(
∇c⊗∇c− |∇c|2

2
I

)
(1.1)

∂t̺+ div(̺u) = 0 (1.2)

̺∂tc+ ̺u · ∇c = ∆µ (1.3)

̺µ = ̺
∂f

∂c
− ∆c (1.4)

where p = ̺2 ∂f
∂̺

(̺, c) and

S = 2ν(c)D(u) + η(c) div u I, (1.5)

D(u) =
1

2
(∇u + ∇uT ) − 1

3
div uI

for some suitable functions λ(c) > 0, η(c) ≥ 0 and the free energy density
f(̺, c) to be specified later. Here u is the mean velocity of the fluid
mixture, p is the pressure, c is the (mass) concentration difference of the
two components and µ is the chemical potential. The first equation (1.1)
describes the conservation of linear momentum. In comparison with the
compressible Navier-Stokes equation for a single fluid, there is an extra
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stress contribution in the stress tensor ∇c⊗∇c− |∇c|2

2
I, which describes

capillary effect related to the free energy

Efree(̺, c) =

∫

Ω

(
̺f(̺, c) +

1

2
|∇c|2

)
dx, (1.6)

representing here the surface energy penalizing mixing of the fluids as
well as large variations of the concentration difference c. The second
equation (1.2) is the usual conservation of mass. Moreover, (1.3)-(1.4) is
a diffusion-convection equation for the concentration difference of Cahn-
Hilliard type. The model is derived and explained in more detail in
Section 2.2 below.

The system is closed by the initial and boundary conditions

u|∂Ω = ∇c · n|∂Ω = ∇µ · n|∂Ω = 0, (1.7)

(u, c)|t=0 = (u0, c0) (1.8)

Keeping in mind that system (1.1) - (1.5) was proposed as an alter-
native to the classical model when the latter fails, meaning when singu-
larities occur, we focus on the large data giving rise to solutions defined
on an arbitrarily long time interval. Accordingly, a suitable framework
is provided by the class of weak (distributional) solutions introduced by
Leray [17] in the context of a single incompressible fluid and generalized
by P.-L.Lions [18] to the compressible case. As is well-known, a pecu-
liar and rather unpleasant feature of this approach is a (hypothetical)
appearance of the vacuum zones, that means, the density ̺ may vanish
on a set of positive measure due to the lack of sufficiently strong a pri-
ori estimates. This fact represents the main technical stumbling block
that prevents us from considering the model proposed by Lowengrub and
Truskinovsky in [20, Section 3, Equation (3.34)], where the total free en-
ergy is given by

Efree(̺, c) =

∫

Ω

(
̺f(̺, c) +

̺

2
|∇c|2

)
dx. (1.9)

Indeed in this case the energy estimates do not provide any bound on ∇c
in the vacuum zone, which seems to be an unsurmountable problem for
all available techniques based on compactness arguments in the spirit of
Rellich-Kondrashov theorem.

A similar model for incompressible fluids was studied by Boyer [6],
Liu and Shen [19], Starovoitov [22], and the first author [1]. Finally,
we let us remark that a model for non-isothermal fluids undergoing a
change of phase was derived and studied by Blesgen [4]. The model
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leads to a compressible (non-barotropic) Navier-Stokes system coupled
with a modified Allen-Cahn equation.

Before we introduce our main result, let us summarize the principal
hypotheses: We suppose that Ω ⊂ R

3 is a bounded domain with C2-
boundary. The viscosity coefficients ν, η are assumed to be continuously
differentiable functions of c satisfying

0 < ν ≤ ν(c) ≤ ν, 0 ≤ η(c) ≤ η for all c. (1.10)

The specific (homogeneous) free energy f takes the form

f(̺, c) = fe(̺) + fmix(̺, c), fmix(̺, c) = H(c) log(̺) +G(c) (1.11)

and is interrelated to the pressure through the equation of state

p(̺, c) = ̺2∂f(̺, c)

∂̺
= pe(̺) + ̺H(c), fe(̺) =

∫ ̺

1

pe(z)

z2
dz (1.12)

where pe ∈ C([0,∞) ∩ C1(0,∞). In what follows, we shall assume that

pe(0) = 0, p
1
̺γ−1 − p

2
≤ p′e(̺) ≤ p(1 + ̺γ−1) (1.13)

for a certain γ > 3
2

and

−H ≤ H ′(c), H(c) ≤ H, G1c−G2 ≤ G′(c) ≤ G(1 + c) (1.14)

for all c ∈ R.

Remark 1.1 Let us remark that the assumptions on the free energy are
motivated by the free energy density of the form

̺f(̺, c) = α1̺
1 − c

2
ln

(
̺
1 − c

2

)
+ α2̺

1 + c

2
ln

(
̺
1 + c

2

)
− βc2

= ̺

(
α1

1 − c

2
ln

1 − c

2
+ α2

1 + c

2
ln

1 + c

2

)

+̺ ln ̺

(
α1

1 − c

2
+ α2

1 + c

2

)
− βc2,

where α1, α2, β > 0 and the logarithmic terms are related to the en-
tropy of the system. Typically, in the case of the Cahn-Hilliard equa-
tion, α1

1−c
2

ln 1−c
2

+ α2
1+c
2

ln 1+c
2

is approximated by a suitable smooth
bi-stable function. Finally, adding a cold pressure of the form pe(̺) =

θ
5
2P
(

̺

θ
3
2

)
≈ ̺

5
3 , we end up with a free energy of the form above.
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In what follows we denote by

E(t) =

∫

Ω

̺(t)|u(t)|2 dx+ Efree(̺(t), c(t)), (1.15)

E0 =

∫

Ω

̺−1
0 |m0|2 dx+ Efree(̺0, c0) (1.16)

the total energy of the system at time t ∈ (0, T ), t = 0, respectively. In
addition we set Q(s,t) = Ω × (s, t) and QT = Q(0,T ).

Our main result reads as follows:

THEOREM 1.2 Let 0 < T <∞, let γ > 3
2
, and let the above assump-

tions be satisfied.
Then for every non-negative ̺0 ∈ Lγ(Ω), measurable m0 : Ω → R

3

with ̺−1
0 |m0|2 ∈ L1(Ω), and c0 ∈ H1(Ω) there is a weak solution ̺ ∈

L∞(0, T ;Lγ(Ω)), ̺ ≥ 0, u ∈ L2(0, T ;H1(Ω; R
3)), c ∈ L∞(0, T ;H1(Ω)) in

the following sense:

1. For every ϕ ∈ D(Ω × (0, T ); R
3)

−
∫

QT

(
̺u · ∂tϕ + (̺u ⊗ u + p I − S) : ∇ϕ

)
d(x, t)

=

∫

QT

(
(∇c⊗∇c) : ∇ϕ − |∇c|2

2
div ϕ

)
d(x, t) (1.17)

2. ̺ is a renormalized solution of (1.2) in the sense of DiPerna and
Lions [8], i.e.,
∫

QT

(
̺B(̺)∂tϕ+ ̺B(̺)u · ∇ϕ− b(̺) div u ϕ

)
d(x, t) = 0 (1.18)

for any test function ϕ ∈ D(Ω × (0, T )), and any

B(̺) = B(1) +

∫ ̺

1

b(z)

z2
dz, (1.19)

where b ∈ C0([0,∞)) is a bounded function.

3. For every ϕ ∈ D(Ω × (0, T ))
∫

QT

(̺c ∂tϕ+ ̺cu · ∇v) d(x, t) =

∫

QT

∇µ · ∇ϕd(x, t) (1.20)

and
∫

QT

̺µϕ d(x, t) =

∫

QT

(
̺
∂f(̺, c)

∂c
ϕ+ ∇c · ∇ϕ

)
d(x, t). (1.21)
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4. The energy inequality

E(t) +

∫

Q(s,t)

(
S : ∇u + |∇µ|2

)
d(x, τ) ≤ E(s) (1.22)

holds for almost every 0 ≤ s ≤ t ≤ T including s = 0, where
E(t), E(0) = E0 are determined through (1.15)-(1.16).

5. ̺, ̺u, c are weakly continuous with respect to t ∈ [0, T ] with values
in L1(Ω) and ̺|t=0 = ̺0, ̺u|t=0 = m0, c|t=0 = c0.

Remark 1.3 Note that the class of test functions in (1.18) already in-
cludes (implicitly) the satisfaction of the impermeability boundary condi-
tion ̺u · n|∂Ω = 0.

Let us comment on the main novelties of this study: To begin with,
it is quite natural to assume that viscosity depends effectively on the
order parameter c as the transport coefficients may be rather different
for each component. On the other hand, this fact modifies considerably
the relation satisfied by the effective viscous flux that must be handled
in the spirit of [11].

Another intrinsic feature of the problem is the dependence of the
pressure p = p(̺, c) on the order parameter c, where, in addition, p need
not be a monotone function of ̺ for all range of c. This difficulty is
overcome by means of the technique introduced in Chapter 6 in [10].

As already pointed out above, the main obstacle in the theory of weak
solutions to systems describing compressible fluids is the appearance of
vacuum zones. In particular, the extensive quantities like ̺c, that means,
those whose total amount is proportional to the distribution of mass, may
exhibit large time oscillations on the vacuum as there is no control on
their time derivative. The main new ingredient of the present theory is
therefore compactness of c or even ∇c over the whole space-time cylin-
der regardless the (hypothetical) presence of the areas of zero density.
This rather surprising property follows from a simple observation that,
in accordance with (1.4), ∆c is small as soon as ̺ is small, in particular,
∆cn approaches zero whenever ̺n → 0 for any sequence of approximate
solutions. On the other hand, as cn can be shown to converge pointwise
out of the vacuum, we conclude

∫ T

0

∫

Ω

|∇cn|2 dx = −
∫ T

0

∫

Ω

cn∆cn dx→
∫ T

0

∫

Ω

|∇c|2 dx,

which is equivalent to strong convergence of ∇cn in L2(QT ).
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The outline of the article is as follows: In Section 2 we derive the
model leading to our system (1.1)-(1.4) on the basis of a local dissipation
inequality, which plays the role of the second law of thermodynamics.
Moreover, we discuss some preliminary consequences of the a priori es-
timates obtained from the local dissipation inequality. In order to con-
struct the weak solution, we use a two-level approximation scheme. More
precisely, in Section 3, we construct solutions to an approximate system
to (1.1)-(1.4), where an extra term is added to the free energy in order to
get a better integrability of the density. This is done by using an implicit
time discretization of the approximate system. Finally, in Section 4, we
consider the limit of the approximate system to show our main result.

2 Modeling, A Priori Estimates and Pre-

liminary Results

2.1 Notation

If A,B ∈ R
n×n are two matrices, then A : B =

∑n
i,j=1 AijBij denotes

their scalar product. If a,b ∈ R
n, then a ⊗ b ∈ R

n×n is defined by
(a ⊗ b)ij = aibj. The characteristic function of a set A is denoted by
χA. If Ω ⊆ R

n is a domain, then C∞
0 (Ω; R

N) is the set of all smooth and
compactly supported functions f : Ω → R

N and C∞
0 (Ω) = C∞

0 (Ω; R).
Moreover, for a general set A ⊆ R

n we denote C∞
(0)(A; R

N) = {f ∈
C∞

0 (Rn; R
N)) : supp f ⊆ A} and C∞

(0)(A; R) = C∞
(0)(A). For short we

also write D(A; R
N) = C∞

(0)(A; R
N) and D(A) = C∞

(0)(A). The usual

Lebesgue spaces are denoted by Lq(Ω), 1 ≤ q ≤ ∞, ‖ · ‖q, denotes its
norm, and Lq(Ω;X) denotes the corresponding space of q-integrable X-
valued functions. The L2(Ω)-scalar product is denoted by (., .)Ω. Further-
more, W s,q(Ω; R

N),W s,q(Ω), s ≥ 0, are the Sobolev-Slobodetskii spaces,
cf. e.g. [2]. As usual Wm,q

0 (Ω), m ∈ N0, is the closure of C∞
0 (Ω) in

Wm,q(Ω), W−m,q(Ω) = (Wm,q′

0 (Ω))′, 1 = 1
q

+ 1
q′

, Hm(Ω) = Wm,2(Ω) and

Hm
0 (Ω) = Wm,2

0 (Ω). Finally, Cweak([0, T ];X) is the space of all weakly
continuous f : [0, T ] → X and fn → f in Cweak([0, T ];X) if and only if
〈fn(t), x′〉X,X′ →n→∞ 〈f(t), x′〉 uniformly in t ∈ [0, T ] for all x′ ∈ X ′.
Here 〈·, ·〉X,X′ denotes the duality product of X and X ′.

2.2 Deduction of the Model

In the following part we sketch a brief deduction of the model leading
to system (1.1)-(1.4), which is a variant of the model discussed in [20,
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Section 3]. Our arguments are based on a local dissipation inequality,
which plays the role of the second law of thermodynamics in the present
context. It is similar to some parts of the discussion in Gurtin et. al. [16],
where a diffuse interface model for two incompressible, viscous fluids of
the same density is obtained.

We consider two fluids filling a domain Ω ⊆ R
3. The mass concen-

tration of the fluid j = 1, 2 is denoted by cj =
Mj

M
. Moreover, ̺j =

Mj

V

denotes the apparent mass density of the fluid j and ̺ = ̺1 +̺2 the total
density. Moreover, uj denotes the velocity of the fluid j = 1, 2 and u is
defined as the average velocity given by ̺u = ̺1u1 + ̺2u2, cf. [20]. In
addition to the principle of mass conservation, we assume conservation
of linear and angular momentum with respect to the mean velocity, i.e.,
we suppose that

̺u̇ ≡ ̺∂tu + ̺u · ∇u = div T (2.1)

̺t + div(̺u) = 0 (2.2)

for a symmetric stress tensor T = T(̺, c,∇c,D(u)), where D(u) = 1
2
(∇u+

∇uT ), describing the material behavior of the mixture to be specified
through a set of constitutive assumptions below. Exterior forces are for
simplicity chosen to be zero. Here and always in what follows, ḟ =
∂tf + u∇̇f denotes the material time derivative of a quantity f .

Furthermore, we denote by Jj the mass flux of the fluid j relative to
the mean velocity u, i.e.,

∂t̺j + div(̺ju) = div Jj.

In order to obtain conservation of mass (2.2), we assume that J1+J2 = 0.
Let c = c1 − c2 = 2c1 − 1 be the concentration difference. Then

̺∂tc+ ̺u · ∇c = div J (2.3)

where J = 2J1 since ̺j = ̺cj.

Diffusion, free energy: Now the relative motion of the fluids is assumed
to be driven by diffusion. To this end we introduce the Helmholtz free
energy of a given volume V in the form

∫

V

F (̺, c(x),∇c(x)) dx. (2.4)

Then the chemical potential is defined as

µ = ̺−1 δF

δc
= ̺−1

(
∂F

∂c
− div

∂F

∂∇c

)
. (2.5)
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In the following we will use F in the form F (̺, c,∇c) = ̺f(̺, c,∇c) that
coincides with that of [20].

As in [20], we assume that the mass flux J is given by the generalized
Fick’s law

J = m∇c,
where the mobility m > 0 is assumed to be constant. Hence we end up
with a Cahn-Hilliard type diffusion equation for c:

̺ċ = m∆µ (2.6)

̺µ =
∂F

∂c
− div

∂F

∂∇c. (2.7)

Second law of thermodynamics/local dissipation inequality:
Let V (t) be an arbitrary volume that is transported with the flow. Then
the total energy in V (t) is given by

E(t) =

∫

V (t)

̺
|u|2
2

dx+

∫

V (t)

F (̺, c,∇c) dx =

∫

V (t)

e(u, c,∇c) dx,

where e(u, c,∇c) = ̺(c) |u|
2

2
+ F (̺, c,∇c). Similarly to [16], we assume

the dissipation inequality

d

dt

∫

V (t)

e(̺,u, c,∇c) dx

≤
∫

∂V (t)

Tn · u dσ +

∫

∂V (t)

ċ t · n dσ +

∫

∂V (t)

µJ · n dσ (2.8)

for every control volume V (t) transported with flow, where σ denotes the
two-dimensional surface measure. Here the energy carried into V (t) due
to the working of the (macroscopic) stresses is given by

∫
∂V (t)

Tn · u dσ.
The energy carried into V (t) due to diffusion is

∫
∂V (t)

µJ · n dσ. Finally,

∫

∂V (t)

ċ t · n dσ

represents a generalized surface force to be specified later. We note that
in [16] t = ξ is called microscopic stress and is related to forces on a
microscopic length scale (micro-force) π by the micro-force balance

∫

V

π dx+

∫

∂V

ξ · n dσ = 0
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for each control volume V . In [9] the quantity ċ t is called interstitial
work flux,

The equivalent local form of (2.8) is

∂te+ div(ue) − div(T · u) − div(ċt) − div(µJ) =: D ≤ 0. (2.9)

Using that

∂t

(
̺
|u|2
2

)
+ div

(
u̺

|u|2
2

)
= div(T · u) − T : ∇u

due to (2.1)-(2.2),

(̺f)t + div(̺uf) = ̺ft + ̺u · ∇f = ̺ḟ ,

and

div(ċt) + div(µJ) = ċ div t + ∇(ċ) · t + µ̺ċ+m|∇µ|2
= (̺µ+ div t)ċ+ (∇c)· · t −∇u : (t ⊗∇c) +m|∇µ|2;

whence we conclude

D = ̺
∂f

∂̺
˙̺ +

(
∂F

∂c
− div t − ̺µ

)
ċ

+

(
∂F

∂∇c − t

)
(∇c)· − (T − t ⊗∇c) : ∇u −m|∇µ|2,

where f is defined by F (̺, c,∇c) = ̺f(̺, c,∇c). Finally, using ˙̺ =
−̺ div u and the definition of µ, we obtain

D =

(
div

∂F

∂∇c − div t

)
ċ+

(
∂F

∂∇c − t

)
(∇c)·

−
(

T + ̺2∂(̺−1F )

∂̺
I − t ⊗∇c

)
: ∇u −m|∇µ|2.

Hence making the constitutive assumptions

t =
∂F

∂∇c,
S := T + P (̺, c,∇c)I − t ⊗∇c = 2ν(c)D(u) + η(c) div u I (2.10)

with P (̺, c,∇c) = ̺2 ∂(̺−1F )
∂̺

(̺, c,∇c) and ν(c), η(c) ≥ 0, we have

D = −2ν(c)|D(u)|2 − η(c)| div u|2 −m|∇µ|2 ≤ 0 (2.11)
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and the local dissipation inequality (2.8), (2.9), respectively, is satisfied.
Hence the stress tensor T differs from the stress tensor for a single com-
pressible Newtonian fluid by the extra stress ∂F

∂∇c
⊗ ∇c, which is often

called Ericksen’s stress. Here S is the viscous stress corresponding to
inner forces leading to an irreversible loss of energy through dissipation.
The part p(̺, c,∇c)I − t ⊗ ∇c of the stress tensor corresponds to inner
forces due to (reversible) changes of the energy Efree(̺, c). Hence (2.10)
reflects Newton’s rheological law.

Finally, if we specify F to be of the form

F (̺, c,∇c) = ̺f(̺, c) +
1

2
|∇c|2,

we have

P (̺) = ̺2∂f

∂̺
(̺, c) − |∇c|2

2
. (2.12)

Hence we obtain (1.1)-(1.4) because of (2.1),(2.2), (2.6), (2.7), and (2.10),
where we have put for simplicity m = 1. On the point of conclusion, note
that the latter equation and (2.7) are consistent with the Gibb’s equation

DF + PD
(1

̺

)
= µDc. (2.13)

2.3 Total Mass Conservation

By integration of (1.2) over Ω or choosing ϕ = ψ(t) with ψ ∈ D(0, T ),
we get

∫

Ω

̺(t) dx =

∫

Ω

̺0 dx ≡M0 for almost all t ∈ (0, T ). (2.14)

In the same way one gets from (1.3)

∫

Ω

̺(t)c(t) dx =

∫

Ω

̺0c0 dx for almost all t ∈ (0, T ). (2.15)

2.4 Total Energy Balance

We note that integrating (2.9) with respect to Ω, using (1.7) and (2.11)
yields

d

dt
E(t) +

∫

Ω

(
2µ(c)|D(u)|2 + ν(c)| div u|2 + |∇µ|2

)
(t) dx = 0
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for sufficiently smooth solutions, where E(t) is as in (1.15). As usual, this
equality will turn into an inequality for the weak solutions constructed,
which is nothing other than (1.22).

The total energy inequality (1.22) together with (1.10) give rise to
the uniform estimates

ess supt∈(0,T )‖̺(t)‖Lγ(Ω) ≤ C(M0, E0), (2.16)

ess supt∈(0,T )‖∇c(t)‖L2(Ω;R
3) ≤ C(M0, E0), (2.17)

ess supt∈(0,T )‖
√
̺u(t)‖

L2(Ω;R
3
)

≤ C(M0, E0), (2.18)
∫ T

0

‖∇µ‖2

L2(Ω;R
3)
dt ≤ C(M0, E0), (2.19)

where E0 denotes the initial energy defined in (1.16) and M0 is the total
mass as in (2.14).

Moreover, by means of Korn’s inequality and hypothesis (1.10),
∫ T

0

‖∇u‖2

L2(Ω;R
3×3)

dt ≤ C(M0, E0), (2.20)

2.5 Cahn-Hilliard Type Equation

A weak formulation of (1.3)-(1.4), taking the boundary conditions for
(c, µ) in (1.7) into account, reads

∫

QT

(̺c ∂tϕ+ ̺cu · ∇v) d(x, t) =

∫

QT

∇µ · ∇ϕd(x, t), (2.21)

∫

QT

̺µϕ d(x, t) =

∫

QT

(
̺
∂f(̺, c)

∂c
ϕ+ ∇c · ∇ϕ

)
d(x, t) (2.22)

for any test function ϕ ∈ D((0, T ) × Ω).
In order to estimate ‖c(t)‖L2 and ‖u(t)‖L2 , we use the following simple

variant of Poincare’s inequality (cf. Lemma 3.1 in [12]):

Lemma 2.1 Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that ̺

is a non-negative function such that

0 < M =

∫

Ω

̺ dx,

∫

Ω

̺γ dx ≤ K, with γ >
6

5
.

Then there exists a constant C = C(γ,M,K) such that
∥∥∥w − 1

|Ω|

∫

Ω

̺w dx
∥∥∥

L1(Ω)
≤ C(γ,M,K)‖∇w‖

L2(Ω;R
3
)

for any w ∈ W 1,2(Ω).
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As a straightforward consequence of Lemma 2.1, together with esti-
mates (2.16), (2.18), (2.20), we obtain

∫ T

0

‖u‖2

W 1,2(Ω;R
3
)
dt ≤ C(M0, E0). (2.23)

Similarly, by virtue of (2.15), (2.17),

ess sup
t∈(0,T )

‖c(t)‖W 1,2(Ω) ≤ C(c0, E0,M0). (2.24)

Finally, choosing ϕ = ϕ(t) independent of x in (2.22), we get
∫

Ω

̺(t)µ(t) dx =

∫

Ω

̺(t)
∂f(̺(t), c(t))

∂c
dx for a.a. t ∈ (0, T ),

where the integral on the right-hand side is essentially bounded in t ∈
(0, T ) because of

∣∣∣∣
∂f(̺, c)

∂c

∣∣∣∣ ≤ C(1 + |c|) for all c.

due to (1.11), (1.14), and (2.24). Consequently, in accordance with (2.19),
we conclude that

∫ T

0

‖µ‖2

W 1,2(Ω;R
3
)
dt ≤ C(c0,M0, E0). (2.25)

2.6 Strong Compactness of the Concentration Gra-

dients

This is one of the main ingredients of the proof. Assume that ̺n ≥ 0,

̺n → ̺ in Cweak([0, T ];Lγ(Ω)), (2.26)

cn → c weakly in L∞(0, T ;W 1,2(Ω)), (2.27)

∂t(̺ncn) is bounded in Lq(0, T ;W−1,q(Ω)) for a certain q > 1, (2.28)

and, in addition,
∫ T

0

∫

Ω

∇cn·∇ϕdx dt =

∫ T

0

∫

Ω

√
̺nfnϕdx dt+

∫ T

0

∫

Ω

gnϕdx dt, (2.29)

for any ϕ ∈ D((0, T ) × Ω), where




fn → f weakly in L2((0, T ) × Ω),

gn → g (strongly) in L1(0, T ;L
6
5 (Ω)).



 (2.30)
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Our aim is to show that

∫ T

0

∫

Ω

|∇cn|2 dx dt→
∫ T

0

∫

Ω

|∇c|2 dx dt (2.31)

yielding, together with (2.27),

cn → c in L2(0, T ;W 1,2(Ω)).

To this end, we observe first that ̺ ≥ 0, and

cn → c a.a. on the set {̺ > 0} (2.32)

passing to a suitable subsequence as the case may be. Indeed it follows
from (2.26), (2.27) that

̺ncn → ̺c weakly-(*) in L∞(0, T ;Lq(Ω) for a certain q >
6

5
,

which, together with (2.28), gives rise to

̺nc
2
n → ̺c2 weakly-(*) in L∞(0, T ;Lr(Ω)) for a certain r > 1.

Since, by the same token,

(̺n − ̺)c2n → 0 weakly-(*) in L∞(0, T ;Lr(Ω)) for a certain r > 1,

we get ∫ T

0

∫

Ω

̺c2n dx dt→
∫ T

0

∫

Ω

̺c2 dx dt,

in particular, (2.32) follows.
On the other hand, letting n→ ∞ in (2.29) yields

∫ T

0

∫

Ω

∇c · ∇ϕdx dt =

∫ T

0

∫

Ω

√
̺fϕ dx dt+

∫ T

0

∫

Ω

gϕ dx dt,

for any ϕ ∈ D((0, T ) × Ω), where

√
̺nfn → √

̺f weakly in L2(0, T ;Lq(Ω)) for a certain q >
6

5
.

In particular, by means of a standard density argument,

∫ T

0

∫

Ω

|∇c|2 dx dt =

∫ T

0

∫

Ω

√
̺fc dx dt+

∫ T

0

∫

Ω

gc dx dt. (2.33)
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Finally, taking ϕ = cn and letting n→ ∞ in (2.29), we obtain

lim
n→∞

∫

Ω

|∇cn|2 dx dt =

∫ T

0

∫

Ω

√
̺fc dx dt+

∫ T

0

∫

Ω

gc dx dt,

which, combined with (2.33), gives rise to the desired conclusion (2.31)
as soon as we observe that

√
̺fc =

√
̺fc, (2.34)

where, according to the standard notation convention adopted in this
paper, the bar stands for a weak limit in L1.

In accordance with (2.32), relation (2.34) is satisfied on the set {̺ >
0} where cn → c strongly in L1(Ω).

On the other hand, since ̺n are non-negative,

̺n → 0 (strongly) in Lq({̺ = 0}) for any 1 ≤ q < γ;

whence (2.34) holds on the set {̺ = 0} as well. The proof of (2.31) is
now complete.

3 Existence for the System with Artificial

Pressure

In order to construct weak solutions, we use a two-level approximation.
At the first approximation level we add an artificial pressure term that
ensures better integrability of ̺. This technique is well-known and can be
found e.g. in [11, 18, 21]. More precisely, we start with the approximate
system

∫

QT

(
̺δuδ · ∂tϕ + ̺δ(uδ ⊗ uδ) : ∇ϕ +

(
p(̺δ, cδ) + δ̺Γ

δ

)
div ϕ

)
d(x, t)

=

∫ T

0

∫

Ω

(
Sδ − Pδ

)
: ∇ϕ dx dt−

∫

Ω

̺0,δu0 · ϕ(0) dx (3.1)

for any ϕ ∈ D([0, T ) × Ω; R
3),

∫

QT

(
̺δ∂tϕ+ ̺δuδ · ∇ϕ

)
d(x, t) = −

∫

Ω

̺0,δϕ|t=0 dx (3.2)

∫

QT

(̺δcδ∂tϕ+ (̺δcδuδ −∇µ) · ∇ϕ) d(x, t) = −
∫

Ω

̺0,δc0ϕ|t=0 dx (3.3)
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∫

QT

̺µϕ d(x, t) =

∫

QT

(
̺
∂f(̺, c)

∂c
ϕ+ ∇c · ∇ϕ

)
d(x, t). (3.4)

for any ϕ ∈ D([0, T ) × Ω), where

Sδ = 2ν(cδ)D(uδ) + η(cδ) div uδ I, (3.5)

Pδ = ∇cδ ⊗∇cδ −
|∇cδ|2

2
I. (3.6)

Here ̺0,δ ∈ LΓ(Ω) such that ̺0,δ ≥ 0, and ̺0,δ →δ→0 ̺0 in Lγ(Ω),
̺0,δ|u0|2 →δ→0 ̺0|u0|2 in L1(Ω), u0 satisfies ̺0u0 = m0, and (m0, ̺0, c0)
are as in Theorem 1.2. In addition, the approximate solutions (̺δ,uδ, cδ)δ>0

will satisfy the energy inequality

Eδ(t) +

∫

Q(s,t)

(
Sδ : ∇uδ + |∇µδ|2

)
d(x, τ) ≤ Eδ(s) (3.7)

for almost all 0 ≤ s ≤ t ≤ T including s = 0, where

Eδ(t) =

∫

Ω

(
1

2
̺δ|uδ|2 + ̺δf(̺δ, cδ) +

δ

Γ − 1
̺Γ

δ +
|∇cδ|2

2

)
(t) dx. (3.8)

The main purpose of this section is to prove:

THEOREM 3.1 Let Γ > 3, δ > 0, and let 0 < T < ∞. Then for
every non-negative ̺0,δ ∈ LΓ(Ω), measurable u0 : Ω → R

3 with ̺0,δ|u0|2 ∈
L1(Ω), and c0 ∈ H1(Ω) there are some ̺δ ∈ L∞(0, T ;LΓ(Ω))∩LΓ+1(QT ),
̺δ ≥ 0, uδ ∈ L2(0, T ;H1(Ω; R

3)), cδ ∈ L∞(0, T ;H1(Ω)) solving (3.1)-
(3.6) and satisfying (3.7).

In order to prove this theorem, we approximate (3.1)-(3.4) via a suitable
time discretization. For simplicity we will drop the subscript δ in most
quantities for the rest of this section.
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3.1 Implicit Time Discretization

Let h > 0. Given (uk, ̺k, ck) ∈ L2(Ω)3 × LΓ(Ω) × H1(Ω) we determine
(uk+1, ̺k+1, ck+1, µk+1) as a solution of the system

̺u − ̺kuk

h
+ div(̺u ⊗ u) − div S

+ε(∇̺ · ∇)u + ∇pδ = ̺µ∇c− ̺
∂f

∂c
(̺, c)∇c (3.9)

̺− ̺k

h
+ div(̺u) = ε∆̺ (3.10)

̺k
c− ck
h

+ ̺u · ∇c = ∆µ (3.11)

̺kµ = ̺k
f(̺k, c) − f(̺k, ck)

c− ck
− ∆c (3.12)

where pδ = p(̺, c) + δ̺Γ, p(̺, c) = ̺2 ∂fe

∂̺
+ ̺H(c), and

S = S(ck,∇u) ≡ 2ν(ck)D(u) + η(ck) div u I (3.13)

together with the boundary conditions

u|∂Ω = ∂n̺|∂Ω = ∂nc|∂Ω = ∂nµ|∂Ω = 0 on ∂Ω. (3.14)

Here (3.9)-(3.12) will be understood in the sense of distributions and
(3.14) in the sense of traces of Sobolev functions. Note that (3.10)-(3.11)
implies that

∫

Ω

̺ dx =

∫

Ω

̺k dx,

∫

Ω

̺c dx =

∫

Ω

̺kck dx,

which is the time discrete version of (2.14)-(2.15).

Remark 3.2 The right-hand side of (3.9) is motivated by the identity

− div

(
∇c⊗∇c− |∇c|2

2
I

)
= ̺µ∇c− ̺

∂f

∂c
(̺, c)∇c

provided that (1.4) holds. For solutions of the discrete system above the
latter identity does not hold; but the form of (3.9)-(3.12) ensures that a
similar energy estimate holds.

Because of the assumption on pe(̺) = ̺2 ∂fe

∂̺
, we can decompose

pe(̺) = p̃m(̺) + pb(̺), where pb ∈ C2([0,∞)), pb ≤ 0, has compact
support, p̃m(0) = 0 and

p̃m(1 + ̺Γ−1) ≤ p̃′m(̺) ≤ p̃m(1 + ̺Γ−1) (3.15)
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for some constants pm, pm > 0. Moreover, we assume without loss of
generality that H(c) ≥ 0. This can always be achieved by adding H̺ to
fe(̺, c), where H = infc∈RH(c), and replacing H(c) by H(c) −H.

As a consequence of these assumptions we have that

pδ(̺, c) = pm(̺, c) + pb(̺), (3.16)

where pm(̺, c) = p̃m(̺) + ̺H(c) ≥ 0 is again monotone with respect to
̺. This decomposition of p induces a decomposition

f(̺, c) = fm(̺, c) + fb(̺),

where fm(̺, c) =
∫ ̺

0
pm(s,c)

s2 ds + G(c) and ̺ 7→ ̺fm(̺, c) is convex and
monotone. Moreover, we define

Em(̺,u, c) =

∫

Ω

(
̺|u|2

2
+ ̺fm(̺, c) +

|∇c|2
2

)
dx.

Lemma 3.3 Let (uk, ̺k, ck) ∈ L2(Ω; R
3) × LΓ(Ω) × H1(Ω), ̺ ≥ 0, and

let 0 < ε ≤ 1. Then every (u, ̺, c, µ) ∈ H1(Ω; R
3) × H2(Ω)3, ̺ ≥ 0,

solving (3.9)-(3.14) satisfies the discrete energy estimate

Em(̺,u, c) + εh

∫

Ω

∂̺pm

̺
|∇̺|2 dx+

∫

Ω

̺k|u − uk|2
2

dx+
‖∇(c− ck)‖2

2

2

+α‖̺− ̺k‖2
2 + h

∫

Ω

S : ∇u dx+ h‖∇µ‖2
2 ≤ Em(̺k,uk, ck) +Rk (3.17)

for some α > 0 depending only on fm. Here pm = pm(̺, c) and

Rk = h

∫

Ω

pb(̺) div u dx− εh

∫

Ω

∇̺ · ∇c∂
2(̺fm(̺, c))

∂̺∂c
dx.

Moreover, there is some h0 > 0 independent of (uk, ̺k, ck) and ε > 0 such
that any solution (u, ̺, c, µ) ∈ H1(Ω; R

3) ×H2(Ω)3 with ̺ ≥ 0 satisfies

‖(̺ 1
2u, c,∇c)‖2

2 + ‖̺‖Γ
Γ

+h‖(u,∇u, µ,∇µ, ε 1
2∇̺)‖2

2 ≤ C (Em(̺k,uk, ck) + 1) (3.18)

where C is independent of h with 0 < h ≤ h0, 0 < ε ≤ 1 and ̺k,uk, ck,
but depends on

∫
Ω
̺k dx and

∫
Ω
̺kck dx. Finally, for all 0 < h ≤ h0 there

is some (u, ̺, c, µ) ∈ H1(Ω; R
3)×H2(Ω)3 with ̺ ≥ 0 solving (3.9)-(3.14).
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Proof: We first show the energy estimate (3.17). First of all, because
of (3.10) multiplied on 1

2
|u|2 and integrated by parts, we have

∫

Ω

̺|u|2 − ̺kuk · u
h

dx+

∫

Ω

div(̺u ⊗ u) · u dx+ ε

∫

Ω

(∇̺ · ∇)u · u dx

=

∫

Ω

̺
|u|2
2h

dx−
∫

Ω

̺k
|uk|2
2h

dx+

∫

Ω

̺k
|u − uk|2

2h
dx.

Hence, testing (3.9) with u we obtain

∫

Ω

̺
|u|2
2h

dx−
∫

Ω

̺k
|uk|2
2h

dx+

∫

Ω

̺k
|u − uk|2

2h
dx+

∫

Ω

S : ∇u dx

=

∫

Ω

pδ div u dx+

∫

Ω

̺µ∇c · u dx−
∫

Ω

̺
∂f

∂c
(̺, c)∇c · u dx. (3.19)

Moreover, multiplying (3.10) with ∂̺F (̺), where F (̺, c) = ̺fm(̺, c), we
obtain

̺− ̺k

h
∂̺F (̺, c) + div(F (̺, c)u)

+pm(̺) div u = ε∆̺∂̺F (̺, c) + ̺∂cf(̺, c)∇c · u

since ̺∂̺F (̺, c) − F (̺, c) = ̺2∂̺fm(̺, c) = pm(̺, c). Furthermore, since
∂2F
∂̺2 (̺, c) = ̺−1∂̺pm(̺, c) ≥ α

2
> 0 for some α > 0 due to (3.15), we have

∂F

∂c
(̺, c)(̺− ̺k) ≥ ̺fm(̺, c) − ̺kfm(̺k, c) + α(̺− ̺k)

2.

Therefore

1

h

∫

Ω

(̺fm − ̺kfm(̺k, c)) dx+ α‖̺− ̺k‖2
2 ≤ −

∫

Ω

pm div u dx (3.20)

−ε
∫

Ω

∂̺pm

̺
|∇̺|2 dx− ε

∫

Ω

∇̺ · ∇c∂
2(̺f)

∂̺∂c
dx+

∫

Ω

̺
∂f

∂c
∇c · u dx,

where fm, pm and their derivatives depend on ̺, c if not stated differently.
Moreover, multiplying (3.11) with µ and (3.12) with c−ck

h
, we obtain

1

h

∫

Ω

̺k(fm(̺k, c) − fm(̺k, ck)) dx+
‖∇c‖2

2

2h

+
‖∇(c− ck)‖2

2

2h
+

∫

Ω

|∇µ|2 dx ≤ ‖∇ck‖2
2

2h
−
∫

Ω

̺µ∇c · u dx (3.21)

since (a−b)·a = |a|2

2
+ |a−b|2

2
− |b|2

2
for all a, b ∈ R

3 and f(̺k, ck)−f(̺k, c) =
fm(̺k, ck) − fm(̺k, c). Combining (3.19)-(3.21) we obtain (3.17).
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In order to estimate Rk(̺,u, c) we note that

∣∣∣∣ε
∫

Ω

∇̺ · ∇c∂
2(̺fm)

∂̺∂c
(̺, c) dx

∣∣∣∣ ≤ Cε‖(log ̺+ 1)∇̺‖2‖∇c‖2

since ∂2(̺fm)
∂̺∂c

(̺, c) = (log ̺+ 1)H ′(c). Hence

|Rk(̺,u, c)| ≤ C (h‖ div u‖2 + εh‖(1 + log ̺)∇̺‖2‖∇c‖2)

Moreover, (3.17) and ̺−1∂̺pm(̺) ≥ p̃m(̺−1 + ̺Γ−2) due to (3.15) imply
that

‖(̺ 1
2u,∇c)‖2

2 + ‖̺‖Γ
Γ + h‖(u,∇µ, ε 1

2 (1 + log ̺)∇̺)‖2
2

≤ C (Em(̺k,uk, ck) + |Rk(̺,u, c)|)

Therefore, combining the last two estimates and using Young’s inequality,
we conclude

‖(̺ 1
2u,∇c)‖2

2 + ‖̺‖Γ
Γ + h‖(u,∇µ, ε 1

2 (1 + log ̺)∇̺)‖2
2

≤ C
(
Em(̺k,uk, ck) + 1 + ε

3
2h‖(1 + log ̺)∇̺‖2

2 + h
1
2‖∇c‖2

2

)

where C is independent of ̺,u, c, ̺k,uk, ε, h. Therefore there is some
h0 > 0 such that

‖(̺ 1
2u,∇c)‖2

2+‖̺‖Γ
Γ+h‖(u,∇µ, ε 1

2 (1+log ̺)∇̺)‖2
2 ≤ C (Em(̺k,uk, ck) + 1)

for all 0 < h ≤ h0. Finally, by the same estimates as in Section 2.5,
Lemma 2.1 and (3.11) imply

‖c‖2
2 + h‖µ‖2

2 ≤ C

(
‖∇c‖2

2 + h‖∇µ‖2
2 +

∣∣∣∣
∫

Ω

̺c dx

∣∣∣∣
2

+ h

∣∣∣∣
∫

Ω

̺kµ dx

∣∣∣∣
2
)

≤ C ′(Em(̺k,uk, ck) + 1)

where C,C ′ depend on
∫

Ω
̺ dx =

∫
Ω
̺k dx and

∫
Ω
̺c dx =

∫
Ω
̺kck. This

completes the proof of the uniform estimate (3.18).
Next we prove existence of solutions (for a fixed 0 < h ≤ h0) with

the aid of a homotopy argument and the Leray-Schauder degree. To this
end we introduce operators Lk,Fk : X → Y with

X = H1
0 (Ω; R

3) ×H2
N(Ω)3, H2

N(Ω) = {u ∈ H2(Ω) : ∂nu|∂Ω = 0},
Y = H−1(Ω; R

3) × L2(Ω)3,
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and

Lk(u, ̺, c, µ) =




divS(ck,∇u)
λ̺+ div(̺u) − ε∆̺

∆µ+
∫

Ω
µ dx

∆c+
∫

Ω
c dx


 ,

Fk(u, ̺, c, µ) =



̺u−̺kuk

h
+ div(̺u ⊗ u) + ε(∇̺ · ∇)u + ∇pδ − ̺µ∇c+ ̺∂f

∂c
(̺, c)∇c

(λ− 1
h
)[̺]+ + 1

h
̺k

̺k
c−ck

h
+ ̺u · ∇c+

∫
Ω
µ dx

̺k
f(̺k,c)−f(̺k,ck)

c−ck
− ̺kµ+

∫
Ω
c dx


 .

Here λ ≥ max(λ0,
1
h
), where λ0 = λ0(ε,K) is the constant in the state-

ment of Lemma 3.4 below with K so large that ‖v‖6 ≤ K for any solution
of (3.9)-(3.14). Then by Lemma 3.4 below and standard results on el-
liptic partial differential equations Lk : X → Y is invertible. Moreover,
if Lk(u, ̺, c, µ) = Fk(u, ̺, c, µ) for some (u, ̺, c, µ) ∈ X, then ̺ ≥ 0 by
Lemma 3.4 and therefore [̺]+ = ̺. Hence (u, ̺, c, µ) ∈ X with ̺ ≥ 0 is
a solution of (3.9)-(3.14) if and only if

Lk(u, ̺, c, µ) = Fk(u, ̺, c, µ) ⇔ (u, ̺, c, µ) = L−1
k (Fk(u, ̺, c, µ)),

i.e., w = (u, ̺, c, µ) solves w−L−1
k (Fk(w)) = 0. . Moreover, the operator

norms of Lk and L−1
k can be bounded by a constant independent of ck.

Furthermore, it is easy to check that L−1
k Fk : X → X is a continuous and

compact mapping. Hence the Leray-Schauder degree of I−L−1
k Fk is well-

defined, cf. e.g. [7]. In order to show that deg(I − L−1
k Fk, BR(0), 0) = 1

for sufficiently large R > 0, let F τ
k (u, ̺, c, µ), τ ∈ [0, 1], be the operator

obtained by replacing for uk, ̺k, ck, f in the definition of Fk(u, ̺, c, µ) by
uτ

k = (1 − τ)uk, ̺
τ
k = (1 − τ)̺k + τ, cτk = (1 − τ)ck and

f τ (̺, c) = τ(̺Γ−1 + log ̺) + (1 − τ)f(̺, c).

Then w = (u, ̺, c, µ) ∈ X solves w − L−1
k (F τ

k (w)) = 0 if and only if
(u, ̺, c, µ) solve (3.9)-(3.14) with uk, ̺k, ck, f replaced by uτ

k, ̺
τ
k, c

τ
k, f

τ .
Moreover, it is not difficult to check that for each fixed ε > 0, 0 < h ≤ h0

‖F τ
k (u, ̺, c, µ)‖Y can be estimated by the terms on the left-hand side of

(3.18). Hence, if w = (u, ̺, c, µ) ∈ X solves w − L−1
k (F τ

k (w)) = 0, then

‖(u, ̺, c, µ)‖X ≤ C‖F τ
k (u, ̺, c, µ)‖Y ≤M(Em(̺k,uk, ck), ε, h)

for some continuous function M independent of τ ∈ [0, 1]. Hence there is
some R > 1 such that any solution of w−L−1

k F τ
k (w) = 0 with 0 < h ≤ h0,
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τ ∈ [0, 1] satisfies ‖w‖X ≤ R − 1. Moreover, if τ = 1, (3.17) and the
strict convexity of ̺f 1(̺, c) = ̺Γ + ̺ log ̺ imply that w = (0, 1, 0, 0) is
the unique solution of w − L−1

k F1
k (w) = 0. Thus

deg(I − L−1
k Fk, BR(0), 0) = deg(I − L−1

k F1
k , BR(0), 0) = 1,

which proves the lemma.

Lemma 3.4 Let K, ε > 0, and let v ∈ H1(Ω; R
3) with ‖v‖6 ≤ K. Then

there is some λ0 = λ0(ε,K) > 0 such that for any λ ≥ λ0 and any
f ∈ L2(Ω) there is a unique ̺ ∈ H1(Ω) solving

λ(̺, ϕ)Ω − (v̺,∇ϕ)Ω + ε(∇̺,∇ϕ)Ω = (f, ϕ)Ω (3.22)

for all ϕ ∈ H1(Ω). Moreover, if f ≥ 0, then ̺ ≥ 0.

Proof: We can assume without loss of generality that ε = 1. We first
show an a priori estimate, which implies uniqueness. To this end let
̺ ∈ H1(Ω) be a solution of (3.22). Then choosing ϕ = ̺ in (3.22) gives

λ‖̺‖2
2 + ‖∇̺‖2

2 ≤ ‖v‖6‖̺‖3‖∇̺‖2 + ‖f‖2‖̺‖2

≤ C‖v‖6‖̺‖
1
2
2 ‖̺‖

3
2

H1 + ‖f‖2‖̺‖2.

Thus, if λ ≥ 1,

λ‖̺‖2
2 + ‖∇̺‖2

2 ≤ CK4‖̺‖2
2 + C‖f‖2

2

by Young’s inequality. Choosing λ0 = max{1, 2CK4} yields

λ‖̺‖2
2 + ‖∇̺‖2

2 ≤ C‖f‖2
2 (3.23)

for all λ ≥ λ0 and some C > 0 independent of λ. Hence the solution is
unique. In order to prove existence of a solution with ̺ ≥ 0 if f ≥ 0
one approximates v, f by smooth vk, fk such that vk →k→∞ v in L6(Ω)
and fk →k→∞ f ∈ L2(Ω) and fk ≥ 0 if f ≥ 0. Then e.g. by [21, Propo-
sition 4.29] there is some ̺k ∈ W 2

p (Ω) for any 1 < p < ∞ which solves
(3.22) with v, f replaced by vk, fk and which is non-negative if fk are
non-negative. Because of (3.23) (̺k)k∈N are bounded in H1(Ω). Hence
there is a weakly convergent subsequence that converges to a solution
̺ ∈ H1(Ω) of (3.22) and that is non-negative if f ≥ 0.

Now let N ∈ N be given and set h = T
N

and ε = h. If h0 is the
constant appearing in Lemma 3.3, then there is some N0 such that N ≥
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N0 implies h ≤ h0. Hence, if N ≥ N0, we can define (uk, ̺k, ck, µk),
k = 1, . . . , N , successively as solution of (3.9)-(3.14) with (u0, ̺0, c0) as
fixed initial values. Moreover, define gN(t) : (−h,∞) by gN(t) = gk for
t ∈ ((k − 1)h, kh], k = 1, . . . , N , where g ∈ {u, ̺, c, µ} (setting µ0 = 0)
as well as pN

δ = p(̺N , cN) + δ(̺N)Γ. In what follows we denote

(∆+
h f)(t) = f(t+ h) − f(t), (∆−

h f)(t) = f(t) − f(t− h),

(τhg)(t) = g(t− h), ∂±t,hf =
1

h
∆±

h f.

Multiplication of (3.9) by ̺−1
k

∫ k(h+1)

kh
ϕ(x, t) dt, integration in space, and

summation over all k ∈ N0 gives

(∂−t,h(̺
NuN),ϕ)QT

−
(
̺NuN ⊗ uN − S

N + pN
δ I,∇ϕ

)
QT

+h(∇̺N · ∇uN ,ϕ)QT
=
(
̺N
(
µN − ∂cf

N
)
∇cN ,ϕ

)
QT

(3.24)

where ϕ ∈ C∞
(0)(Ω × [0, T ); R

3) is arbitrary, ∂cf
N = ∂f

∂c
(̺N , cN), and

S
N = 2ν(τhc

N)D(uN) + η(τhc
N) div uN

I (3.25)

Moreover, using summation by parts, i.e.,

(∂−t,h(̺
NuN), ϕ)QT

= −(̺NuN , ∂+
t,hϕ)QT

+ (u0, ϕ(0))Ω,

we conclude

−(̺NuN , ∂+
t,hϕ)QT

− (̺0u0,ϕ|t=0)Ω −
(
̺NuN ⊗ uN − S

N + pN
δ I,∇ϕ

)
QT

+h(∇̺N · ∇uN ,ϕ)QT
=
(
̺N
(
µN − ∂cf

N
)
∇cN ,ϕ

)
QT

(3.26)

for all ϕ ∈ C∞
(0)(Ω × [0, T ); R

3). In the same way, one obtains

(̺N , ∂+
t,hψ)QT

+ (̺0, ψ|t=0)Ω + (̺NuN ,∇ψ)QT
= h(∇̺,∇ψ)QT

, (3.27)

(̺NcN , ∂+
t,hψ)QT

+ (̺0c0, ψ|t=0)Ω

+(̺NcNuN ,∇ψ)QT
= (∇µN ,∇ψ)QT

(3.28)

for all ψ ∈ C∞
(0)(Ω×[0,∞)), where we have used that (3.10)-(3.11) implies

̺k+1ck+1 − ̺kck
h

+ div(̺kuk+1ck) = ∆µk+1.

Moreover,

(τh̺
N)µN = τh̺

N

(
f(τh̺, c

N) − f(τh̺, τhc
N)

∆−
h c

N

)
− ∆cN . (3.29)
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Finally, summation of (3.17) with respect to k ∈ N yields

Em(̺N(t),uN(t), cN(t)) + h

∫

Q(s,t)

∂̺pm(̺N , cN)

̺N
|∇̺N |2 d(x, τ)

+

∫

Q(s,t)

τh̺
N |∆−

h uN |2
2h

d(x, τ) +
1

2h
‖∇∆−

h c
N‖2

L2(Q(s,t))

+

∫

Q(s,t)

S
N : ∇uN d(x, τ) + ‖∇µN‖2

L2(Q(s,t))

≤ Em(̺N(s),uN(s), cN(s)) +Rt,s(̺
N ,uN , cN) (3.30)

for all 0 ≤ s ≤ t ≤ T with s, t ∈ hN0, where

Rt,s(̺
N ,uN , cN) =∫

Q(t,s)

(
pb(̺

N) div uN − h∇̺N · ∇cN ∂
2(̺fm)

∂̺∂c
(̺N , cN)

)
dx.

Since Em(̺N(t),uN(t), cN(t)) = Em(̺N(tk),u
N(tk), c

N(tk)) for all t ∈
(tk − h, tk] if tk ∈ hN0 ∩ (0, T ), we conclude that (3.30) holds for all
0 ≤ s ≤ t ≤ T with

Rt,s(̺
N ,uN , cN) = (3.31)∫

Q(tk,sk)

(
pb(̺

N) div uN − h∇̺N · ∇cN ∂
2(̺fm)

∂̺∂c
(̺N , cN)

)
dx,

where tk, sk ∈ hN0∩ [0, T ) are determined by the condition t ∈ (tk−h, tk]
and s ∈ (sk − h, sk].

Lemma 3.5 There is some h1 > 0 independent of ̺N ,uN , cN and a
constant C(̺0, u0, c0) depending only Ω, d, ̺0,u0, c0 such that

sup
0≤t≤T

(
‖̺N(t)‖Γ +

∫

Ω

̺N(t)|uN(t)|2 dx+ ‖cN(t)‖H1

)

+ h−
1
2‖(∇∆−

h c
N ,∆−

h ̺
N)‖L2(QT ) + ‖(uN , µN , h

1
2̺N log ̺N)‖L2(0,T ;H1)

≤ C(̺0,u0, c0)

provided that h = T
N

≤ h1.

Proof: First of all, since ∂2(̺fm)
∂̺∂c

(̺, c) = (̺ log ̺)′H ′(c) and since pb(̺) is
uniformly bounded, we have
∣∣R0,T (̺N ,uN , cN)

∣∣

≤ C
(
‖ div uN‖L2(QT ) + h

3
2‖∇(̺ log ̺)‖2

L2(QT ) + h
1
2‖∇c‖2

L2(QT )

)
.
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On the other hand (3.30) and ̺−1∂̺pm(̺) ≥ C|1 + log ̺|2 due to (3.15)
imply

sup
0≤t≤T

(
‖̺N(t)‖Γ

Γ +

∫

Ω

̺N(t)|uN(t)|2 dx+ ‖∇cN(t)‖2
2

)

+ h−1‖(∇∆−
h c

N ,∆−
h ̺

N)‖2
L2(QT ) + ‖∇uN ,∇µN , h

1
2∇(̺N log ̺N)‖2

L2(QT )

≤ C
(
Em(̺0,u0, c0) +R0,T (̺N ,uN , cN)

)
.

Combining this with the previous estimate, choosing 0 < h ≤ h1 suffi-
ciently small, and using Young’s inequality yields

sup
0≤t≤T

(
‖̺N(t)‖Γ

Γ +

∫

Ω

̺N(t)|uN(t)|2 dx+ ‖∇cN(t)‖2
2

)

+ h−
1
2‖(∇∆−

h c
N ,∆−

h ̺
N)‖2

L2(QT ) + ‖∇uN ,∇µN , h
1
2∇(̺N log ̺N)‖2

L2(QT )

≤ C (Em(̺0,u0, c0) + 1) .

The remaining estimates of ‖cN‖L∞(0,T ;L2) and ‖µN‖L2(QT ) are done in
the same way as in the proof of Lemma 3.3.

3.2 Improved Density Estimate

In order to show that ̺N , N ≥ N0, is uniformly bounded in LΓ+1(QT )
we choose

ϕ = ψ(t)B
[
P0̺

N
]
, where P0̺

N = ̺N − 1

|Ω|

∫

Ω

̺N dx

and ψ ∈ C∞
0 (0, T ), in (3.26). Here B is the well-known Bogovskii op-

erator, cf. Bogovskii [5] or Galdi [15, Chapter III.3]. In particular,
B : Lp

(0)(Ω) → W 1,p
0 (Ω; R

3) is a bounded operator for all 1 < p < ∞,

where Lp
(0)(Ω) = P0L

p(Ω), provided that Ω is a Lipschitz domain. More-

over, if g ∈ Lp, g = div v, v ∈ Lq(Ω; R
3) such that v · n|∂Ω = 0, then

‖B[g]‖
Lq(Ω;R

3
)
≤ C(p, q)‖v‖

Lq(Ω;R
3
)

for 1 < p, q <∞. (3.32)
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Then a direct computation yields

∫

QT

ψ(t)pm(̺N , cN)̺N d(x, t) −
∫ T

0

ψ(t)

∫

Ω

pm(̺N) dx
1

|Ω|

∫

Ω

̺N dx dt

=

∫

QT

ψ(t)
(
S

N − ̺NuN ⊗ uN
)

: ∇B
[
P0̺

N
]
d(x, t)

+

∫

QT

ψ(t)
(
̺N
(
∂cf

N − µN
)
∇cN + h∇uN · ∇̺N

)
·B
[
P0̺

N
]
d(x, t)

+

∫

QT

ψ(t)̺NuNτ−hB
[
div(̺NuN − h∇̺N)

]
d(x, t)

−
∫

QT

̺NuN(∂+
t,hψ)B[P0̺

N ] d(x, t) ≡
4∑

j=1

Ij,

where

|I1| ≤ C(T, ̺0, c0,u0)‖∇B[P0̺
N ]‖L2(QT )‖ψ‖∞ ≤ C ′(T, ̺0, c0,u0)‖ψ‖∞,

|I2| ≤ C(T, ̺0, c0,u0)‖̺N‖L∞(0,T ;LΓ)‖ψ‖∞ ≤ C ′(T, ̺0, c0,u0)‖ψ‖∞,
|I3| ≤ ‖̺NuN‖L2(QT )‖B

[
div(̺NuN − h∇̺N)

]
‖L2(QT )‖ψ‖∞

≤ C ′(T, ̺0, c0,u0)‖ψ‖∞,
|I4| ≤ C(T, ̺0, c0,u0)‖∂tψ‖L1(0,T )

since Γ > 3. Letting ψ to approach 1 we conclude that

δ

∫

QT

(̺N)Γ+1 d(x, t) ≤ C(T, ̺0, c0,u0) (3.33)

uniformly in N ≥ N0.

3.3 Passing to the Limit

Using the a priori bounds given by Lemma 3.5 and by (3.33), we can
pass to a subsequence again denoted by (̺N ,u

N , cN , µN) such that

(̺N , cN) ⇀∗
N→∞ (̺, c) in L∞(0, T ;LΓ(Ω) ×H1(Ω)),

̺N ⇀N→∞ ̺ in LΓ+1(QT ),

pδ(̺
N , cN) ⇀N→∞ pδ(̺, c) in L(Γ+1)/Γ(QT ),

(̺NuN , ̺NcN , SN) ⇀N→∞ (̺u, ̺c, S) in L2(QT ; R
4 × R

3×3),

(uN , µN) ⇀N→∞ (u, µ) in L2(0, T ;H1(Ω; R
4)),
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as well as

(h∇̺N , h∇(̺N log ̺N),∆−
h c

N) →N→∞ 0 in L2(QT ; R
7).

Next we define ˜̺N and ˜̺cN as a piecewise linear interpolation of ̺N(tk),
̺N(tk)c

N(tk), resp., where tk = kh, k = 0, . . . , N . More precisely, ˜̺N =
1
h
χ[0,h] ∗t ̺

N and ˜̺cN = 1
h
χ[0,h] ∗t (̺NcN), where the convolution is only

taken with respect to the time variable t. Then

∂t ˜̺
N = ∂−t,h̺

N and ∂t ˜̺cN = ∂−t,h(̺
NcN) almost everywhere.

Thus (3.27) yields that ∂t ˜̺
N is bounded in L2(0, T ;H−1(Ω)), which im-

plies that

˜̺N →N→∞ ̺ in Lr(0, T ;H−ε(Ω)) for all 1 ≤ r <∞, ε > 0

by the Aubin-Lions Lemma. In particular, this implies

˜̺N → ̺ in Cweak([0, T ];LΓ(Ω)),

since ‖ ˜̺N‖L∞(0,T ;LΓ(Ω)) is uniformly bounded in N ≥ N0. Moreover,

‖̺N − ˜̺N‖L2(QT ) ≤ ‖∆−
h ̺

N‖L2(QT ) →N→∞ 0.

Hence w − limN→∞ ˜̺N = w − limN→∞ ̺N = ̺ and

̺u = lim
N→∞

̺NuN = lim
N→∞

˜̺NuN = ̺u weakly in L2(QT ),

̺c = lim
N→∞

̺NcN = lim
N→∞

˜̺NcN = ̺c weakly in L2(QT ),

lim
N→∞

̺NµN = lim
N→∞

˜̺NµN = ̺µ weakly in L2(QT )

since uN and cN converge weakly in L2(0, T ;H1(Ω)).
Moreover, we denote

√
τh̺N

f(τh̺
N , cN) − f(τh̺

N , τhc
N)

cN − τhcN
= F (τh̺N , c

N , τhc
N),

using the convention F (̺, c, c) = ∂f
∂c

(̺, c). Then F (̺, c1, c2) is a continu-
ous function with respect to (̺, c1, c2) ∈ [0,∞) × R

2 satisfying

|F (̺, c1, c2)| ≤ C(1 + ̺
1
2 | log ̺|)(1 + |c1| + |c2|).

Hence

√
τh̺N

f(τh̺
N , cN) − f(τh̺

N , τhc
N)

cN − τhcN
is bounded in L2(QT )
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and we can apply the result of Section 2.6 to (˜̺N , cN) using (3.29) to-
gether with the fact that τh̺

N − ˜̺N converges strongly to zero in Lβ(QT )
for all 1 ≤ β < Γ + 1. In this way one concludes that

cN →N→∞ c in L2(0, T ;H1(Ω)).

In particular, cN →N→∞ c almost everywhere in QT and therefore

S = lim
N→∞

(
2ν(τhc

N)D(uN) + η(τhc
N) div uN

I

)

= 2ν(c)D(u) + η(c) div u I = S.

Furthermore, because of the growth estimate of F , we conclude that

̺N f(τh̺
N , cN) − f(τh̺

N , τhc
N)

cN − τhcN
⇀∗

N→∞ ̺
∂f

∂c
in L∞(0, T ;L

6
5 (Ω))

for a suitable subsequence.
Having all necessary results at hand, we see that (u, ̺, c, µ) solve

−(̺u, ∂tϕ)QT
+ (̺0u0,ϕ|t=0)Ω − (̺u ⊗ u − S,∇ϕ)QT

= (pδ, div ϕ)QT
+

(
̺µ∇c− ̺

∂f

∂c
∇c,ϕ

)

QT

(3.34)

for all ϕ ∈ C∞
(0)([0, T ) × Ω); R

3), as well as

(̺, ∂tψ)QT
+ (̺0, ψ|t=0)Ω + (̺u,∇ψ)QT

= 0 (3.35)

(̺c, ∂tψ)QT
+ (̺0c0, ψ|t=0)Ω + (̺cu,∇ψ)QT

= (∇µ,∇ψ)QT
(3.36)

(
̺µ− ̺

∂f

∂c
, ψ

)

QT

= (∇c,∇ψ)QT
(3.37)

for all ψ ∈ C∞
(0)([0, T ) × Ω)).

Moreover, since ̺ ∈ L2(QT ),u ∈ L2(0, T ;H1(Ω)), we can use the
regularizing procedure of DiPerna and Lions [8] or [21, Lemma 6.9], to
conclude that ̺ is a renormalized solution of the transport equation (1.2)
as in (1.18) for all B(̺) such that b̃(̺) = ̺B(̺) ∈ C0([0,∞))∩C1(0,∞)
and

|b̃′(̺)| ≤
{
Ct−λ0 if t ∈ (0, 1],

Ctλ1 if t > 1

for some λ0 < 1 and λ1 ≤ 1. In particular, we can choose B(̺) = log ̺,
which implies that

∂t(̺ log ̺) + div(̺ log(̺)u) + ̺ div u = 0 in D′(R3 × (0, T )). (3.38)
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Furthermore, choosing ψ = Ψ′(̺N)χ[0,t] in (3.27), where Ψ: R → R+ is a
smooth and convex function, we obtain
∫

Ω

Ψ(˜̺N(t)) dx−
∫

Ω

Ψ(̺0) dx

≤ 1

h

∫ t

t−h

∫

Ω

Ψ(̺N(τ)) dx dτ −
∫

Ω

Ψ(̺0) dx

=

∫

Qt

∂−τ,hΨ(̺N(τ)) d(x, τ) ≤
∫

Qt

Ψ′(̺N)∂−τ,h̺
N(τ) d(x, τ)

= −
∫

Qt

Ψ′(̺N) div(̺NuN) d(x, τ) + h

∫

Qt

∆̺NΨ′(̺N) d(x, τ)

= −
∫

Qt

(
(Ψ′(̺N)̺N − Ψ(̺N)) div uN + hΨ′′(̺N)|∇̺N |2

)
d(x, τ)

≤ −
∫

Qt

(Ψ′(̺N)̺N − Ψ(̺N)) div uN d(x, τ)

because of Jensen’s inequality and ˜̺N = 1
h
χ[0,h] ∗t ̺

N . After a simple
approximation we can replace Ψ(s) by s log s. Hence, passing to the
limit N → ∞ and using (3.38), we obtain

∫

Ω

(̺ log ̺− ̺ log ̺)(t) dx ≤
∫

Qt

(
̺ div u − ̺ div u

)
d(x, τ) (3.39)

for almost all t ∈ (0, T ).
In what follows, the symbol ∆−1f = K ∗f denotes the convolution of

f with the fundamental solution of the Laplacean on R
3, where functions

defined on Ω are extended by zero to functions on R
3. We choose ϕ =

ψ∇∆−1[̺N ], ψ ∈ C∞
0 (QT ) in (3.26) and obtain

∫

QT

ψ
(
pN

δ I − S
N
)
R[̺N ] d(x, t)

=

∫

QT

ψuN
(
̺N∇ div ∆−1(̺NuN) − ̺NuN · R[̺N ]

)
d(x, t)

+

∫

QT

ψ̺NuNτ−h∇ div ∆−1(̺NuN − h∇̺N) d(x, t)

+

∫

QT

(
−̺NuN(∂+

t,hψ)τ−h(ψ∇∆−1̺N) + gN · ∇∆−1̺N
)
d(x, t)

where R = ∇2∆−1 and

gN = −
(
pN

δ I − S
N + ̺NuN ⊗ uN

)
· ∇ψ

+hψ∇̺N · ∇uN + ̺N
(
∂cf

N − µN
)
∇cNψ.
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Using [10, Corollary 6.1], we conclude

lim
N→∞

∫

QT

ψuN
(
̺N∆−1∇ div(̺NuN) − ̺NuN · R[̺N ]

)
d(x, t)

=

∫

QT

ψu
(
̺∆−1∇ div(̺u) − ̺u · R[̺]

)
d(x, t).

Moreover, using the previous results on strong and weak convergence, it
is easy to pass to the limit in all remaining terms to conclude that

lim
N→∞

∫

QT

ψ
(
pN

δ I − S
N
)
R[̺N ] d(x, t)

=

∫

QT

ψu
(
̺∇ div ∆−1(̺u) − ̺u · R[̺]

)
d(x, t)

−
∫

QT

ψ̺u∇ div ∆−1(̺u) d(x, t)

+

∫

QT

(
−̺u(∂tψ)τh(ψ∇∆−1̺) + g · ∇∆−1̺

)
d(x, t)

where

g = − (pδI − S + ̺u ⊗ u) · ∇ψ + hψ∇̺ · ∇u + ̺
∂f

∂c
∇c− ̺µ∇c.

On the other hand, choosing ϕ = ψ∇∆−1̺ in (3.34) and comparing it
with the latter identity, we obtain

∫

QT

ψ (pδI − S)R[̺] d(x, t)

= lim
N→∞

∫

QT

ψ
(
pN

δ I − S
N
)
R[̺N ] d(x, t) (3.40)

for all ψ ∈ C∞
0 (QT ). Next we show that

lim
N→∞

(
R : [ψ2ν(cN)(∇uN + (∇uN)T )] − ψ2ν(cN) div uN

)

= R : [ψ2ν(c)(∇u + ∇uT )] − ψ2ν(c) div u (3.41)

weakly in L2(0, T ;W ω,q(Ω)) for some ω > 0, q > 1.
In order to see (3.41), we adapt the technique of [11]. In particular,

we report the following result [11, Lemma 4.2].
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Lemma 3.1 Let w ∈ W 1,r(Rd) and V ∈ L2(Rd; R
d) be given, where r >

2d
d+2

. Then there exists ω = ω(r) > 0 and q = q(r) > 1 such that

∥∥∥R[wV] − wR[V]
∥∥∥

W ω,q(R
d
;R

d
)
≤ C(r)‖w‖

W 1,r(R
d
)
‖V‖

L2(R
d
;R

d
)
.

Extending cN , ∂xj
uN to be zero outside Ω we intend to apply Lemma 3.1

to

w = ν(cδ), V = [V1, V2, V3], Vi = ∂xi
uδ,j + ∂xj

uδ,i, i = 1, 2, 3,

where j = 1, 2, 3 is fixed. Indeed as the shear viscosity coefficient ν is
(globally) Lipschitz in c, the uniform estimate stated in Lemma 3.5 allows
us to apply Lemma 3.1, with r = 2.

Consequently, in accordance with (4.6), (4.7), we get (3.41). Com-
bining this with (3.40), we obtain the essential relation

∫

Qt

ψ (pδ̺− pδ̺) d(x, τ) =

∫

Qt

ψ

(
4

3
ν(c) + η(c)

)(
̺ div u − ̺ div u

)
d(x, τ).

Choosing ψ =
(

4
3
ν(c) + η(c)

)−1
above and using (3.39), we obtain

∫

Ω

(
̺ log ̺− ̺ log ̺

)
dx ≤

∫

Qt

(
4

3
ν(c) + η(c)

)−1

(pδ̺− pδ̺) d(x, τ)

for some Λ > 0, where, because of the decomposition (3.16),

∫

Qt

(
4

3
ν(c) + η(c)

)−1

(pδ̺− pδ̺) d(x, τ) ≤ Λ

∫

Qt

(
̺ log ̺− ̺ log ̺

)

by the same arguments as in [11, Section 6.6.3]. Hence

∫

Ω

(
̺ log ̺− ̺ log ̺

)
(t) dx ≤ Λ

∫

Qt

(
̺ log ̺− ̺ log ̺

)
d(x, t),

which implies ∫

Ω

(
̺ log ̺− ̺ log ̺

)
(t) dx ≡ 0

for all t ∈ (0, T ) because of Gronwall’s lemma. Thus ̺N converges almost
everywhere to ̺ and

pδ = pδ(̺), ̺
∂f

∂c
= ̺

∂f

∂c
(̺, c).
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Finally, passing to the limit in (3.30) and (3.31), we obtain that

Em(̺(t),u(t), c(t)) +

∫

Q(s,t)

(
S : ∇u + |∇µ|2

)
d(x, τ)

≤ Em(̺(s),u(s), c(s)) +

∫

Qs,t

pb(̺) div u d(x, τ).

Now, using the renormalized transport equation (1.18) for b(̺) = pb(̺)
and ϕ = χ[s,t] (after a simple approximation), we conclude that

∫

Q(s,t)

pb(̺) div u d(x, τ) = −
∫

Ω

̺(τ)fb(̺(τ)) dx

∣∣∣∣
t

τ=s

.

Summing up, we have proved (3.7), which completes the proof.

4 Vanishing Artificial Pressure Limit

4.1 Uniform Bounds

By virtue of the coercivity of the functions fe, H postulated in (1.13),
(1.14), the specific free energy Eδ is bounded from below, and, by the
same arguments as in Sections 2.3-2.5, the energy inequality (3.7) gives
rise to the estimates (2.16)-(2.25) with (u, ̺, c, µ) replaced by (uδ, ̺δ, cδ, µδ)
uniformly in δ > 0. Moreover, (3.7) and (3.8) imply that

δ ess sup
t∈(0,T )

‖̺δ‖Γ
LΓ(Ω) ≤ C, (4.1)

4.2 Refined Pressure Estimates

Following [14] we derive a uniform bound on the pressure in the reflexive
Lebesgue space Lp((0, T ) × Ω)), p > 1, in particular, we show that the
pressure family {p(̺δ, cδ)}δ>0 is equi-integrable.

Let B be the Bogovskii operator as introduced in Section 3.2. Pur-
suing the main idea of [14] we use quantities

ϕ(t, x) = ψ(t)B

[
̺α

δ − 1

|Ω|

∫

Ω

̺α
δ dx

]
, ψ ∈ D(0, T )

as test functions in the momentum balance (3.1). This procedure, de-
scribed in detail in [14] and rather similar to the arguments in Section 3.2,
gives rise to a uniform estimate

∫ T

0

∫

Ω

(
p(̺δ, cδ)̺

α
δ + δ̺Γ+α

δ

)
dx dt ≤ C (4.2)
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provided (i) α > 0 is small enough, and (ii) there is a uniform bound

‖Pδ‖Lp(0,T ;Lp(Ω;R
3×3

))
≤ C for a certain p > 1. (4.3)

In order to see (4.3), the constitutive relation (3.4), hypothesis (1.14),
and estimates (3.25), (2.16), (2.24), (2.25) imply

‖∆cδ‖L∞(0,T ;Lq(Ω)) ≤ C for a certain q >
6

5
; (4.4)

whence, by virtue of the standard elliptic estimates,

‖∇cδ‖L∞(0,T ;Lr(Ω)) ≤ C for a certain r > 2, (4.5)

in particular (4.3) follows.

4.3 Strong Compactness of the Concentration Gra-

dients

Following step by step the arguments of Section 2.6 we obtain that

cδ → c in L2(0, T ;W 1,2(Ω)). (4.6)

4.4 Asymptotic Limit for δ → 0

To begin with, in accordance with (2.20), we can assume that

uδ → u weakly in L2(0, T ;W 1,2
0 (Ω; R

3)). (4.7)

Moreover, as in Section 3.3, we verify

̺δ → ̺ in Cweak([0, T ];Lγ(Ω))

for a suitable subsequence of δ → 0 using (2.16) and strong convergence
in Lr(0, T ;H−ε(Ω)), r < ∞. This fact together with the momentum
equation (3.1) imply

̺δuδ → ̺u in Cweak([0, T ];Lq(Ω; R
3)), q =

2γ

1 + γ
; (4.8)

whence, finally,

̺δuδ ⊗ uδ → ̺u ⊗ u weakly in L2(0, T ;Lq(Ω; R
3×3)) (4.9)

with q = 6γ
3+4γ

.
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Similarly, by virtue of (2.24), (4.6),

̺δcδ → ̺c in Cweak(0, T ;Lq(Ω; R
3)) for q =

6γ

6 + γ
, (4.10)

̺δcδuδ ⇀
∗ ̺cu in L∞(0, T ;Lq(Ω; R

3)) for q =
3γ

3 + γ
, (4.11)

and, in view of (2.25),

µδ → µ weakly in L2(0, T ;W 1,2(Ω)). (4.12)

Finally, it follows from the refined pressure estimates established in
(4.2) that

p(̺δ, cδ) ⇀ p(̺, c),

δ̺Γ
δ ⇀ 0



 in Lq((0, T ) × Ω) for a certain q > 1. (4.13)

At this stage, it is easy to let δ → 0 in (3.1) - (3.6) in order to obtain
∫ T

0

∫

Ω

(
̺∂tϕ+ ̺u · ∇ϕ

)
dx dt+

∫

Ω

̺0ϕ|t=0 dx = 0 (4.14)

for any test function ϕ ∈ D([0, T ) × Ω),
∫ T

0

∫

Ω

(
̺u · ∂tϕ + ̺u ⊗ u : ∇ϕ + p(̺, c) div ϕ

)
dx dt (4.15)

=

∫ T

0

∫

Ω

(
S − P

)
: ∇ϕ dx dt+

∫

Ω

m0 · ϕ|t=0 dx

for any ϕ ∈ D([0, T ) × Ω; R
3),

∫ T

0

∫

Ω

(
̺c∂tϕ+̺cu ·∇ϕ−∇µ ·∇ϕ

)
dx dt−

∫

Ω

̺0c0ϕ|t=0 dx = 0 (4.16)

for any ϕ ∈ D([0, T ) × Ω), where S satisfies (1.5),

P =
(
∇c⊗∇c− |∇c|2

2
I

)
, and (4.17)

̺µ = ̺
∂f(̺, c)

∂c
− ∆c (4.18)

provided the family of initial data {̺0,δ, (̺u)0,δ, (̺c)0,δ}δ>0 converges at
least weakly in L1.

Thus our ultimate goal consists in removing the bar indicating the
weak limits of composed functions in (4.15), (4.18), or, equivalently,
showing

̺δ → ̺ (strongly) in L1((0, T ) × Ω).

This will be done in the last section.
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4.5 Strong Pointwise Convergence of the Approxi-

mate Densities

In order to show strong convergence of the sequence {̺δ}δ>0 we evoke the
method based on certain fine properties of the so-called effective viscous
flux established by P.-L.Lions [18], further developed in [11] for the case
of non-constant viscosity coefficients.

To this end, observe first that the functions ̺δ, uδ satisfy (3.2) in the
sense of renormalized solutions introduced by DiPerna and P.-L.Lions
[8], cf. (1.18); specifically, the integral identity

∫ T

0

∫

Ω

[
b(̺δ)∂tϕ+ b(̺δ)uδ · ∇ϕ+

(
b(̺δ) − b′(̺δ)̺δ

)
div uδϕ

]
dx dt

= −
∫

Ω

b(̺0,δ)ϕ(0) dx (4.19)

holds for any test function ϕ ∈ D([0, T )×Ω), and any b ∈ C1[0,∞) such
that b′(̺) ≡ 0 for ̺ ≥Mb large enough.

As in Section 3.3, relation (4.19) can be deduced from (3.2) by means
of the regularization technique developed by DiPerna and P.-L.Lions [8]
or [21, Lemma 6.9]. Note that this step requires ̺δ ∈ L2((0, T )×Ω), uδ ∈
L2(0, T ;W 1,2

0 (Ω; R
3)), where the former condition holds as a consequence

of the artificial pressure term (δ/Γ − 1)̺Γ
δ in (3.8).

The next step is to take the quantity

ϕ(t, x) = ψ(t)ω(x)∇∆−1[χΩb(̺δ)], ψ ∈ D(0, T ), ω ∈ D(Ω)

as a test function in (3.1), and

ϕ(t, x) = ψ(t)ω(x)∇∆−1[χΩb(̺)], ψ ∈ D(0, T ), ω ∈ D(Ω)

in (4.15). Here, as always, the symbol b(̺) stands for a weak limit of
{b(̺δ)}δ>0, while ∆−1f denotes the convolution of f with the funda-
mental solution of the Laplacian as before. Letting δ → 0 we deduce a
remarkable identity

(
p(̺, c) −R : S

)
b(̺) =

(
p(̺, c) −R : S

)
b(̺), (4.20)

where R = (∂xi
∂xj

∆−1)i,j.
Relation (4.20) is the heart of the existence theory for the barotropic

Navier-Stokes system developed by P.-L.Lions [18]. The proof is quite in-
volved but nowadays well-understood and will be omitted. An alternative
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proof based on Div-Curl lemma is given in [10, Chapter 6, Proposition
6.1]. The proof is similar to the corresponding arguments in Section 3.3.
Let us remark that the extra “pressure” term Pδ satisfies

Pδ : ∇∆−1∇[b(̺δ)] → P : ∇∆−1∇[b(̺)] weakly in L1((0, T ) × Ω)

as a direct consequence of (4.6).
Our next goal is to deduce from (4.20) a relation

p(̺, c)b(̺)−p(̺, c) b(̺) = (
4

3
ν(c)+η(c))

(
div b(̺)u−b(̺) div u

)
, (4.21)

where the quantity p−(4
3
ν+η) div u is usually termed the effective viscous

flux.
In order to get (4.21), we apply Lemma 3.2 as in Section 3.3 and

obtain
R : [ν(cδ)(∇uδ + ∇uT

δ )] − 2ν(cδ) div uδ

→
R : [ν(c)(∇u + ∇uT )] − 2ν(c) div u

(4.22)

weakly in L2(0, T ;W ω,q(Ω)) for a certain ω > 0. On the other hand, as
̺δ satisfies the renormalized equation (4.19),

b(̺δ) → b(̺) in Cweak([0, T ];Lq(Ω)) for any finite q ≥ 1 (4.23)

as soon as b is uniformly bounded. Combining relation (4.20) with (4.22),
(4.23) we obtain (4.21) (see [11] for details).

In order to show strong convergence of the density, we use the renor-
malized equation (4.19) for b(̺) = ̺Lk(̺), where

Lk(̺) =
∫ ̺

1
Tk(z)

z2 dz,

Tk(̺) = min{̺, k}, ̺ ≥ 0.

(4.24)

Accordingly, we obtain
∫

Ω

̺δLk(̺δ)(τ) dx+

∫

QT

Tk(̺δ) div uδ d(x, t) =

∫

Ω

̺0,δLk(̺0,δ) dx. (4.25)

At this stage, we have to show that the limit quantities ̺, u represent
a renormalized solution of (4.14). Following the approach of [13] we
introduce the concept of oscillations defect measure associated to the
family {̺δ}δ>0:

oscp[̺δ → ̺](O) = sup
k≥1

(
lim sup

δ→0

∫

O

|Tk(̺δ) − Tk(̺)|p dx dt
)
.

We report the following result [10, Chapter 6, Proposition 6.3].
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Lemma 4.1 Let

oscp[̺δ → ̺]((0, T ) × Ω) <∞ for a certain p > 2. (4.26)

Then ̺, u represent a renormalized solution of (4.14).

In order to show (4.26), we make use of relation (4.21) for b = Tk. To
begin with, as the pressure p is given through the constitutive relation
(1.12) and {cδ}δ converges strongly, we observe that

p(̺, c)Tk(̺) = p(̺, ·)Tk(̺), p(̺, c) = p(̺, ·),

where
p(̺, ·)Tk(̺) = weakL1 lim

δ→0
p(̺δ, c)Tk(̺δ),

and, similarly,
p(̺, ·) = weakL1 lim

δ→0
p(̺δ, c).

On the other hand, in accordance with hypotheses (1.13), (1.14), the
pressure can be written in the form

p(̺, c) = a̺γ + pm(̺, c) + pb(̺), a > 0, (4.27)

where pm is non-decreasing in ̺ and pb ∈ C2[0,∞) has compact support
in [0,∞).

As pm is non-decreasing in ̺ and 0 ≤ Tk(̺) ≤ k, it is easy to check
that (

pm(̺n, c) − pm(Tk(̺), c)
)(
Tk(̺n) − Tk(̺)

)
≥ 0;

whence letting n→ ∞ we get

pm(̺, ·)Tk(̺) − pm(̺, ·) Tk(̺) ≥ 0, (4.28)

while, exactly as in [10, Proposition 6.2], we can show that

∫ T

0

∫

Ω

(
̺γTk(̺) − ̺γ Tk(̺)

)
dx dt

≥ lim sup
δ→0

∫ T

0

∫

Ω

|Tk(̺δ) − Tk(̺)|γ+1 dx dt. (4.29)

Combining (4.28), (4.29), together with (4.21) and Young’s inequality,
we conclude

oscγ+1[̺δ → ̺]((0, T ) × Ω) <∞. (4.30)
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In particular, in view of Lemma 4.1, the limit functions ̺, u represent a
renormalized solution of (3.2).

Thus we get

∫

Ω

̺δLk(̺)(τ) dx+

∫ τ

0

∫

Ω

Tk(̺) div u dx dt =

∫

Ω

̺0Lk(̺0) dx, (4.31)

which, together with (4.25), gives rise to

∫

Ω

(
Lk(̺) − Lk(̺)

)
(τ) dx+

∫ τ

0

∫

Ω

(
Tk(̺) div u − Tk(̺) div u

)
dx dt

=

∫ τ

0

∫

Ω

(
Tk(̺) − Tk(̺)

)
div u dx dt (4.32)

for any τ ∈ [0, T ] since ̺0,δ → ̺0 in L1(Ω).
Finally, as a consequence of (4.30),

∫ τ

0

∫

Ω

(
Tk(̺) − Tk(̺)

)
div u dx dt→ 0 as k → ∞;

whence, by virtue of (4.21), (4.27 - 4.29), we can let k → ∞ in (4.32) in
order to obtain
∫

Ω

(
̺ log(̺) − ̺ log(̺)

)
(τ) dx ≤ Λ

∫ τ

0

∫

Ω

(
̺ log(̺) − ̺ log(̺)

)
(τ) dx dt

for a certain Λ > 0 (see Section 6.6 in Chapter 6 in [10] for details).
Thus, by means of Gronwall’s lemma,

̺ log(̺) = ̺ log(̺) a.a. in (0, T ) × Ω,

in particular
̺δ → ̺ in L1((0, T ) × Ω).

The proof is now complete.
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