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Abstract

A result by Pogorelov asserts that C1 isometric immersions u of a bounded
domain S ⊂ ℝ

2 into ℝ
3 whose normal takes values in a set of zero area enjoy

the following regularity property: The gradient f := ∇u is ‘developable’ in the
sense that the nondegenerate level sets of f consist of straight line segments
intersecting the boundary of S at both endpoints.
Motivated by applications in nonlinear elasticity, we study the level set struc-
ture of such f when S is an arbitrary bounded Lipschitz domain. We show
that f can be approximated by uniformly bounded maps with a simplified level
set structure. We also show that the domain S can be decomposed (up to a
controlled remainder) into finitely many subdomains, each of which admits a
global line of curvature parametrization.
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1 Introduction

A C1-regular mapping u from a bounded Lipschitz domain S ⊂ ℝ
2 into ℝ

3 is called
an isometric immersion of S (endowed with the flat metric) if u satisfies the partial
differential system

∂�u ⋅ ∂�u = ��� for �, � = 1, 2 (1)

pointwise in S; here, ��� is the Kronecker symbol. The classical results from [8]
show that if u ∈ C2 is an isometric immersions of S then the nondegenerate level
sets of ∇u are straight line segments intersecting ∂S at both endpoints. In [20],
Chapter IX.4, it is shown that the same conclusion remains true if u is only C1,
provided that the Gauss map ∂1u ∧ ∂2u : S → S

2 takes values in a set of zero area.
To formulate these results precisely, let us define, for any continuous mapping f on
S, the set of local constancy

Cf = {x ∈ S : f is constant in a neighbourhood of x}. (2)

Then [8], [20] assert that the gradient f := ∇u enjoys the property (L) (introduced
in [15]), that is:

Through every point x ∈ S ∖ Cf there exists a line segment [x] ⊂ S whose
endpoints are contained in ∂S, and f is constant on [x]. Different line segments do
not intersect in S.
More recently, in [14] and [18] it was shown that W 2,2-regular isometric immersions
of S are always C1, and that their gradient f = ∇u also satisfies condition (L);
their proof of the latter fact uses the integrability of the second derivatives and
thus differs from the proof in [20]. In [14], [18] it is also shown that functions
V ∈ W 2,2(S) solving the homogeneous Monge-Ampère equation

det∇2V = 0, (3)

belong to C1(S), and that their gradient f = ∇V satisfies condition (L). In fact,
their assertion about W 2,2 isometric immersions u follows from this observation
because every component of u is a W 2,2-regular solution of (3).

Motivated by the above results, in the present paper we study continuous map-
pings f : S → ℝ

P (for any P ∈ ℕ) which satisfy condition (L), but which are
otherwise arbitrary. Hence the setting considered here is closer to the hypotheses
in [20] than to those in [14], [18], [15] because we make no integrability assumption
about the derivatives of f . By the results mentioned earlier, the gradient of any C1

isometric immersion whose spherical image has vanishing area falls into the frame-
work considered here; the same is true for W 2,2 isometric immersions and for W 2,2

solutions of (3). A generalization of the developability of W 2,2-solutions of (3) to
a more general class of functions was recently obtained in [13], cf. also [12]. The
corresponding solutions, however, do not quite fall into our framework because the
mappings arising there can be discontinuous.

Regarding elasticity, some recent interest inW 2,2 isometric immersions was stim-
ulated by the rigorous derivation of Kirchhoff’s plate theory in [7], cf. also [19]. This
theory assigns to every deformation u of a two-dimensional reference configuration
S ⊂ ℝ

2 (i.e., the mid-plane of some asymptotically thin film) into ℝ
3 the pure

2



bending energy

ℰK(u) =

{

∫

S
∣∇2u∣2 if u ∈ W 2,2(S;ℝ3) satisfies (1)

+∞ otherwise.
(4)

The class of W 2,2 isometric immersions therefore arises naturally as the set of finite
energy deformations in Kirchhoff’s plate theory; they are characterized by the con-
dition that, locally, they preserve angles and distances. W 2,2 isometric immersions
also play an important role in the derivation of related theories, cf. e.g. [24] and [4].

Regarding geometry, condition (L) amounts to the assertion that the surface
u(S) consists of planar pieces (namely u(Cf )) and developable pieces (the remainder
of u(S)). Both parts can consist of infinitely many connected components.

There is a large body of literature on flat surfaces (i.e. surfaces with zero Gauss
curvature). In introductory texts as [2] it shown that, away from certain singular
sets, a developable surface is a union of cylinders, cones and tangent developables.
More recently, developable surfaces (or certain generalizations) have been studied,
e.g., in [23], [25], [26] and [16]; see also the references cited therein.

The emphasis of the present paper lies on the properties of the level sets of ∇u in
S and not on the properties of the image u(S) as a subset of ℝ3, although, of course,
these two are related. The questions addressed here are closest to the paper [8] and
to some results in [14] and [18] for convex domains S. Our main contribution is a
fairly precise description of the level set geometry on arbitrary Lipschitz domains
S. The results and tools developed here are essential in [10], where it is shown that
W 2,2 isometric immersions can be approximated by C∞ isometric immersions (thus
extending earlier results from [18]) and in [9], where minimizers of (4) are studied.

The present paper consists of two parts. In the first part (starting in Section
3) we study the geometry of the set Cf . On convex domains S the geometry of
the connected components of Cf is fairly simple: They are convex polygons (with
possibly infinitely many vertices), see Theorem A in Section 9 of [8] and Proposition
2.30 in [14]. For nonconvex domains this is no longer true in general. On domains
which are not even simply connected, the set Cf is even less constrained, mainly
due to the topological fact that a line segment in S whose endpoints lie on different
connected components of ∂S does not disconnect S.
In the second part (starting in Section 5) we study the set S ∖ Cf containing the
nondegenerate level sets of f . This set can be locally described by (generalized)
lines of curvature Γ. Their definining property is that they run perpendicular to
the level set lines [x]. A mapping f satisfying condition (L) strongly interacts with
the boundary ∂S. The situation on nonconvex domains is more subtle than for
convex domains, mainly due to the fact that the segments [x] can intersect ∂S
tangentially. Also a nontrivial topology of S leads to further effects not present on
simply connected domains.
Apart from the above ‘descriptive’ results, we also obtain two constructive results.
The first one, Theorem 3, asserts that every continuous mapping satisfying condition
(L) can be approximated by mappings (arising from the original one by a suitable
truncation) which are ‘finitely developable’; roughly speaking, these are mappings
for which Cf and its complement consist of finitely many connected components.
This reduces the complexity of other approximating constructions, cf. [10]. The
approximants constructed in Theorem 3 happen to belong to L∞; as a corollary we
thus recover Theorem 2 from [15] (but not their Remark 12).
The second constructive result is Theorem 4, which shows that the domain S can
be decomposed into a finite number of natural subdomains which are compatible
with f in a suitable sense plus (possibly infinitely many) subdomains which are
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localized — both geometrically and topologically — near the boundary ∂S. The
latter theorem, as well as the results in [10] and [9] rely heavily on the descriptive
results obtained in the earlier sections of this paper.
The techniques used in this paper are quite basic. Apart from some analysis we
mainly use topological facts about subsets of ℝ2.

1.1 The set Cf and a truncation theorem

The purpose of this subsection and the following one is to describe the key results
of this paper. In order to keep notation at a minimum, most of them will be
presented as simplified versions of the actual statements proven later. For simplicity,
throughout this introduction we assume that S ⊂ ℝ

2 is a bounded Lipschitz domain.
The basic object of study of this paper are countably developable mappings.

This is how we call continuous mappings satisfying condition (L). In order to
make this definition analytically more accessible, we introduce the directed distance
function

�S(x, �) = inf{� > 0 : x+ �� /∈ S} for all (x, �) ∈ S × (ℝ2 ∖ {0}), (5)

which also plays a critical role in the related papers [10], [9]. A continuous mapping
f is countably developable precisely if f is ‘developable’ on S ∖ Cf in the following
sense:
There exists a vector field qf : S ∖Cf → S

1 such that, denoting by [x] the open line
segment with endpoints

x± �S(x,±qf (x))qf (x),

the following are satisfied:

x, y ∈ S ∖ Cf =⇒ either [x] ∩ [y] = ∅ or [x] = [y]. (6)

x ∈ S ∖ Cf =⇒ f = f(x) on [x]. (7)

For the rest of this Introduction f ∈ C0(S;ℝP ) denotes a countably developable
mapping. Clearly the developability of f on S ∖ Cf will have strong implications
about the geometry of the set Cf .

In the first part of this paper we will study the set Cf , extending earlier results
from [8] and [14]. Our contribution is to study this set, in more detail than in [8],
on domains which are merely Lipschitz. In order to motivate the detailed analysis
of the set Cf carried out in this paper, we begin by stating our first main result, the
truncation Theorem 1. Its proof makes essential use of detailed knowledge about
Cf . Before stating this theorem, however, we first need another result and two
definitions.
Since Cf is open, it consists of countably many connected components U . For the
moment, let us think of each such U as being a polygon (with possibly infinitely
many vertices) whose relative boundary S ∩ ∂U consists of segments of the form
[x]; this will be shown in Proposition 3 below. It will be useful single out those
connected components U of Cf for which S∩∂U consists of at least three connected

components (i.e. segments of the form [x]). Denote by Ĉf the union of all connected
components U of Cf for which this is the case. The following key result shows why

the set Ĉf is natural; cf. Proposition 9 for more details.

Proposition 1 There exists an extension of qf to S ∖ Ĉf (which is again denoted

qf ) such that (6, 7) remain true with Ĉf instead of Cf .

Remarks.
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1. Proposition 1 shows that f is developable on connected components of U for
which S ∩ ∂U consists of at most two segments [x]. A similar result is true
for convex domains, cf. [14]; however, the proof for nonconvex sets is more
subtle.

2. We will see (cf. Lemma 4) that qf is uniquely determined on S ∖ Cf modulo
identification of antipodal points. This is no longer true for its extension to
S ∖ Ĉf . But this non-uniqueness is irrelevant in what follows.

3. The conclusion of Proposition 1 is the underlying reason why in the regularity
analysis of [9] the relative boundary S ∩ ∂Ĉf occurs in the singular set.

For general countably developable mappings f , the set Ĉf (and hence Cf ) may
consist of infinitely many connected components, and each of them can be bounded
by infinitely many line segments. For instance, if S is the unit disk then Ĉf can
consist, e.g., of one single connected component which is a polygon with infinitely
many vertices on ∂S. The connected components of Ĉf can even accumulate at a
line segment in S, even if S is a disk. This fact makes explicit constructions difficult.
A better class of mappings is defined as follows:
A countably developable mapping f on S is said to be finitely developable if Ĉf

consists of finitely many connected components U and for each of them the set S∩∂U
also consists of only finitely many connected components. Our first constructive
result is the following theorem; a more precise version is Theorem 3 below.

Theorem 1 For all � > 0, there exists a finitely developable mapping f� ∈ C0(S;ℝP )
such that f� = f on {x ∈ S : dist∂S(x) ≥ �}, and f� is constant on each connected
component of {x ∈ S : f�(x) ∕= f(x)}.

Remarks.

1. Theorem 1 is a truncation result. It is easy to see that each f� is uniformly
bounded on S, cf. Theorem 3. Thus we recover Theorem 2 in [15] (but not
their Remark 12). However, this is not needed in here, nor in [10]. What will
be needed is that f� is finitely developable.

2. In terms of isometric immersions u : S → ℝ
3, Theorem 1 can be used to show

that u(S) can be approximated by surfaces consisting of finitely many planar
regions and finitely many developable regions; cf. [10].
This is the initial step in the construction of smooth isometric immersions in
[10]. Generally, constructions starting from a countably developable mapping
f will be easier to carry out if it is known that f is finitely developable.

In order to show that the simple truncation argument employed to prove Theo-
rem 1 is enough to obtain a finitely developable mapping f�, one has to understand
the overall stucture of Cf : The key ingredient in the proof of Theorem 1 is the
following proposition, which is a simplified version of Proposition 8 below.

Proposition 2 For every � > 0 there exist only finitely many connected compo-
nents U of Cf which have more than two boundary segments [x] ⊂ S ∩ ∂U with
ℋ1([x]) ≥ �.

In other words, all except finitely many components U ‘almost’ belong to the
set S ∖ Ĉf on which the mapping qf satisfying (6, 7) is well-defined by virtue of
Proposition 1.

In order to prove a result like Proposition 2 one needs to understand well the
structure of each component U of Cf . The main result in this regard is the following
one; a precise and more detailed version is Proposition 7 below.
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Proposition 3 Every connected component U of Cf satisfies the following Con-

dition (Bf ):
x ∈ S ∩ ∂U =⇒ [x] ⊂ S ∩ ∂U. (8)

Moreover, U is locally on one side of each segment [x] ⊂ S ∩ ∂U .

A result like Proposition 3 is not very useful unless more precise information is
extracted from (8). We will see that Condition (Bf ) is the natural compatibility
condition with f for any subdomain U ⊂ S. In fact, we will encounter several
other sets arising naturally in this context and which also satisfy condition (Bf ).
Moreover, condition (Bf ) alone has several consequences for the regularity of the
set in question: In Lemma 5 below we derive properties of arbitrary subdomains
U of S satisfying condition (Bf ). Since the statement of that lemma is slightly
technical, here we content ourselves with noting some of its consequences:

Lemma 1 Let U ⊂ S be a subdomain satisfying condition (Bf ). Then U has finite
perimeter, and the relative boundary S ∩ ∂U consists of countably many disjoint
segments of the form [x]. Moreover, if ∂1S and ∂2S are two connected components
of ∂S then there are at most two segments [x] in S ∩ ∂U with the property that [x]
has one endpoint in ∂1S and the other one in ∂2S.

The link between Proposition 3 and Lemma 1 on one hand and Proposition
2 on the other hand is the observation that all except finitely many connected
components of Cf are (topologically) ‘squeezed’ (cf. Lemma 3 for a precise notion
on nonconvex domains) between two of their boundary segments.

1.2 The set S ∖ Cf and a decomposition theorem

When f is the gradient of a flat isometric immersion u : S → ℝ
3 then the set S ∖Cf

corresponds to the set where the surface u(S) is not planar, i.e., there exists one
principal curvature which differs from zero. On such a region there exists a well-
defined line of curvature Γ : [0, T ] → S ∖ Cf ; as usual we identify u(S) with S via
u. The line of curvature Γ is characterized by the condition

Γ′(t) = −q⊥f (Γ(t)) for all t ∈ [0, T ]. (9)

For general countably developable f this definition makes sense as well, even if Γ
takes values in the larger set S ∖ Ĉf , cf. Proposition 1. Curves taking values in this
set and satisfying (9) — plus an additional technical condition which amounts to Γ
being short compared to its distance from ∂S — will be called f -integral curves.
Continuing the analogy with surfaces, observe that a line of curvature Γ : [0, T ] → S
naturally induces the change of variables ΦΓ : [0, T ]× ℝ → ℝ

2 given by

ΦΓ(s, t) = Γ(t) + sN(t)

between line of curvature coordinates (s, t) and the usual coordinates x = (x1, x2).
The mapping ΦΓ is a natural tool to study f , because by (9)

f(Φ(s, t)) = Γ(t) for all t ∈ [0, T ] and all s ∈ (s−Γ (t), s
+
Γ (t)); (10)

here,
s±Γ (t) := ±�S(Γ(t),±N(t))

denote the (signed) directed distance along Γ. The intersection of the subgraph of
s+Γ with the epigraph of s−Γ , that is, the set

Ms±Γ
:=

∪

t∈(0,T )

(s−Γ (t), s
+
Γ (t))× {t} (11)
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is the natural domain of ΦΓ. Its image

[Γ(0, T )] := ΦΓ(Ms±Γ
) ⊂ S

is the patch of S which is parametrized by Γ via ΦΓ.
Our second main ‘constructive’ result is the following decomposition theorem,

cf. Theorem 4 for a much more detailed version. It shows that the domain S can be
partitioned, up to a small remainder which is topologically and geometrically close
to ∂S, into finitely many subdomains U ⊂ Ĉf on which f is constant and finitely
many subdomains which are of the form [Γ(0, T )] for some f -integral curve Γ.

Theorem 2 Assume that f is finitely developable and denote by

V1, ..., VM the connected components of Ĉf .

Then, for all � > 0 there is N ∈ ℕ with N ≥ M , and there exist f -integral curves
Γ(M+1) ∈ W 2,∞([0, TM+1];S ∖ Ĉf ), ..., Γ(N) ∈ W 2,∞([0, TN ];S ∖ Ĉf ), such that,
setting

Vk = [Γ(k)(0, Tk)] for k = M + 1, ..., N,

the following are true:

(i) Covering. We have

{x ∈ S : dist∂S(x) > �} ⊂ int

(

N
∪

k=1

V̄k

)

, (12)

and the set on the right is a subdomain of S satisfying condition (Bf ).

(ii) Disjoint interiors: Whenever j ∕= k then

Vj ∩ Vk = ∅ (j, k ∈ {1, ..., N}).

(iii) Closures intersect nicely: If j ∕= k then the set V̄j ∩ V̄k ∩ S consists of at
most finitely many segments of the form [x], and ℋ1([x]) ≥ � for each of them.

Remarks.

1. A consequence of Part (i) is that the complement of the right-hand side of
(12) consists of countably many (open, disjoint) connected components which
are not only geometrically but also topologically close to ∂S; cf. Theorem 4
for details.

2. Theorem 2 will be used in [10] to construct a global approximant of a given
countably developable mapping by gluing together local approximants ob-
tained on sets of the form [Γ(0, T )]. In this context, the finite developability
hypothesis on f made in Theorem 2 is justified by Theorem 1.

3. Part (iii) is crucial. It asserts that the subdomains touch each other in a well
controlled way. Theorem 4 even shows that such common segments [x] will
always be (essentially) of the form [Γ(k)(Tk)] or [Γ

(k)(0)]. This shows that local
modifications of f (on each Vk) need only agree with f on [Γ(k)(Tk)] and on
[Γ(k)(0)] in order to give rise to a well-defined mapping, and this requirement
is quite easy to fulfill, cf. [10] or [9].
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Part (ii) of Theorem 2 is easy to arrange, but part (iii) requires a careful anal-
ysis of sets of the form [Γ(0, T )]. That will be the main issue in this section.
Lemma 3.6 in [18] asserts that if S is convex then the set [Γ(0, T )] is convex as well.
The situation is more complex if S is an arbitrary Lipschitz domain. A first step
in understanding this more general situation is the following simplified version of
Proposition 16 below:

Proposition 4 Let Γ be an f -integral curve. Then ΦΓ is injective on Ms±Γ
, and

[Γ(0, T )] satisfies condition (Bf ), i.e., if x ∈ S∩∂[Γ(0, T )] then [x] ⊂ S∩∂[Γ(0, T )].

The injectivity of ΦΓ is easily seen to follow from (6): It is equivalent to the
assertion that

[Γ(t1)] ∩ [Γ(t2)] = ∅ for unequal t1, t2 ∈ [0, T ]; (13)

here,
[Γ(t)] := {Γ(t) + sN(t) : s ∈ (s−Γ (t), s

+
Γ (t))}.

We will see that the global condition (13) implies the following analytically more
accessible, local, condition:

1− s±Γ (t)�(t) ≥ 0 for almost every t ∈ (0, T ); (14)

here, � := Γ′′ ⋅N is the curvature of the arclength parametrized curve Γ.
In order to be a candidate for an f -integral curve for some developable mapping

f , a given curve Γ has to satisfy the global condition (13). In order to study
curves satisfying (9) for some arbitrary countably developable mapping f , we will
therefore isolate conditions (13, 14) and study arbitrary curves taking values in
S (regardless of f) and satisfying (13) or (14). For the rest of this Introduction
Γ ∈ W 2,∞([0, T ];S) denotes an arclength parametrized curve that is otherwise
arbitrary. The basic result about [Γ(0, T )] and the change of variables ΦΓ is this:

Proposition 5 The set Ms±Γ
defined in (11) is open, and we have:

(i) If Γ satisfies (14) then ΦΓ∣M
s
±
Γ

is an open mapping. In particular, ΦΓ(Ms±Γ
)

is open and
∂[Γ(0, T )] ⊂ ΦΓ(∂Ms±Γ

). (15)

(ii) If Γ satisfies (13) then it satisfies (14) and Φ−1
Γ is locally Lipschitz on [Γ(0, T )].

(iii) If Γ satisfies (13) and 1 − s±Γ � is essentially bounded from below by a posi-
tive constant, then the change of variables ΦΓ : Ms±Γ

→ [Γ(0, T )] is globally

Bilipschitz.

Remarks

1. Openness of Ms±Γ
will follow from the semicontinuity of s±Γ mentioned below.

2. The implication (13) =⇒ (14) in Proposition 5 (ii) is a basic fact which is
extensively used in [9] and in [10].

3. The converse implication (14) =⇒ (13) is false in general. In Proposition
13 below we will see: If Γ satisfies (16) then (13) is equivalent to (14) plus a
natural extra assumption.

4. Part (iii) is related to the existence of an extension of qf to a domain containing
the closure of [Γ(0, T )]; cf. Proposition 11. This, in turn, will be used in [10]
to construct isometric extensions of a given isometric immersion.
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Formula (15) and the definition of Ms±Γ
relate the jump sets of the functions s±Γ

to the relative boundary S ∩ ∂[Γ(0, T )]; such a relation is intuitively clear. In order
to prove Theorem 2 (iii) we need enough information about S ∩ ∂[Γ(0, T )]. In view
of (15) this amounts to understanding the regularity of s±Γ . We will obtain three
basic regularity results about these functions. The first two follow immediately
from corresponding facts about �S and the Lipschitz continuity of Γ and N , but
the third one hinges on condition (13) and is false for general curves Γ.
In order to state the relevant regularity properties of �S we make the following
definition: A pair (x, �) ∈ S × (ℝ2 ∖ {0}) is said to be transversal if � is not
parallel to the tangent to ∂S at the point x+ �(x, �)� ∈ ∂S; cf. Definition 5 for a
precise definition on Lipschitz domains. Observe that if S is convex then every pair
(x, �) ∈ S× (ℝ2 ∖{0}) is transversal, so the effects of non-transversality are genuine
to nonconvex domains. The regularity properties we will need are:

∙ �S is lower semicontinuous on S × (ℝ2 ∖ {0}), cf. Lemma 11.

∙ �S is locally Lipschitz on the (open) set of transversal pairs (x, �) ∈ S× (ℝ2 ∖
{0}), cf. Lemma 12.

The first assertion implies that ±s±Γ are lower semicontinuous, i.e., that the positive
function s+Γ is lower semicontinuous and that the negative function s−Γ is upper semi-
continuous. The second assertion implies that s±Γ are Lipschitz on (0, T ) provided
that

(Γ(t),±N(t)) are transversal for all t ∈ [0, T ]. (16)

This can be combined with (15) and with (13) to prove the following topological
fact, which is part of Proposition 12:

Proposition 6 If Γ : [0, T ] → S satisfies (13) and (16) then

S ∩ ∂[Γ(0, T )] = [Γ(0)] ∪ [Γ(T )]. (17)

Remarks.

1. If S is convex then (16) is always true, so on convex domains (17) is true for
any f -integral curve.

2. Formula (17) is extensively used in [10] and in [9]. In general, it is very useful
when making local modifications of f on [Γ(0, T )]. In fact, if (17) is satisfied
then these modifications must only agree with f on [Γ(0)] ∪ [Γ(T )].

3. In general, if (16) fails then (17) is false, too. Instead, the set S ∩ ∂[Γ(0, T )]
can then consist of infinitely many segments [x]; this is illustrated in Figure
4 (left).
Unfortunately, condition (16) is genuinely local: A given curve Γ cannot, in
general, be decomposed into finitely many subcurves satisfying (16) on (0, T ).

While the (local) Lipschitz regularity of s±Γ was sufficient in [9], for a result
like Theorem 2 one needs also global regularity of s±Γ , even when (16) is violated.
This is because the curves Γ(k) from Theorem 2 in general do not satisfy (16), cf.
the Remark to Proposition 6. So the set S ∩ ∂[Γ(k)(0, Tk)] will strictly contain
[Γ(k)(0)] ∪ [Γ(k)(Tk)]. Unfortunately, the (global) lower semicontinuity of s±Γ is not
enough for our purposes.
This leads us to the third regularity result about s±Γ announced earlier. The key
result in this regard is Lemma 15. It asserts that if Γ satisfies (13) then the mappings

t 7→ Γ(t) + s±Γ (t)N(t)

sweep the boundary ∂S in a monotone fashion. A consequence of this is the following
corollary (whose conclusion is generally false if (13) is violated):
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Corollary 1 If Γ satisfies (13) then s±Γ ∈ BV (0, T ).

Combining this corollary with formula (15), one can prove a result like Theorem
2 (iii).

Notation. We frequently identify ℝ
2 with the subspace ℝ

2 × {0} of ℝ3. The
standard basis vectors in ℝ

k are denoted by ei. For " > 0 and x ∈ ℝ
n we denote

by B"(x) the open ball of radius " centered at x and for X ⊂ ℝ
n we set B"(X) =

∪

x∈X B"(x). For v ∈ ℝ
2 set v⊥ =

(

−v2
v1

)

. For x, y ∈ ℝ
2, the notation (x, y)

denotes the open segment with endpoints x and y; the notation [x, y) and [x, y]
is to be understood accordingly. By C(X;U) we denote the connected component
of X that contains the connected set U , and if U = {v} then we set C(X; v) =
C(X; {v}). For a mapping f : A → B and for X ⊂ A we set f(X) = {f(x) : x ∈
X}. The Hausdorff distance between two bounded sets K1,K2 of ℝn is defined by
dℋ(K1,K2) = sup(distK1

(K2) ∪ distK2
(K1)). By ℋk we denote the k-dimensional

Hausdorff measure, and for A ⊂ ℝ
n we denote its n-dimensional Lebesgue measure

by ∣A∣ or by ℒn(A). If g : X → Y and f : Y → Z we will write f(g) rather than
f ∘g to denote their composition. We will write ∗ to denote + or − and −

∫

to denote
an average.
Finally, one remark about the formulation of claims: The hypothesis ‘Let A, B, C
and assume that � > 0 is small enough’ means that there exists �0 > 0, depending
only on A, B and C, such that the conclusion is true for all � ∈ (0, �0).

2 Topological preliminaries

A subset S ⊂ ℝ
2 is called a domain if it is open and connected. We call a subset


 of ℝ2 a Jordan arc if there is an injective mapping 
̃ ∈ C0([0, 1];ℝ2) such that

 = 
̃

(

(0, 1)
)

. The points 
− = 
̃(0) and 
+ = 
̃(1) are called endpoints of 
.
Notice that 
+ ∕= 
− and that {
+, 
−} ∩ 
(0, 1) = ∅. If no confusion can arise we
will identify 
̃ with its image 
.
A closed Jordan curve 
 ⊂ ℝ

2 is a set which is homeomorphic to S
1. If 
 is a

closed Jordan curve then the Jordan curve Theorem [17] asserts that ℝ2 ∖
 consists
of precisely two connected components, a bounded one (denoted Ub(
)) and an
unbounded one (denoted U∞(
)). We will frequently use this theorem implicitly. A
domain whose boundary consists of a single closed Jordan curve is called a Jordan
domain.
We call a domain S continuous if it can be written in the form

S = Ub(∂0S) ∩
NS
∩

i=1

U∞(∂iS). (18)

Here, NS ∈ ℕ and ∂kS (k = 0, ..., NS) are pairwise disjoint closed Jordan curves
with ∂iS ⊂ Ub(∂0S) and Ub(∂iS)∩Ub(∂jS) = ∅ for all i, j = 1, ..., NS . Boundedness
of S is trivial, and connectedness follows e.g. from Theorem 16.2 in Chapter V
of [17] and from disjointness of the ∂kS. Notice that the boundary ∂S consists of
NS+1 connected components: one outer component ∂0S and NS inner components
∂1S, ..., ∂NS

S.

Since ∂iS ⊂ Ub(∂0S), we also have Ub(∂iS) ⊂ Ub(∂0S), i = 1, ..., NS . This follows
from Remark 8 in the appendix. Intuitively, S is a domain with ‘outer boundary’
∂0S and with NS ‘holes’, each of which has boundary ∂iS, where i = 1, ..., NS .
A domain S is called a Lipschitz domain if its boundary can be covered with finitely
many open disks such that for each disk there exist local coordinates in which the
intersection of S with this disk is given by the epigraph of a Lipschitz function.
Bounded Lipschitz domains are continuous domains. For a more precise definition
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of Lipschitz domains we refer to Section 4.2 in [5].
For a set X ⊂ ℝ

2, � ∈ ℝ
2 ∖ {0} and x ∈ X we define

[x]X� = C
(

(x+ (span�)) ∩X;x
)

.

If it is clear from the context to what set X we are referring to (in particular, if
X = S), then we will omit the superindex X. Observe that [x]S� is just the open

segment with endpoints x±�S(x,±�)�, where the notation is as in the introduction.
In what follows we will often make use of the fact that if ln ⊂ ℝ

2 are line segments
with dℋ(ln, l) → 0 then l is a (possibly degenerate) line segment as well. Given two
points x+ and x− ∈ ℝ

2 we denote by [x+, x−] the closed and by (x+, x−) the open
line segment with endpoints x+ and x−.

Lemma 2 Let S ⊂ ℝ
2 be a bounded domain, let �, � ∈ S

1 and x, y ∈ S. Then the
following hold:

(i) The endpoints x± of [x]� and y± of [y]� can be labelled such that [x]� =

(x−, x+), [y]� = (y−, y+) and ∣x± − y±∣ < 3dℋ([x]�, [y]�).

(ii) If �n → � in S
1 and xn → x in S then sup dist[xn]�n

([x]�) → 0. In particular,
dist[x]�(y) ≥ lim supn→∞ dist[xn]�n

(y) for all y ∈ ℝ
2.

(iii) If S is convex and if �n → � in S
1 and xn → x in S then dℋ([xn]�n

, [x]�) → 0.

(iv) Let xn → x in S and let �n, � ∈ S
1. If [xn]�n

∩ [x]� = ∅ for all n, then �n → �
in the projective space ℙ

1, i.e. there are �n ∈ {+1,−1} such that �n�n → �.
In particular, if S is convex, then dℋ([xn]�n

, [x]�) → 0.

(v) If S is continuous, and with notation as in (i): There is "0 > 0 (depending
only on S) such that if dℋ([x]�, [y]�) < "0, then there exist i, j such that x−,
y− ∈ ∂iS, and x+, y+ ∈ ∂jS.

(vi) If S is continuous, and with notation as in (i): There is "1 > 0 (depending
only on S) such that if sup dist∂S([x]�) < "1 then both endpoints x+ and x−

of [x]� lie in the same connected component of ∂S.

(vii) If S is continuous and [x]� has both endpoints in the same connected compo-
nent of ∂S then S ∖ [x]� consists of exactly two connected components S1

x and
S2
x. If r > 0 is such that Br(x) ⊂ S then Br(x) ∖ [x]� consists of two open

half-balls B1
x and B2

x such that B1
x ⊂ S1

x and B2
x ⊂ S2

x.

Remark. Regarding Lemma 2 (iv), notice that the condition sup dist∂S([x]�)
being small does not imply that ℋ1([x]�) is small: Consider e.g. a square S and
[x]� parallel and very close to one of its sides.
Proof. To prove (i) write lx = [x−x+] and ly = [y−y+] and notice that, setting
" = dℋ(lx, ly) we have lx ⊂ B̄"(ly), so there exist y

′
−, y

′
+ ∈ ly such that ∣x±−y′±∣ ≤ ".

Setting l′y = [y′−y
′
+], by convexity of B̄"(l

′
y) we have lx ⊂ B̄"(l

′
y). Hence ly ⊂

B̄"(lx) ⊂ B̄2"(l
′
y), so since l′y ⊂ ly, after possibly swapping y+ and y− we conclude

that y∗ ∈ B̄2"(y
′
∗). Hence y∗ ∈ B̄3"(x

∗), ∗ = +,−, and (i) is proven. Item (v)
follows from (i) and the fact that the connected components of ∂S have positive
distance from each other.

To prove (iii) let S be convex. Since ∂S is compact, after passing to subse-
quences, and writing [xn]�n

= (x−
n x

+
n ), we have x

∗
n →: y∗ ∈ ∂S for ∗ = +,−. Hence

with Y = [y−y+], by convexity there is a sequence "n ↓ 0 such that xn ∈ B"n(Y )
for all n. Hence x ∈ Y . Summarizing, y± ∈ ∂S and x ∈ [y−y+] ∩ S. Since S is
convex, by Theorem 6.1 in [22] this implies that (y−y+) ⊂ S. So by maximality of
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[x]� we have [x]� = (y−y+) for � := y+−y−

∣y+−y−∣ . Notice that ℋ1(Y ) = ∣y+ − y−∣ is

positive because x ∈ (y−y+), so ∣x+
n − x−

n ∣ ≥
ℋ1(Y )

2 > 0 for large n. Since �n as
well as the x±

n converge, there is � ∈ {1,−1} such that for large n we have

�n = �
x−
n − x+

n

∣x−
n − x+

n ∣
. (19)

The right-hand side converges to � y−−y+

∣y−−y+∣ ∈ {�,−�} and the left-hand side con-

verges to �. Thus Y = [x]�, and (iii) follows because the same limit is obtained for
all subsequences.

To prove (ii) it is clearly enough to show that sup dist[xn]�n
(Y ) converges to zero

for every closed subsegment Y ⊂ [x]. Suppose this failed for some Y . Since Y ⊂ S
is closed, there is " > 0 such that B"(Y ) ⊂ S. Since B"(Y ) is convex, (iii) implies

dℋ
(

[xn]
B"(Y )
�n

, [x]B"(Y )
�

)

→ 0. (20)

After passing to a further subsequence (not relabelled), [xn]�n
converges with re-

spect to dℋ to a line segment Z. By (20) we have Y ⊂ [x]
B"(Y )
� ⊂ Z because

[xn]
B"(Y )
�n ⊂ [xn]�n

since B"(Y ) ⊂ S. This contradiction proves (ii).
The proof of (iv) is left to the reader.
To prove (vi) let "1 > 0 be so small that B5"1(∂iS) ∩ ∂jS = ∅ for all i ∕= j. Let
[x]� be such that sup dist∂S([x]�) < "1. Suppose that there were i ∕= j such that
the endpoints x± of [x]� satisfy x− ∈ ∂iS and x+ ∈ ∂jS. Then dist∂iS(x

+) > 4"1.
So by convexity of [x]� = (x−x+) there is x0 ∈ [x]� with dist∂iS(x0) = 2"1. But
then dist∂kS(x0) > "1 also for every k ∕= i. This would imply sup dist∂S([x]�) > "1,
a contradiction.

□

For v ∈ S
1, J ⊂ ℝ and ℎ : ℝ → ℝ Lipschitz we define

graphv ℎ∣J := {�v + ℎ(�)v⊥ : � ∈ J}. (21)

A set Γ ⊂ ℝ
2 is called a Lipschitz graph if it is of the form (21) with J connected.

Lemma 3 Let S ⊂ ℝ
2 be a Lipschitz domain. For all � > 0 there is " ∈ (0, �) such

that the following holds: If x1, x2 ∈ S and �1, �2 ∈ S
1 are such that [x1]�1

∩ [x2]�2
=

∅, dℋ([x1]�1
, [x2]�2

) < " and ℋ1([xi]�i
) ≥ � for i = 1, 2, then there is precisely one

connected component S([x1]�1
, [x2]�2

) of S ∖ ([x1]�1
∪ [x2]�2

) which contains both

[x1]�1
and [x2]�2

in its boundary and whose area is less than ∣S∣
4 .

Moreover, S([x1]�1
, [x2]�2

) enjoys the following properties: There exist disjoint Lip-
schitz graphs Γ± ⊂ ∂S such that

[x1]�1
∪ [x2]�2

∪ Γ+ ∪ Γ−

is a closed Jordan curve and

S([x1]�1
, [x2]�2

) = Ub([x1]�1
∪ [x2]�2

∪ Γ+ ∪ Γ−).

In particular, S([x1]�1
, [x2]�2

) is simply connected. Moreover, there exists a constant
C(S) such that

ℋ2
(

S([x1]�1
, [x2]�2

)
)

≤ C(S)dℋ([x1]�1
, [x2]�2

) (22)

and
diamΓ± ≤ C(S)dℋ([x1]�1

, [x2]�2
).
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Remarks.

(i) The hypothesis [x1] ∪ [x2] ⊂ ∂S([x1], [x2]) is necessary for uniqueness: If the
endpoints of the [xi]�i

lie in the same component of ∂S then there can be two
components of S ∖ ([x1] ∪ [x2]) with small area. See Figure 1 for an example
of a set S([x1], [x2]).

(ii) The relative lower bound on ℋ1([xi]�i
) with respect to the distance between

the [xi]�i
cannot be omitted from the hypotheses either. Otherwise it could

happen that there is no disjoint pair of graphs Γ± ⊂ ∂S such that x∗
i ∈ Γ∗,

and the set S([x1], [x2]) would not exist: Consider e.g. S = B1(0) and x+
1 =

x+
2 = (0, 1), x−

1 = (− 1
2 ,

√
3
2 ) and x−

2 = ( 12 ,
√
3
2 ). Then every subarc Γ− of ∂S

which is a graph and which contains {x−
1 , x

−
2 }must also contain Γ+ = {(0, 1)}.

Moreover, the component of S ∖([x1]∪ [x2]) that has [x1]∪ [x2] in its boundary

has area greater than ∣S∣
2 .

Proof. We omit the indices �i to avoid heavy notation, and we let xi ∈ S and
� > 0 be as in the hypotheses. For " > 0 small enough, Lemma 2 (v) implies that
there are i, j such that one endpoint of [x1] and of [x2] lies in ∂iS and the other
ones in ∂jS. Let us establish uniqueness of S([x1], [x2]). If i = j then Lemma 16
(iv) shows that S ∖ ([x1] ∪ [x2]) has exactly three connected components, and at
most one of them contains [x1] ∪ [x2] in its boundary. If i ∕= j then by Lemma 16
(ii) the set S ∖ ([x1] ∪ [x2]) has exactly two connected components. So the sum of
their areas must be ∣S∣, whence at most one can have area less than 1

4 ∣S∣.
To prove existence notice that from the Lipschitz property of S and since

∑

∗=+,− ∣x∗
1−

x∗
2∣ ≤ C" (by Lemma 2 (i) and with the notation used there), for small " > 0 there

exist Lipschitz graphs Γ̃± ⊂ ∂S such that x∗
1, x

∗
2 ∈ Γ̃∗ (∗ = +,−). If x∗

1 = x∗
2

set Γ∗ := {x∗
1}. (Notice, however, that x+

1 ∕= x+
2 or x−

1 ∕= x−
2 since otherwise

[x1] = [x2].) If x∗
1 ∕= x∗

2 then let Γ∗ be the closed subarc of Γ̃∗ with endpoints x∗
1

and x∗
2. Clearly Γ∗ is a Lipschitz graph. Thus diamΓ∗ ≤ ℋ1(Γ∗) ≤ C∣x∗

1 − x∗
2∣ ≤

Cdℋ([x1], [x2]). Hence Γ+ ∩ Γ− = ∅ if " is small enough with respect to �, since
∣x+

i − x−
i ∣ ≥ � and x∗

i ∈ Γ∗. Since also Γ∗ ∩ [xi] = ∅, the closed curve

� := Γ+ ∪ Γ− ∪ [x1] ∪ [x2]

is a closed Jordan curve. We define S([x1], [x2]) to be the bounded connected
component Ub(�) of ℝ

2 ∖ � furnished by the Jordan Curve Theorem. In the rest of
this proof, for brevity we write V instead of S([x1], [x2]). We claim that

ℋ2(V ) ≤ Cdℋ([x1], [x2]) (23)

for a constant C depending only on S. As seen above, diamΓ∗ ≤ C1dℋ([x1], [x2])
for some C1 depending only on S. With this C1, set R = (C1 + 1)dℋ([x1], [x2]).
Then (23) follows if we show that V ⊂ BR([x1]), since ℋ1([x1]) ≤ diamS.
Since diamΓ± ≤ C1

C1+1R, we have Γ± ⊂ BR([x1]), because both Γ+ and Γ− intersect
the closure of [x1]. By definition of dℋ we also have [x2] ⊂ BR([x1]). So � ⊂
BR([x1]). Thus BR([x1]) contains V = Ub(�) by Remark 8, and (23) is proven.
Next we claim that V is contained in S. In fact, since � ⊂ Ub(∂0S), Remark 8
implies that V ⊂ Ub(∂0S). We claim that also V ⊂ U∞(∂mS) for all m = 1, 2, ....
In fact, otherwise by openness of V there would be m ≥ 1 with Ub(∂mS) ∩ V ∕= ∅.
But ∂V ⊂ S̄ does not intersect Ub(∂mS). Hence by connectedness Ub(∂mS) ⊂ V .
For " small enough this contradicts (23). By (18), we conclude that indeed V ⊂ S.
Finally, we claim that V is a connected component of S∖([x1]∪[x2]). In fact, since V
is an open subset of S, there is at least one connected component S′ of S∖([x1]∪[x2])
with S′ ∩ V ∕= ∅. But S′ ∩ ∂V ⊂ S′ ∩ (∂S ∪ [x1]∪ [x2]) = ∅. Thus by connectedness
S′ ⊂ V . Also, since V ⊂ S we have V ∩ ∂S′ = V ∩ (S ∩ ∂S′) = V ∩ ([x1]∪ [x2]) = ∅.
So by connectedness V is contained in S′. □
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3 Countably developable mappings and geometry
of the set of local constancy

We will now define countably developable mappings, which are the object of study
in this paper. They almost agree with the class of mappings satisfying condition
(L) from [15]. The only difference is that we require, in addition, that they be
continuous (in the interior). Some of the theory developed here also carries over to
discontinuous mappings as found in [11]. We focus on continuous mappings because
W 2,2 isometric immersions are C1. As explained in the introduction, since we do
not make any integrability assumption, our results also apply to the setting in [20].

3.1 Countably developable mappings

Let S ⊂ ℝ
2 be a bounded domain, let X ⊂ S and let P ∈ ℕ. A mapping q : X → S

1

is called an S-ruling (on X) if

[x]Sq(x) ∩ [y]Sq(y) ∕= ∅ =⇒ [x]Sq(x) = [y]Sq(y) (24)

whenever x, y ∈ X. A mapping

f : X → ℝ
P

is called S-developable on X if there exists an S-ruling for f , i.e. an S-ruling
qf : X → S

1 such that

f is constant on X ∩ [x]Sqf (x) for all x ∈ X.

Note that f being S-developable on X1 ⊂ S and on X2 ⊂ S does not imply that f
is S-developable on X1 ∪X2.

Definition 1 A mapping f ∈ C0(S;ℝP ) is called countably S-developable if f is
S-developable on S ∖ Cf . Here, Cf is as in (2).

We will see later that, if f is countably developable, then [x] ⊂ S ∖ Cf for all
x ∈ S ∖ Cf .

If no confusion can arise, we will write [x] instead of [x]Sqf (x), and we will omit

the prefix ‘S−’ in the above definitions. Notice that, in general, a countably devel-
opable mapping f consists of infinitely many developable ‘pieces’. One key result of
this paper is that every countably developable mapping can be approximated in a
strong sense by countably developable mappings which consist of only finitely many
developable pieces, cf. Theorem 3 below.

Remark 1 If S is a bounded domain, X ⊂ S and q is an S-ruling on X, then q is
locally Lipschitz on X if regarded as a mapping into the projective space ℙ

1.

Proof. Continuity of q follows from Lemma 2 (iv). As observed in [14], proof of
Proposition 2.30, the condition (24) in fact implies that q is locally Lipschitz near
x ∈ X with a Lipschitz constant of the order dist∂S(x). □

Observe that the continuity of the ruling remains true if f is discontinuous. The
following lemma proves uniqueness (on S ∖ Cf ) of the ruling qf associated with a
countably developable mapping f .

Lemma 4 If f ∈ C0(S;ℝP ) is countably developable, then the S-ruling qf : S ∖
Cf → S

1 is continuous and unique if regarded as a mapping into the projective
space ℙ

1.
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Proof. To prove uniqueness, let

q
(1)
f , q

(2)
f : S ∖ Cf → S

1

be two S-rulings for f . Suppose there were x ∈ S ∖ Cf such that q
(1)
f (x) ∕= q

(2)
f (x)

(in ℙ
1). Then

[x]S
q
(1)
f

(x)
∩ [x]S

q
(2)
f

(x)
= {x}

and
f = f(x) on [x]S

q
(1)
f

(x)
∪ [x]S

q
(2)
f

(x)
.

But q
(1)
f is continuous. So there is � > 0 such that [y]S

q
(1)
f

(y)
intersects [x]S

q
(2)
f

(x)
for

all y ∈ B�(x) ∖ Cf . Thus f(y) = f(x) for all y ∈ B�(x) ∖ Cf . Hence by definition
of Cf and by continuity of f we have f ≡ f(x) on B�(x). This contradicts the fact
that x /∈ Cf . □

3.2 Geometry of the set of local constancy Cf

In [8] it is shown that each connected component U of Cf is a convex polygon when
the domain S is convex, and a related fact if S is simply connected, cf. also [14].
The situation for domains which are not simply connected is more delicate, mainly
due to a topological difference: A multiply connected domain is, in general, not
disconnected by a single curve 
 ⊂ S with endpoints on the boundary ∂S, i.e., the
set S ∖ 
 can still be a connected set. This will be the case when the endpoints of
the curve lie on different connected components of the boundary.

If S ⊂ ℝ
2 is a continuous domain, X ⊂ S and f : X → ℝ

P is S-developable,
and if Γ−,Γ+ ⊂ ∂S are connected, we define

Af,X(Γ−,Γ+) :=
{

x ∈ X : [x]Sqf (x) = (x−, x+) with x− ∈ Γ− and x+ ∈ Γ+

}

.

(25)

For i, j ∈ {0, ..., NS} we also set Af,X
ij := Af (∂iS, ∂jS), and we will omit the indices

f,X if they are clear from the context. For instance, if f is countably developable,
then it is understood that X = S ∖ Cf (later that X = S ∖ Ĉf ).

Definition 2 If S ⊂ ℝ
2 is a bounded domain, then a subset U of S is said to satisfy

condition (Bf ) for an S-developable mapping f : S ∩ ∂U → ℝ
P provided that U is

open, connected and that [x]Sqf (x) ⊂ ∂U for all x ∈ S ∩ ∂U .

Remark 2 (i) The condition (Bf ) will typically appear in the following context:
The mapping f ∈ C0(S;ℝP ) is countably developable, and U ⊂ S is such that
Cf ∩ ∂U = ∅. We will later introduce the subset Ĉf of Cf and show that f

is developable on S ∖ Ĉf , cf. Proposition 9. Then condition (Bf ) also makes

sense if Ĉf ∩ ∂U = ∅.

(ii) Apart from the trivial example U = S ∖ [x], in what follows we will encounter
mainly three kinds of sets satisfying condition (Bf ): The connected compo-

nents of Cf , the set Sf
� defined below and the sets [Γ(0, T )] defined below.

The following lemma is of basic importance in the rest of this paper.

Lemma 5 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let U ⊂ S satisfy con-

dition (Bf ) for some S-developable mapping f : S ∩ ∂U → ℝ
P . Then U has finite

perimeter. Moreover, there exists a countable subset ZU of S ∩ ∂U which satisfies
(i) and (ii) below. Moreover, (iii) through (viii) hold:
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(i) If x, y ∈ ZU with x ∕= y then [x] ∩ [y] = ∅.

(ii) S ∩ ∂U =
∪

x∈ZU
[x].

(iii) If Γ−,Γ+ ⊂ ∂S are disjoint and connected then # ZU ∩ A(Γ−,Γ+) ≤ 2. In
particular, # ZU ∩Aij ≤ 2 whenever i, j ∈ {0, ..., NS} with i ∕= j.

(iv)
∑

x∈ZU∩Aii
ℋ1([x]) ≤ ℋ1(∂iS) for all i ∈ {0, ..., NS}.

(v) If x ∈ Aii∩∂U for some i ∈ {0, ..., NS}, then S∖[x] consists of two components
S1
x and S2

x, and U ⊂ S1
x. If x, y ∈ ZU with x ∕= y then

S
2

x ∩ S
2

y ∩ S = ∅; (26)

in particular, S2
x ∩ S2

y = ∅.

(vi) For all x ∈ S ∩ ∂U there is r > 0 such that Br(x) ⊂ S and Br(x) ∩ ∂U =
Br(x)∩ [x]. Moreover, Br(x) ∖ [x] consists of two open half-disks B1

x and B2
x,

and B1
x ⊂ U . The half-disk B2

x is contained either in S ∖ Ū or in U . If x ∈ Aii

for some i ∈ {0, ..., NS} then B2
x ⊂ S2

x ⊂ S ∖ Ū .

(vii) If S ∩ ∂U ⊂
∪NS

i=0 Aii then

S ∖
∪

x∈ZU

[x] = U ∪
∪

x∈ZU

S2
x. (27)

(viii) Let V ⊂ S satisfy (Bf ). If U ∩V = ∅ and Ū ∩ V̄ ∕= ∅ then U ∪V ∪ [x] satisfies
(Bf ) for all x ∈ S ∩ Ū ∩ V̄ = S ∩ ∂U ∩ ∂V . Moreover, int(Ū ∪ V̄ ) satisfies
(Bf ), and

int(Ū ∪ V̄ ) = U ∪ V ∪ (S ∩ ∂U ∩ ∂V ). (28)

Remarks.

(i) In statement (iii) one can have #ZU∩Aij = 1: Consider e.g. S = B2(0)∖B̄1(0)
and let [x] be the open segment with endpoints (0, 1) and (0, 2). Then U :=
S ∖ [x] satisfies (Bf ) (e.g. for f ≡ e2)

(ii) If x ∈ Af
ij with i ∕= j in statement (vi) then one can have Br(x) ∖ [x] ⊂ U . See

the previous example.

Proof. First of all notice that (iii) and (iv) imply that
∑

x∈ZU
ℋ1([x]) < ∞, so U

has finite perimeter by (ii).
Claim #1. If Γ+, Γ− ⊂ ∂S are disjoint and connected, then there are points

x1, x2 ∈ S ∩ ∂U such that A(Γ−,Γ+) ∩ ∂U ⊂ [x1] ∪ [x2] (possibly [x1] = [x2]). In
particular, if i ∕= j then ∂U ∩Aij ⊂ [x1] ∪ [x2] for some x1, x2 ∈ S ∩ ∂U .

To prove Claim #1 let x1, x2, x3 ∈ ∂U ∩ A(Γ−,Γ+). Then by the hypothesis
on ∂U we have [xk] ⊂ ∂U ∩ S for k = 1, 2, 3. Suppose for contradiction that the
[xk] were pairwise disjoint. Set Vm = C(S ∖ ([xk] ∪ [xl]);xm), where (k, l,m) is a
permutation of (1, 2, 3), so m = 1, 2, 3. Then Vm is open and contains xm ∈ ∂U ,
so Vm intersects U . But ∂Vm ⊂ ∂S ∪ [x1] ∪ [x2] ∪ [x3] ⊂ ∂S ∪ ∂U . So U does
not intersect ∂Vm. Thus U ⊂ Vm by connectedness. This is true for m = 1, 2, 3.
Applying Lemma 17 with 
k = [xk], we conclude that V1 ∩ V2 ∩ V3 is empty. This
contradiction proves Claim #1.

Now let k ∈ {0, ..., NS} and let x ∈ Akk ∩ ∂U . Denote by x± the endpoints of
[x] and by ∂1

kS and ∂2
kS the connected components of ∂kS ∖ {x−, x+}. By Lemma
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Figure 2: The sets S2
x: The white region

is U satisfying (Bf ). The regions with a
pattern are the S2

xi
for xi ∈ ZU , where

i = 1, ..., 4. The two black holes belong
to the complement of S.

16 (i), the set S ∖ [x] consists of exactly two connected components S1
x and S2

x, and
{0, ..., NS} ∖ {k} can be partitioned into two subsets I1 and I2 such that

∂Si
x = ∂i

kS ∪ [x] ∪
∪

j∈Ii

∂jS for i = 1, 2. (29)

By connectedness, U is contained in one of the two components of S ∖ [x], and we
choose labels such that U ⊂ S1

x. So U does not intersect the closure of S2
x. We

define Jx := ∂2
kS.

Claim #2. If x, y ∈ Akk∩∂U with [x]∩[y] = ∅ then S2
x∩S

2
y = ∅ and Jx∩Jy = ∅.

In fact, if x, y are as above then, since U ⊂ S1
x, we have y ∈ S ∩ S̄1

x = [x] ∪ S1
x by

(29). Since y /∈ [x] this implies y ∈ S1
x, and since [y] does not intersect ∂S1

x and is
connected, we conclude that [y] ⊂ S1

x.
Thus S2

x ∩ ∂S2
y = S2

x ∩ [y] is empty. Hence by connectedness of S2
x either S2

x ⊂ S2
y

or S2
x ∩ S2

y = ∅. The analogous argument with the roles of x and y interchanged
then implies that either S2

x ∩ S2
y = ∅ or S2

y = S2
x. But the latter case is impossible

because [x] ∕= [y]. So S2
x and S2

y are disjoint. By openness of the Si
x, this implies

that S2
x ⊂ S1

y and S2
y ⊂ S1

x. Hence S̄2
x ∩ S̄2

y ⊂ S̄1
y ∩ S̄2

y ⊂ [y] by (29) (with y instead
of x). Swapping the roles of x and y we conclude that

S̄2
x ∩ S̄2

y ⊂ [x] ∩ [y] ⊂ {x+, x−} ∩ {y+, y−}. (30)

Since Jx ⊂ S̄2
x ∖ {x

+, x−} and Jy ⊂ S̄2
y ∖ {y

+, y−}, we deduce from (30) that Jx and
Jy are disjoint. This proves the claim.

Since Jx is an arc with the same endpoints as [x], we have

ℋ1([x]) ≤ ℋ1(Jx). (31)

By applying Zorn’s Lemma to the family of subsets F ⊂ Aii ∩ ∂U which satisfy
[x] ∕= [y] whenever x, y ∈ F and x ∕= y, we obtain a set Z ′

i with the following
property: Z ′

i ⊂ Aii∩∂U and ∂U ∩Aii =
∪

x∈Z′
i
[x], and [x] ∕= [y] whenever x, y ∈ Z ′

i

with x ∕= y. For every countable subset Z ′′
i ⊂ Z ′

i, by (31) and the disjointness of the
Jx (see Claim #2) we have ℋ1(

∪

x∈Z′′
i
[x]) =

∑

x∈Z′′
i
ℋ1([x]) ≤

∑

x∈Z′′
i
ℋ1(Jx) ≤

ℋ1(∂iS), which is finite. So Z ′
i is countable with

ℋ1(
∪

x∈Z′
i

[x]) ≤ ℋ1(∂iS). (32)
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By Claim #1, whenever i, j ∈ {0, ..., NS} with i ∕= j and Aij ∩ ∂U ∕= ∅, there exist

x
(1)
ij , x

(2)
ij (possibly equal) such that

Aij ∩ ∂U = [x
(1)
ij ] ∪ [x

(2)
ij ].

Set

ZU :=

NS
∪

i=0

Z ′
i ∪

∪

{i<j:Aij∩∂U ∕=∅}
{x

(1)
ij , x

(2)
ij }.

This set clearly satisfies conditions (i) and (ii). It satisfies (iii) by definition, it
satisfies (iv) by (32), and it satisfies (v) by Claim #2. Observe that (26) follows
from (30).

To prove (vi) let x ∈ S∩∂U and let R be such that B2R(x) ⊂ S. Since by (iii) and
(iv) the sum

∑

x∈ZU
ℋ1([x]) converges, the set Z ′ := {y ∈ ZU : [y]∩BR(x) ∕= ∅}∖{x}

is finite, because if y ∈ Z ′ then ℋ1([y]) ≥ R (in fact, the endpoints of [y] lie outside
B2R(x) since they are outside S). By definition of Z ′ we have

BR(x) ∩ ∂U = BR(x) ∩ S ∩ ∂U ⊂ [x] ∪
∪

y∈Z′

[y]. (33)

Moreover, for y ∈ Z ′, since B2R(x) ⊂ S, by maximality of [x] and [y] we have
[x]∩ B̄R(x) ⊂ [x] and [y]∩ B̄R(x) ⊂ [y]. So these two compact sets do not intersect
for any y ∈ Z ′, so they have positive distance for each y ∈ Z ′. Since Z ′ is finite,
from (33) we deduce that there is r ∈ (0, R) with Br(x) ∩ ∂U ⊂ [x], as claimed.
The endpoints of [x] lie outside Br(x), so Br(x) ∖ [x] consists of two components
(see e.g. Lemma 16), which of course are open half-disks B1

x and B2
x. But none

of them intersects ∂U , so by connectedness each one is either contained in U or in
S ∖ Ū . Since x ∈ ∂U we have Br(x) ∩ U ∕= ∅. Hence (B1

x ∪ B2
x) ∩ U ∕= ∅ because

[x] ∩ U = ∅. We choose the labels such that B1
x ∩ U ∕= ∅, so B1

x ⊂ U . If x ∈ Aii

for some i, that is, if both endpoints of [x] lie in the same connected component of
∂S, then by part (v), the set S ∖ [x] consists of two components S1

x and S2
x, and

U ⊂ S1
x. By Lemma 16 (i) we have [x] ⊂ ∂S1

x ∩ ∂S2
x. So Br(x) intersects S

2
x. Since

B1
x ⊂ U ⊂ S1

x, this implies B2
x ∩ S2

x ∕= ∅. Hence by connectedness B2
x ⊂ S2

x.
Let us prove (vii). Since U ⊂ S is open and since by (ii) we have

∪

x∈ZU
[x] ⊂ ∂U ,

we have U ⊂ S ∖
∪

x∈ZU
[x]. Let x, y ∈ ZU with x ∕= y. By (30) and since [y] ⊂ S̄2

y

(see e.g. Lemma 16 (i)), we have S̄2
x ∩ [y] ⊂ ∂S, so S2

x ∩ [y] = ∅. Since this is
true for all y ∈ ZU ∖ {x} and by openness also S2

x ∩ [x] = ∅, we conclude that
S2
x ⊂ S ∖

∪

z∈ZU
[z]. This proves one inclusion.

To prove that S ∖
∪

x∈ZU
[x] ⊂ U ∪

∪

x∈ZU
S2
x, let V be a connected component of

S ∖
∪

x∈ZU
[x]. By part (ii) we have V ∩ ∂U = ∅, so if V ∩ U ∕= ∅ then V ⊂ U by

connectedness (in fact, V = U by maximality of V ). It remains to consider the case
V ∩ U = ∅. By definition, S ∩ ∂V ⊂

∪

x∈ZU
[x]. And S ∩ ∂V is nonempty because

otherwise V = S, so it would intersect U . On the other hand,
∪

x∈ZU
[x] ⊂ S ∩ ∂U

by (ii). So there is x ∈ S ∩ ∂U ∩ ∂V . By definition, U ⊂ S1
x. By connectedness

either V ⊂ S1
x or V ⊂ S2

x. By (vi), for r small enough, Br(x) ∖ [x] consists of two
half-disks B1

x, B
2
x, with B1

x ⊂ U ⊂ S1
x and B2

x ⊂ S2
x. Since V ∩ U = ∅ and x ∈ ∂V ,

this implies that V intersects S2
x. We conclude that V ⊂ S2

x.
To prove (viii) first notice that by disjointness we have Ū ∩ V̄ = ∂U ∩ ∂V . Let

x ∈ S ∩ ∂U ∩ ∂V and let z ∈ [x]. Notice that [x] ⊂ S ∩ ∂U ∩ ∂V because U and
V satisfy (Bf ). Hence we can apply (vi) to z to find r > 0 such that Br(z) ∖ [x]
(notice that [x] = [z]) consists of two half-disks B1

z ⊂ U and B2
z ⊂ S ∖ Ū . Indeed, if

both half-disks were contained in U then Br(z)∩V = ∅, contradicting the fact that
z ∈ ∂V . Repeating this argument with the roles of U and V interchanged shows
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that B2
z ⊂ V . Hence Br(z) ⊂ U ∪ V ∪ [x]. Since z ∈ [x] was arbitrary and U , V

are open by hypothesis, this proves that U ∪ V ∪ [x] is open. It also implies that
U ∪ V ∪ [x] is connected, since so are U , V and [x], and all three intersect Br(z).
Next notice that

∂(U ∪ V ∪ [x]) = (∂U ∪ ∂V ) ∖ [x] (34)

(Indeed, by openness of U ∪ V ∪ [x] and since [x] ⊂ Ū , we have ∂(U ∪ V ∪ [x]) =
(Ū ∪ V̄ ) ∖ (U ∪ V ∪ [x]) = Ū ∖ (U ∪ [x]) ∪ V̄ ∖ (V ∪ [x]) because Ū ∩ V = V̄ ∩U = ∅.
This proves (34).) From (34) one immediately deduces that y ∈ S ∩ ∂(U ∪ V ∪ [x])
implies that [y] ⊂ ∂(U ∪ V ∪ [x]). This proves that U ∪ V ∪ [x] satisfies (Bf ).
Applying the above argument to all x ∈ S∩∂U∩∂V proves that U∪V ∪(S∩∂U∩∂V )
is open. By Theorem IV.1.2 in [17] it is also connected, since for an arbitrary
x ∈ S ∩ ∂U ∩ ∂V we have

U ∪ V ∪ [x] ⊂ U ∪ V ∪ (S ∩ ∂U ∩ ∂V ) ⊂ Ū ∪ V̄ = closure of (U ∪ V ∪ [x]),

and we know that U ∪ V ∪ [x] is connected.
Since U ∪ V ∪ (S ∩ ∂U ∩ ∂V ) is open, it is clearly contained in int(Ū ∪ V̄ ). The
converse inclusion follows from int(Ū ∪ V̄ ) ⊂ int S̄ = S (because S is a continuous
domain) and from int(Ū ∪ V̄ ) ⊂ U ∪V ∪ (∂U ∩∂V ). (The latter holds for all disjoint
open sets U and V .) Thus (28) is proven. In particular, int(Ū ∪ V̄ ) is connected.

Moreover, (28) implies ∂ int(Ū ∪ V̄ ) = Ū ∪ V̄ ∖
(

U ∪ V ∪ (S ∩ ∂U ∩ ∂V )
)

. Hence

S ∩ ∂ int(Ū ∪ V̄ ) =
(

S ∩ ∂U ∖ ∂V
)

∪
(

S ∩ ∂V ∖ ∂U
)

. (35)

Thus if y ∈ S ∩ ∂ int(Ū ∪ V̄ ) then (after possibly swapping U and V ) we have
y ∈ (S ∩ ∂U) ∖ ∂V . Hence [y] ⊂ ∂U because U satisfies (Bf ). On the other hand,
if [y] ∩ ∂V ∕= ∅ then [y] ⊂ ∂V because V satisfies (Bf ). But this would imply
y ∈ ∂V , a contradiction. We conclude that [y] ⊂ S ∩ ∂U ∖ ∂V ⊂ ∂ int(Ū ∪ V̄ ) by
(35). Therefore, int(Ū ∪ V̄ ) satisfies (Bf ). □

Proposition 7 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP )

be countably developable. Then Cf consists of countably many connected compo-
nents. Every connected component U of Cf satisfies condition (Bf ). More precisely,
S ∩ ∂U ⊂ S ∖Cf , and for all x ∈ S ∩ ∂U there is R > 0 such that for all r ∈ (0, R),
one component of Br(x) ∖ [x] is contained in U and the other one in S ∖ Ū .
Moreover, if U1, U2 are connected components of Cf with Ū1 ∩ Ū2 ∩ S ∕= ∅ then
U1 = U2.

Proof. Let U be a connected component of Cf . So U is open since so is Cf . Hence
there can be only countably many such U . Clearly ∂U ∩ Cf = ∅.

Claim #1. If x ∈ S ∖ Cf then [x] ∩ Cf = ∅.
In fact, let x ∈ S ∖ Cf , so [x] is well defined, and suppose for contradiction that
there were y ∈ [x]∩Cf . For all � > 0 there exists x� ∈ E� := B�(x)∩ (S ∖Cf ) such
that f(x�) ∕= f(x). In fact, otherwise f(z) = f(x) for all z ∈ E�, but since f is
constant on each connected component of B�(x) ∖ E�, continuity of f would imply
f ∣B�(x) = f(x), contradicting the fact that x /∈ Cf .
Since [xy] ⊂ S is compact, there is �0 > 0 such that S′ := B�0([xy]) ⊂ S. Since
x� → x as � ↓ 0, Lemma 2 (iv) implies that dℋ([x�]

S′

, [x]S
′

) → 0. So for small �
we have [x�]

S′

∩ B�(y) ∕= ∅ because y ∈ [x]S
′

. But for � > 0 small enough we have
B�(y) ⊂ Cf . Since f ∣B�(y) and f ∣[x�] are constant, we deduce that f(x�) = f(y) =
f(x) for all � small enough, a contradiction.

Claim #2. If x ∈ S ∩ ∂U then there is r > 0 such that B̄r(x) ⊂ S and one
connected component of Br(x) ∖ [x] is contained in U and the other one in S ∖ Ū .
In particular, [x] ⊂ S ∩ ∂U .
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To prove this, let x ∈ ∂U∩S, so x ∈ S∖Cf , [x] is well defined and [x]∩Cf = ∅ by
Claim #1. We choose coordinates such that x is the origin and [x] ⊂ ℝ×{0}. (This
fixes the coordinates up to a 180 degree rotation.) Let R > 0 be such that B̄2R(x) ⊂
S. So the endpoints of [x] lie in ℝ

2 ∖ BR(x), so BR(x) ∖ [x] = BR(0) ∖ (ℝ × {0})
consists of exactly two connected components (see e.g. Lemma 16 (i)), namely the
half disks

B+
R := {(z1, z2) ∈ BR(0) : z2 > 0} and B−

R := {(z1, z2) ∈ BR(0) : z2 < 0}. (36)

We claim that
x ∈ BR(x) ∖ (Cf ∪ [x]). (37)

In fact, otherwise there would exist r ∈ (0, R) such that Br(x) does not intersect
S ∖ (Cf ∪ [x]). Since BR(x) ⊂ S this implies that Br(x) ∖ [x] is contained in Cf .
By continuity of f this would imply Br(x) ⊂ Cf , whence x ∈ Cf , a contradiction
proving (37).

Claim #3. Let ∗ ∈ {−,+}. If x is contained in the closure of B∗
R ∖ Cf then

B∗
r ∩ Ū = ∅ for some r ∈ (0, R). (Here B∗

r is defined in analogy to B∗
R.)

Assume we had shown Claim #3. After possibly rotating coordinates by 180
degree, (37) implies that x is contained in the closure of B+

R ∖Cf . So by Claim #3
we have

B+
r ∩ Ū = ∅ for some r > 0. (38)

But Br(x) ∖ [x] intersects U since x ∈ ∂U and [x]∩U = ∅. So by (38) we must have
B−

r ∩U ∕= ∅. So Claim #3 implies that x is not contained in the closure of B−
R ∖Cf ,

i.e. there is r ∈ (0, R) (possibly smaller than the one above, but after shrinking one
we may of course assume that they are equal) such that B−

r ∖Cf = Br(x)∩(B
−
R ∖Cf )

is empty. That is, B−
r ⊂ Cf . Since B

−
r is connected and intersects U , by maximality

of U we conclude B−
r ⊂ U . This together with (38) proves the first part of Claim

#2. In particular, Br(x) ∩ [x] ⊂ S ∩ ∂U . It remains to prove that [x] ⊂ ∂U . But
by the first part, the set [x] ∩ ∂U is relatively open in [x]: If z ∈ [x] ∩ ∂U then
Br(z)∩ [x] = Br(z)∩ [z] ⊂ ∂U as well. Since ∂U is closed, [x]∩∂U is also relatively
closed in [x]. So [x] ∩ ∂U = [x] since [x] is connected. This proves Claim #2.

It remains to prove Claim #3. After possibly rotating the coordinates by 180
degree, we may assume that ∗ = +, i.e. there are yn ∈ B+

R ∖Cf with yn → x. After
an appropriate choice of sign for qf (yn), Lemma 4 implies qf (yn) → qf (x) = e1.
Hence qf (yn) ⋅ e1 ∕= 0 for large n, so we can label the endpoints y±n of [yn] such
that y−n ⋅ e1 < y+n ⋅ e1, and with each yn we can associate the unique affine function

fn : ℝ → ℝ with graph fn = [yn]
ℝ

2

. Since yn → x and qf (yn) → e1, affinity of the
fn implies that

fn → 0 uniformly on compact intervals. (39)

Set Q = [−R,R]2. Since Q ⊂ B2R(0) ⊂ S and yn ∈ Q for large n (recall that x is the

origin), we have [yn]
ℝ

2

∩Q = [yn]∩Q. By (39) we have graph fn∩Q = graph fn∣[−R,R]

for large n. We conclude that

graph fn∣[−R,R] = [yn] ∩Q for n large enough. (40)

Using this we have graph fn∣[−R,R] ∩ (ℝ × {0}) = [yn] ∩ [x] ∩ Q, which is empty.
Since fn(yn ⋅ e1) = yn ⋅ e2 > 0, we deduce fn > 0 on [−R,R]. Similarly, fn ∕= fm
on [−R,R] for n ∕= m since then [yn] ∩ [ym] = ∅. Thus by (39), after passing to
subsequences we have

0 < fn+1 < fn on [−R,R] for large n. (41)

By Lemma 2 (ii) we have ℋ1([yn]) > 1
2ℋ

1([x]) for large n, and so we can apply
Lemma 3 (with � = 1

2ℋ
1([x]), but � will denote something else below) to obtain "
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with the properties stated there. After passing to a further subsequence we may
assume that

dℋ([yn], [ym]) < " for large n,m. (42)

Now let N so large that (41) and (42) hold for n,m ≥ N .

By (41) we have � := min fN ([−R,R]) > 0. For n > N set Sn =
{

z ∈ ℝ
2 : z ⋅ e1 ∈

[−R,R], z ⋅e2 ∈
(

fn(z ⋅e1), fN (z ⋅e1)
)

}

. By (41), the Sn form an increasing sequence.

Moreover,
(

[−R,R]× (0, �)
)

∩ Cf ⊂
∪

n≥N

Sn. (43)

In fact, let z ∈ S ∖
∪

n≥N [yn] be such that ∣z ⋅ e1∣ ≤ R and z ⋅ e2 ∈ (0, �). Then
z ⋅ e2 < � ≤ fN (z ⋅ e1). And by (39) we have z ⋅ e2 > fn(z ⋅ e1) for large n. This
proves (43) since Cf ⊂ S ∖ [yn] for all n (recall that [yn] ∩ Cf = ∅ by Claim #1).
We claim that U does not intersect [−R,R] × (0, �). To prove this, let us assume
the contrary, so by (43) and since U ⊂ Cf we have that U intersects Sn for all n
large enough. We claim that this implies

U ⊂ S([yn], [yN ]) =: Vn for all n large enough. (44)

Here S([yn], [yN ]) = Vn is the connected component of S ∖ ([yn] ∪ [yN ]) furnished
by Lemma 3 (the hypotheses of this lemma are satisfied by (42)). In fact, U is
connected and it does not intersect ∂Vn because ∂Vn ⊂ ∂S∪ [yn]∪ [yN ] (see Lemma
3). So we must show that Sn is contained in Vn, since then U intersects Vn and
therefore U ⊂ Vn. But Sn is connected and it does not intersect ∂Vn, so it is enough
to prove that Sn ∩ Vn ∕= ∅.

By Lemma 3 there are arcs Γ
(n)
± ⊂ ∂S such that ∂Vn = �n := [yn]∪[yN ]∪Γ

(n)
+ ∪Γ

(n)
− .

And "n := diamΓ
(n)
+ +diamΓ

(n)
− ≤ Cdℋ([yn], [yN ]) and one endpoint of Γ

(n)
± is y±n .

So Γ
(n)
+ ⊂ B"n(y

+
n ) and Γ

(n)
− ⊂ B"n(y

−
n ). In particular,

(Γ
(n)
+ ∪ Γ

(n)
− ) ∩ ({0} × ℝ) = ∅ (45)

when n is large enough, since then "n < R
4 but ∣y±n ⋅ e1∣ ≥ R (since Q ⊂ S and

y±n /∈ S while qf (yn) → e1).
Fix n and set y := (0, fN (0)). For all � > 0 small enough, setting

D±
� := {(x1, x2) ∈ B�(y) : ±x2 > ±fN (x1)}

we clearly have that D−
� ⊂ Sn and that D+

� intersects the line Z := {(0, x2) :
x2 > fN (0)}. On the other hand, Z ∩ �n = ∅ by (45) and since by (41) Z does not
intersect graph fN∪graph fn (which contains [yn]∪[yN ]). Since Z is unbounded and
connected, this implies Z ⊂ U∞(�n). Hence D

+
� ⊂ U∞(�n) because it is connected,

intersects Z but does not intersect �n (because B�(y) ⊂ S and since D+
� does not

intersect graph fn ∪ graph fN ). But since y ∈ [yN ] ⊂ ∂Vn, we have B�(y) ∩ Vn ∕= ∅.
Thus D−

� ∩ Vn ∕= ∅, so by connectedness D−
� ⊂ Vn. Hence Sn ∩ Vn ∕= ∅, and (44)

follows.
Setting Z ′ := {x+ te2 : t ≤ 0}, we see that x ∈ U∞(�n) for all n large enough,

since Z ′ ∩ �n = ∅ and Z ′ is unbounded and connected. So x /∈ V̄n, whence by (44)
we conclude that x is not contained in Ū either. But this contradicts the fact that
x ∈ ∂U . (Alternatively, from (44) one could obtain a contradiction to positive area
of U , since N and n were arbitrary.) Thus indeed

U ∩
(

[−R,R]× (0, �)
)

= ∅. (46)
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Hence setting r = min{�,R} we have found that U does not intersect B+
r . So by

openness of B+
r also Ū ∩B+

r = ∅. This concludes the proof of Claim #3 and hence
that of Claim #2. By Claim #2, the set U satisfies condition (Bf ).

To prove the last statement, let U1 and U2 be connected components of Cf .
Suppose that we had U1 ∕= U2, so U1 ∩ U2 = ∅. Let x ∈ Ū1 ∩ Ū2 ∩ S. Then Lemma
5 (viii) implies that U1 ∪ [x] ∪ U2 is open and connected. Hence by continuity of f
it is contained in Cf . This contradicts maximality of U1. □

The following proposition shows that all except finitely many connected com-
ponents of Cf ‘almost’ belong to the set Ĉf introduced below. This observation is
central to the proof of Theorem 3.

Proposition 8 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP )

be countably developable. Then for all � > 0 there exist N ∈ ℕ and connected
components Uk of Cf , k = 1, ..., N , with the following property: If U is a connected
component of Cf ∖ (U1 ∪ ... ∪ UN ) then there exist z1, z2 ∈ ZU such that

ℋ1([z]) < � for all z ∈ ZU ∖ {z1, z2}. (47)

Proof. Let � > 0 and assume for contradiction that there were an infinite sequence
(Un) of pairwise disjoint connected components of Cf violating (47) for any pair
z1, z2 ∈ ZUn

. Since by Proposition 7 and Lemma 5 the sum
∑

x∈ZUn
ℋ1([x]) con-

verges, there is yn ∈ ZUn
with ℋ1([x]) ≤ ℋ1([yn]) for all x ∈ ZUn

. After passing to
subsequences, there exists a line segment Y (in general Y cannot be written as [x],
and possibly Y ⊂ ∂S) such that

dℋ([yn], Y ) → 0. (48)

If we had ℋ1(Y ) < �, then by (48) we would have ℋ1([x]) ≤ ℋ1([yn]) → ℋ1(Y ) < �
for all x ∈ ZUn

. So (47) would hold for large n. This contradiction shows that Y
must be a nondegenerate line segment with ℋ1(Y ) ≥ �.
We choose coordinates such that Y = [−2R, 2R] × {0} for some R > 0. As in the

proof of Proposition 7, each line [yn]
ℝ

2

is the graph of an affine function fn : ℝ → ℝ.
Arguing as in that proof, after possibly rotating the coordinates by 180 degree and
passing to subsequences, by (48) we have 0 < fn+1 < fn for all n and fn converges
to zero uniformly on [−R,R]. The inequality fn > 0 uses the fact that [yn] does
not intersect Y for n large enough. In fact, if [yn] ⊂ S intersected Y for infinitely
many n (and [yn] ∕⊂ Y , but anyway [yn] ⊂ Y can be true for at most finitely
many [yn] because they are disjoint and their length is uniformly bounded from
below), then it is easy to see that by (48) it must intersect [ym] for m > n large
enough, a contradiction. (This does not exclude the possibility that one endpoint
y±n ∈ ∂S of each [yn] agrees with an endpoint of Y .) Now by an argument similar
to the one which in the proof of Proposition 7 led to Sn ⊂ Vn, one can prove that
(0, fn(0)) ∈ Vn, where Vn := S([yn−1], [yn+1]) is as furnished by Lemma 3. To
apply Lemma 3 we use that, due to (48), the [yn] form a dℋ-Cauchy sequence,
while ℋ1([yn]) ≥

�
2 for large n.

But since graph fn∣(−R,R) ⊂ [yn] (see e.g. the proof of Proposition 7), we also have
(0, fn(0)) ∈ [yn] ⊂ ∂Un. Since Vn is open, this implies that Vn intersects Un, so by
connectedness

Un ⊂ Vn for all n large enough, (49)

since Un does not intersect ∂Vn ⊂ [yn−1] ∪ [yn+1] ∪ ∂S because [ym] ⊂ S ∖ Cf (see
e.g. Claim #1 in the proof of Proposition 7).
Now let x ∈ ZUn

. Then by (49) the endpoints x± of [x] lie in V̄n ∩ ∂S. By Lemma

3 this set is contained in Γ
(n)
+ ∪Γ

(n)
− , where Γ

(n)
± are disjoint closed Lipschitz graphs
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contained in ∂S, If x ∈ ZUn
∖A(Γ

(n)
− ,Γ

(n)
+ ), i.e. both x+ and x− lie in Γ

(n)
+ or both

lie in Γ
(n)
− then by Lemma 3,

ℋ1([x]) ≤ ℋ1(Γ
(n)
± ) ≤ Cdℋ([yn−1], [yn+1]) < �

for n large enough. But by Proposition 7 and Lemma 5 there can be at most two

different x ∈ ZUn
∩A(Γ

(n)
− ,Γ

(n)
+ ). We conclude that, for n large enough, Un satisfies

(47). This contradiction finishes the proof. □

4 The set Ĉf and approximation by finitely devel-
opable mappings

In this section we show that every countably developable mapping f can be ap-
proximated by ‘finitely’ developable mappings, i.e. countably developable mappings
which consist of finitely many developable pieces and finitely many connected com-
ponents of Cf . Moreover, each approximant agrees with f outside an exceptional
set which is contained in an arbitrarily small neighbourhood of ∂S. This exceptional
set is compatible with the level sets of f , and the approximant is constant each of
its connected components. The geometric facts about Cf proven in the previous
section will be essential in the proof.
Another essential observation is that every countably developable mapping is, in
fact, developable on a larger set than just S ⊂ Cf . This was observed for convex
domains in [14].

4.1 The set Ĉf

Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP ) be countably

developable. As observed in the introduction, it will be useful to single out those
connected components U of Cf for which ∂U ∩S consists of at least three connected

components, i.e. #ZU > 2. Recall that Ĉf is the union of all connected components
U of Cf for which this is the case.

The set Ĉf may seem to be slightly artificial. However, it turns out to be more
than just a technical tool. For instance, it plays a natural role in the regularity
results from [9]. The reason for its relevance is the following fact:

Proposition 9 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP )

be countably developable. Then f is S-developable on S ∖ Ĉf . More precisely, there

exists an S-ruling q̂f : S ∖ Ĉf → S
1 such that q̂f = qf on S ∖ Cf and such that f is

constant on [x]Sq̂f (x) for all x ∈ S ∖ Ĉf .

Proof. We must show that the ruling qf can be extended to every connected

component of Cf ∖ Ĉf . Let U be such a component. So by Proposition 7 and
Lemma 5 there are x1, x2 ∈ S ∖ Cf (possibly equal) such that ZU = {x1, x2}, and
U agrees with a connected component of S ∖ ([x1]∪ [x2]). By Claim #1 in the proof
of Proposition 7 (or by condition (Bf )) we have [x]qf (x) ∩ U = ∅ for all x ∈ S ∖Cf .
Therefore, if q̃ is an S-ruling on U then q̂, defined by

q̂(x) =

{

qf (x) if x ∈ S ∖ Cf

q̃(x) if x ∈ U,
(50)

will be an S-ruling for f on (S ∖ Cf ) ∪ U provided that [x]Sq̃(x) ⊂ U for all x ∈ U .

To ensure this, by connectedness of [x]Sq̃(x) and since S ∩ ∂U = [x1] ∪ [x2], we must
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Figure 3: Left: Proof of Proposition 9. The bold curve belongs to ∂S and the black
squares are the endpoints of the [xi]. Right: The shaded regions are connected
components Ĉf . The mapping f is developable on parts of the left component and
it is developable on the whole right component.

only make sure that [x]Sq̃(x) does not intersect [x1] ∪ [x2] for any x ∈ U .

Now we proceed to construct such a q̃. If qf (x1) ∥ qf (x2) (in particular, if x1 = x2)
then we define q̃(x) = qf (x1) for all x ∈ U and we are done.
So let us assume that qf (x1) is not parallel to qf (x2), so in particular x1 ∕= x2.

Then the intersection [x1]
ℝ

2

∩ [x2]
ℝ

2

consists of a single point v (here and below we
omit the subindex when it is qf (xi)). Since [x1]∩ [x2] = ∅ (here and below we omit
the superindex when it is S), after possibly relabelling x1 and x2 we may assume
that v /∈ [x1]. After rotating, translating and reflecting we may assume without

loss of generality that v agrees with the origin, that [x2]
ℝ

2

= {� = 0} and that
�([x1]) ⊂ (0,∞), where � : ℝ2 → ℝ is defined by �(x) = x ⋅ e1. The condition

�([x1]) ⊂ (0,∞) can be arranged because [x1] ∩ [x2]
ℝ

2

= ∅ (since v /∈ [x1]), so [x1]
does not intersect the vertical axis. Hence � does not change sign on [x1].
Set �′ = inf �([x1]), so �′ ≥ 0. Let � ∈ [0, �′] such that

(

�−1(�) ∩ [x1]
ℝ

2
)

∖ S ∕= ∅. (51)

Such � exists because �′ itself satisfies (51), since the endpoints of [x1] lie in ℝ
2 ∖S.

We just wish to leave some more freedom; compare the remarks below.
Set Y = �−1(�) and denote by z the unique intersection point of Y with [x1]

ℝ
2

,
which exists since [x1] is not parallel to qf (x2) = ±e2. By (51) we have z /∈ S.

(The situation is depicted in Figure 3 (left).) Notice that �([x2]
ℝ

2

) = {0} and that
�([x1]) ∈ (�,∞) since � ≤ �′. For x ∈ ℝ

2 ∖ {z} define

q̃(x) =

{

qf (x2) if �(x) ≤ �
z−x
∣z−x∣ otherwise.

(52)

It is easy to check (see below) that q̃ is an (ℝ2 ∖ {z})-ruling on ℝ
2 ∖ {z} and that

q̃(xi) ∥ qf (xi), i = 1, 2. Since z /∈ S we have S ⊂ ℝ
2 ∖ {z}, so q̃∣S is an S-ruling,

so in particular [x]Sq̃(x) does not intersect [xi] = [xi]
S
q̃(xi)

for any x ∈ U and i = 1, 2.

Thus (50) furnishes the desired extension of qf to U .
For the convenience of the reader let us prove that q̃ is a ruling on ℝ

2 ∖ {z} with
q̃(xi) ∥ qf (xi). Indeed, q̃(x2) = qf (x2) since �(x2) = 0 ≤ �. And q̃(x1) is parallel to
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z − x1, whence it is parallel to qf (x1) because both z and x1 lie on [x1]
ℝ

2

. Now let

x, y ∈ ℝ
2 ∖ {z} with [x]

ℝ
2∖{z}

q̃(x) ∩ [y]
ℝ

2∖{z}
q̃(y) ∕= ∅. (53)

We must show that then [x]
ℝ

2∖{z}
q̃(x) = [y]

ℝ
2∖{z}

q̃(y) . If �(x) ≤ � and �(y) ≤ � then [x]ℝ
2

q̃(x)

and [y]ℝ
2

q̃(y) are parallel, so if they intersect then they agree. If �(x) ≤ � and �(y) > �

then [x]
ℝ

2∖{z}
q̃(x) ∩ [y]

ℝ
2∖{z}

q̃(y) = ∅, so this cannot happen for x, y as in (53). Finally, if

�(x) > � and �(y) > � then z ∈ [x]ℝ
2

q̃(x) ∩ [y]ℝ
2

q̃(y). But (53) implies that these two

lines also intersect inside ℝ
2 ∖ {z}. So they intersect in two points and therefore

they must agree. □

Remarks.

(i) If v as defined in the previous proof lies in ℝ
2 ∖ S (this is always the case

when S is convex) then the situation is much easier: one can simply define
q̃(x) = v−x

∣v−x∣ .

(ii) If �′ = 0 then [x1] ∩ [x2] ∕= ∅ and z = v. So this is a particular case of (i). In
this case, moreover, the extension q̃ of qf is uniquely determined (up to signs)
on U , and (in the terminology introduced later) if Γ is a q̃-integral curve then
s∗Γ� = 1 for some ∗ ∈ {+,−}.

(iii) If [x1] intersects ∂S transversally (see the definitions in Section 5.1) and if
�′ > 0 then one can show that there always exists � ∈ (0, �′) satisfying (51)
even with S̄ instead of S. If this is the case, then there exists an open interval
of such �, since ℝ

2 ∖ S̄ is open. So the extension q̃ of qf to U is not uniquely
determined in this case.

(iv) The set S ∖ Ĉf is in general not the largest set on which f is developable:
There can be components U of Cf with #ZU > 2 to which the ruling qf can
be extended (at least partially), see Figure 3 (right).

4.1.1 Approximation by finitely developable mappings.

Definition 3 Let S ⊂ ℝ
2 be a Lipschitz domain. A mapping f : S → ℝ

P is
called finitely developable if it is countably developable and Ĉf consists of finitely
many connected components U1, ..., UK , and each of them satisfies #ZUk

< ∞ for
k = 1, ...,K.

Notice that if f is finitely developable then S ∖ Ĉf consists of finitely many
connected components and f is developable on each of them by Proposition 9.

Now let f be an arbitrary countably developable mapping on S. We define

[x] := [x]Sq̂f (x) for all x ∈ S ∖ Ĉf ,

where q̂f is an extension of qf to S ∖ Ĉf , whose existence is ensured by Proposition
9. Obviously, [x] agrees with the old notation for x ∈ S ∖ Cf . We also write

Aij := A
f,S∖Ĉf

ij .

We introduce the mapping Ωf : S → 2S by setting

Ωf (x) =

{

[x] if x ∈ S ∖ Ĉf

C(Cf ;x) if x ∈ Ĉf .
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We define pf (x) = sup dist∂S(Ωf (x)). For � > 0 we set

Sf
� = {x ∈ S : pf (x) > �}. (54)

We will omit the index f when it is clear from the context.

Lemma 6 Ωf is lower semicontinuous in the sense that xn → x in S implies
sup distΩf (xn)(Ωf (x)) → 0. In particular, the function pf is lower semicontinuous.

Proof. Let xn, x ∈ S with xn → x. If x ∈ Ĉf then by openness xn ∈ Ωf (x) for

large n, so Ωf (xn) = Ωf (x). If x ∈ S ∖ Ĉf , then Ωf (x) = [x] and x /∈ intΩf (xn)
for any n, so ∣x − xn∣ ≥ distΩf (xn)(x) = dist∂Ωf (xn)(x) for all n. Thus there are

x′
n ∈ S ∩ ∂Ωf (xn) ⊂ S ∖Cf ⊂ S ∖ Ĉf converging to x. If xn /∈ Ĉf , then we can take

x′
n = xn (since of course ∂Ωf (y) = Ωf (y) for y ∈ S ∖ Ĉf ). From Lemma 2 (ii) and

continuity of q̂f we conclude that

sup dist[x′
n]
([x]) → 0. (55)

But the whole segments [x′
n] are contained in Ωf (xn): If xn /∈ Ĉf then because

[x′
n] = [xn] = Ωf (xn). If xn ∈ Ĉf then we have [x′

n] ⊂ ∂Ωf (xn) because x′
n ∈

∂Ωf (xn) and Ωf (xn) satisfies (Bf ) by Proposition 7. Hence distΩf (xn) ≤ dist[x′
n]
,

so sup distΩf (xn)([x]) ≤ sup dist[x′
n]
([x]), and lower semicontinuity of Ωf follows from

(55).
By lower semicontinuity of Ωf there is "n → 0 such that Ωf (x) ⊂ B"n(Ωf (xn)).
Hence dist∂S(Ωf (x)) ⊂ B"n

(

dist∂S(Ωf (xn))
)

. Taking suprema and passing to the
limes inferior yields pf (x) ≤ lim inf pf (xn). □

Lemma 7 Let S ⊂ ℝ
2 be a bounded Lipschitz domain, let f ∈ C0(S;ℝP ) be count-

ably developable and let � > 0 be small. Then Sf
� is open and connected, and

sup dist∂S(S ∖ Sf
� ) ≤ �. (56)

In addition, ∂Sf
� ∩ Ĉf = ∅ and S ∖ (Sf

� ∪ Ĉf ) ⊂
∪NS

i=0 Aii. Moreover, Sf
� satisfies

condition (Bf ).

Remark.

(i) Since Sf
� satisfies condition (Bf ), we can apply Lemma 5 with U = Sf

� to
obtain a set ZSf

�

with the properties stated Lemma 5.

(ii) The implication

x ∈ Sf
� ∖ Ĉf =⇒ ℋ1([x]) > � (57)

is clear from the definition. The converse implication is false in general.

(iii) In view of (57), Proposition 8 implies that

#(ZU ∩ Sf
� ) ≤ 2

for all except finitely many connected components U of Cf .

Proof. We omit the index f . Openness of S� follows from lower semicontinuity of
pf , and pf ≥ dist∂S implies (56). Another immediate consequence of the definition
is that

S� = {x ∈ S : Ωf (x) ⊂ S�} and S ∖ S� = {x ∈ S : Ωf (x) ∩ S� = ∅}. (58)
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To prove connectedness of S�, let x, y ∈ S�. Hence there are x′ ∈ Ωf (x) and

y′ ∈ Ωf (y) such that x′, y′ ∈ S ∖ B�(∂S). But for � small enough the latter set
is connected by Lemma 18 in the appendix. So there is a continuous curve inside
S ∖ B̄�(∂S), so by (56) inside S�, which connects x′ and y′. Since x and x′ lie in the
connected set Ω(x) ⊂ S� and y and y′ in the connected set Ω(y) ⊂ S�, we conclude
that S� is connected.
To prove ∂S� ∩ S ⊂ S ∖ Ĉf , suppose there were x ∈ Ĉf ∩ ∂S�. Then for all " > 0
we would have B"(x) ∩ S� ∕= ∅, but for " small enough we have B"(x) ⊂ Ωf (x), so
Ωf (x) ∩ S� ∕= ∅. Hence x ∈ S� by (58), contradicting openness.

Next, let x ∈ ∂S� ∩ S ⊂ S ∖ Ĉf . We claim that then [x] ⊂ ∂S�. Since S� is open,
x /∈ S�, so by (58) we have [x] ∩ S� = ∅. Hence it suffices to show [x] ⊂ S̄�. But
since x ∈ ∂S� there exist xn ∈ S� converging to x. Hence by lower semicontinuity
of Ωf (see Lemma 6) we have [x] = Ωf (x) ⊂ B"n(Ωf (xn)) for some "n → 0. This
implies the claim because Ωf (xn) ⊂ S� by (58).

Finally notice that S ∖ (S� ∪ Ĉf ) ⊂
∪NS

i=0 Aii is an immediate consequence of (56)
and of Lemma 2 (vi). □

Now we are ready to prove the main result of this section; it is a precise version
of Theorem 1 stated in the Introduction.

Theorem 3 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP ) be

countably developable. Then there is �0 > 0 such that for all � ∈ (0, �0) the following
is true:
The set S ∖ S

f

� consists of countably many connected components W1,W2, ... which
satisfy

W̄i ∩ W̄j ∩ S = ∅ whenever i ∕= j,

and for all i there is xi ∈ S ∖ Ĉf such that

S̄f
� ∩ W̄i ∩ S = [xi].

The mapping f� : S → ℝ
P defined by

f�(x) =

{

f(x) if x ∈ S ∩ S̄f
�

f(xi) if x ∈ S ∩ W̄i for some i.
(59)

is well-defined, uniformly bounded and continuous on S, and it is finitely devel-
opable.

Proof. We omit the index f and we choose � > 0 small enough to satisfy the
hypothesis of Lemma 7. Set f� := f on S ∩ S̄�. As in Lemma 5, for x ∈ ZS�

denote by S2
x the connected component of S ∖ [x] that does not intersect S�. For

each x ∈ ZS�
we set f� constantly equal to f(x) on S2

x. By (27) (which holds for S�

instead of U due to Lemma 7) this determines f� on all of S. Moreover, f� is well
defined because S2

x ∩ S2
y = ∅ if x, y ∈ ZS�

with x ∕= y, see Lemma 5 (v). Clearly,
f� is continuous, since so is f . By construction we have

∪

x∈ZS�
S2
x ⊂ Cf� . Thus by

(27) we conclude
S ∖ S̄� ⊂ Cf� . (60)

In particular, f� is countably developable, since so is f , and Cf ⊂ Cf� . It remains
to show that f� is finitely developable.

Claim #1. Let U ′ be a connected component of Cf� . If #ZU ′ > 1 (with the
notation of Proposition 7 applied to f�) then inf{ℋ1([x]) : x ∈ ZU ′} ≥ �.

To prove this, assume that there is x ∈ ZU ′ ⊂ S ∖Cf� ⊂ S ∖Cf with ℋ1([x]) < �.
Then [x] ∈ S ∖ S� by the definition of S�. On the other hand, by (60) and since
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x ∈ S ∩ ∂U ′ ⊂ S ∖ Cf� , we have x ∈ S ∩ S̄�. Thus x ∈ S ∩ ∂S� and so [x] ⊂ ∂S�

because S� satisfies condition (Bf ) by Lemma 7.
As seen above, S2

x ⊂ Cf� (to use this notation we assume without loss of generality
that x agrees with the unique element in [x]∩ZS�

). So S2
x is contained in a connected

component U1 of Cf� . In particular x ∈ Ū1 because [x] ⊂ S̄2
x (e.g. by Lemma 16

(i)). Thus by the last part of Proposition 7, applied with U2 = U ′, we have U ′ = U1

since x ∈ S ∩ Ū ′ ∩ Ū1. Since S2
x ⊂ U1, we have S2

x ∩U1 ∕= ∅. But ∂S2
x ⊂ ∂S ∪ [x] by

Lemma 16 (i), and U ′ does not intersect this set. Thus by connectedness U1 ⊂ S2
x.

We conclude that U ′ = U1 = S2
x, i.e. U ′ agrees with a connected component of

S ∖ [x]. So S ∩ ∂U ′ = [x], whence #ZU ′ = 1. This proves the claim.
Now let U ′ be a connected component of Ĉf� . Then by Claim #1 we have

inf
x∈ZU′

ℋ1([x]) ≥ �. (61)

Since
∑

x∈ZU′
ℋ1([x]) < ∞ by Proposition 7 and Lemma 5, this implies #ZU ′ < ∞.

Moreover, by Proposition 8 there exist only finitely many components U ′ of Ĉf�

satisfying (61). Thus f� is finitely developable.
In order to recover the notation used in the statement of the theorem, denote the
elements of ZS�

by x1, x2, ... and define Wi = S2
xi
.

Finally, we show that f� as constructed above belong to L∞. In fact, formula (59)
implies that

f�(S) ⊂ f(S�). (62)

Set D� = {x ∈ S : dist∂S(x) > �}. Then S� consists, by definition, of all connected
components U of Ĉf with U ∩D� ∕= ∅ and all x ∈ S ∖ Ĉf such that [x] ∩D� ∕= ∅.
Since f is constant on such U and on such [x], it follows that

f(S�) = f(D�),

which is a bounded set because f is continuous on D̄�. Hence (62) shows that indeed
f� ∈ L∞(S;ℝP ). □

5 The developable part

In the previous sections we studied the set Cf of local constancy of a countably
developable mapping f . In this section we will study its complement. By definition,
f is developable on this set; thus, the level sets of f are straight line segments which
do not intersect inside S. A very natural way to label these segments is to introduce
an arclength parametrized curve that runs perpendicular to them:

Remark 3 Let x0 ∈ ℝ
2 and R > 0, and let f : BR(x0) → ℝ

P be BR(x0)-
developable. Then there exist unique t0 ≤ −R and t1 ≥ R and a unique curve
Γ ∈ W 2,∞

loc ((t0, t1);BR(x0)) solving the ordinary differential equation

Γ′(t) = −q⊥f (Γ(t)) (63)

with Γ(0) = x0 and Γ(tk) ∈ ∂BR(x0), k = 0, 1.

Proof. By Remark 1, after appropriately choosing antipodal points we have
qf ∈ W 1,∞

loc (BR(x0); S
1). Hence the claim follows from standard existence theory

for ordinary differential equations. The lower bounds on ∣t0∣, ∣t1∣ follow from the
fact that ∣Γ′∣ = 1 on (t0, t1). □

We remark that, when f is the gradient ∇u of an isometric immersion u : S →
ℝ

3, then a curve as in Remark 3 is a line of curvature of u. In that geometric setting
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it is natural to consider the line of curvature chart defined by Γ. The same can be
done in the abstract context considered here: We will associate with a given curve
Γ : [0, T ] → S a set [Γ(0, T )] which can be parametrized by (generalized) line of
curvature parameters determined by Γ. The corresponding change of variables is
given by ΦΓ(s, t) = Γ(t) + sqf (Γ(t)), where the admissible values of s depend on
t ∈ [0, T ]. In this section we study the relation between invertibility properties of
ΦΓ and certain ‘admissibility’ properties of Γ. We will also study the regularity of
the patch [Γ(0, T )] which is parametrized by ΦΓ.
Now follows an overview over this chapter. In Section 5.1 we introduce the directed
distance function �S , which provides a link between analytic and topological prop-
erties of f . Moreover, we make precise the notions mentioned above, and we isolate
certain necessary properties which a curve Γ must satisfy in order to serve as a
(generalized) line of curvature. In Section 5.2 we study the analytic properties of
the change of variables ΦΓ, and we establish some links between its invertibility
properties and some properties of Γ. In Section 5.4 we prove the regularity proper-
ties of the directed distance function �S mentioned in the introduction. In Section
5.3 we address this question: Under which circumstances can f be extended, as a
countably developable mapping, to a larger domain? The results will not be used
in this paper, but they are used in [10] in order to answer the analogous question in
the context of isometric immersions. In Section 5.6 we obtain an important global
regularity result about the directed distance function along suitable curves, proving
Corollary 1. Finally, in Section 5.7 we introduce the notion of f -integral curves,
which are essentially those curves obtained in Remark 16, and we prove some reg-
ularity properties about the relative boundary S ∩ ∂[Γ(0, T )] if Γ is such a curve.
These are important in the proof of the decomposition theorem (Theorem 4) in the
next chapter.

5.1 Admissibility, local admissibility and the directed dis-
tance

From now on, T > 0 and Γ ∈ W 2,∞((0, T );ℝ2) denotes a curve with ∣Γ′(t)∣ = 1 for
all t ∈ [0, T ] and curvature � ∈ L∞(0, T ). We define N := (Γ′)⊥; thus

� = Γ′′ ⋅N.

We define the Frénet frame R := (Γ′, N)T . The Frénet equations read

R′ =

(

0 �
−� 0

)

R. (64)

We now introduce a mapping which will eventually define a natural chart associated
with Γ. In the case of isometric immersions, it will turn out to be a local line of
curvature parametrization. Define the mapping

ΦΓ : ℝ× [0, T ] → ℝ
2

by
ΦΓ(s, t) := Γ(t) + sN(t).

Much of the following discussion will focus on the relation between the injectivity
of ΦΓ (on an appropriate domain) and properties of the curve Γ. For a given curve
Γ, the actual domain on which ΦΓ will be studied will be of the form

Ms± :=
∪

t∈(0,T )

(s−(t), s+(t))× {t} (65)
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for given s± : [0, T ] → ℝ, with s−(t) < 0 < s+(t) for all t ∈ [0, T ].
We will be mainly concerned with curves Γ taking values inside a given domain S;

in this case, there is a natural choice of s± by which they will be determined by Γ and
S. However, it will sometimes be useful to view the curve Γ as being independent
of any given domain S. This is certainly more natural from the viewpoint of the
mapping ΦΓ. We therefore start by introducing, somewhat abstractly, the following
notions:

Definition 4 Let ±s± : [0, T ] → ℝ be Borel functions which are bounded from
above and from below by positive constants. We define (abusing notation)

[Γ(t)] := {Γ(t) + sN(t) : s ∈ (s−(t), s+(t))}. (66)

For J ⊂ [0, T ] we introduce the notation

[Γ(J)] =
∪

t∈J

[Γ(t)].

We also set
�±
Γ := Γ + s±N.

(i) Γ is called locally s±-admissible if 1−s±(t)�(t) ≥ 0 for almost every t ∈ (0, T ).

(ii) Γ is called s±-admissible if [Γ(t1)] ∩ [Γ(t2)] = ∅ for all t1, t2 ∈ [0, T ] with
t1 ∕= t2.

(iii) Γ is called uniformly locally s±-admissible if there is c > 0 such that 1 −
s±(t)�(t) ≥ c for almost every t ∈ (0, T ).

(iv) Γ is called uniformly s±-admissible if it is s±-admissible and uniformly locally
s±-admissible.

Let S ⊂ ℝ
2 be a domain. We recall that the directed distance function

�S : S × (ℝ2 ∖ {0} → (0,∞)

is defined by

�S(x, �) = inf{� > 0 : x+ �� /∈ S} for all (x, �) ∈ S × (ℝ2 ∖ {0}). (67)

In what follows, we will often omit the index S. Now we introduce the announced
natural choice for s± for curves taking values in S: If Γ ∈ W 2,∞([0, T ];S) then we
define

s±Γ := ±�(Γ,±N)

and
�±
Γ = Γ + s±ΓN,

and we define [Γ(t)] as in (66) with s±Γ instead of s±. Notice that [Γ(t)] = [Γ(t)]SN(t)

in our earlier notation. The curve Γ is said to be S-admissible (locally S-admissible,
uniformly locally S-admissible, uniformly S-admissible) if it is s±Γ -admissible (lo-
cally s±Γ -admissible, uniformly locally s±Γ -admissible, uniformly s±Γ -admissible). Again,
we will often omit the prefix S.
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5.2 Properties of the change of variables ΦΓ: Relation be-
tween (local) s±-admissibility of Γ and (local) injectivity
of ΦΓ

The main result of this section is Proposition 12. It relates the above admissibility
notions of Γ to (local) invertibility of ΦΓ.
Given Γ ∈ W 2,∞((0, T );ℝ2), we define the auxiliary function

�Γ : (0, T )× (0, T ) → ℝ ∪ {∞}

by setting

�Γ(t0, t1) =

⎧



⎨



⎩

1
�(t0)

if t0 = t1 and �(t0) ∕= 0

�̃t0,t1 if N(t0) is not parallel to N(t1).

∞ otherwise.

(68)

If N(t0) is not parallel to N(t1) then �̃t0,t1 denotes the unique solution of the

inclusion Γ(t0) + �̃t0,t1N(t0) ∈ [Γ(t1)]
ℝ

2

N(t1)
. In what follows we will often omit the

subindex Γ in the symbols just introduced.
It is easy to check that a curve Γ is s±-admissible if and only if for all t0, t1 ∈

[0, T ] with t0 ∕= t1 we have

�Γ(t0, t1) /∈ (s−(t0), s
+(t0)) or �Γ(t1, t0) /∈ (s−(t1), s

+(t1)). (69)

Equivalently,

1

�Γ(t0, t1)
∈

[

1

s−(t0)
,

1

s+(t0)

]

or
1

�Γ(t1, t0)
∈

[

1

s−(t1)
,

1

s+(t1)

]

. (70)

Lemma 8 Let Γ ∈ W 2,∞((0, T );ℝ2) and let t, t′ ∈ (0, T ) be such that N(t) is not
parallel to N(t′). Then N(t′) ⋅ Γ′(t) ∕= 0 and

�Γ(t
′, t) =

(Γ(t)− Γ(t′)) ⋅ Γ′(t)

N(t′) ⋅ Γ′(t)
. (71)

Moreover, there is a constant C1 depending only on ∥�∥∞ such that

∣

∣

∣

1

�Γ(t′, t)
−−

∫ t

t′
� ds

∣

∣

∣
≤ C1∣t− t′∣. (72)

In particular, if t′ is a Lebesgue point of �, then 1
�Γ(t′,⋅) and 1

�Γ(⋅,t′) are continuous

with 1
�Γ(t′,t′)

= �(t′).

Proof. Clearly, N(t) and N(t′) are not parallel if and only if N(t′) ⋅ Γ′(t) ∕= 0.
By definition we have Γ(t′) + �Γ(t

′, t)N(t′) = Γ(t) + �Γ(t, t
′)N(t), from which (71)

follows upon scalar multiplication with Γ′(t). From (71) and using Γ′′ = �N one
can readily check (72):

∣

∣

∣

1

�Γ(t′, t)
−−

∫ t

t′
�
∣

∣

∣
=
∣

∣

∣

N(t′) ⋅ −
∫ t

t′
�N

Γ′(t) ⋅ −
∫ t

t′
Γ′

−−

∫ t

t′
�
∣

∣

∣

≤ ∥�∥∞
(∣

∣

∣

1

Γ′(t) ⋅ −
∫ t

t′
Γ′

− 1
∣

∣

∣
+−

∫ t

t′
∣1−N(t′) ⋅N ∣

)

.

The last line is clearly bounded by C∣t − t′∣ for some C depending only on ∥�∥∞.
□
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Lemma 9 Let ±s± : [0, T ] → ℝ be bounded, lower semicontinuous and bounded
from below by a positive constant, and let Γ ∈ W 2,∞((0, T );ℝ2). If there is � ≥ 0
such that

�(t) ∈

[

1

s−(t)
+ �,

1

s+(t)
− �

]

for almost every t ∈ (0, T ), (73)

then the following are true:

(i) For all � > 0 and for all t′ ∈ [0, T ] there is �1 > 0 such that

1

�Γ(t′, t)
∈

[

1

s−(t′)
+ � − �,

1

s+(t′)
− � + �

]

(74)

for all t ∈ [0, T ] with ∣t− t′∣ ∈ (0, �1]. If s± ∈ C0([0, T ]) then �1 can be chosen
independently of t′.

(ii) If s± ∈ C0([0, T ]) and Γ is uniformly locally s±-admissible (i.e. � > 0 in (73))
then ΦΓ is locally injective on M̄s± . More precisely, there are �1, " > 0 such
that, whenever t1, t2 ∈ [0, T ] with ∣t1− t2∣ ≤ �1 and si ∈ (s−(ti)−", s+(ti)+")
(i = 1, 2) then

ΦΓ(s1, t1) = ΦΓ(s2, t2) =⇒ (s1, t1) = (s2, t2).

In particular, if (si, ti) ∈ Ms± and ΦΓ(s1, t1) = ΦΓ(s2, t2), then either (s1, t1) =
(s2, t2) or ∣t1 − t2∣ > �1.

Proof. We omit the index Γ. Let t′, t ∈ [0, T ]. We have

1

�(t′, t)
−

1

s+(t′)
≤
∣

∣

∣

1

�(t′, t)
−−

∫ t

t′
�(r) dr

∣

∣

∣

+−

∫ t

t′
�(r)−

1

s+(r)
dr +−

∫ t

t′

1

s+(r)
−

1

s+(t′)
dr.

Since � ≤ 1
s+ − � the second term does not exceed −�, and by Lemma 8 the first

term does not exceed C1∣t− t′∣ for some C1 depending only on ∥�∥L∞(0,T ). Hence

lim sup
t→t′

( 1

�(t′, t)
−

1

s+(t′)

)

≤ lim sup
t→t′

(

−

∫ t

t′

1

s+(r)
−

1

s+(t′)
dr
)

− � ≤ −�. (75)

The last inequality follows from lower semicontinuity of s+. By (75), for all � > 0
and for all t′ there is �1 > 0 such that

1

�(t′, t)
≤

1

s+(t′)
+ � − � for all t ∈ [t′ − �1, t

′ + �1].

The analogous statement involving s− is proven similarly. If 1/s± are (uniformly)

continuous then the size of −
∫ t

t′
1

s+(r) −
1

s+(t′) dr depends only on ∣t − t′∣, so �1 can

be chosen independently of t′.
To prove the final statement, notice that by the assumptions on s± and since � is
strictly positive, there are ", � > 0 such that 1

s− + � − � > 1
s−−" and 1

s+ + � − � <
1

s++" . Thus (74) implies that Γ(t′) + sN(t′) is not contained in [Γ(t)]ℝ
2

for any

s ∈ [s−(t′)− ", s+(t′)+ "] and any t with ∣t− t′∣ ≤ �1 (and by the above �1 does not
depend on t′). Hence the claim follows from the definition of Φ. □
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∂S ∂S
∂S

[Γ( )]t

Γ
Γ

Figure 4: Left: The functions s∗Γ, �
∗
Γ are in general not continuous. Middle: The set

D∗
Γ can strictly contain the jump set As±Γ

of s∗Γ (the circle is part of ∂S). Right: The

shaded disk belongs to ℝ
2 ∖S. The curve Γ is locally admissible but not admissible.

Hence continuity of s± cannot be dropped from the hypothesis of Proposition 12
(ii).

Proposition 10 Let Γ ∈ W 2,∞((0, T );ℝ2) and let ±s± : [0, T ] → ℝ be bounded,
lower semicontinuous and bounded from below by a positive constant. Then the set
Ms± defined in (65) is open, and ΦΓ(Ms±) = [Γ(0, T )]. The mapping ΦΓ is locally
Lipschitz on ℝ× (0, T ) and

det∇ΦΓ(s, t) = −(1− s�(t)) for almost every (s, t) ∈ ℝ× (0, T ). (76)

In particular, ΦΓ(Ms±) = ΦΓ(M̄s±). In addition, defining

s+(t) := lim sup
[0,T ]∋t′→t

s+(t′) and s−(t) := lim inf
[0,T ]∋t′→t

s−(t′), (77)

and
As± := {t ∈ [0, T ] : s± is not continuous at t}, (78)

we have

M̄s± =
∪

t∈[0,T ]

[s−(t), s+(t)]× {t} (79)

∂Ms± =
(

∪

t∈[0,T ]

{s−(t), s+(t)} × {t}
)

∪
(

∪

t∈{0,T}
(s−(t), s+(t))× {t}

)

∪

∪
(

∪

t∈A
s+

(s+(t), s+(t)]× {t}
)

∪
(

∪

t∈A
s−

[s−(t), s−(t))× {t}
)

. (80)

Moreover, the following hold:

(i) If Γ is locally s±-admissible then det∇ΦΓ < 0 almost everywhere on Ms± and
ΦΓ∣M

s±
is an open mapping. In particular, ΦΓ(Ms±) is open and

∂ΦΓ(Ms±) ⊂ ΦΓ(∂Ms±).

(ii) If Γ is s±-admissible then Γ is locally s±-admissible. Moreover, [Γ(0, T )] is
open, ΦΓ : Ms± → [Γ(0, T )] is a homeomorphism and Φ−1

Γ is locally Lipschitz
on [Γ(0, T )]. In fact, ΦΓ is injective on the set

Ms± ∪
(

(s−(0), s+(0))× {0} ∪ (s−(T ), s+(T ))× {T}
)

.
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(iii) If Γ is uniformly s±-admissible then, moreover, Φ−1
Γ ∈ W 1,∞([Γ(0, T )];ℝ2).

(iv) If Γ is s±-admissible and Γ′(t) ⋅ Γ′(t′) > 0 for all t, t′ ∈ [0, T ], then ΦΓ is
injective on

M̂s± :=
∪

t∈[0,T ]

(s−(t), s+(t))× {t}. (81)

Moreover, (ΦΓ)
−1 is continuous on ΦΓ(M̂s±).

Remarks.

(i) Some extra hypothesis like the one about Γ′ is needed for the conclusion of
(iv).

(ii) The inclusion ∂Φ(Ms±) ⊂ Φ(∂Ms±) is strict in general.

Proof. We omit the indices Γ and s±. Notice that M is open because ∗s∗ are
lower semicontinuous. The expression (79) for M̄ is clear from the definition. By
openness we have ∂M = M̄ ∖ M , and since s+(t) > s−(t) ≥ lim sup s−(t′) and
s−(t) < s+(t) ≤ lim inf s+(t′), equation (80) is immediate as well.
The equality Φ(M) = [Γ(0, T )] is just the definition. The mapping Φ is clearly
locally Lipschitz on ℝ × (0, T ), and Φ is continuous up to the boundary of M .
From this one immediately deduces that Φ(M) = Φ(M̄). The expression (76) is
immediate from (64).
To prove (i) let us assume that Γ is locally s±-admissible. Since � ∈ [ 1

s− , 1
s+ ],

equation (76) implies that det∇Φ < 0 almost everywhere on M . More precisely,
if B is a ball whose closure is contained in M then by local admissibility there is
� > 0 such that det∇Φ(s, t) = −(1 − s�(t)) < −� for almost every (s, t) ∈ B.
(This follows from boundedness of ∣s±∣ and since s ∈ (s−(t) + ", s+(t) − ") for all
(s, t) ∈ B, where " := 1

2 dist(B,ℝ2 ∖M).) Therefore, Φ is of bounded distortion on
B, since it is Lipschitz on B. Thus by [21] Theorem 6.4 we conclude that Φ∣B is
an open mapping (it is clearly not constant). Since this is true for all such balls B,
we conclude that Φ∣M is an open mapping. In particular, Φ(M) is open. Thus by
the above ∂Φ(M) = Φ(M) ∖ Φ(M) = Φ(M̄) ∖ Φ(M) ⊂ Φ(M̄ ∖M) = Φ(∂M). This
concludes the proof of (i).

To prove (ii), assume that Γ is s±-admissible. We claim that then Γ is also
locally s±-admissible. In fact, let t1 ∈ (0, T ) be a Lebesgue point of �. By Lemma
8 the functions 1

�(t1,⋅) and 1
�(⋅,t1) are continuous at t1 and both equal �(t1) at this

point. Letting t0 → t1 in (70) and using the upper semicontinuity of the functions
± 1

s± , the claim follows.
By the definition of s±-admissibility, of M and of [Γ(0, T )], we have that Φ is

injective on M ∪
(

(s−(0), s+(0)) × {0} ∪ (s−(T ), s+(T )) × {t}
)

. So Φ(M) is open

by the invariance of domain theorem, see e.g. Theorem 3.30 in [6]. (Of course
this is also a consequence of (i).) And Φ−1 is well defined on [Γ(0, T )]. Now Φ is
Lipschitz with det∇Φ(s, t) < 0 almost everywhere on M by local s±-admissibility.
So Theorem 6.1 in [6] (of course it does not matter whether the Jacobian is positive
or negative)implies that Φ−1 ∈ W 1,1

loc ([Γ(0, T )];ℝ
2) and that

∇(Φ−1)(x) =
(

∇Φ(Φ−1(x))
)−1

for almost every x ∈ [Γ(0, T )]. (82)

Since Φ is continuous up to the boundary of M , its inverse Φ−1 is easily seen to be
continuous on [Γ(0, T )]. So Φ−1 maps a small enough ball around x ∈ [Γ(0, T )]
into a small neighbourhood U of Φ−1(x) with Ū ⊂ M . And (∇Φ)−1 is uni-
formly bounded on U by (76); compare the proof of part (i). Hence (82) im-
plies that Φ−1 ∈ W 1,∞

loc ([Γ(0, T )];ℝ2). If Γ is uniformly s±-admissible then Φ−1 ∈
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W 1,∞([Γ(0, T )];ℝ2) by (76, 82), but it need not be Lipschitz if [Γ(0, T )] is not
regular enough.

To prove (iv), using the hypothesis on Γ′ one easily proves that

(Γ(t)− Γ(t′)) ⋅ Γ′(t) ∕= 0 for all t, t′ ∈ [0, T ] with t ∕= t′. (83)

Now let (sm, tm) ∈ M̂ , m = 1, 2, be such that Φ(s1, t1) = Φ(s2, t2). It suffices to
prove t1 = t2 because then clearly also s1 = s2. Let us assume for contradiction that
t1 ∕= t2. Since [Γ(t1)]

ℝ
2

N(t1)
and [Γ(t2)]

ℝ
2

N(t2)
intersect (in the point Φ(s1, t1)), if N(t1)

were parallel to N(t2) then Γ(t1)− Γ(t2) would have to be parallel to N(t1). This
would contradict (83). Thus N(t1) is not parallel to N(t2) and we can apply Lemma

8. Since [Γ(t1)]
ℝ

2

N(t1)
intersects [Γ(t2)]

ℝ
2

N(t2)
in Γ(t1)+ s1N(t1) = Γ(t2)+ s2N(t2), we

conclude that s1 = �(t1, t2) and s2 = �(t2, t1). From (71) and (83) we deduce that
s1 ∕= 0 ∕= s2.
By definition of s+ and s− there is � > 0 such that for m = 1, 2 and for all " > 0
small enough there exist t"m ∈ [0, T ] with ∣t"m − tm∣ < " and sm ∈ (s−(t"m) +
3�, s+(t"m)− 3�). (In fact, if sm > 0 then take t"m such that s+(t"m) → s+(tm) and
if sm < 0 then take t"m such that s−(t"m) → s−(tm) as " ↓ 0.)
On the other hand, for small ", by continuity of � at (t1, t2) and at (t2, t1) (see
(71)) and setting m′ = 1 if m = 2 and viceversa we have ∣�(t"m, t"m′) − sm∣ < �

because �(tm, tm′) = sm. Thus �(t"m, t"m′) ∈
(

s−(t"m), s+(t"m)
)

for " small enough.

This holds for m = 1, 2. But this contradicts admissibility of Γ, see e.g. (69). We
conclude that t1 = t2, and so Φ is injective on M̂ . Since Φ is also continuous on
this set (because M̂ ⊂ M̄), this readily implies that Φ−1 is continuous on Φ(M̂).

□

5.3 Extension of countably developable mappings

The next proposition shows that the chart ΦΓ associated with a uniformly admis-
sibile curve in fact extends as a homeomorphism (a diffeomorphism if Γ is smooth)
to a domain containing the closure of Ms± . We will not need this in the present pa-
per, but it will be used in [10] to construct isometric extensions of a given isometric
immersion. We begin by proving the following lemma:

Lemma 10 Let ±s± : [0, T ] → ℝ be bounded, lower semicontinuous and bounded
from below by a positive constant, and let Γ ∈ W 2,∞((0, T );ℝ2) be s±-admissible.
Then the following are equivalent:

(i) ΦΓ : Ms± → [Γ(0, T )] is a homeomorphism.

(ii) The maps �±
Γ : [0, T ] → ℝ

2 are injective, and �+
Γ ([0, T ]) ∩ �−

Γ ([0, T ]) = ∅.

Proof. Recall from Proposition 10 that

[Γ(0, T )] = ΦΓ(Ms±) = ΦΓ(Ms±). (84)

Since �±
Γ (t) = ΦΓ(s

±(t), t) and since (s±(t), t) ∈ Ms± , the implication (i) =⇒ (ii)
is immediate.
Now assume that (ii) is satisfied. Since Γ is s±-admissible, ΦΓ is injective on Ms± by
Proposition 10. Since �±

Γ are injective on [0, T ] and the sets �±
Γ ([0, T ]) are disjoint,

we have
[Γ(t)] ∩ [Γ(t′)] = ∅ for all t, t′ ∈ [0, T ] with t ∕= t′.

Thus ΦΓ is injective on Ms± . Since it is also continuous on this set, one readily
deduces that Φ−1

Γ exists and is continuous on (84). □
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Proposition 11 Let ±s± ∈ C0([0, T ]) be bounded from below by a positive constant
and let Γ ∈ W 2,∞((0, T );ℝ2) be uniformly s±-admissible. Assume, moreover, that
the maps �±

Γ : [0, T ] → ℝ
2 are injective and that �−

Γ ([0, T ]) ∩ �+
Γ ([0, T ]) = ∅. For

� > 0 define s̃±� : ℝ → ℝ by

±s̃±� (t) :=

⎧



⎨



⎩

±s±(t) + � if t ∈ [0, T ],

±s±(0) + � if t < 0,

±s±(T ) + � if t > T,

(85)

and set
M̃� :=

∪

t∈(−�,T+�)

(

s̃−� (t), s̃
+
� (t)

)

× {t}. (86)

Denote by Γ̃ the curve obtained by extending Γ with curvature � = 0 to all of ℝ.
Then there is � > 0 such that the following hold:

(i) ΦΓ̃(M̃�) is open and contains ΦΓ(Ms±).

(ii) Γ̃ is uniformly s̃±� -admissible on [−�, T + �].

(iii) ΦΓ̃ is (globally) Bilipschitz on the domain M̃�.

(iv) If, in addition, Γ ∈ C∞((0, T );ℝ2), then ΦΓ̃ is a C∞-diffeomorphism on M̃� ∖
(ℝ× {0, T}).

Remark. The continuity hypothesis on s± cannot be dropped; otherwise it
may happen that Ms± is not contained in M̃�.
Proof. We omit the indices Γ and Γ̃. Lemma 10 implies that Φ−1 is uniformly
continuous on Φ(M), because it is continuous on the compact set Φ(M). Hence the
set

N�(y) := {(s, t) ∈ M̃� : Φ(s, t) = y}

satisfies
diamN�(y) ≤ 4� + !(2C1�) for all y ∈ Φ(M̃�) (87)

for all � > 0. Here ! is a modulus of continuity for Φ−1 on Φ(M) and C1 is the
Lipschitz constant of Φ on M̃1. To prove (87), let (si, ti) ∈ M̃�, i = 1, 2, with
Φ(s1, t1) = Φ(s2, t2) =: y. By definition of M̃� there are (s′i, t

′
i) ∈ B2�(si, ti) ∩M .

So ∣Φ(s′i, t
′
i) − Φ(si, ti)∣ ≤ 2C1�. Thus (87) follows from ∣(s1, t1) − (s2, t2)∣ ≤ 4� +

∣(s′1, t
′
1)− (s′2, t

′
2)∣ ≤ 4� + !

(

∣Φ(s′1, t
′
1)− Φ(s′2, t

′
2)∣
)

.

Since Γ̃ is uniformly s±-admissible on [0, T ], by construction it is still uniformly
locally s̃±� -admissible on ℝ for some � ∈ (0, 1). Hence we can apply Lemma 9 to

Γ̃∣[−�,T+�] to obtain �1 > 0 (independent of �) such that

Φ(s1, t1) = Φ(s2, t2) =⇒ ∣(s1, t1)− (s2, t2)∣ > �1

whenever (si, ti) ∈ M̃� with (s1, t1) ∕= (s2, t2). Thus, by choosing � small enough,
from (87) we conclude that #N�(y) = 1 for all y ∈ M̃�, i.e. Φ is injective on M̃�.
Hence Γ̃ is s̃±� -admissible, hence uniformly s̃±� -admissible, on [−�, T + �]. So by

Proposition 10 the set Φ(M̃�) is open and Φ is Bilipschitz on M̃�. Moreover, we
have

Φ(M) = Φ(M̄) ⊂ Φ(M̃�)

because clearly M ⊂ M̃�; observe that this last inclusion would be false in general
if s± were not continuous.
To prove the last part of the proposition, notice that

Φ ∈ C∞(ℝ2 ∖ (ℝ× {0, T}))
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because Γ̃ ∈ C∞(ℝ ∖ {0, T}) by the extra hypothesis. Moreover, Φ is injective with
det∇Φ < 0 on M̃�. □

The injectivity hypothesis on �±
Γ made in Proposition 11 can be weakened,

because it almost follows from uniform admissibility:

Remark 4 Let ±s± : [0, T ] → (0,∞) be continuous, and let Γ ∈ W 2,∞((0, T );ℝ2)
be uniformly s±-admissible. Then we have: If �±

Γ (0, T ) are singletons or Jordan
arcs, then �± are injective on [0, T ].

Proof. We omit the index Γ. Notice that �± are continuous because so are s±.
We claim that �± are injective on [0, T ]. In fact, Φ is locally injective on M̄s± by
Lemma 9. So

�± = Φ(s±, ⋅)

are locally injective on [0, T ]. Combining this with the fact hat �±(0, T ) are Jordan
arcs implies that �± are injective on (0, T ). To see this let � : (0, 1) → �+(0, T ) be
a homeomorphism. Then �−1 ∘ � is locally injective, i.e. locally strictly monotone,
i.e. strictly monotone.
So �± are injective on [0, T ] since �±(T ) /∈ �±([0, T )) by the definition of a Jordan
arc. □

For curves lying in a domain S we note the following criteria under which the
hypotheses of Remark 4 are satisfied.

Remark 5 Let S ⊂ ℝ
2 be a continuous domain and let ∗ ∈ {−,+}. If s∗Γ ∈

C0([0, T ]) then there is k ∈ {0, ..., NS} such that �∗
Γ([0, T ]) ⊂ ∂kS. In this case, the

following are equivalent

∙ �∗
Γ([0, T ]) is not a closed curve.

∙ �∗
Γ([0, T ]) ∕= ∂kS.

∙ �∗
Γ((0, T )) is a singleton or a Jordan arc.

Proof. If s∗Γ is continuous then so is �∗
Γ, so the first part of the claim follows

because different components of ∂S have positive distance from each other. Clearly,
�∗
Γ([0, T ]) is strictly contained in ∂kS if and only if it is not a closed curve. And if

this is the case, then it is a connected subset of a subarc of the Jordan curve ∂kS.
Hence it is a singleton or a Jordan arc. The converse is clear. □

5.4 Regularity of the directed distance

5.4.1 Lower semicontinuity.

A simple but important property of �S is its lower semicontinuity. It is an immediate
consequence of Lemma 2.

Lemma 11 Let S ⊂ ℝ
2 be a bounded domain. Then �S is lower semicontinuous

on S × (ℝ2 ∖ {0}).

Proof. Let (xn, �n) → (x, �) in S × (ℝ2 ∖ {0}). We may assume without loss of
generality that �, �n ∈ S

1. Lemma 2(ii) implies that there exist "n ↓ 0 such that

[x]� ⊂ B"n([xn]�n
) for all n ∈ ℕ.

Hence there exist tn ∈ [0, 1] such that the point x + �S(x, �)� is contained in the
"n-ball centered at

xn +
[

tn�(xn, �n)− (1− tn)�(xn,−�n)
]

�n ∈ [xn]�n
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Since "n ↓ 0, since xn → x and since �n → �, this readily implies that

∣�(x, �)−
[

tn�(xn, �n)− (1− tn)�(xn,−�n)
]

∣ → 0.

The term in square brackets does not exceed �(xn, �n) for any n ∈ ℕ; hence
�(x, �) ≤ lim infn→∞ �(xn, �n). □

5.4.2 Transversality.

Let S ⊂ ℝ
2 be a bounded Lipschitz domain, x ∈ S and � ∈ ℝ

2 ∖ {0}. We say that
[x]S� intersects ∂S tangentially in x∗ ∈ [x]� ∩∂S if there exists � : ℝ → ℝ Lipschitz,

v ∈ S
1 and " > 0 such that x∗ ∈ graphv �∣(−",") ⊂ ∂S and � ⋅ v⊥ ∈ ∂�(x∗ ⋅ v) � ⋅ v.

Here,
∂�(�) := convex hull of { lim

n→∞
�′(�n) : �n → � and �n /∈ Q�}

denotes Clarke’s generalized gradient, see [3]. The set Q� is an arbitrary ℒ1-null
set that contains the non-Lebesgue points of the distributional derivative of �, so
by Rademacher’s Theorem the classical derivative �′(�n) exists for all �n /∈ Q�. We
say that [x]� intersects ∂S transversally at its endpoint x∗ if it does not intersect
∂S tangentially at x∗.

Definition 5 A pair (x, �) ∈ S×(ℝ2∖{0}) is said to be transversal if [x]� intersects
∂S transversally in x+ �(x, �)�.

Observe that if S is convex then every pair (x, �) ∈ S× (ℝ2 ∖{0}) is transversal.
The following lemma shows why transversality is an important notion.

Lemma 12 Let S ⊂ ℝ
2 be a bounded Lipschitz domain. Then the set

{(x, �) ∈ S × (ℝ2 ∖ {0}) : (x, �) is transversal }

is open, and �S is locally Lipschitz on this set.

Proof. Observe that there exists a Lipschitz function � from a neighbourhood of
zero in ℝ into ℝ such that x ∈ graph� ⊂ ∂S. It follows from transversality and
Lemma 13 that there exists " > 0 and a Lipschitz function

�̃ : B"(x, �) → (0,∞)

such that
y+ := y + �̃(y, �)� ∈ graph� ⊂ ∂S

for all (y, �) ∈ B"(x, �). In particular, y+ lies in the same connected component
∂kS of ∂S as x+ := x + �S(x, �)�. Observe that Lemma 13 also implies that [y]�
intersects ∂S transversally in y+.
The closed segment [x, x+] is contained in [x]�∖{x

−}, where x− is the other endpoint

of [x]�. Thus [x, x
+]∩∂S = {x+} ⊂ ∂kS. Hence by compactness [x, x+] has positive

distance from ∂jS for j ∕= k. Thus also [y, y+] has positive distance from ∂jS for
j ∕= k, provided " is small enough. Hence [y, y+) ⊂ [y]� by maximality of [y]�
and because [y, y+) is connected, because it does not intersect ∂S and because it
contains y. Thus y+ is an endpoint of [y]�. We conclude that

�̃(y, �) = �S(y, �) for all (y, �) ∈ B"(x, �).

□

In the proof of Lemma 12 we used the following result:
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Lemma 13 Let � : ℝ → ℝ be Lipschitz (resp. Ck), let x, � ∈ ℝ
2, �̃0 ∈ ℝ be such

that x+ �̃0� ∈ graph�. Denoting the coordinates by subindices, the following holds:
If

�2 /∈ ∂�
(

x1 + �̃0�1

)

�1

then there is " > 0 and a unique mapping �̃ : B"(x, �) → ℝ such that

y + �̃(y, �)� ∈ graph� for all (y, �) ∈ B"(x, �),

and
�2 /∈ ∂�(y1 + �̃(y, �)�1)�1.

Moreover, �̃ is Lipschitz (resp. Ck) on B"(x, �).

Proof. Set
F (y, �, �) = x2 + ��2 − �(x1 + ��1)

and
G(y, �, �) =

(

y, �, F (y, �, �)
)

.

Then G is Lipschitz because so is �, and

det∇G(y, �, �) = ∂�F (y, �, �)

wherever it exists. Thus if
�2 /∈ �1∂�(y1 + ��1)

then the generalized gradient ∂G(y, �, �) only contains matrices with nonzero deter-
minant. By the hypothesis, this condition is satisfied at (x, �, �̃0), so by the Lipschitz
Inverse Function Theorem [3] there exists a neighbourhood U of (x, �, �̃0) on which
G has a Lipschitz inverse Ĝ. The claim follows by setting �̃(y, �) = Ĝ(y, �, 0). The
corresponding result with Ck follows from the classical implicit function theorem.

□

5.5 Admissible, locally admissible and transversal curves on
a domain

In this section we consider curves Γ : [0, T ] → S, which lie inside a bounded Lipschitz
domain S. Such a curve Γ is said to be (S-)transversal on J ⊂ [0, T ] if (Γ(t),±N(t))
are transversal for every t ∈ J . If Γ is transversal on [0, T ] then s±Γ are Lipschitz on
(0, T ) by Lemma 12.

Proposition 12 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let Γ ∈ W 2,∞([0, T ];S).

Then the functions ±s±Γ : [0, T ] → ℝ are bounded, lower semicontinuous and
bounded from below by a positive constant. Moreover, the following hold:

(i) If Γ is S-admissible then Γ is locally S-admissible.

(ii) If Γ is S-admissible and transversal on [0, T ] (so s±Γ ∈ C0([0, T ])) then there
are i, j ∈ {0, ..., NS} such that Γ([0, T ]) ⊂ Aij. Moreover,

[Γ(0, T )] = ΦΓ(Ms±Γ
) = C

(

S ∖ ([Γ(0)] ∪ [Γ(T )]); Γ(0, T )
)

. (88)

In particular, S ∩ ∂[Γ(0, T )] = [Γ(0)] ∪ [Γ(T )].

39



Remark. Figure 4 (right) shows that in (ii) one cannot drop the hypothesis
s±Γ ∈ C0.
Proof. Boundedness of ∣s±Γ ∣ follows from boundedness of Γ and S, and boundedness
from below follows from compactness of Γ([0, T ]) and of ∂S. Lower semicontinuity
of ±s±Γ follows from that of �S (cf. Lemma 11) and from continuity of Γ and N .
Part (i) follows from Proposition 10 (ii) by taking s± := s±Γ . By what we have just
shown, these functions indeed satisfy the hypotheses of Proposition 10.

For the proof of (ii) notice that by continuity of s±Γ and by (80) we have

∂Ms±Γ
=

∪

t∈[0,T ]

(

{s−Γ (t), s
+
Γ (t)} × {t}

)

∪
∪

t∈{0,T}

(

(s−Γ (t), s
+
Γ (t))× {t}

)

. (89)

Thus
ΦΓ(∂Ms±Γ

) = [Γ(0)] ∪ �+
Γ ([0, T ]) ∪ [Γ(T )] ∪ �−

Γ ([0, T ]). (90)

The set
S′ := C

(

S ∖ ([Γ(0)] ∪ [Γ(T )]); Γ(0, T )
)

is well-defined because Γ(0, T ) is connected and by S-admissibility of Γ on [0, T ] it
does not intersect [Γ(0)] ∪ [Γ(T )] ∪ ∂S. Now S′ is connected and

S′ ∩ (∂S ∪ [Γ(0)] ∪ [Γ(T )]) = ∅.

But by (local) admissibility Proposition 10 implies that

∂ΦΓ(Ms±Γ
) ⊂ ΦΓ(∂Ms±Γ

).

And by (90) this is contained in [Γ(0)] ∪ [Γ(T )] ∪ ∂S. So S′ ∩ ∂ΦΓ(Ms±Γ
) = ∅.

Since Γ(T2 ) ∈ S′ ∩ ΦΓ(Ms±Γ
), connectedness of S′ implies that S′ ⊂ ΦΓ(Ms±Γ

). But

ΦΓ(Ms±Γ
) ∩ ∂S′ = ∅ because ∂S′ ⊂ [Γ(0)] ∪ [Γ(T )] ∪ ∂S and ΦΓ(Ms±Γ

) ∩ ([Γ(0)] ∪

[Γ(T )]) = ∅ by admissibility. So connectedness of ΦΓ(Ms±Γ
) implies ΦΓ(Ms±Γ

) ⊂ S′.

The inclusion Γ([0, T ]) ⊂ Aij is immediate from continuity of the s±Γ because dif-
ferent components of ∂S have positive distance from each other.

□

The next proposition addresses the question whether there exists a suitable
converse to the implication ‘admissible =⇒ locally admissible’ in Proposition 12.
It will not be needed in the present paper, nor in [10].

Proposition 13 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let Γ ∈ W 2,∞([0, T ];S)

be transversal on [0, T ]. Then (i) and (ii) below are equivalent:

(i) Γ is locally admissible on (0, T ) and

[Γ(0, T )] ∩
(

[Γ(0)] ∪ [Γ(T )]
)

= ∅. (91)

(ii) Γ is admissible on [0, T ].

Lemma 14 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let Γ ∈ W 2,∞([0, T ];S)

be locally admissible and transversal on [0, T ], and assume that (91) is satisfied.
Then [Γ(0, T )] is simply connected.

Proof. It is clear that �±
Γ (t) and [Γ(t)] are contained in the closure of [Γ(0, T )] for

all t ∈ [0, T ]. Since �±
Γ ([0, T ]) ⊂ ∂S, we even have

�±
Γ ([0, T ]) ⊂ ∂[Γ(0, T )].
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Hence (90) and (91) imply:

ΦΓ(∂Ms±Γ
) = �+

Γ ([0, T ]) ∪ �−
Γ ([0, T ]) ∪ [Γ(0)] ∪ [Γ(T )]

⊂ ∂[Γ(0, T )] = ∂ΦΓ(Ms±Γ
);

observe that (90) is satisfied because Γ is transversal. On the other hand, since Γ is
locally s±Γ -admissible, Proposition 10 implies that ΦΓ(Ms±Γ

) is connected and open,

and that ∂ΦΓ(Ms±Γ
) ⊂ ΦΓ(∂Ms±Γ

). We conclude that

∂ΦΓ(Ms±Γ
) = ΦΓ(∂Ms±Γ

).

Hence ∂ΦΓ(Ms±Γ
) is connected because ∂Ms±Γ

is connected and because ΦΓ is contin-

uous on M̄s±Γ
. The connectedness of ∂Ms±Γ

follows e.g. from VI.4.3 in [17] because

Ms±Γ
is a simply connected domain: it is open by Proposition 10, and it is clearly

simply connected. By VI.4.3 in [17] we conclude that [Γ(0, T )] = ΦΓ(Ms±Γ
) is a

simply connected domain. □

Proofof Proposition 13. Assume that Γ is admissible on [0, T ]. Then, in par-
ticular, (91) is satisfied. And Proposition 12 implies that Γ is locally admissible.
Hence (i) follows from (ii).

Now assume that (i) is satisfied. Let

t1 = sup{t ∈ (0, T ] : Γ is admissible on [0, t]}. (92)

Lemma 2.2 in [9] implies that the set on the right-hand side is nonempty. Hence
t1 > 0. By continuity of s±Γ , Γ and N it is easy to see that the supremum in (92) is
attained, i.e.

Γ is admissible on [0, t1]. (93)

Suppose that we had t1 < T . Lemma 2.2 in [9] implies that there is " > 0 such that

Γ is admissible on [t1, t1 + "]. (94)

Lemma 14 implies that [Γ(0, T )] is simply connected. Hence the set

[Γ(0, T )] ∖ [Γ(t1)] (95)

consists of precisely two connected components. By (93) we have

[Γ(0, t1)] ∩ [Γ(t1)] = ∅.

Hence, by connectedness of [Γ(0, t1)], the set [Γ(0, t1)] is contained in one of the
components of (95); the same is true for [Γ(t1, t1 + ")] by (94). Since Γ′(t1) is
perpendicular to [Γ(t1)], we conclude that [Γ(0, t1)] and [Γ(t1, t1 + ")] must lie in
different connected components of (95). In particular,

[Γ(0, t1)] ∩ [Γ(t1, t1 + ")] = ∅.

By (94, 93) this implies that Γ is admissible on [0, t1+"], contradicting the definition
of t1. We conclude that t1 = T . □

One can also prove a result similar to Proposition 13 in the abstract setting
considered earlier (and without the tranversality hypothesis), i.e. the counterpart
of Proposition 10 (ii):
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Proposition 14 Let ∗s∗ : [0, T ] → ℝ be bounded, lower semicontinuous and uni-
formly bounded from below by a positive constant. Let Γ ∈ W 2,∞((0, T );ℝ2) be
uniformly locally s±-admissible and assume that

ΦΓ(∂Ms±) ⊂ ∂ΦΓ(Ms±). (96)

Then
ΦΓ(∂Ms±) = ∂ΦΓ(Ms±),

and Γ is uniformly s±-admissible.

Remarks.

(i) Figure 4 (right) shows that condition (96) cannot be omitted.

(ii) In the proof we will show that the hypothesis (96) is satisfied if ΦΓ(∂Ms±) is
a closed Jordan curve.

Proof. As usual we omit some indices. Since Γ is locally s±-admissible, Φ(M) is
connected and open by Proposition 10, and ∂Φ(M) ⊂ Φ(∂M). Combining this with
the hypothesis gives ∂Φ(M) = Φ(∂M). Hence ∂Φ(M) is connected by continuity of
Φ on M̄ and by connectedness of ∂M (the latter follows from VI.4.3 in [17] because
M is a simply connected domain: it is open by Proposition 10, and it is clearly
simply connected). By VI.4.3 in [17] this implies that Φ(M) is a simply connected
domain.
Since Γ ∈ W 2,∞ there is "1 > 0 such that, for all t, Γ([t − "1, t + "1]) intersects
[Γ(t)] only in the point Γ(t). For all t ∈ (0, T ) we have [Γ(t)] ⊂ Φ(M) by definition.
Moreover, the endpoints of [Γ(t)] are contained in Φ(∂M). So by the hypothesis
they are contained in ∂Φ(M). (This is crucial.) Hence by Theorem V.11.7 in [17] the
set Φ(M)∖ [Γ(t)] consists of exactly two connected components. Since Γ(t) ∈ Φ(M),
there is r > 0 such that Br(Γ(t)) ⊂ Φ(M). So Br(Γ(t)) ∖ [Γ(t)] consists of exactly
two components, namely the half-balls B∗ := {x ∈ Br(x) : ∗(x− Γ(t)) ⋅ Γ′(t) > 0}.
As usual (see e.g. the proof of Lemma 5), the B+ and B− are contained in different
components of Φ(M)∖ [Γ(t)]. We denote by S∗

t the component of Φ(M)∖ [Γ(t)] that
contains B∗. We conclude that

Γ
(

[t− "1, t)
)

⊂ S−
t for all t ∈ ("1, T ], (97)

Γ
(

(t, t+ "1]
)

⊂ S+
t for all t ∈ [0, T − "1). (98)

(We set S+
0 := Φ(M) and S−

T := ∅.) In fact, the sets on the left-hand sides of (97, 98)
are connected by continuity. And ∂S±

t ⊂ ∂Φ(M)∪[Γ(t)], while Γ([t−"1, t+"1]∖{t})
does not intersect [Γ(t)] ∪ ∂Φ(M) by definition of "1 and since Γ(0, T ) ⊂ Φ(M).
By uniform local admissibility there is � > 0 with 1 − s±� ≥ �. Then Lemma 9
implies (e.g. taking � = �

2 ) that for all t ∈ [0, T ) there exists �1(t) > 0 such that

[Γ(s)] ∩ [Γ(t)] = ∅ for all s ∈ [t− �1(t), t+ �1(t)]. (99)

We may assume without loss of generality that supt∈[0,T ] �1(t) < "1. By (98), (99)
and connectedness of [Γ(s)] we conclude that

[

Γ((t− ", t])
]

⊂ S+
t−" and

[

Γ((t, t+ "])
]

⊂ S+
t for all " ∈ (0, �1(t)). (100)

The first inclusion follows from (98) with t − " instead of t. (Notice that "1 does
not depend on t.) Next note that Γ(t + ") ∈ S+

t ∩ ∂S+
t+" by (100), so by openness

S+
t ∩ S+

t+" ∕= ∅. On the other hand, Γ(t) ∈ S−
t+" by (97). Now [Γ(t)] is connected

and by (99) it does not intersect ∂S+
t+" ⊂ [Γ(t + ")] ∪ ∂Φ(M) because Φ(M) is
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open. We conclude that [Γ(t)] does not intersect S+
t+". Thus S+

t+" ∩ ∂S+
t = ∅. By

connectedness we conclude that S+
t+" ⊂ S+

t . By a similar argument one proves that
S+
t ⊂ S+

t−". Summarizing,

S+
t+" ⊂ S+

t ⊂ S+
t−" for all " ∈ (0, �1(t)). (101)

We claim that, for all t′ ∈ [0, T ),

S+
t ⊂ S+

t′ for all t ∈ (t′, T ]. (102)

In fact, let t1 := sup{t′′ ≥ t′ : S+
t ⊂ S+

t′ for all t ∈ [t′, t′′]}. By (101) we have
S+
t1 ⊂ S+

t1−" ⊂ St′ for some " > 0. So the supremum is attained. And if t1 < T then

we would obtain a contradiction, since by (101) we have S+
t1+" ⊂ S+

t1 ⊂ S+
t′ for all

" > 0 small enough. This proves (102).
Now let t, t′ ∈ [0, T ] with t′ < t. Then [Γ(t)] ⊂ S+

t′′ for some t′′ ∈ (t′, t) by the
first inclusion in (100). Thus [Γ(t)] ⊂ S+

t′ by (102). So [Γ(t′)] ∩ [Γ(t)] = ∅. This
proves that Γ is s±-admissible. Since it is also uniformly locally s±-admissible, we
conclude that it is uniformly s±-admissible.
Let us finally prove Remark (ii) to Proposition 14:

Claim. If Γ is locally s±-admissible and ΦΓ(∂Ms±) is a closed Jordan curve

then ΦΓ(Ms±) = Ub

(

ΦΓ(∂Ms±)
)

. In particular, ∂ΦΓ(Ms±) = ΦΓ(∂Ms±).

To prove the claim set � := Φ(∂M) (we omit the index Γ). Then � is a Jordan
curve and ∂Φ(M) ⊂ � by Proposition 10. Thus Ub(�)∩∂Φ(M) = U∞(�)∩∂Φ(M) =
∅. Since U∞(�) is connected and Φ(M) is bounded, we conclude Φ(M)∩U∞(�) = ∅.
Hence by openness Φ(M) ⊂ Ub(�). In particular, Ub(�) intersects Φ(M), whence
by connectedness Ub(�) ⊂ Φ(M) because Ub(�) ∩ ∂Φ(M) = ∅. This proves the
claim. □

5.6 Regularity of the directed distance along admissible curves

In this section we are interested in the regularity of the functions

s±Γ (t) = ±�S(Γ(t),±N(t))

for a given curve Γ ∈ W 2,∞([0, T ];S). Of course the regularity of �S established
in Section 5.4 carries over to s±Γ . However, the Lipschitz continuity for transversal
curves Γ is not enough for our purposes, nor is the global lower semicontinuity of �S .
In this section, we will show that if Γ is admissible (but possibly non-transversal)
then s±Γ are of bounded variation. This, of course, has important consequences
about the regularity of the set [Γ(0, T )]; more precisely about the relative boundary
S ∩ ∂[Γ(0, T )].

5.6.1 Admissible curves sweep ∂S monotonically.

That s±Γ are of bounded variation will be an immediate consequence of the following
lemma. It shows that the mappings

�±
Γ (t) = Γ(t) + s±Γ (t)N(t)

sweep ∂S in a monotone fashion. This is clearly false in general if Γ is not admissible.
The proof of Lemma 15 is slightly complicated, but the result is rather intuitive, at
least on simply connected domains. For domains which are not simply connected,
the lemma also shows that �±

Γ jump only a controlled number of times from one
component of ∂S to the another. This is true for a purely topological reason. As
the arguments in the proof are topological, we do not require Lipschitz regularity
of ∂S. Recall that NS + 1 is the number of connected components of ∂S.
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Lemma 15 Let S ⊂ ℝ
2 be a continuous domain and let Γ ∈ W 2,∞([0, T ];S) be

S-admissible. Then, for all k ∈ {0, ..., NS} and ∗ ∈ {−,+} with

(�∗
Γ)

−1(∂kS) ∕= ∅

there is P ∗
k ∈ {1, ..., NS + 1} and there are disjoint intervals Jk,∗

1 , ..., Jk,∗
P∗

k
⊂ [0, T ]

such that
(�∗

Γ)
−1(∂kS) = Jk,∗

1 ∪ ... ∪ Jk,∗
P∗

k
.

If t′ ∈ {sup Jk,∗
i , inf Jk,∗

i } is contained in Jk,∗
i , then [Γ(t′)] intersects ∂kS tangen-

tially in �∗
Γ(t

′). Moreover, each restriction �∗
Γ∣Jk,∗

i
is monotone in the following

sense:
If � : S1 → ∂kS is a homeomorphism then there is � ∈ (−2�, 0] and a monotone

lifting �k,∗
i : Jk,∗

i → [�, � + 2�] for �−1 ∘ �∗
Γ, i.e.

�∗
Γ(t) = �(ei�

k,∗
i (t)) for all t ∈ Jk,∗

i .

The lifting �k,∗
i is non-degenerate in the following sense: If �∗

Γ∣Jk,∗
i

is constant then

�k,∗
i is constant as well (i.e. it does not attain both values � and � + 2�).

Remarks.

(i) Each interval Jk,∗
i can be open, closed, or half-closed.

(ii) The bound P ∗
k ≤ NS + 1 is clearly sharp.

(iii) If S is Lipschitz and [Γ(t)] intersects ∂S transversally in �∗
Γ(t) then �∗

Γ is Lips-
chitz in a small neighbourhood J of t by Proposition 15. Then one can roughly
argue as follows: Since �∗

Γ is continuous on J , its image is contained in one
Bilipschitz chart � of ∂kS. Set � := �−1(�∗

Γ). Then (�∗
Γ)

′ = �′(�)�′. Since
(�∗

Γ)
′ = (1 − s∗Γ�)Γ

′ + (s∗Γ)
′N one finds (�′(�) ⋅ Γ′)�′ = 1 − s∗�. The factor

�′(�) ⋅ Γ′ = ∣�′(�)∣�̂(�∗
Γ) ⋅N is nonnegative (for k ∕= 0) because N ⋅ �̂(�∗

Γ) ≥ 0.
(Here �̂(x) denotes the outer unit normal to S at x, if it exists.) Thus by
(local) admissibility �′ ≥ 0, which means that �∗

Γ is (locally) monotone.

Such a local argument breaks down at points t where [Γ(t)] intersect ∂S tan-
gentially; as seen in Figure 4, the set of such t need not be small. In general,
the image of a small interval under �∗

Γ is not contained in a small subarc of
∂S: It need not even be contained in a single component of ∂S.

Proof. We omit some indices. Let Γ be as in the hypothesis and let us consider
the case ∗ = +; the case ∗ = − is similar. We define [Γ(t)]+ := {Γ(t) + sN(t) : s ∈
(0, s+(t))}. For (t0, t1) ⊂ (0, T ) we define

M+
t0,t1 := {(s, t) : t ∈ (t0, t1) and s ∈ (0, s+(t))}. (103)

As in Proposition 10 each set M+
t0,t1 is open by lower semicontinuity of s+. So

[Γ(t0, t1)]+ := Φ(M+
t0,t1) is open because Φ is open by Proposition 10 and admissi-

bility of Γ. Define

Zt0,t1 := Γ([t0, t1]) ∪ [Γ(t0)]+ ∪ [Γ(t1)]+.

Assume that �+(t0) and �+(t1) lie in the same component ∂kS of ∂S. Set

S̃k :=

{

Ub(∂0S) if k = 0

U∞(∂kS) if k ∕= 0.
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Notice that Zt0,t1 ⊂ S̃k. Two cases can occur: If �+(t0) = �+(t1), then Zt0,t1 ∪
{�+(t0)} is a closed Jordan curve. If �+(t0) ∕= �+(t1), then Zt0,t1 is a Jordan arc
with both endpoints �+(t0), �

+(t1) ∈ ∂kS. In either case the set

S+
t0,t1 := C(S̃k ∖ Zt0,t1 ; [Γ(t0, t1)]+) (104)

is well defined. In fact, [Γ(t0, t1)]+ ⊂ S̃k is connected (by continuity of Φ and
connectedness of M+

t0,t1), and it does not intersect Zt0,t1 ∪ ∂S̃k (by admissibility of

Γ). If �+(t0) ∕= �+(t1) then by Lemma 16 (i) the set S+
t0,t1 is a Jordan domain

and there is a connected component Lt0,t1 of ∂kS ∖ {�+(t0), �
+(t1)} such that

∂S+
t0,t1 = Lt0,t1 ∪ Z̄t0,t1 . (105)

We claim that if (t0, t1) ⊂ (0, T ) then

[Γ(t)]+ ∩ S+
t0,t1 = ∅ for all t ∈ [0, T ] ∖ (t0, t1). (106)

To prove (106) note first that since S+
t0,t1 is open, it suffices to prove it with [Γ(t)]+

instead of [Γ(t)]+. Moreover, ([Γ(t0)]+ ∪ [Γ(t1)]+) ∩ S+
t0,t1 = ∅ because [Γ(t0)]+ ∪

[Γ(t1)]+ ⊂ Zt0,t1 does not intersect S+
t0,t1 by its definition (104). Thus it remains to

prove that [Γ(t)]+∩S+
t0,t1 = ∅ for all t ∈ [0, T ]∖ [t0, t1]. So without loss of generality

we may assume that t0 > 0 and t1 < T .

Set � := 1
2 inf dist∂S

(

Γ([0, T ])
)

and set Γ�(t) := Γ(t) + �N(t). So Γ�(t0, t1) ⊂

[Γ(t0, t1)]+ ⊂ S+
t0,t1 . For small ", the curve Γ�(t1 − ", t1 + ") intersects ∂S+

t0,t1 in
exactly one point, namely in Γ�(t1). (To prove this notice that by closedness of
Γ([t0, t1]) ∪ [Γ(t0)]+ and since Γ�(t1) ∈ S, there is " > 0 such that B"(Γ�(t1)) ∩

∂S+
t0,t1 ⊂ [Γ(t1)]+. And Γ�(t1 − ", t1 + ") ∩ [Γ(t1)] = {Γ�(t1)} for small " because

Γ′
�(t1) is perpendicular to [Γ(t1)].) By a curve index argument we conclude that,

for all " > 0 small enough, Γ�(t1 + ") and Γ�(t1 − ") lie in different connected
components of ℝ2∖(Z̄t0,t1∪Lt0,t1) (if �

+(t0) ∕= �+(t1)) resp. of ℝ
2∖(Zt0,t1∪�+(t0))

(if �+(t0) = �+(t1)). Since Γ�(t1 − ") ∈ [Γ(t0, t1)]+ ⊂ S+
t0,t1 , we conclude that

Γ�(t1 + ") /∈ S+
t0,t1 for small ". But [Γ((t1, T ])]+ ⊂ S is connected and does not

intersect ∂S+
t0,t1 ⊂ ∂S ∪ Zt0,t1 (by admissibility), while it contains Γ�(t1 + ") for

small " > 0. Thus [Γ((t1, T ])]+∩S+
t0,t1 = ∅. An analogous argument at t0 concludes

the proof of (106).
We claim that

S+
t0,t1 ⊂ S+

t′0,t
′
1
if (t0, t1) ⊂ (t′0, t

′
1). (107)

In fact, S+
t0,t1 clearly intersects S+

t′0,t
′
1
because [Γ(t0, t1)]+ ⊂ S+

t0,t1 ∩ S+
t′0,t

′
1
. But by

(106) the curve Zt′0,t
′
1
does not intersect S+

t0,t1 , since Γ(t) ∈ [Γ(t)]+ for all t. Thus

S+
t0,t1 ∩ ∂S+

t′0,t
′
1
= ∅, and (107) follows from connectedness of S+

t0,t1 .

Claim #1. If t2 ∈ (t0, t1) ⊂ (0, T ) are such that �+(t0), �
+(t1) ∈ ∂kS and

�+(t2) ∈ ∂iS with i ∕= k, then (�+)−1(∂iS) ⊂ (t0, t1).

In fact, since [Γ(t0, t1)]+ ⊂ S+
t0,t1 , we have �+(t0, t1) ⊂ Φ(M̄+

t0,t1) ⊂ Φ(M+
t0,t1) =

[Γ(t0, t1)]+ ⊂ S̄+
t0,t1 . So �+(t2) ∈ S̄+

t0,t1 and so S̄+
t0,t1 ∩ ∂iS ∕= ∅. But ∂iS does not

intersect ∂S+
t0,t1 ⊂ S∪∂kS. So S+

t0,t1 ∩∂iS ∕= ∅. Since ∂iS is connected, we conclude

that ∂iS ⊂ S+
t0,t1 . But by (106), the closures of [Γ([0, t0])]+ and of [Γ([t1, T ])]+ do

not intersect S+
t0,t1 . So

(

�+([0, t0])∪�+([t1, T ])
)

∩∂iS = ∅. This proves Claim #1.

We claim that (�+)−1(∂kS) consists of at most NS + 1 connected components
for each k = 0, ..., NS . In fact, define F : [0, T ] → {0, ..., NS} by setting F (t) := k
iff �+(t) ∈ ∂kS. Suppose the claim were false for some k. Then there would exist
0 ≤ t1 < t′1 < ... < tNS+1 < t′NS+1 < tNS+2 ≤ T such that F (t′i) ∕= k for all

45



i = 1, ..., NS + 1 and F (ti) = k for all i = 1, ..., NS + 2. By Claim #1 we therefore
have F−1(F (t′i)) ⊂ (ti, ti+1) for all i = 1, ..., NS + 1. So the sets F−1(F (t′i)) are
pairwise disjoint. Hence F (t′1), ..., F (t′NS+1) must be pairwise different. Since F
takes values in {0, ..., NS} and since F (t′i) ∕= k, this is impossible. This proves the

claim. Using it, we obtain Jk,+
i as in the statement of the lemma: Each Jk,+

i is a
connected component of (�+)−1(∂kS).

Now assume that Jk,+
i contains t′ ∈ {inf Jk,+

i , sup Jk,+
i }. If [Γ(t′)] intersected ∂kS

transversally at �+(t′) then by Lemma 12 and continuity of Γ and N the segment
[Γ(t)] would intersect ∂kS in �+(t) for t near t′, contradicting extremality of t′.

Now fix k ∈ {0, ..., NS} and i ∈ {1, ..., P+
k }. Let us prove monotonicity of

�+∣Jk,+
i

. If Jk,+
i is a singleton (we did not exclude this possibility) then there is

nothing to prove. So let us assume that Jk,+
i is nondegenerate.

Claim #2. Let t0, t1 ∈ Jk,+
i with t0 < t1. If �+(t0) = �+(t1) then either

∂kS ∖ {�+(t0)} ⊂ S+
t0,t1 or

(

∂kS ∖ {�+(t0)}
)

∩ S̄+
t0,t1 = ∅.

To prove this, notice that ∂St0,t1 = Zt0,t1 ∪ {�+(t0)} is a closed Jordan curve
that does not intersect ∂kS ∖ {�+(t0)}. So if ∂kS ∖ {�+(t0)} intersects the closure
of S+

t0,t1 then it must intersect S+
t0,t1 itself. Since ∂kS ∖ {�+(t0)} is connected, we

conclude that it must then be contained in S+
t0,t1 . This proves Claim #2.

Let � : S1 → ∂kS be a homeomorphism and let [T0, T1] ⊂ Jk,+
i . Assume that

�+(T0) ∕= �+(T1), so LT0,T1
(see (105)) is well defined. For given x0 ∈ S

1 let
� ∈ (−2�, 0] be the solution of ei� = x0. Denote by argx0

: S1 → [�, � + 2�) the
unique branch of the argument function with this range which is continuous on
S
1 ∖ {x0}.

Fix y0 ∈ ∂kS ∖ L̄T0,T1
and let � ∈ (−2�, 0] solve ei� = �−1(y0). Define � : [T0, T1] →

[�, � + 2�) by

�(t) := arg�−1(y0)

(

�−1(�+(t))
)

for all t ∈ [T0, T1]. (108)

Then �(ei�) = �+ on [T0, T1], so � is a lifting for �−1(�+).
Let [t0, t1] ⊂ [T0, T1] be such that �+(t0) ∕= �+(t1). We claim that then

Lt0,t1 = �(ei(�(t0)�(t1))) := {�(ei') : ' ∈ (�(t0)�(t1))}. (109)

Here and below we use the notation (ab) := (min{a, b},max{a, b}), and we use a
similar notation for closed intervals.
Let us prove (109). Clearly (�(t0)�(t1)) is an open subinterval of [�, � + 2�) with
endpoints �(t0), �(t1). Hence ∣�(t0) − �(t1)∣ < 2�, so ' 7→ ei' is injective on
[�(t0)�(t1)]. Hence ei(�(t0)�(t1)) is an open subarc of S1 with endpoints ei�(t0) and
ei�(t1). Thus by (108) and since � is a homeomorphism, the right-hand side of
(109) is an open subarc of ∂kS with endpoints �+(t0) and �+(t1). Moreover, � /∈
[�(t0)�(t1)]. So the closure of the right-hand side of (109) does not contain y0 =
�(ei�). On the other hand, Lt0,t1 is also a subarc of ∂kS with endpoints �+(t0) and
�+(t1), see the line above (105). Since L̄t0,t1 = S̄t0,t1 ∩∂kS ⊂ S̄T0,T1

∩∂kS = L̄T0,T1

by (107), we also have y0 /∈ L̄t0,t1 . Summarizing, for both sides of (109) we know: It
agrees with a connected component of ∂kS ∖ {�+(t0), �

+(t1)}, and y0 is contained
in the other component. Since ∂kS ∖ {�+(t0), �

+(t1)} consists of precisely two
components, (109) follows.

Claim #3. Suppose [t0, t1] ⊂ [T0, T1]. If �+(t0) = �+(t1) then �+([t0, t1]) =
{�+(t0)}. If �

+(t0) ∕= �+(t1) then �+([t0, t1]) ⊂ L̄t0,t1 .
In fact, consider first the case �+(t0) = �+(t1). Since �+(T0) ∕= �+(T1) we

have �+(t0) ∕= �+(T0) or �+(t1) ∕= �+(T1). Suppose that �+(t0) ∕= �+(T0); the
other case is similar. By (106) we have [Γ(T0)]+ ∩ S+

t0,t1 = ∅. Hence �+(T0) /∈
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S+
t0,t1 . But on the other hand, �+(T0) ∈ ∂kS ∖ {�+(t0)}. Thus Claim #2 implies

that
(

∂kS ∖ {�+(t0)}
)

∩ S̄+
t0,t1 = ∅. Since �+([t0, t1]) ⊂ S̄+

t0,t1 ∩ ∂kS, this implies

�+([t0, t1]) = {�+(t0)}.
Next consider the case �+(t0) ∕= �+(t1), so t0 < t1. Then by definition of S+

t0,t1 we

have �+([t0, t1]) ⊂ S̄+
t0,t1 ∩∂kS = L̄t0,t1 by (105). This concludes the proof of Claim

#3.
Let [t0, t1] ⊂ [T0, T1]. If �

+(t0) ∕= �+(t1) then by Claim #3 we have �+([t0, t1]) ⊂

L̄t0,t1 . By (109) this implies that �+([t0, t1]) ⊂ �
(

ei[�(t0)�(t1)]
)

. Applying arg�−1(y0) ∘�
−1

to both sides gives
�([t0, t1]) ⊂ [�(t0)�(t1)]. (110)

If �+(t0) = �+(t1) then Claim #3 implies that �+([t0, t1]) ⊂ {�+(t0)}, so (110)
holds as well. Thus (110) holds for all closed subintervals [t0, t1] ⊂ [T0, T1]. From
this one readily deduces that � : [T0, T1] → [�, � + 2�) is a monotone function.

Let us now consider the case �+(T0) = �+(T1) =: �+
0 . If �+([T0, T1]) = {�+

0 }
then there is nothing to prove. Let us therefore assume that there is T2 ∈ (T0, T1)
such that �+(T2) ∕= �+

0 . We claim that

LT0,T2
∩ LT2,T1

= ∅. (111)

In fact, applying Theorem 11.8 in [17] to the Jordan domain S̃k and the Jordan arc
ZT0,T2

we find that the component S′ of S̃k∖ZT0,T2
which is not S+

T0,T2
satisfies ∂S′ =

ZT0,T2
∪ L̄′

T0,T2
. Here L′

T0,T2
is the connected component of ∂kS ∖ {�+(T0), �

+(T2)}

that is not LT0,T2
. By (106) and the usual connectedness argument we have S+

T2,T1
⊂

S′. (Indeed, for t ∈ (T2, T1) we have: [Γ(t)]+ ⊂ S+
T2,T2

by definition. And [Γ(t)]+ ⊂

S′ by (105, 106) and by definition of S′. Thus S+
T2,T1

∩ S′ ∕= ∅. Moreover, S+
T2,T1

is

connected and does not intersect ∂S′ ⊂ ∂kS ∪ ZT0,T2
.) Thus L̄T2,T1

⊂ ∂kS ∩ S̄′ =
L̄′
T0,T2

. This does not intersect LT0,T2
, so (111) is proven.

Applying the first part of this proof to [T0, T2] and to [T2, T1], we conclude that
there exist �0, �1 ∈ ℝ and monotone functions �0 : [T0, T2] → [�0, �0 + 2�) and
�1 : [T2, T1] → [�1, �1 + 2�) such that �+ = �(ei�0) on [T0, T2] and �+ = �(ei�1)
on [T2, T1]. In particular, �(ei�0(T2)) = �(ei�1(T2)). So there is ñ ∈ ℤ such that,
setting �̃1 := �1 +2�ñ we have �0(T2) = �̃1(T2). Define � : [T0, T1] → ℝ setting by

�(t) :=

{

�0(t) if t ∈ [T0, T2]

�̃1(t) if t ∈ [T2, T1].
(112)

By (111) and by (109) we conclude that (�(T0)�(T2)) ∩ (�(T2)�(T1)) = ∅. Since
�∣[T0,T2] and �∣[T2,T1] are monotone, this implies that � is monotone.
It remains to check that it takes values in an interval of length 2�. To be explicit
suppose that � is nondecreasing; the other case is similar. We claim that

�([T0, T1]) ⊂ [�(T0), �(T1)] = [�(T0), �(T0) + 2�]. (113)

In fact, the first inclusion follows from monotonicity. It therefore suffices to prove
that �(T1) = �(T0) + 2�. Since � is nondecreasing and nonconstant and since
�+(T1) = �+(T0), there is an integer n ≥ 1 such that �+(T1) = 2�n + �(T0). But
since ∣�(T2) − �(T0)∣ < 2� and ∣�(T1) − �(T2)∣ < 2�, we cannot have n > 1. This
concludes the proof of (113).

Summarizing, we have shown that for all closed intervals [T0, T1] ⊂ Jk,+
i there

exists a monotone lifting � : [T0, T1] → [�, � + 2�] for �−1(�+), where � :=

min{�(T0), �(T1)}. Set J− := inf Jk,+
i and J+ := sup Jk,+

i and let �n : [J− +
1
n , J

+− 1
n ] → [�n, �n+2�] be a monotone lifting for �−1(�+) with �n := min{�n(J

−+
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1
n ), �n(J

+ − 1
n )}. After possibly adding an integer multiple of 2� to each �n we

may assume that �n = �m on [J−+ 1
m , J+− 1

m ] if m ≤ n. Set �n(t) := �n(J
−+ 1

n )
for t < J−+ 1

n and �n(t) := �n(J
+− 1

n ) for t > J+− 1
n . Then the �n are monotone

on Jk,+
i and they converge pointwise to a function � : Jk,+

i → ℝ, which is therefore

monotone as well. And it is clearly a lifting for �−1(�+). Moreover, �(Jk,+
i ) has

length not greater than 2� because the same is true for all �n(J
k,+
i ). This concludes

the proof. □

5.6.2 Regularity of s±Γ .

Corollary 2 If S ⊂ ℝ
2 is a bounded Lipschitz domain and Γ ∈ W 2,∞([0, T ];S) is

admissible, then s±Γ ∈ BV (0, T ).

Proof. We use the notation from the proof of Lemma 15. Since S is a Lipschitz
domain, there exists a homeomorphism � : S1 → ∂kS which is Lipschitz. By the
proof of Lemma 15, for all m = 1, ..., P+

k there are �m ∈ ℝ and there are monotone
liftings �m : Jk,+

m → [�m, �m +2�] such that �+(t) = �(ei�m(t)) for all t ∈ Jk,+
m . By

monotonicity and boundedness of �m, the functions ei�m have bounded variation.
Hence Theorem 3.99 in [1] implies that also �+∣Jk,+

m
has bounded variation for all

k = 0, ..., NS and for all i = 1, ..., P+
k . Since

[0, T ] =

NS
∪

k=0

P+
k
∪

i=1

Jk,+
m ,

we conclude that �+ ∈ BV ((0, T );ℝ2). Hence by [1] Proposition 3.2 also s+ =
�+ ⋅N − Γ ⋅N ∈ BV (0, T ) since N is Lipschitz. □

Corollary 3 Let S ⊂ ℝ
2 be a continuous domain and let Γ ∈ W 2,∞([0, T ];S) be

S-admissible. Then there exists a partition 0 =: T0 < T1 < ... < TM := T such that
for all i = 1, ...,M and ∗ ∈ {−,+} there is k∗i ∈ {0, ..., NS} such that

�∗
Γ(Ti−1, Ti) ⊂ ∂k∗

i
S. (114)

Moreover, the closure of �∗
Γ(Ti−1, Ti) does not contain ∂k∗

i
S.

Proof. We omit the index Γ. For each k = 0, ..., NS fix a homeomorphism
�k : S1 → ∂kS. Using the notation and conclusion of Lemma 15, there clearly
exists a partition 0 =: T0 < ... < TM := T such that for all i = 1, ...,M there are

k+i ,m
+
i such that (Ti−1, Ti) = int J

k+
i ,+

m+
i

. And there is a monotone lifting �
k+
i ,+

m+
i

for

�−1

k+
i

(�+) on (Ti−1, Ti).

Now fix i ∈ {1, ...,M}. If ∣�
k+
i ,+

m+
i

(Ti) − �
k+
i ,+

m+
i

(Ti−1)∣ < 2� then we do nothing. If

∣�
k+
i ,+

m+
i

(Ti) − �
k+
i ,+

m+
i

(Ti−1)∣ = 2� then by the non-degeneracy part of Remark (i) to

Lemma 15 there is T ′
i ∈ (Ti−1, Ti) such that �+(T ′

i ) ∕= �+(Ti−1) = �+(Ti). Thus

∣�
k+
i ,+

m+
i

(Ti)− �
k+
i ,+

m+
i

(T ′
i )∣ < 2� and ∣�

k+
i ,+

m+
i

(Ti−1)− �
k+
i ,+

m+
i

(T ′
i )∣ < 2�.

Including the T ′
i thus obtained into the partition and relabelling we obtain a par-

tition 0 = T0 < T1 < .. < TM = T (for some possibly different M than at the
beginning) such that, for all i = 1, ...,M , the set �+

Γ (Ti−1, Ti) is contained in one
connected component ∂k+

i
S of S and such that

∣�
k∗
i ,∗

m∗
i
(Ti−1)− �

k∗
i ,∗

m∗
i
(Ti)∣ < 2� for all i = 1, ...,M (115)
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and for ∗ = +. Finally, we apply the same argument with − instead of + to
each restriction Γ∣(Ti−1,Ti), i = 1, ...,M to obtain a refined partition which, after
relabelling, satisfies (114, 115) simultaneously for both ∗ = +,− (and again with a
different M).
To prove the final statement, notice that if clos�∗(Ti−1, Ti) = ∂k∗

i
S then necessarily

∣�
k∗
i ,∗

m∗
i
(Ti−1)− �

k∗
i ,∗

m∗
i
(Ti)∣ = 2�. This contradicts (115). □

For Γ ∈ W 2,∞([0, T ];S) we introduce the sets

D±
Γ =

{

t ∈ [0, T ] : [Γ(t)]N(t) intersects ∂S tangentially at Γ(t) + s±(t)N(t).
}

.

Observe that Γ is transversal on J ⊂ [0, T ] if (D+
Γ ∪D−

Γ ) ∩ J = ∅.

Proposition 15 Let ∗ ∈ {+,−}, let S ⊂ ℝ
2 be a bounded Lipschitz domain and

let Γ ∈ W 2,∞([0, T ];S). Then ∗s∗Γ is lower semicontinuous. Moreover:

(i) D∗
Γ is closed, and for all t′ ∈ [0, T ]∖D∗

Γ there is a neighbourhood of
(

Γ(t′), ∗N(t′)
)

on which � is Lipschitz, and [x]� intersects ∂S transversally in x+∗�(x, ∗�)�
for all (x, �) in this neighbourhood. In particular, [Γ(t)] intersects ∂S transver-
sally in �∗

Γ(t) for all t in a neighbourhood of t′ and s∗Γ ∈ W 1,∞
loc

(

(0, T ) ∖D∗
Γ

)

.

(ii) If Γ is S-admissible then s∗Γ ∈ BV (0, T ). The set As∗Γ
of discontinuities of s∗Γ

is countable, and at all t ∈ As∗Γ
the right and left limits of s∗Γ exist. Moreover,

As∗Γ
⊂ D∗

Γ.

(iii) Assume that S satisfies condition (∗) from [10], i.e. there is a closed subset
Σ ⊂ ∂S with ℋ1(Σ) = 0 such that the outer unit normal �̂ to S exists and is
continuous on ∂S∖Σ. If Γ is S-admissible, then the sets F ∗

Γ := D∗
Γ∪(�

∗
Γ)

−1(Σ)
are closed, and s∗Γ� = 1 almost everywhere on F ∗

Γ . Moreover, � is C1 in a
neighbourhood of

(

Γ(t′), ∗N(t′)
)

whenever t′ ∈ (0, T ) ∖ F ∗
Γ .

Remarks.

(i) If S is convex then D±
Γ = ∅ and Γ is always transversal on [0, T ].

(ii) The inclusion As∗Γ
⊂ D∗

Γ can be strict, see e.g. Figure 4 (middle).

Proof. Lower semicontinuity of ∗s∗Γ was proven in Proposition 12. In what follows,
we omit the subindex Γ, and for definiteness we take ∗ = +; the proofs for ∗ = −
are similar.
To prove (i) let t′ ∈ [0, T ]∖D+. Then by Lemma 12 there exists a neighbourhood of
(Γ(t′), N(t′)) on which � is Lipschitz, and [x]� intersects ∂S transversally in x+ =
x + �(x, �)� for (x, �) in this neighbourhood. By continuity of (Γ, N) this implies
that [Γ(t)] intersects ∂S transversally in �+(t) for all t near t′. Thus [0, T ] ∖D+ is
relatively open in [0, T ], so D+ is closed. Since Γ and N are Lipschitz, s+ = �(Γ, N)
is therefore Lipschitz in a neighbourhood of t′. In particular, s+ is continuous at t′.
This shows that D+ contains As+ .

Let us prove (ii). By Corollary 2 we know s+ ∈ BV ((0, T );ℝ2). For each
k ∈ {0, ..., NS} with (�+)−1(∂kS) ∕= ∅, Proposition 15 yields P+

k ∈ ℕ and intervals

Jk,+
i such that �+(Jk,+

i ) ⊂ ∂kS for i = 1, ..., P+
k . Fix k and i. By Proposition 15

there is a nondecreasing bounded function �k,i : J̄
k,+
i → ℝ and there is � : S1 → ∂kS

continuous such that �+ = �(ei�k,i) on Jk,+
i . Since �k,i is monotone, by the remark

preceding Corollary 3.29 in [1] it is a good representative in their terminology. So

by Theorem 3.28 in [1] there exists a countable set Ak,+
i ⊂ J̄k,+

i (namely the set of

atoms of the distributional derivative of �k,i) such that �k,i∣Jk,+
i

∈ C0(J̄k,+
i ∖Ak,+

i ).

Moreover, by monotonicity �k,i has one-sided limits at every point in J̄k,+
i . Since
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�+ = �(ei�k,i) on Jk,+
i (so s+ = �(ei�k,i) ⋅ N − Γ ⋅ N), we deduce that s+ has

one-sided limits at every t ∈ J̄k,+
i and Jk,+

i ∩As+ ⊂ Ak,+
i . So indeed Jk,+

i ∩As+ is
countable. Applying this argument for each i, k, we conclude

As+ ⊂
NS
∪

k=0

Mk
∪

i=1

(

{inf Jk,+
i , sup Jk,+

i } ∪ (As+ ∩ Jk,+
i )

)

.

This is countable, and since the union of the closures of the Jk,+
i covers [0, T ],

one-sided limits of s+ exist at all t ∈ [0, T ].
To prove (iii) suppose that ∂S satisfies condition (∗) from the introduction. Set

Σ′′ := (�+)−1(Σ). By Proposition 3.92a in [1] we have

(�+)′ = 0 almost everywhere on Σ′′. (116)

Here and below, the prime denotes the density of the part of the distributional
derivative which is absolutely continuous with respect to Lebesgue measure. Since
N is Lipschitz withN ′ = −�Γ′ and since s+ is BV, the product rule for BV functions
(see Proposition 3.2 (b) in [1]) implies that

(�+)′ = (1− s+�)Γ′ + (s+)′N. (117)

Comparing (116) and (117) shows that s+� = 1 almost everywhere on Σ′′.
We claim that s+� = 1 almost everywhere onD+∖Σ′′ as well. Since ∂S is covered by
finitely many Lipschitz graphs, it suffices to prove that s+� = 1 almost everywhere
on D+ ∖ (�+)−1(Σ ∩ G) for all Lipschitz graphs G ⊂ ∂S. Fix such G and let k be

such that G ⊂ ∂kS. Lemma 15 implies that (�+)−1(G) ∩ Jk,+
i is connected for all

i = 1, ..., P+
k . This is an easy consequence of the monotonicity of �+∣Jk,+

i
. Choose

coordinates such that G = graph�∣E for some Lipschitz function � and some open
interval E.
Thus, setting �+

j := ej ⋅�
+, we have �+

2 = �(�+
1 ) on (�+)−1(G). Applying Theorem

3.99 in [1] on (the interior of) the interval (�+)−1(G) ∩ Jk,+
i for all i = 1, ..., P+

k ,
we conclude that

(�+
2 )′ = �′(�+

1 )(�+
1 )′ almost everywhere on (�+)−1(G). (118)

(As usual, the primes denotes the absolutely continuous part of the distributional
derivative.) On the other hand, since Σ is closed with ℋ1(Σ) = 0 and since
� 7→ (�, �(�)) is Bilipschitz, the set Σ′ := {� : (�, �(�)) ∈ Σ} is closed and has
measure zero. And from the definition of Σ it is easy to deduce that � ∈ C1(E ∖Σ′).
Thus

∂�(�) = {�′(�)} for all � ∈ E ∖ Σ′. (119)

Hence N(t) ⋅ e2 = �′(�+
1 (t))N(t) ⋅ e1 for all t ∈ D+ ∩ (�+)−1(G ∖Σ). Together with

(118) this implies that (�+)′ is parallel to N almost everywhere on D+∩(�+)−1(G∖
Σ). So s+� = 1 almost everywhere on D+ ∩ (�+)−1(G ∖ Σ) by (117). Thus indeed
s+� = 1 almost everywhere on F+.
Moreover, if t′ ∈ [0, T ] ∖ F+ then since t′ /∈ D+ we know that �+ is continuous
in a neighbourhood of t′. Hence distΣ(�

+) > 0 near t′ because distΣ(�
+(t′)) > 0

by closedness of Σ. This proves that [0, T ] ∖ F+ is relatively open. To prove C1-
regularity of � one argues as in (i) and in Lemma 12, but now one uses the C1-version
of Lemma 13. □
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5.7 Integral curves

Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP ) be countably

S-developable. A curve Γ ∈ W 2,∞([0, T ];S) with Γ([0, T ]) ⊂ S ∖ Ĉf is called an
f -integral curve if it satisfies the following conditions:

Γ′(t) = −q̂⊥f (Γ(t)) for all t ∈ [0, T ], and (120)

Γ′(t) ⋅ Γ′(t′) > 0 for all t, t′ ∈ [0, T ]. (121)

Here q̂f : S ∖ Ĉf → S
1 is some S-ruling for f that extends qf . Its existence is

ensured by Proposition 9. Notice that, since Γ([0, T ]) ⊂ S, the ruling q̂f can be
chosen Lipschitz in a neighbourhood of Γ([0, T ]) by virtue of Remark 1. Clearly,
if the length T of Γ does not exceed 1/∥�∥L∞(0,T ), then (121) is satisfied. When f
is the gradient of an isometric immersion u : S → ℝ

3 then curves satisfying (120)
are lines of curvature of u.

Remark 6 If x ∈ ℝ
2, r > 0 and f : Br(x) → ℝ

P is Br(x)-developable then
there is a unique solution Γ ∈ W 2,∞([− r

4 ,
r
4 ];Br(x)) of (63) with Γ(0) = x. It

satisfies B r
8
(x) ⊂ [Γ(− r

4 ,
r
4 )]. Moreover, [Γ((0, r

4 ])] and [Γ([− r
4 , 0))] are contained

in different connected components of Br(x) ∖ [Γ(0)], and Γ satisfies (121).

Proof. Clearly f̃(y) := f(x+ ry) is B1(0)-developable on B1(0). After translating
and rescaling we may therefore assume without loss of generality that x = 0 and
r = 1. Proposition 16 implies that Γ is B1(0)-admissible. Since Γ solves (120), we
have ∣Γ′∣ = 1, so indeed Γ([− 1

4 ,
1
4 ]) ⊂ B1(0).

Let us prove B r
8
(x) ⊂ [Γ(− r

4 ,
r
4 )]. Since B1(0) is convex, Γ is transversal on [− 1

4 ,
1
4 ].

Thus [Γ(− 1
4 ,

1
4 )] = C

(

B1(0) ∖ ([Γ(− 1
4 )] ∪ [Γ( 14 )]); 0

)

by Proposition 12 (iii). By

connectedness it is therefore enough to show that B 1
8
(0) does not intersect [Γ(− 1

4 )]∪

[Γ( 14 )]. Since Γ([−
1
4 ,

1
4 ]) ⊂ B̄ 1

4
(0), we have ∣s±Γ ∣ ≥

3
4 on [− 1

4 ,
1
4 ]. Thus ∣�∣ ≤

4
3 almost

everywhere on (− 1
4 ,

1
4 ) because Γ is locally admissible by Proposition 10 (ii). Hence

we can estimate

∣Γ(t) + sN(t)∣ ≥ (Γ(t) + sN(t)) ⋅ Γ′(t)

=

∫ t

0

Γ′(�) ⋅ Γ′(t) d� ≥ ∣t∣ −
4

3
t2

for all t ∈ [− 1
4 ,

1
4 ]. Thus ∣Γ(± 1

4 ) + sN(± 1
4 )∣ ≥

1
6 for all s ∈ ℝ. And so B 1

8
(0) ∩

([Γ(− 1
4 )] ∪ [Γ( 14 )]) = ∅.

To prove the second part of the statement notice that by connectedness of [Γ((0, 1
4 ])]

and of [Γ([− 1
4 , 0))], it is enough to show that these sets do not intersect [Γ(0)] and

that they intersect different components of B1(0) ∖ [Γ(0)]. But the first fact follows
from admissibility and the second one because Γ′(0) is perpendicular to [Γ(0)].
Finally, (121) is satisfied because Γ has length 1

2 < 3
4 ≤ 1

∥�∥
L∞(− 1

4
, 1
4
)
. □

The next proposition collects some properties of f -integral curves. Most impor-
tantly, such curves are admissible and the domain [Γ(0, T )] which they parametrize
enjoys the regularity property (Bf ) from Definition 2.

Proposition 16 Let S be a bounded Lipschitz domain, let f ∈ C0(S;ℝP ) countably
developable and let Γ ∈ W 2,∞([0, T ];S ∖ Ĉf ) be an f -integral curve. Then Γ is S-
admissible on [0, T ] with

[Γ(t)] = [Γ(t)]Sq̂f (Γ(t)) for all t ∈ [0, T ],
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and
S ∩ ∂[Γ(0, T )] ⊂ S ∖ Ĉf

and [Γ(0, T )] satisfies condition (Bf ). Moreover, the following are true:

(i) For all
x ∈ (S ∩ ∂[Γ(0, T )]) ∖ ([Γ(0)] ∪ [Γ(T )]),

we have either

[x] ⊂ {Γ(t) + sN(t) : s ∈ (s+Γ (t), s
+
Γ (t))} for some t ∈ As+Γ

(122)

or
[x] ⊂ {Γ(t) + sN(t) : s ∈ (s−Γ (t), s

−
Γ (t))} for some t ∈ As−Γ

. (123)

Here, As±Γ
is as in (78) and s+Γ , s

−
Γ are as in (77).

(ii) We have
f(ΦΓ) ∈ C0(Ms±Γ

;ℝP ) (124)

and
f ∈ C0(ΦΓ(M̂);ℝP ), (125)

where
M̂ :=

∪

t∈[0,T ]

(s−Γ (t), s
+
Γ (t))× {t}.

Moreover,

f(x) = f(Γ(t)) for all x ∈ S ∩ {Γ(t) + sN(t) : s ∈ (s−Γ (t), s
+
Γ )}. (126)

Remarks.

(i) A condition like (121) is needed to ensure admissibility of Γ. In fact, on
domains which are not simply connected, a curve which only satisfies (120)
could spiral or circle around a hole in S: Take e.g. S = B2(0) ∖ B̄1(0) and
f(x) = qf (x) =

x
∣x∣ .

(ii) The inclusions (122, 123) are strict in general. Consider e.g. S = {(x1, x2) :
x1 ∈ (−4�, 4�);x2 ∈ (−5, cosx1)} and Γ(t) = (t− 2)e2 on [0, 3

2 ] with t = 1 ∈
As+Γ

∩As−Γ
.

Proof. From (120) we have N(t) = q̂f (Γ(t)), so by the definitions of s±Γ and of
[Γ(t)], we have [Γ(t)] = [Γ(t)]N(t) = [Γ(t)]q̂f (Γ(t)). Since q̂f is an S-ruling, this
implies that [Γ(t0)] ∩ [Γ(t1)] = ∅ whenever Γ(t1) /∈ [Γ(t0)]. Therefore, to prove
admissibility we must only show that Γ([0, T ])∩ [Γ(t0)] = {Γ(t0)} for all t0 ∈ [0, T ].
But for t ∕= t0 by (121) we have (Γ(t) − Γ(t0)) ⋅ Γ

′(t0) ∕= 0. Hence indeed Γ(t) /∈

[Γ(t0)]
ℝ

2

.
Next we prove property (Bf ). Let x ∈ S ∩ ∂[Γ(0, T )]. Then there are tn ∈ [0, T ]
and sn ∈ (s−(tn), s+(tn)) such that Γ(tn) + snN(tn) → x. So x is contained in
the Hausdorff limit Y of [Γ(tn)]q̂f (Γ(tn)) (which exists after possibly passing to a

subsequence). So by Lemma 2 (ii) we have [x] ⊂ Y . So [x] ⊂ [Γ(0, T )]. On the
other hand, if [x] intersected [Γ(t)] for some t then by developability we would
have x ∈ [x] = [Γ(t)] ⊂ [Γ(0, T )]. Since [Γ(0, T )] is open by admissibility and by
Proposition 10, this would contradict x ∈ ∂[Γ(0, T )]. Thus [x] ∩ [Γ(0, T )] = ∅, so
[x] ⊂ ∂[Γ(0, T )]. Since [Γ(0, T )] = ΦΓ(Ms±Γ

) is connected by continuity of ΦΓ, we

conclude that [Γ(0, T )] satisfies (Bf ).
If x ∈ S ∩ ∂ΦΓ(Ms±Γ

) then [x] ⊂ ∂ΦΓ(Ms±Γ
) ⊂ ΦΓ(∂Ms±Γ

) by condition (Bf ) and
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by Proposition 10. Thus by (80) and since ΦΓ(s
±
Γ , ⋅), ΦΓ(s

+
Γ , ⋅) and ΦΓ(s

−
Γ , ⋅) take

values in ∂S (by closedness of ∂S), we have

[x] ⊂ S ∩ ΦΓ(∂Ms±Γ
) ⊂ ΦΓ

(

∪

t∈A
s
+
Γ

(s+Γ (t), s
+
Γ (t))× {t} ∪

∪

t∈A
s
−
Γ

(s−Γ (t), s
−
Γ (t))× {t}

)

,

or x ∈ [Γ(0)] ∪ [Γ(T )]. Of course, only one of the two inclusions (122) or (123) can
hold since the sets on the right are disjoint by injectivity of ΦΓ, which follows by
admissibility from Proposition 10.

To prove part (ii) observe that (124) is true simply because by definition of Γ

f(ΦΓ(s, t)) = f(Γ(t)) for all t ∈ [0, T ] and s ∈ (s−Γ (t), s
+
Γ (t)).

But Proposition 10 implies that ΦΓ is injective on M̂ . Since M̂ ⊂ Ms±Γ
, one readily

deduces (125) from (124). Formula (126) follows immediately from the previous
assertions. □

6 Decomposition of the domain S into subdomains
which are compatible with f

The main result of this chapter is Theorem 4, which is the full version of Theorem
2 in the introduction. In order to describe its content, let S ⊂ ℝ

2 be a bounded
Lipschitz domain and let f ∈ C0(S;ℝP ) be finitely developable. Theorem 4 yields a
two-step decomposition of S: The first (rough) step of the decomposition resembles
the one used in Theorem 3: It decomposes S into a large subdomain W0 (containing

Sf
� ) and countably many small subdomains W1,W2, ... which are located near ∂S

and whose closures intersect that of W0 in a single line segment each. The second
(fine) step of the decomposition involves W0. It is decomposed into finitely many
subdomains V1, ..., VN satisfying the compatibility condition (Bf ) from Definition
2. More precisely, each of these subdomains is either one of the finitely many
connected components of Ĉf or a domain of the form [Γ(0, T )] for an f -integral
curve Γ which is ‘almost transversal’. The use of such a decomposition is explained
after the statement the theorem.

Theorem 4 Let S ⊂ ℝ
2 be a bounded Lipschitz domain and let f ∈ C0(S;ℝP ) be

finitely S-developable. Then there is �0 > 0 such that for every � ∈ (0, �0) there
exists N ∈ ℕ and subdomains

V1, ..., VN ⊂ S

as well as a (possibly infinite) family of subdomains

W1,W2, ... ⊂ S

such that the set

W0 := int

(

N
∪

k=1

V̄k

)

(127)

is a subdomain of S and such that the following are true:

(i) Disjoint interiors: Whenever j ∕= k we have

Wj ∩Wk = ∅ (j, k ∈ {0, 1, ...}) and Vj ∩ Vk = ∅ (j, k ∈ {1, ..., N}). (128)
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(ii) Closures intersect nicely: For every k ≥ 1 there exists xk ∈ S ∖ Ĉf such
that

S ∩ W̄j ∩ W̄k =

{

∅ if 0 < j < k

[xk] if 0 = j < k.

Moreover, with Sf
� as in (54),

i ∕= j and x ∈ V̄i ∩ V̄j ∩ S =⇒ x ∈ Sf
� ∖ Ĉf and [x] ⊂ ∂Vi ∩ ∂Vj ∩ S; (129)

in particular, ℋ1([x]) ≥ �.

(iii) Covering: We have

Ĉf ⊂ Sf
� ⊂ W0 (130)

and
S = W0 ∪

∪

k≥1

(S ∩ W̄k).

(iv) Local properties of the covering: More precisely, there is M ∈ ℕ with
M ≤ N such that

V1, ..., VM are the connected components of Ĉf ,

and for all k ≥ M + 1 there exist Tk > 0 and f -integral curves

Γ(k) ∈ W 2,∞([0, Tk];S ∖ Ĉf ) (131)

such that Vk = [Γ(k)(0, Tk)]. Furthermore, if i < j and S ∩ V̄i ∩ V̄j ∕= ∅ then
j ≥ M + 1, and

S ∩ V̄i ∩ V̄j ⊂
∪

t∈{0,Tj}
{Γ(j)(t) + sN (j)(t) : s ∈ (s−

Γ(j)(t), s
+
Γ(j)(t))} (132)

Remark 7 (i) The proof shows that each of the curves Γ(k) in (131) is ‘almost
transversal’ in the sense that the functions s±

Γ(k) only have small jumps except
at the endpoints 0 and Tk. More precisely,

sup
t∈(0,Tk)

∣s+
Γ(k)(t)− s+

Γ(k)(t)∣ < � and sup
t∈(0,Tk)

∣s−
Γ(k)(t)− s−

Γ(k)(t)∣ < �. (133)

(ii) Despite the previous remark, the covering must allow sets [Γ(k)(0, Tk)] with
non-transversal Γ(k). So, in general,

S ∩ ∂[Γ(k)(0, Tk)] ∕= [Γ(k)(0)] ∪ [Γ(k)(Tk)].

The set on the left typically consists of infinitely many segments of the form
[x].
However, each set Vk satisfies condition (Bf ); this follows from Proposition
16 and from Proposition 7. Hence Lemma 5 implies that each Vk has finite
perimeter, so (129) implies that V̄i ∩ V̄j ∩ S consists of at most finitely many
disjoint segments of the form [x].

(iii) From (128, 130) we deduce that

Wk ⊂ S ∖ S̄f
� for all k ≥ 1.

Since S ∖ S̄f
� ⊂ B�(∂S), in view of (128) this implies that

∑

k≥1

ℒ2(Wk) ≤ C�

for some constant C depending only on S.
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A decomposition as in Theorem 4 is useful for the following reason: If we are able
to modify f locally on the nice subdomains Vi, then we can also modify it globally
by pasting together finitely many local modifications. The idea is to construct
the global modification of f : S → ℝ

P in two steps: First glue together the local
modifications (e.g. smoothings) f (k) : S ∩ V̄k → ℝ

P ; they must satisfy boundary
conditions on the intersections S ∩ V̄k ∩ V̄j in order to yield a well-defined glued
mapping; say we impose the condition f (k) = f on these intersections. Theorem 4
shows that these intersections consist of only finitely many (long) segments. Thus
after the first step one has obtained a well-defined mapping FW0

: S ∩ W̄0 → ℝ
P

given by
FW0

(x) = f (k)(x) if x ∈ S ∩ V̄k for some k = 1, ..., N.

In the second step one ignores the initial mapping f and defines the mapping F̃ :
S → ℝ

P by setting

F̃ (x) =

{

FW0
(x) if x ∈ S ∩ W̄0

Fk(x) if x ∈ S ∩ W̄k for some k ≥ 1

for some mappings Fk : S ∩ W̄k → ℝ
P . The mapping F̃ is well-defined if and only

if
Fk = FW0

on [xk] for each k ≥ 1;

this is because W̄k ∩ W̄0 ∩ S = [xk]. In [10] such a construction is applied to an
isometric immersions u : S → ℝ

3 in order to obtain smooth global approximants of
u from smooth local approximants on each Vk.

The following proposition shows that most conclusions of Theorem 4 are true for
any disjoint finite covering with sets Vk satisfying condition (Bf ). Lemma 5 shows

that for every subdomain V ⊂ S with S ∩ ∂V ⊂ S ∖ Ĉf satisfying condition (Bf ),
there exists a countable subset ZV of the relative boundary S ∩ ∂V such that

S ∩ ∂V =
∪

x∈ZV

[x] (disjoint union).

And if x ∈ ZV and both endpoints of [x] are contained in the same connected

component of ∂S (i.e. x ∈ Af
ii for some i ∈ {0, ..., NS}, where NS +1 is the number

of connected components of ∂S) then S ∖ [x] consists of precisely two connected
components S1

x and S2
x, determined by the fact that V ⊂ S1

x. Moreover, one has

S ∩S
2

x ∩ V = [x] and S ∩ S̄2
x ∩ S̄2

y = ∅ if x, y ∈ ZV with x ∕= y. These notations and
facts will be used in the rest of the chapter.

Proposition 17 Let S ⊂ ℝ
2 be a bounded Lipschitz domain, let f ∈ C0(S;ℝP ) be

finitely developable and let � > 0 be small enough. Assume that there exist N ∈ ℕ

and subdomains V1, ..., VN ⊂ S such that

S ∩ ∂Vk ⊂ S ∖ Ĉf and Vk satisfies condition (Bf ) (134)

for all k = 1, ..., N , and such that

Sf
� ⊂

N
∪

k=1

V k and Vk ∩ Vj = ∅ if k ∕= j. (135)

Then there exists a subfamily, again denoted {Vk}
N
k=1, such that the following is

true:
The set

W := int

(

N
∪

k=1

V̄k

)

(136)
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is a subdomain of S, and
Sf
� ⊂ W ; (137)

in addition,
S ∩ ∂W ⊂ S ∖ Ĉf and W satisfies (Bf )

with

S ∩ ∂W ⊂
NS
∪

i=0

Af
ii. (138)

We have

S = W ∪

(

∪

x∈ZW

(S ∩ S2
x)

)

, (139)

with disjoint unions on the right-hand side.
Moreover,

j ∕= k and x ∈ V̄j ∩ V̄k ∩ S =⇒ x ∈ Sf
� ∖ Ĉf ; (140)

in particular, ℋ1([x]) ≥ �. In addition,

W̄ ∩ S
2

x ∩ S = [x] for all x ∈ ZW

and
S̄2
x ∩ S̄2

y ∩ S = ∅ if x, y ∈ ZW with x ∕= y. (141)

Proof. We write S� instead of Sf
� . By finite developability the set Ĉf consists of

finitely many connected components U1, ..., UL. Setting

�0 :=
1

2
min

i=1,...,L
sup dist∂S(Ui),

by definition of S� we have
Ĉf ⊂ S� (142)

for all � ∈ (0, �0). We assume without loss of generality that � ∈ (0, �0) is so small
that the conclusions of Lemma 7 hold. By deleting those Vk whose closure does not
intersect S�, we may assume without loss of generality that

Vk ∩ S� ∕= ∅ for all k = 1, ..., N, (143)

since V̄k ∩ S� ∕= ∅ is equivalent to Vk ∩ S� ∕= ∅ because S� is open by Lemma 7.
Clearly (135) remains valid.
Define the set W as in (136). Observe that W ⊂ S. In fact, the closure of W is
contained in V̄1 ∪ ... ∪ V̄N , which in turn is contained in the closure of S. Thus
indeed

W ⊂ int W̄ ⊂ int S̄ = S

because S is a Lipschitz domain.
Let us now prove that W is connected. The set

W ′ := S� ∪
N
∪

k=1

Vk

is connected because Vk ∩ S� ∕= ∅ for all k = 1, ..., N and because S� and each Vk

are connected. By openness of S�, the inclusion in (135) implies (137). Thus

W ′ ⊂ W ⊂
N
∪

k=1

V̄k = W̄ ′.
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Hence Theorem IV.1.2 in [17] implies that W is connected because W ′ is connected.
Now set W1 := V1. Then W1 satisfies condition (Bf ). Set i1 := 1. For j =
1, ..., N − 1 inductively set

Wj+1 := int(W̄j ∪ V̄ij+1
), where ij+1 ∈ {1, ..., N} ∖ {i1, ..., ij}

is chosen such that V̄ij+1
intersects W̄j . Such ij+1 is easily seen to exists while

j < N because W is connected. By Lemma 5 (viii) each Wj with j ∈ {1, ..., N}
satisfies condition (Bf ) since Vij+1

satisfies (Bf ) for all j < N . Since W = WN , we
conclude that W satisfies condition (Bf ).
We claim that

k ∕= j and x ∈ V̄k ∩ V̄j ∩ S =⇒ [x] ⊂ ∂Vk ∩ ∂Vj ∩ S�. (144)

In fact, if k ∕= j and x ∈ V̄k ∩ V̄j ∩ S then x ∈ ∂Vk ∩ ∂Vj because Vj ∩ Vk = ∅ by

hypothesis. In particular, x ∈ S ∖ Ĉf , so [x] is well defined. By (Bf ) we have

[x] ⊂ ∂Vk ∩ ∂Vj .

If x /∈ S� then by Lemma 7 there would be i ∈ {0, ..., NS} such that x ∈ Aii. So by
Lemma 16 the set S ∖ [x] consists of precisely two connected components S−

x and
S+
x . And

S ∩ ∂S−
x ∩ ∂S+

x = [x].

Since [x] ⊂ ∂Vj ∩ ∂Vk and since Vj ∩ Vk = ∅, after possibly swapping + and −,
we have Vj ⊂ S−

x and Vk ⊂ S+
x . In fact, since Vj , Vk ⊂ S are nonempty and open,

and since S ∖ [x] consists of exactly two components S−
x and S+

x , after possibly
swapping + and − we have Vj ∩ S−

x ∕= ∅. Now Vj is connected and does not
intersect ∂S−

x ⊂ [x]∪∂S because [x] ⊂ ∂Vj and Vj is open. Thus Vj ⊂ S−
x . Arguing

similarly for Vk, we conclude that either Vk ⊂ S−
x or Vk ⊂ S+

x . By Lemma 5
(viii), the set Vj ∪ Vk ∪ [x] is open, so it contains Br(x) for small enough r. But
since [x] ⊂ ∂S−

x ∩ ∂S+
x by Lemma 16, the ball Br(x) also intersects S+

x . Since
(Vj ∪ [x]) ∩ S+

x = ∅, indeed we must have Vk ∩ S+
x ∕= ∅.

But S� ∩ (∂S+
x ∪ ∂S−

x ) ⊂ S� ∩ ([x] ∪ ∂S) = ∅ because [x] does not intersect S�; this
follows from (58) since x /∈ S�. Hence by connectedness either S� ⊂ S−

x or S� ⊂ S+
x .

So Vk or Vj does not intersect S�. This contradicts (142) or (143). We conclude
that x ∈ S�. Hence (144) follows from (58).

And (144) implies (140). By (140) and by the definition of S� we have ℋ
1([x]) ≥

� whenever x ∈ S ∩ V̄k ∩ V̄j for some j ∕= k.
Since W satisfies condition (Bf ), Lemma 5 furnishes a countable set ZW such that

S ∩ ∂W =
∪

x∈ZW

[x].

Since S� ⊂ W and W is open, we have S ∩ ∂W ⊂ S ∖ S�. Hence (138) follows from
Lemma 7. So

S ∖
∪

x∈ZW

[x] = W ∪
∪

x∈ZW

S2
x (145)

by (27) in Lemma 5 (vii). As in that lemma, S2
x denotes the component of S ∖ [x]

that does not intersect W . And (141) follows from Lemma 5 (v). Observe that
(145) implies (139).

□

Proofof Theorem 4. We write S� instead of Sf
� . Since Ĉf consists of finitely

many connected components, if x ∈ ∂Ĉf then x ∈ ∂U for some connected com-

ponent U of Ĉf . Hence by Proposition 7, for all x ∈ S ∩ ∂Ĉf there is rx > 0
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such that Brx(x) ⊂ S and such that the connected components B0(x) and B1(x)

of Brx(x) ∖ [x] (i.e. open half-disks), satisfy B1(x) ⊂ S ∖ Ĉf and B0(x) ⊂ Ĉf .

Since q̂f is an S-ruling on S ∖ Ĉf , its restriction to Brx(x) is a Brx(x)-ruling on

Brx(x) ∖ Ĉf for all x ∈ S ∩ ∂Ĉf . And it can clearly be extended to a Brx(x)-
ruling q̃xf defined on all of Brx(x). This is achieved by setting q̃xf constantly equal

to qf (x) on B0(x). So by Remark 6, for all x ∈ S ∩ ∂Ĉf the q̃xf -integral curve

Γx ∈ W 2,∞([−Tx, Tx];Brx(x)) with Γx(0) = x satisfies B rx
8
(x) ⊂ [Γx(−Tx, Tx)];

here we have set Tx = rx/4. By the second part of Remark 6 we know (after
possibly replacing q̃xf by −q̃xf ) that

Γ([−Tx, 0)) ⊂ B0
x ⊂ Ĉf and Γ((0, Tx]) ⊂ B1

x ⊂ S ∖ Ĉf . (146)

On the other hand, for all x ∈ S ∖ Ĉf Remark 6 yields Tx > 0 and

Γx ∈ W 2,∞([−Tx, Tx];S ∖ Ĉf )

such that x ∈ [Γx(−Tx, Tx)]. Hence S is covered by the union of Ĉf with the union

of all sets [Γx(−Tx, Tx)] with x ∈ S ∖ Ĉf or with x ∈ S ∩ ∂Ĉf .
Set

Ŝ� := {x ∈ S : dist∂S(x) ≥ �}.

Since Ŝ� is compact, there exist finite subsets F1 ⊂ S ∩ ∂Ĉf and F2 ⊂ S ∖ Ĉf such
that

Ŝ� ⊂
∪

x∈F1∪F2

[Γ([−Tx, Tx])] ∪ Ĉf . (147)

But for all x ∈ F1 we have

[Γ([−Tx, Tx])] ∪ Ĉf = [Γ([0, Tx])] ∪ Ĉf

by virtue of (146); this also shows that the union on the right-hand side is disjoint.
After shifting the parameter interval for each Γx with x ∈ F2 (and changing the
value of Tx), we conclude:

Ŝ� ⊂ Ĉf ∪
∪

x∈F1∪F2

[Γx([0, Tx])]. (148)

Now if x ∈ S� ∖ Ĉf then by definition of S� there is x′ ∈ [x] ∩ Ŝ�. Thus (148)
implies that x′ ∈ [Γy([0, Ty])] for some y ∈ F1 ∪ F2. But this implies that [x′] ⊂
S ∩ [Γy(0, Ty)], compare e.g. the proof of Proposition 16. We conclude that

S� ⊂ Ĉf ∪
∪

x∈F1∪F2

[Γx(0, Tx)]. (149)

By inductively restricting each curve (and possibly deleting some; we denote the
resulting index sets again by F1 and F2 and their lengths again by Tx), it is easy
to arrange that the sets [Γx(0, Tx)] become pairwise disjoint, while (149) still holds.
Observe that each curve Γx satisfies (121) by virtue of Remark 6.
In a final step we subdivide each curve into curves satisfying (133) as follows: Fix
one y ∈ F1 ∪ F2. For all t ∈ [0, Ty] we define, with s+Γy

, s−Γy
as in formula (77),

Y (t) := {Γy(t) + sNy(t) : s ∈ (s−Γy
(t), s+Γy

(t))}.

Set
A+

� := {t ∈ [0, Ty] : s
+
Γy
(t)− s+Γy

(t) ≥ �}
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and
A−

� := {t ∈ [0, Ty] : s
−
Γy
(t)− s−Γy

(t) ≥ �}.

Clearly A±
� ⊂ As±Γy

, with As±Γy

as in formula (78). Proposition 16 implies that

[Γy(0, Ty)] satisfies condition (Bf ). Applying Lemma 5 we obtain a set Z[Γy(0,Ty)]

with the properties stated there.

Claim #1. For all

x ∈ Z[Γy(0,Ty)] ∖ ([Γy(0)] ∪ [Γy(Ty)])

with ℋ1([x]) ≥ � there is t ∈ A�
− ∪A�

+ such that [x] ⊂ Y (t).
In fact, by Proposition 16 the inclusion (122) or (123) holds. If (122) holds and

ℋ1([x]) ≥ � then
s+Γy

(t)− s+Γy
(t) ≥ �

because the segment with endpoints Γy(t) + s+Γy
(t)Ny(t) and Γy(t) + s+Γy

(t)Ny(t)

contains [x] by (122). The other case is similar, and the claim follows.
Now we subdivide Γy as follows. Proposition 15 that the sets A±

� are finite, i.e.
there exist Ly ∈ ℕ and

0 < t1 < t2 < ... < tLy
< Ty

such that
A+

� ∪A−
� ⊂ {0, t1, ..., tLy

, Ty}.

Set T
(1)
y = t1 and denote by Γ

(1)
y the restriction of Γy to [0, T

(1)
y ]. Set T

(2)
y = t2 − t1

and denote by Γ
(2)
y the restriction of Γy(⋅ + t1) to [0, T

(2)
y ], and so on. It follows

that whenever t ∈ [0, T
(1)
y ] satisfies

∣s+
Γ
(1)
y

(t)− s+
Γ
(1)
y

(t)∣ ≥ � or ∣s−
Γ
(1)
y

(t)− s−
Γ
(1)
y

(t)∣ ≥ �

then t ∈ {0, T
(1)
y }. Similar implications apply to the other subcurves Γ

(2)
y , Γ

(3)
y etc.

Hence (up to the different notation) each of these subcurves satisfies (133); observe
that we can take the supremum in (133) because the sets A±

�/2 are finite, too.

The construction is concluded by relabelling the curves: Let (Γ(1), T1), (Γ
(2), T2),

... be such that

{(Γ(1), T1), (Γ
(2), T2), ...} = {(Γ(i)

y , T (i)
y ) : y ∈ F1 ∪ F2 and i ≤ Ly}

By finite developability the set Ĉf consists of finitely many connected components
V1, ..., VM . For k > M set

Vk := [Γ(k−M)(0, Tk−M )].

Since different components of Ĉf are disjoint and since [Γ(k)(0, Tk)] does not inter-

sect Ĉf for any k, we have
Vk ∩ Vj = ∅ if j ∕= k.

Hence (135) follows from (149). Furthermore, Proposition 7 shows that if i < j ≤ M
then V̄i∩V̄j∩S = ∅. Moreover, each Vk satisfies (134): If k ≤ M then by Proposition
7, and if k > M then by Proposition 16. All remaining assertions follow from
Proposition 17 by setting W0 = W and denoting the elements of ZW by x1, x2, ...
and setting Wk = S2

xk
for all k ≥ 1.

Claim #1 and (133) imply: If x ∈ S ∩ ∂[Γ(k)(0, Tk)] satisfies ℋ
1([x]) ≥ � then there

is t ∈ {0, Tk} such that x is contained in the segment
(

Γ(k)(t) + s−
Γ(k)(t)N

(k)(t),Γ(k)(t) + s+
Γ(k)(t)N

(k)(t)
)

.

Hence the inclusion (132) is a consequence of (129). □
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7 Appendix: Some topological facts

Remark 8 If 
0, 
1 are disjoint closed Jordan curves such that 
1 is contained in
the closure of Ub(
0), then Ub(
1) is contained in Ub(
0).

Proof. Since Ub(
1) is open, it suffices to prove that Ub(
1) does not intersect
U∞(
0). Notice that U∞(
0) does not intersect

∂Ub(
1) = 
1 ⊂ Ub(
0) = Ub(
0) ∪ 
0.

Hence if we had Ub(
1) ∩ U∞(
0) ∕= ∅, then by connectedness U∞(
0) would be
contained in Ub(
1). This would contradict the boundedness of Ub(
1). □

Lemma 16 Let S ⊂ ℝ
2 be a continuous domain and let 
, � be disjoint Jordan

arcs contained in S. Then the following hold:

(i) If both endpoints 
+ and 
− of 
 are contained in the same connected com-
ponent ∂kS of ∂S then S ∖ 
 consists of exactly two connected components S1




and S2

 , and ∂kS ∖{
+, 
−} consists of exactly two connected components ∂1

kS
and ∂2

kS. Moreover, there exists a partition of {0, ..., NS} ∖ {k} = I1 ∪ I2 into
two disjoint subsets I1 and I2 such that, for j = 1, 2 we have:

Ub(∂iS) ⊂ Sj

 for all i ∈ Ij ∖ {0} (150)

and

∂Sj

 = 
 ∪ ∂j

kS ∪
∪

i∈Ij

∂iS. (151)

(ii) If k, j ∈ {0, ..., NS} with k ∕= j and 
−, �− ∈ ∂kS and 
+, �+ ∈ ∂jS then
S ∖ (
 ∪ �) consists of exactly two connected components S1 and S2, and
S̄1 ∩ S̄2 = 
̄ ∪ �̄. Moreover, S1 and S2 are continuous domains.

(iii) Let 
1, 
2, 
3 ⊂ S be disjoint Jordan arcs such that 
−
1 , 
−

2 , 
−
3 ∈ ∂kS and


+
1 , 
+

2 , 
+
3 ∈ ∂jS for some j ∕= k. Then S ∖ (
1 ∪ 
2 ∪ 
3) consists of exactly

three connected components.

(iv) If k ∈ {0, ..., NS} and 
±, �± ∈ ∂kS then S ∖ (
 ∪ �) consists of exactly
three connected components. Exactly one of them contains both 
 and � in its
boundary.

Proof. Let us prove part (i). We give the proof for the case k ∕= 0; the case k = 0
is similar. After relabelling we may assume that k = 1. The set ∂1S ∖ {
+, 
−}
consists of exactly two connected components ∂1

1S and ∂2
1S. Theorem V.11.8 in

[17], applied with D1 = U∞(∂1S) implies that U∞(∂1S) ∖ 
 consists of exactly two
connected components U1 and U2, and

∂Uj = 
 ∪ ∂j
1S for j = 1, 2. (152)

Since ∂0S is connected with ∂0S ∩ ∂jU = ∅, we can choose the labels j of Uj and

∂j
1S such that ∂0S ⊂ U1 and ∂0S ∩ U2 = ∅. But U2 intersects Ub(∂0S) because

∂1S ⊂ Ub(∂0S), and ∂1S ∩ ∂U2 ∕= ∅ by (152). Thus by connectedness of U2 we
conclude that

U2 ⊂ Ub(∂0S). (153)

By (152), by connectedness of Ub(∂iS) and since Ub(∂iS) ∩ (
 ∪ ∂1S) = ∅ for all
i = 2, ..., NS , we conclude that there is a partition {2, ..., NS} = I1 ∪ I2 such that,
for j = 1, 2,

Ub(∂iS) ⊂ Uj for all i ∈ Ij . (154)
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Thus Ub(∂iS) ∩ U1 = ∅ for all i ∈ I2 and Ub(∂iS) ∩ U2 = ∅ for all i ∈ I1. Hence

Uj ⊂
∩

i∈Ij′

U∞(∂iS), (155)

where j′ = 1 if j = 2 and j′ = 2 if j = 1. For j = 1, 2 we define

Sj

 := Ub(∂0S) ∩ Uj ∩

∩

i∈Ij

U∞(∂iS). (156)

Recall (18) and that U∞(∂1S) ∖ 
 = U1 ∪ U2. By (155) we have

Uj ∩
NS
∩

i=2

U∞(∂iS) = Uj ∩
∩

i∈Ij

U∞(∂iS)

for j = 1, 2. So we conclude

S ∖ 
 = Ub(∂0S) ∩
(

U∞(∂1S) ∖ 

)

∩
NS
∩

i=2

U∞(∂iS) = S1

 ∪ S2


 .

By (153) we have Ub(∂0S) ∩ U2 = U2, so in fact

S2

 = U2 ∩

∩

i∈I2

U∞(∂iS).

Now (i) follows from (156), (154) and (152).
To prove (ii) let us assume that k ∕= 0 ∕= j; the case k = 0 is similar. We apply

Exercise 3 in Section V.11 of [17] with J1 = ∂kS, J2 = ∂jS and L1 = 
, L2 = � and

D = U∞(∂kS) ∩ U∞(∂jS),

to find that D ∖ (� ∪ 
) consists of two components D1 and D2, each of which is a
Jordan domain. Clearly

∂Dm ⊂ ∂kS ∪ ∂jS ∪ 
 ∪ �

for m = 1, 2. Since D ∖ (
 ∪ �) = D1 ∪D2, from (18) we have S ∖ (
 ∪ �) = S1 ∪S2,
where

Sm := Ub(∂0S) ∩Dm ∩
∩

i∈{1,...,NS}∖{j,k}
U∞(∂iS).

We have ∂Dm ⊂ Ub(∂0S) since

∂Dm ⊂ ∂kS ∪ ∂jS ∪ 
 ∪ �.

If Dm = U∞(∂Dm), then

Sm = Ub(∂0S) ∩ U∞(∂Dm)
∩

U∞(∂iS),

so Sm is a continuous domain. If Dm = Ub(∂Dm), then Ub(∂Dm) is contained in
Ub(∂0S) by Remark 8 because ∂Dm ⊂ Ub(∂0S). Hence in this case

Sm = Ub(∂Dm) ∩
∩

U∞(∂iS),

which is a continuous domain as well. Carrying out Exercise 3 in [17] Section V.11
(we leave this to the reader), one finds that D̄1 ∩ D̄2 = 
̄ ∪ �̄. Thus S̄1 ∩ S̄2 = 
̄ ∪ �̄
because


̄ ∪ �̄ ⊂ ∂jS ∪ ∂kS ∪ 
 ∪ �,
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and the latter set is contained in

Ub(∂0S) ∩
∩

i ∕=0,j,k

U∞(∂iS).

This completes the proof of (ii).
Let us prove (iii). By (ii) S ∖ (
1 ∪ 
2) consists of exactly two components U3

and V3. Since 
3 is connected and

∂U3 ∪ ∂V3 ⊂ 
1 ∪ 
2 ∪ ∂S,

we have

3 ∩ (∂U3 ∪ ∂V3) = ∅.

So 
3 is contained either in V3 or in U3. Say 
3 ⊂ V3, so 
3 ∩ U3 = ∅. Thus U3 is
a component of S ∖ (
1 ∪ 
2 ∪ 
3). (This is an easy exercise; see e.g. the analogous
statement in the proof of Lemma 17, where the proof is given.) By (ii), V3 is a
continuous domain, so by (i) the set V3 ∖ 
3 consists of exactly two components V ′

3

and V ′′
3 . Thus U3, V

′
3 and V ′′

3 are the three connected components of S∖(
1∪
2∪
3).
To prove (iv) we apply (i) to conclude that S ∖ 
 consists of exactly two com-

ponents S1

 and S2


 . Since � is connected and does not intersect ∂S1

 ∪ ∂S2


 , it is

contained in one of the two. Say � ∈ S1

 . So � ∩ S̄2


 = ∅. As in the proof of (iii),
S2

 is therefore a component of S ∖ (
 ∪ �). By (i), S1


 ∖ � consists of exactly two
components. Thus S ∖ (
 ∪ �) consists of exactly three components.
Repeating the argument with � and 
 swapped, we find one component S2

� of S ∖�

which is also a component of S ∖ (
 ∪ �), and 
 ∩ S̄2
� = ∅. In particular, S2


 ∕= S2
� .

So we have identified two components of S ∖ (
 ∪ �) which do not contain 
 ∪ � in
their closure. Hence there can be at most one component which does.
Since in what follows we will only make use of uniqueness, we leave it to the reader
to prove that the third component of S ∖ (
∪�) contains 
∪� in its closure. □

Lemma 17 Let S ⊂ ℝ
2 be a continuous domain and let Γ+,Γ− be disjoint and

connected subarcs of ∂S. Assume that 
1, 
2, 
3 ⊂ S are disjoint Jordan curves
with 
+

k ∈ Γ+ and 
−
k ∈ Γ− (k = 1, 2, 3). Set

Vm = C(S ∖ (
k ∪ 
l); 
m),

where m = 1, 2, 3 and (k, l,m) is a permutation of (1, 2, 3). Then V1 ∩ V2 ∩ V3 = ∅.

Remark. The claim is false if the Γ± are not disjoint: Consider e.g. S = B1(0)
and 
k the line segments with endpoints given in polar coordinates (r, �) by 
±

k =
(1, �±k ) with �±1 = ±�

6 , �
±
2 = �

2 ± �
6 and �±3 = � ± �

6 .
Proof. First of all notice that the Vm are well defined: By Lemma 16 (ii) and
(iv), the set S ∖ (
1 ∪ 
2) consists of at least two connected components. Since 
3 is
connected and does not intersect ∂S ∪ 
1 ∪ 
2, it is contained in one component of
S ∖ (
1∪
2). Thus V3 is well defined, and so are V1 and V2 by analogous arguments.
If Γ+ ⊂ ∂iS for some i ∕= 0 then pick p ∈ Ub(∂iS) and define a homeomorphism Ψp

of ℝ2 ∖{p} onto ℝ
2 ∖{0} by setting Ψp(x) =

x−p
∣x−p∣2 for x ∈ ℝ

2 ∖{p}. Then Ψp(∂kS),

where k = 0, ..., NS , are closed Jordan curves. Clearly,

Ψp(Ub(∂0S)) = U∞(Ψp(∂0S)) (157)

Ψp(U∞(∂iS)) = Ub(Ψp(∂iS)). (158)

Similarly, Ψp(U∞(∂kS)) = U∞(Ψp(∂kS)) if k /∈ {0, i}. To prove (158), notice that
by continuity Ψp(U∞(∂iS)) is connected, that it is bounded because p has positive
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distance from U∞(∂iS), and that its boundary agrees with Ψp(∂iS) because Ψp is
a homeomorphism. Keeping in mind that p ∈ Ub(∂kS) if and only if k ∈ {0, i}, the
other equalities are proven similarly.
By (18) and since Ψp is a homeomorphism, the above equalities imply

Ψp(S) = Ub

(

Ψp(∂iS)
)

∩
∩

k∈{0,...,NS}∖{i}
U∞
(

Ψp(∂kS)
)

.

Thus Ψp(S) is a continuous domain with ∂0(Ψp(S)) = Ψp(∂iS). To save notation,
we summarize this argument by assuming without loss of generality that Γ+ ⊂ ∂0S.
Now, after possibly relabelling the ∂iS, two cases may occur: Either (a) Γ− ⊂ ∂1S
and Γ+ ⊂ ∂0S or (b) Γ− ∪ Γ+ ⊂ ∂0S. Let us first assume (a). Set

Ṽm = C(ℝ2 ∖ (∂1S ∪ ∂0S ∪ 
k ∪ 
l); 
m),

where (k, l,m) is a permutation of (1, 2, 3). If we prove that Ṽ1∩ Ṽ2∩ Ṽ3 = ∅ then we
are done, since Vm ⊂ Ṽm because ∂0S ∪ ∂1S ⊂ ∂S. To save notation we summarize
this observation by assuming without loss of generality that ∂S = ∂0S ∪ ∂1S.
So S = Ub(∂0S)∩U∞(∂1S) and each of the disjoint Jordan arcs 
1, 
2, 
3 lies in S
and has one endpoint in ∂0S and one in ∂1S. By Lemma 16, the set S ∖ (
i ∪ 
j)
(i ∕= j) consists of precisely two connected components. By definition, if (i, j, k) is
a permutation of (1, 2, 3) then one of them is Vk. The other one is denoted by Uk.
Since Ūk ∩ Vk = ∅, we have 
k ∩ Ūk = ∅.
Now U3 is a component of S∖(
1∪
2∪
3) since it is a component of S∖(
1∪
2) with
U3∩
3 = ∅. Indeed, if W is a component of S ∖ (
1∪
2∪
3) with W ∩U3 ∕= ∅ (such
W exists by openness of U3) then W ⊂ U3 since W is connected and W ∩ ∂U3 = ∅
because ∂U3 ⊂ ∂S ∪ 
1 ∪ 
2. On the other hand, U3 ⊂ W since U3 is connected and
U3 ∩ ∂W = ∅ because ∂W ⊂ ∂S ∪ 
1 ∪ 
2 ∪ 
3. Thus W = U3, as claimed.
On the other hand, since U3 is a component of S ∖ (
1 ∪ 
2), Lemma 16 (ii) implies

1 ∪ 
2 ⊂ Ū3. Arguing similarly for k = 1, 2 we conclude that, for k = 1, 2, 3, we
have: Uk is a connected component of S ∖ (
1 ∪ 
2 ∪ 
3) with 
k ∩ Ūk = ∅, and

i ∪ 
j ⊂ Ūk if i, j ∕= k. By the last two facts we have Uk ∕= Uj if k ∕= j. Since
by Lemma 16 (iii) the set S ∖ (
1 ∪ 
2 ∪ 
3) consists of exactly three connected
components, we conclude

S ∖ (
1 ∪ 
2 ∪ 
3) = U1 ∪ U2 ∪ U3. (159)

But (V1 ∩ V2 ∩ V3) ∩ Uk ⊂ Vk ∩ Uk = ∅ for k = 1, 2, 3. Thus V1 ∩ V2 ∩ V3 must be
empty by (159) and since by openness it is clearly not a subset of 
1 ∪ 
2 ∪ 
3. This
concludes the proof for case (a).
Now assume that (b) holds. Then by connectedness of U∞(∂0S) and since every
point on ∂0S is accessible from U∞(∂0S), there exist Jordan arcs Γ̃± ⊂ U∞(∂0S)
with the same endpoints as Γ±. (This follows from corollary to Theorem VI.14.6 in
[17].) Since 
i ⊂ S ⊂ Ub(∂0S), we have 
i ∩ Γ̃± = ∅ (i = 1, 2, 3). And since

Γ̃± ∩ Γ± ⊂ Γ̃± ∩ ∂S

is also empty, the sets
∂±S := Γ̄± ∪ Γ̃±

are closed Jordan curves. Let R > 0 so large that BR(0) contains ∂+S ∪∂−S ∪∂0S.
Then S̃ := BR(0)∩U∞(∂+S)∩U∞(∂−S) is a continuous domain, and S ⊂ Ub(∂0S) ⊂
S̃. So Vm ⊂ Ṽm, where Ṽm := C(S̃ ∖ (
k ∪ 
l); 
m). Hence it is enough to prove that
Ṽ1 ∩ Ṽ2 ∩ Ṽ3 is empty. To do this we apply the first part of the proof with S̃ instead
of S. □
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Lemma 18 If S ⊂ ℝ
2 is a bounded Lipschitz domain then there is �0 > 0 such that

S ∖ B̄�(∂S) is connected for all � ∈ (0, �0).

Proof. We only sketch the proof. For " > 0 set Ŝ" := S ∖ B̄"(∂S). Let � > 0 be
small and let � ∈ (0, 1

4�). For i = 0, ..., NS let �i ⊂ S be a closed Jordan curve with
dist∂iS(�i) ∈ (2�, 1

2�). (Existence of such �i is established by explicit construction
or e.g. by Theorem VI.17.1 in [17].) Set

S′ := Ub(�0) ∩
NS
∩

i=1

U∞(�i). (160)

For small � this is a continuous domain, so it is connected. Moreover, one readily
checks that Ŝ� ⊂ S′ ⊂ Ŝ�. Thus we conclude that, for all � > 0 small enough, there

is � ∈ (0, �) such that any two points in Ŝ� can be connected by a continuous curve

lying in the larger set Ŝ�.
Therefore, it remains to prove that every point in Ŝ� ∖ Ŝ� can be connected to some

point in Ŝ� by a continuous curve lying in Ŝ�. So let x ∈ Ŝ� ∖ Ŝ� and let us assume
throughout that � is small enough. Then there is R > 0 such that for some choice
of coordinates, we locally have ∂S = graphℎ∣(−R,R) for some Lipschitz function ℎ.
And S locally agrees with the subgraph of ℎ, so x lies in this subgraph. Writing
z = (z1, z2), we have

distgraphℎ(z) ∼ ∣z2 − ℎ(z1)∣ (161)

because graphℎ is contained in a cone with vertex (z1, ℎ(z1)) and opening angle
2 arctan(Lipℎ). Set y2 := sup{a < x2 : distgraphℎ(x1, a) ≥ 2�}. Using (161) one

checks that, for � small, y := (x1, y2) ∈ S. Thus y ∈ Ŝ� . Since x ∈ Ŝ� the ball
B�(x) is contained in the subgraph of ℎ. Hence so is B�([xy]). Again, this readily
implies that [xy] ⊂ Ŝ�. Thus [xy] is the sought-for curve.
The details omitted above are straightforward and are left to the interested reader.
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