
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften
Leipzig

Efficient convolution with the Newton potential

in d dimensions

(revised version: July 2008)

by

Wolfgang Hackbusch

Preprint no.: 81 2007

Efficient convolution with the Newton potential in d dimensions

W. Hackbusch

Max-Planck-Institute for Mathematics in Sciences

Inselstr. 22-26, D-04103 Leipzig, Germany; wh@mis.mpg.de

Abstract

The paper is concerned with the evaluation of the convolution integral
R

Rd
1

‖x−y‖
f(y)dy in d dimen-

sions (usually d = 3), when f is given as piecewise polynomial of possibly large degree, i.e., f may be
considered as an hp-finite element function. The underlying grid is locally refined using various levels
of dyadically organised grids. The result of the convolution is approximated in the same kind of mesh.
If f is given in tensor product form, the d-dimensional convolution can be reduced to one-dimensional
convolutions.

Although the details are given for the kernel 1/ ‖x‖ , the basis techniques can be generalised to
homogeneous kernels, e.g., the fundamential solution const·‖x‖2−d of the d-dimensional Poisson equation.

1 Introduction

We consider the mapping of f ∈ L2(Rd) onto u ∈ L2(Rd) by means of

u(x) := (Kf) (x) :=

∫

Rd

1

‖x − y‖f(y)dy for x ∈ R
d. (1.1)

The integral represents the convolution of the Newton (or Coulomb) potential 1/ ‖·‖ with f . For d = 3 the
kernel 1/4π ‖x − y‖ (cf. [5, §2.2]) is the fundamental solution of the Laplace operator ∆ in R

3. Hence, up
to a factor, u from (1.1) is the solution of the Poisson equation ∆u = f in R

3 (cf. [5, Theorem 3.2.11]).
Although the details are given for the kernel 1/ ‖x‖ , the basis techniques can be generalised to homo-

geneous kernels, e.g., the fundamental solution const · ‖x‖2−d
of the d-dimensional Poisson equation. The

homogeneity is used by the hierarchical quadrature in §4.2.4.
The solution of (1.1) is the primary goal. Here, we are interested in the case where f is smooth except

of some local singularities. Furthermore, f is assumed to have bounded support1. In particular, f may
represent the electron density of a many-particle in electronic structure calculations. In that case, f is
rather smooth except in the neighbourhood of the atom centres. The most efficient representation of such a
function f is an hp-approach using local refinements as well as high polynomial degrees.

A second goal is the evaluation of integrals of the form

∫

Rd

∫

Rd

g(x)f(y)

‖x − y‖ dxdy, (1.2)

which reduces to the scalar product 〈g, u〉L2(Rd) with u from (1.1). Again, integrals of the form (1.2) appear
in electronic structure calculations.

The integrals (1.1) are not computed exactly. Instead, a subspace S ⊂ L2(Rd) is defined which contains
the discretisations of f and of the result2 u. In the following, we always assume that f ∈ S. The optimal result
would be uS := PSKf, where PS is the L2(Rd)-orthogonal projection onto S. However, further discretisation
errors are introduced in order to get a fast evaluation.

1The “true” function f may have unbounded support, but should decay fast enough so that is can be well approximated by
a function of bounded support.

2Only for ease of notation we assume identical ansatz spaces for f and u. Since u is smoother than f, u does not need a
more refined grid, but u may decay less strongly than f and therefore require a more extended grid.

1

level l

level l+1
level l+2

Figure 1.1: Left: regular grid refinement. Right: refinement zones Bℓ with involved uniform grids.

The subspace S consists of piecewise (high-degree) polynomials. The underlying geometric grid is a family
of regular tensor grids of step size hℓ = 2−ℓ (ℓ ∈ Z) . Like for wavelet bases, this construction easily allows local
refinements around singularities of f . Large step sizes hℓ = 2−ℓ (ℓ < 0) can be used to approximate smooth
parts in the far field3. Figure 1.1 shows a possible locally refined grid4 combining regular grids of size hℓ = 2−ℓ

in the refinement zones5 Bℓ := [−2hℓ1, 2hℓ1) :=
{

x ∈ R
d : −2hℓ ≤ xj ≤ 2hℓ for 1 ≤ j ≤ d

}

⊂ Bℓ−1. In the
paper, we introduce only one family of refinement zones Bℓ around x = x0. But the generalisation to
refinement zones around several singularity points is obvious.

The chosen approach allows to use basis functions with the smallest possible support (one cube). This
advantage is lost if a corresponding multi-wavelet setting is used, while wavelets have other positive properties
(cf. [8]). Note that the method in [1] relies on the multi-resolution analysis.

Since for d = 3 u from (1.1) satisfies the Poisson equation, one may compare the present approach with
Poisson solvers. First, because of the unbounded domain, Poisson solvers are not as easy in R

d. Second,
we aim at approximations with high-degree polynomials in order to get high accuracy, whereas the order of
Poisson solvers is usually limited. Third, the present approach allows the use of piecewise approximations
which are discontinuous functions across the faces of the cubes. This fact leads to the smallest possible
support of the basis functions.

The method from [4] applies to the 2D Poisson in the square. It also allows high order approximations
of f, but is based on the multipole method and does not rely on discrete convolutions.

Since the grid is a combination of regular grids of step size hℓ, also S has contributions S ∩ Sℓ to several
levels ℓ (Sℓ is the space of piecewise polynomials on the infinite grid of size hℓ, the functions of S ∩ Sℓ have
their support only in the refinement zone Bℓ). The subspace

S≤ℓ := S ∩
⋃

λ≤ℓ

Sλ

describes the refinement up to level ℓ. Details of levels λ > ℓ corresponding to finer step size than hℓ are
missing. Like in wavelet approaches, a function f ∈ S can be written as f =

∑

ℓ fℓ with fℓ ∈ S ∩ Sℓ. The
true Galerkin approach in S maps all fℓ into PSKfℓ (PS : L2(Rd)-orthogonal projection onto S). Instead we
use the projection onto S≤ℓ: uℓ := PS≤ℓ

Kfℓ and compute u :=
∑

ℓ uℓ. This extra discretisation simplifies
the computation essentially and is discussed in §3.1. A precise analysis of the addition discretisation error
is subject of ongoing work. The local refinement in §2.3 introduces a condition (2.9) enforcing a soft change
in the step size. Therefore, the introduced errors can be considered as approximations in the far field.

The above modification allows to reduce the convolution to grids of uniform step size. The involved
integration with 1/ ‖x − y‖ can be performed rather accurately. In particular, the arising weakly singular
integrals introduce no extra error (see §4.2). Finally, when discrete convolutions have to be performed, one
can apply the Fast Fourier Transform. If the data size is as small as in Figure 1.1 (5 grid points in each
direction), even the naive summation may be used.

3Even if f is rather concentrated around a point with fast decay in the far field (like the Gaussian exp(−α ‖x − y‖2)), the
induced function u = Kf may decay more slowly like 1/ ‖x‖ . This fact, however, is no drawback, if the integral (1.2) is to be
evaluated and also g has fast decay. The latter case often occurs in electronic structure calculations.

4Note that the refinement is required by the function f, not by the kernel function 1/ ‖x − y‖ .
5The bold number “1” is the multi-index 1 =(1, . . . , 1) ∈ Z

d.

2

In the first approach of §4, the convolution problem in R
d is solved in the original form. The drawback

is that for d ≥ 3 the data size may become large because of the exponent d. Therefore, special emphasise is
laid on the tensor product variant. Here we assume that the function f has the tensor product form

f =
r
∑

µ=1

f
(µ)
1 (x1) · . . . · f (µ)

d (xd)

(more precise description in (5.4)) with hopefully small r. Such representation are, e.g., possible for the elec-
tron density of molecules. In that case, the d-dimensional convolutions can be split into d one-dimensional
convolutions. The data size and the computational work increase only proportionally to d if the spatial di-
mension increases. The tensor approximation of 1/ ‖x‖ together with the involved approximation is described
in §5.2.

The paper is organised as follows.
In Section 2 we introduce the notations for the geometric grid (the one-dimensional case in §2.1, for

general d in §2.2, the grid refinement in §2.3). Therein, also the basis functions Φℓ
ν,α are defined. The

representation of f ∈ S is discussed in §2.4. Subsection 2.5 introduces notations for projections, prolongations
and restrictions. Finally, in §2.6, the convolution is expressed by means of the basis functions.

Section 3 introduces the approximation of Kf, when f belongs to level ℓ. This treatment is important
for the algorithm described in §3.2. Possible modifications are mentioned in §3.3.

Section 4 describes the computation of the integrals N ℓ
i−j,α,β =

∫∫

Φℓ
i,α(x)Φℓ

j,β(y)/ ‖x − y‖dxdy. It turns
out that in the far field well-known approximations can be applied (§4.2.3), while the near field contributions
can be determined without further approximation errors (§4.2.4).

Section 5 discusses the tensor product approximations. In particular, in §5.2 the tensor product approx-
imation of the kernel 1/ ‖x‖ is described. Then the convolution leads to one-dimensional problems (§5.3).
The algorithm is given in §5.4.

The Appendix contains additional remarks about examples for the tensor approximation of 1/ ‖x‖ (§A.1),
the recursions for the Galerkin matrix computation (§A.2 for the one-dimensional and §A.3 for the multi-
dimensional case), and finally the recursions for the coefficients ξκ,α (§A.4).

2 Setting of the problem

2.1 Notation in the univariate case

Before we introduce the d-dimensional quantities, we start with the 1D case. Let

hℓ := 2−ℓ for ℓ ∈ Z (2.1)

be the step sizes corresponding to the ℓth level. Note that also negative level numbers ℓ < 0 associated with
large step sizes hℓ are allowed. The real axis R is divided into intervals

Iℓ
ν := [νhℓ, (ν + 1)hℓ) for ν, ℓ ∈ Z, (2.2)

which form the grid
Mℓ :=

{

Iℓ
ν : ν ∈ Z

}

for ℓ ∈ Z.

The function f from (1.1) is approximated by piecewise polynomials. For that purpose we define the
basis functions

Φℓ
ν,α (ℓ, ν ∈ N0, 0 ≤ α ≤ p)

as Legendre polynomials of degree α mapped from [−1, 1] onto Iℓ
ν , extended by zero outside of Iℓ

ν , and
normalised by

∥

∥Φℓ
ν,α

∥

∥

L2 = 1. Hence, for all ℓ ∈ Z,
{

Φℓ
ν,α : ν ∈ Z, 0 ≤ α ≤ p

}

is an orthonormal system.

Lemma 2.1 The basis functions Φℓ
ν,α of subsequent levels satisfy the relation

Φℓ
ν,κ =

κ
∑

α=0

(

ξκ,α,0Φ
ℓ+1
2ν,α + ξκ,α,1Φ

ℓ+1
2ν+1,α

)

with ξκ,α,0 := (−1)
κ+α

ξκ,α, ξκ,α,1 := ξκ,α,

where the coefficients ξκ,α are independent of ℓ and ν and can easily be computed (cf. §A.4).

3

2.2 Uniform grids in the multidimensional case

Using the step sizes hℓ in all directions, we define multidimensional intervals (cubes) by

Iℓ
ν := [νhℓ, (ν + 1)hℓ) := Iℓ

ν1
× . . . × Iℓ

νd
for ν ∈ Z

d, ℓ ∈ Z, (2.3)

where now the position index ν = (ν1, . . . , νd) is a multi-index. This defines the mesh

Mℓ :=
{

Iℓ
ν : ν ∈ Z

d
}

for ℓ ∈ Z. (2.4)

The basis functions (piecewise polynomials of coordinatewise degree ≤ p) are defined as tensor products
of the univariate basis functions. The degree is given by a multi-index α ∈ {0, . . . , p}d:

Φℓ
ν,α(x1, . . . , xd) =

d
∏

δ=1

Φℓ
νδ,αδ

(xδ)
(

ℓ ∈ Z, ν ∈ Z
d, 0 ≤ α ≤ p1

)

(2.5)

(note that 0 ≤ α ≤ p1 is equivalent to α ∈ {0, . . . , p}d). The support of Φℓ
ν,α is Iℓ

ν ∈ Mℓ. The basis
{

Φℓ
ν,α : ν ∈ Z

d, α ∈ {0, . . . , p}d
}

is orthonormal and spans the space

Sℓ := span
{

Φℓ
ν,α : ν ∈ Z

d, α ∈ {0, . . . , p}d
}

(ℓ ∈ N0) . (2.6)

The analogue of Lemma 2.1 is

Lemma 2.2 The basis functions Φℓ
ν,α of subsequent levels satisfy the relation

Φℓ
ν,κ =

∑

0≤α≤κ

∑

0≤i≤1

ξκ,α,iΦ
ℓ+1
2ν+i,α with ξκ,α,i := (−1)〈κ+α,1−i〉 ξκ,α, ξκ,α :=

d
∏

δ=1

ξκδ,αδ
. (2.7)

2.3 Locally refined mesh in R
d

In the following, we restrict the infinitely many levels ℓ ∈ Z to L ≤ ℓ ≤ L and associate a sequence of nested
boxes

∅ 6= BL ⊂ . . . ⊂ Bℓ+1 ⊂ Bℓ ⊂ . . . ⊂ BL ⊂ R
d with Bℓ = [aℓhℓ,bℓhℓ) , (2.8)

where aℓ,bℓ ∈ 2Z
d (even integers) and [aℓhℓ,bℓhℓ) abbreviates the d-dimensional box [aℓ,1hℓ, bℓ,1hℓ) ×

[aℓ,2hℓ, bℓ,2hℓ) × . . . × [aℓ,dhℓ, bℓ,dhℓ) . For formal purpose we define

BL+1 := ∅.

In order to avoid an immediate jump from a fine step size to a neighbouring coarse step size, we require
that the boxes Bℓ are properly nested. The precise condition is5: There is some m ∈ N with

Bℓ + [−mhℓ−11, mhℓ−11) = [aℓhℓ − mhℓ−11,bℓhℓ + mhℓ−11) ⊂ Bℓ−1 for L + 1 ≤ ℓ ≤ L, (2.9)

which is equivalent to dist∞(∂Bℓ−1, ∂Bℓ) ≥ mhℓ−1 (distance in the maximum norm).
For the approximation of f from (1.1) we use the refined mesh defined by

M :=
{

Iℓ
ν ∈ Mℓ : Iℓ

ν ⊂ Bℓ\Bℓ+1

}

.

The corresponding function space is given by

S := span
{

Φℓ
ν,α : Iℓ

ν ∈ M, 0 ≤ α ≤ p1
}

. (2.10)

Remark 2.3 a) The basis functions in (2.10) are orthonormal.
b) Any function in S has a support contained in BL.
c) After restriction to Bℓ\Bℓ+1, the spaces S and Sℓ (cf. (2.6)) coincide.
d) Any Iℓ

ν ⊂ Bℓ has the distance dist∞(Iℓ
ν , ∂Bℓ′) ≥ (2 − 2ℓ′+1−ℓ)mhℓ−1 ≥ mhℓ−1 from ∂Bℓ′ or B0\Bℓ′ for

ℓ′ < ℓ with respect to the maximum norm.

4

Example 2.4 For a function decaying for ‖x‖ → ∞ with a less regular behaviour at x = 0, the simplest
refinement structure uses

Bℓ = 2hℓ [−1,1) = [−2hℓ, 2hℓ)
d
.

Then, for m = 1 the inclusion (2.9) becomes an equality. Furthermore, the cardinality of M is

#M = 2d
(

2d
(

L − L + 1
)

−
(

L − L
))

,

and dimS = (p + 1)
d
#M hold. The covered support BL = 21−L [−1,1) may be large because of L < 0, while

the smallest step size hL = 2−L in BL may be rather small.

For simplicity, we will use a fixed polynomial degree p. Instead one may adapt also the polynomial degree
as usual for the hp-finite element approach.

2.4 Representation of f ∈ S

By definition of the space S (cf. (2.10)) there are coefficients f ℓ
j,β of f ∈ S so that

f =

L
∑

ℓ=L

∑

j,β

f ℓ
j,βΦℓ

j,β .

This defines a level-wise decomposition

f =

L
∑

ℓ=L

f ℓ with f ℓ :=
∑

j,β

f ℓ
j,βΦℓ

j,β ∈ Sℓ. (2.11)

Here the summation
∑

j,β is taken over positions j ∈ Z
d with Iℓ

j ⊂ Bℓ\Bℓ+1 and degrees 0 ≤ β ≤ p1 (i.e.,

β ∈ {0, . . . , p}d).

Remark 2.5 a) The unique decomposition (2.11) of f into the f ℓ-contributions leads to the supports

supp(f ℓ) ⊂ Bℓ\Bℓ+1. (2.12)

b) In the following we allow a representation f =
∑L

ℓ=L f ℓ with f ℓ :=
∑

j,β f ℓ
j,βΦℓ

j,β ∈ Sℓ such that

supp(f ℓ) ⊂ Bℓ.

In this case the restriction f |Bℓ\Bℓ+1
may involve contributions from all levels ℓ, ℓ−1, . . . , L. As a consequence,

such a representation is not unique.

2.5 Notations: projections, restriction and prolongation

Let S and Sℓ be the subspaces of L2(Rd) introduced above. Then the corresponding L2-orthogonal projec-
tions are denoted by

P : L2(Rd) → S, Pℓ : L2(Rd) → Sℓ.

By the definition of an orthogonal projection, the explicit representation of Pℓ is

Pℓ : ϕ ∈ L2(Rd) 7→ ϕℓ = Pℓϕ =
∑

i,α

ϕℓ
i,αΦℓ

i,α with ϕℓ
i,α =

〈

ϕ, Φℓ
i,α

〉

. (2.13)

The relation between P and Pℓ is given by the restrictions (Pf)|Bℓ\Bℓ+1
= (Pℓf)|Bℓ\Bℓ+1

to Bℓ\Bℓ+1.

Notation 2.6 The coefficients f ℓ
j,β of f ℓ :=

∑

j,β f ℓ
j,βΦℓ

j,β ∈ Sℓ give rise to the multi-indexed sequences

fℓ,β :=
(

f ℓ
j,β

)

j∈Zd for all 0 ≤ β ≤ p1

which are summarised in the tuple
f [ℓ] := (fℓ,β)

0≤β≤p1 .

5

Since Sℓ ⊂ Sℓ+1, any f ℓ ∈ Sℓ can be represented at level ℓ (f ℓ :=
∑

i,α f ℓ
i,αΦℓ

i,α) as well as at level ℓ + 1:

f ℓ =
∑

j,β f ℓ+1
j,β Φℓ+1

j,β . The respective coefficients are compactly written as f [ℓ] and f [ℓ + 1]. To characterise

the prolongation P : f [ℓ] 7→ f [ℓ + 1], we make use of (2.7) and obtain

P(f [ℓ]) = f [ℓ + 1] with f ℓ+1
2i+k,β :=

∑

β≤α≤p1

f ℓ
i,αξα,β,k for all 0 ≤ k ≤ 1 (2.14)

with the coefficients ξα,β,k from (2.7).
The opposite direction is performed by the restriction R : f [ℓ+1] 7→ f [ℓ] associated to the L2-orthogonal

projection of a function f ℓ+1 ∈ Sℓ+1 onto f ℓ ∈ Sℓ. Note that f ℓ has the coefficients f ℓ
i,α =

〈

f ℓ+1, Φℓ
i,α

〉

.

Inserting the representation f ℓ+1 :=
∑

j,β f ℓ+1
j,β Φℓ+1

j,β and the recursion formula (2.7), we get the component-
wise representation

R : f [ℓ + 1] 7→ f [ℓ] with f ℓ
i,α :=

∑

0≤κ≤α

∑

0≤k≤1

ξα,κ,kf ℓ+1
2i+k,κ . (2.15)

2.6 Convolution with 1/ ‖x‖
The convolution with the Newton6 potential defines the operator

(Kf) (x) :=

∫

Rd

f(y)

‖x − y‖dy .

Instead of general f we consider ansatz functions f ∈ S. The Galerkin approximation of K is given by PKP
(P from §2.5). Therefore, for f ∈ S, the function

u := PKf ∈ S (f ∈ S)

is to be determined. Thanks to Remark 2.3a, the coefficients of u ∈ S can be characterised explicitly:

u =

L
∑

ℓ′=L

∑

i∈Z
d with

Iℓ
i
⊂Bℓ\Bℓ+1

∑

0≤α≤p1

uℓ′

i,αΦℓ′

i,α with uℓ′

i,α :=
〈

Kf, Φℓ′

i,α

〉

.

Since f ∈ S is a linear combination of certain Φℓ
j,β , the quantities

〈

KΦℓ
j,β , Φℓ′

i,α

〉

=

∫

Rd

∫

Rd

Φℓ′

i,α(x)Φℓ
j,β(y)

‖x − y‖ dxdy (2.16)

need to be computed. In the following we will discuss the case ℓ′ = ℓ.

Remark 2.7 In principle, the general case ℓ′ 6= ℓ can be reduced to ℓ′ = ℓ as follows. Let, e.g., ℓ′ > ℓ.
Using (2.7), we can replace Φℓ

j,β(y) by basis functions of level ℓ + 1. Repeating this process (ℓ′ − ℓ)-times,

only expressions of the form
〈

KΦℓ′

j,β , Φℓ′

i,α

〉

appear. In practice, this procedure requires that f |Bℓ\Bℓ+1
∈ Sℓ

must be expressed by basis functions from level ℓ′ which increases the data size by 2ℓ′−ℓ.

Because of the last mentioned disadvantage, we will introduce an approximation of PKP which requires
(2.16) for equal levels ℓ = ℓ′ only. Note that

Kℓ := PℓKPℓ

is the Galerkin approximation of K in Sℓ. Its matrix entries are the quantities from (2.16) with ℓ = ℓ′.

6In connection with electrical fields, the Newton potential is also called Coulomb potential.

6

3 Approximation of the convolution

The reasoning is as follows: The image Kϕ is smoother than ϕ. In particular the mapping of the part ϕ|Ω1

to (Kϕ)|Ω2 has smoothing character. If the grid size hℓ−1 is sufficient to approximate f ℓ−1 in Ω1 it should
also be sufficient to approximate u = Kf ℓ−1 by uℓ−1 = Pℓ−1Kf ℓ−1.

3.1 Definition of the approximation

Consider f ℓ ∈ Sℓ with support Bℓ. The image u := PKf ℓ ∈ S is the exact Galerkin result. Fix a level λ and
consider the restriction uλ := u|Bλ\Bλ+1

. This function extended by zero outside belongs to Sλ. Hence,

uλ = PλKPℓf
ℓ

holds, where L ≤ λ ≤ L. As mentioned before, the computation of PλKPℓ for λ 6= ℓ is possible, but costly.
Instead we introduce a further approximation error and replace PλKPℓ by Pmin{λ,ℓ}KPmin{λ,ℓ}. The verbal
justification is as follows. A more formal justification will follow in §3.4.

If λ ≥ ℓ, the result uλ requires the finer step size hλ ≤ hℓ. However, since Kf ℓ is smoother than f ℓ ∈ Sℓ,
also the image should be well approximated in Sℓ. Therefore, we replace Pλ by Pℓ = Pmin{λ,ℓ}.

If λ = ℓ−1, the support Bℓ−1\Bℓ is disjoint from the support of f ℓ, which is contained in Bℓ. This leads
to a further smoothing effect by K and allows to neglect the difference Pℓ−1K (Pℓ − Pℓ−1) f ℓ, i.e., to replace
PλKPℓf

ℓ by PλKPλf ℓ

If λ < ℓ−1, the support Bλ\Bλ+1 has a distance of at least mhλ+1 from the support of f ℓ. This increased
the smoothing effect again and allows to use PλKPλf ℓ.

The described replacements lead to the following approximation.

Definition 3.1 Represent f ∈ S in the form

f =
∑

ℓ

f ℓ with f ℓ ∈ Sℓ, supp(f ℓ) ⊂ Bℓ (3.1a)

(cf. Remark 2.5b). Approximate each term PKf ℓ ∈ S by uℓ =
∑ℓ

λ=L uλ,ℓ with

uℓ,ℓ :=
(

Pℓ KPℓf
ℓ
)

|Bℓ
, (3.1b)

uλ,ℓ :=
(

Pλ KPλf ℓ
)

|Bλ\Bλ+1
for L ≤ λ < ℓ. (3.1c)

Altogether the approximation of Kf is

u :=

L
∑

ℓ=L

ℓ
∑

λ=L

uλ,ℓ. (3.1d)

Remark 3.2 Note that the result u in (3.1d) depends on the representation (3.1a) of f . The most accurate
result is to be expected for the representation from Remark 2.5a.

3.2 Algorithm

The algorithmic description of Definition 3.1 reads as follows:

F := 0; u := 0;
for ℓ := L downto L do
begin F := PℓF ;

u|Bℓ
:= u|Bℓ

+
(

Pℓ KPℓ f ℓ
)

|Bℓ
;

u|Bℓ\Bℓ+1
:= (Pℓ KPℓ F) |Bℓ\Bℓ+1

;
F := F + f ℓ;

end;

(3.2)

The function F from line 3 is F = Pℓ

∑L
λ=ℓ+1 fλ ∈ Sℓ. Its support is in Bℓ+1. In line 4, the new term uℓ,ℓ

from (3.1b) is added. Line 5 contains
∑L

λ=ℓ+1 uℓ,λ from (3.1c).

7

If one wants to follow the lines of Remark 3.2, Algorithm (3.2) is to be preceded by

for ℓ := L to L − 1 do
begin f [ℓ + 1] := f [ℓ + 1] + P(f [ℓ]|Bℓ+1

); f [ℓ]|Bℓ+1
:= 0 end;

(3.3)

P is the prolongation from (2.14).The notation f [ℓ]|Bℓ+1
is used for the coefficients of the restriction f ℓ|Bℓ+1

,
i.e. f ℓ

i,α = 0 for Iℓ
i ∩Bℓ+1 = ∅. This part is represented with respect to the basis of level ℓ+1. The subtraction

of this part from level ℓ is described by replacing all coefficients corresponding to Iℓ
i ⊂ Bℓ+1 by zero.

It remains to described the performance of Kℓ f ℓ for Kℓ := Pℓ KPℓ, which is the discrete convolution
with the Newton potential.

3.3 Possible improvements and modifications

The approximation errors introduced in §3.1 can be reduced as follows. The truncation of uλ = PλKPℓf
ℓ

from a coarse level λ < ℓ to PλKPλf ℓ happens if supp(f ℓ) ⊂ Bℓ and if the result is to be evaluated in
Bλ\Bλ+1. For λ = ℓ − 1, these support are directly neighboured, otherwise (λ < ℓ − 1) there is a distance
of at least mhℓ−1 = 2mhℓ (cf. Remark 2.3d). Increasing m improves the accuracy for λ < ℓ − 1. To include
the case λ = ℓ − 1, one may split A := Bλ\Bλ+1 = [aλhλ,bλhλ) \ [aλ+1hλ+1,bλ+1hλ+1) into

A′ := [aλhλ,bλhλ) \ [aλ+1hλ+1 − m′hλ+11,bλ+1hλ+1 + m′hλ+11) ,

A′′ := [aλ+1hλ+1 − m′hλ+11,bλ+1hλ+1 + m′hλ+11) \ [aλ+1hλ+1,bλ+1hλ+1) ,

assuming aλhλ ≤ aλ+1hλ+1 − m′hλ+11 and bλhλ ≥ bλ+1hλ+1 + m′hλ+11. The restriction uλ|A′ =
PλKPℓf

ℓ|A′ ≈ PλKPλf ℓ|A′ is treated as before, whereas in A′′ we determine uℓ|A′′ = PℓKPℓf
ℓ|A′′ on the

finer level and prolongate this result to level λ = ℓ − 1.
As mentioned in Remark 2.5b, we may allow contributions to Bℓ from all levels λ ≤ ℓ. In the (multi-)

wavelet setting this is the common approach with the difference that for increasing levels the data contain
details which are orthogonal to previous contributions, i.e.,

f =

L
∑

ℓ=L

f ℓ with f ℓ ∈ Sℓ and f ℓ⊥Sλ for λ < ℓ. (3.4)

The advantage of this representation is that the size of the details can be used to estimate errors or to adapt

the mesh. Given any representation f =
∑L

ℓ=L f ℓ with f ℓ ∈ Sℓ organised by the data f [ℓ], the algorithm

for ℓ = L downto L + 1 do
begin d[ℓ − 1] := R(f [ℓ]); (cf. (2.15))

f [ℓ − 1] := f [ℓ − 1] + d[ℓ − 1];
f [ℓ] := f [ℓ] − P(d[ℓ − 1]) (cf. (2.14))

end;

yields the representation (3.4). Note that f ℓ is split orthogonally into f ℓ = Pℓ−1f
ℓ +(I − Pℓ−1) f ℓ. The part

Pℓ−1f
ℓ is realised by the data R(f [ℓ]) on level ℓ − 1.

For simplicity, we have fixed the polynomial degree by p.

3.4 Justification of the Approximation

In §3 we have replaced PλKPℓ by Pmin{λ,ℓ}KPmin{λ,ℓ}. In the following we describe a situation, where this
replacement (for λ < ℓ) make sense. We recall that in this setting the source function f and the convolution
u from (1.1) are represented in the same grid system. In general, however, we have to use another adapted
grid for u, which might be very different from the f -grid as the second Example 3.4 will show. As in §3.3 we
assume that the replacement of PλKPℓ by PλKPλ for λ = ℓ−1 happens only for x ∈ Bλ with dist(x, Bℓ) ≥ hλ

(using the minimal value m = 1). Note that for λ < ℓ − 1 this distance conditions follows from (2.9).

8

Example 3.3 We assume that f satisfies (i) supp(f) has diameter O(1), (ii) f ∈ C1 with the Lipschitz
condition (iii):

|∇f(x) −∇f(y)| ≤ L |∇f(x)| ‖x − y‖ . (3.5)

The characteristics of the grid are: (a) The size is O(1) according to (i), (b) the polynomial degree p = 0 is
chosen, (c) for a fixed position x the grid is refined until the approximation f̃ ∈ S satisfies ‖f − f̃‖∞ ≤ ε for
a given ε > 0.

Assumption (i) concerns the size of supp(f). Of course, the image u = Kf needs a larger support for
approximation, but there may be reasons to approximate u only in the f -grid (one reason is the scalar
product (1.2) involving a function with the corresponding support).

Assumption (ii) allows pointwise error estimates for the choice p = 0 (see (b)).
The main difficulty in this analysis is the formulation of the variation of smoothness. If the smoothness

(here expressed by the size of ∇f) is similar everywhere, we need only one uniform grid and the replacement
of PλKPℓ by PλKPλ does not happen. Different grid sizes occur due to a variation of smoothness. Condition
(3.5) is an attempt to model the variation by a relative Lipschitz condition.

Remark 2.5a led to a unique representation of f =
∑

ℓ fℓ. Here, we use the representation (3.4). The
contributions fℓ are defined by Pλf =

∑

ℓ≤λ fℓ, i.e., fℓ := (Pℓ − Pℓ−1) f. Together with p = 0, this describes

the Haar wavelet representation. For simplicity, we first consider a 1D-grid and therein an interval Iℓ+1
ν (cf.

(2.2)). The coefficient f ℓ+1
ν in f ℓ+1 :=

∑

j f ℓ+1
j Φℓ+1

j,0 (the β-indices are not needed since β = 0 because of

p = 0) is defined by
〈

f ℓ+1, Φℓ+1
ν,0

〉

. Let ν be even. While Φℓ+1
ν,0 +Φℓ+1

ν+1,0 belongs to the range of the projection

Pℓ, Φℓ+1
ν,0 − Φℓ+1

ν+1,0 is orthogonal. Hence, f ℓ+1
ν = −f ℓ+1

ν+1 and

f ℓ+1
ν =

1

2

〈

f, Φℓ+1
ν,0 − Φℓ+1

ν+1,0

〉

holds. Since Φℓ+1
ν,0 has the value 2(ℓ+1)/2 = h

−1/2
ℓ+1 in Iℓ+1

ν , there is a ξ ∈ Iℓ+1
ν ∪ Iℓ+1

ν+1 = Iℓ
ν/2 with

f ℓ+1
ν =

h
1+1/2
ℓ+1

2
f ′(ξ).

The projection error δfℓ := f − Pℓf is the infinite sum
∑∞

λ=ℓ+1

∑

j fλ
j Φλ

j,0. At a fixed point y the error is

δfℓ(y) =
∑∞

λ=ℓ+1 fλ
ν(λ,y)Φ

λ
ν(λ,y),0, where ν = ν(ℓ, y) is the indix with x0 ∈ Iλ

ν(λ,x0). As ‖Φλ
ν(λ,y),0‖∞ = h

−1/2
λ ,

we have

|δfℓ(y)| ≤ 1

2

∞
∑

λ=ℓ+1

hℓ+1 ‖f ′‖∞,Iℓ
ν/2

= hℓ+1 ‖f ′‖∞,Iℓ
ν/2

(y ∈ Iℓ
ν/2).

Up to a factor 2, the leading term of δfℓ is the contribution f ℓ+1
ν Φℓ+1

ν,0 of level ℓ+1. Replacing the argument

ξ ∈ Iℓ
ν/2 by y we write simply

|δfℓ(y)| . hℓ |f ′(y)| .
When an operator with kernel k(x, y) is applied to f ℓ+1

ν

(

Φℓ+1
ν,0 − Φℓ+1

ν+1,0

)

, the result is f ℓ+1
ν hℓ+1

∂
∂y k(x, ỹ)

with ỹ ∈ Iℓ
ν/2. Hence

∣

∣

∣

∣

∣

∫

Iℓ
ν/2

k(x, y)δfℓ(y)dy

∣

∣

∣

∣

∣

≤ ‖f ′‖∞,Iℓ
ν/2

h2
ℓ

∣

∣

∣

∣

∣

∫

Iℓ
ν/2

∂

∂y
k(x, ỹ)dy

∣

∣

∣

∣

∣

. h2
ℓ

∣

∣

∣

∣

∣

∫

Iℓ
ν/2

f ′(y)
∂

∂y
k(x, y)dy

∣

∣

∣

∣

∣

(3.6)

Now we return to the d-dimensional case. The same argument shows

|δfℓ(y)| . hℓ ‖∇f‖∞,Iℓ
ν/2

.

(3.6) becomes
∣

∣

∣

∣

∣

∫

Iℓ
ν/2

δfℓ(y)dy

‖x − y‖

∣

∣

∣

∣

∣

. h2
ℓ

∫

Iℓ
ν/2

|∇f(y)| dy

‖x − y‖2 . (3.7)

9

The function δf(x) is defined by δfℓ(x) with ℓ such that x ∈ Bℓ\Bℓ+1.
Now we assume that refinement is done such that ‖δf‖∞ ≤ ε (assumption (c) of Example 3.3). Therefore,

an error of u = Kf of the size
∫

B0

εdy
‖x−y‖ is acceptable. Let x ∈ Bλ\Bλ+1 and y ∈ Bℓ, where ℓ > λ. Replacing

PλKPℓ by PλKPλ means to replace δfℓ in Bℓ by δfλ. Following (3.7), δfλ leads to the error contribution

h2
λ

∫

Bℓ

|∇f(y)|dy

‖x−y‖2 from Bℓ. The Lipschitz condition (3.5) yields

h2
λ

|∇f(y)|
‖x − y‖2 ≤ h2

λ

|∇f(x)|
‖x − y‖2 + Lh2

λ

|∇f(x)|
‖x − y‖ .

Since the replacement of PλKPℓ by PλKPλ is only made if ‖x − y‖ ≥ hλ (cf. §3.3), h2
λ/ ‖x − y‖2 ≤

hλ/ ‖x − y‖ holds. Together we have

h2
λ

|∇f(y)|
‖x − y‖2 ≤ hλ

|∇f(x)|
‖x − y‖ (1 + Lhλ) .

Since ‖δf‖∞ ≤ ε and x ∈ Bλ\Bλ+1 is assumed, hλ |∇f(x)| . ε follows. Hence the error contribution from
Bℓ is of acceptable size:

h2
λ

∫

Bℓ

|∇f(y)| dy

‖x − y‖2 ≤ (1 + Lhλ)

∫

Bℓ

hλ |∇f(x)|
‖x − y‖ dy .

∫

Bℓ

εdy

‖x − y‖ .

Example 3.4 Let ℓ∗ ∈ N be fixed and set f := Φℓ∗
0,0. Since supp f = Iℓ∗

0 , the grid for the representation of f
requires only one interval. Obviously, the function f is not smooth, but its (non-)smoothness is not expressed
by (omitted) contributions f ℓ in f =

∑

ℓ f ℓ for ℓ > ℓ∗. The image u = Kf requires its own adapted grid
by two reasons. First, u(x) behaves as O(1/ ‖x‖) as ‖x‖ → ∞ and needs a large grid (which can be easily
managed by choosing a sufficiently negative L). Second, the discontinuity of f on ∂Iℓ∗

0 requires a refinement
in the neighbourhood of Iℓ∗

0 .

We add the remark that we should not compute u from the latter example if the scalar product 〈g, u〉 is
desired, since this value can better be computed via 〈Kg, f〉 =

〈

Kg, Φℓ∗
0,0

〉

.

4 Evaluation of the convolution

4.1 Convolution at level ℓ

Due to the approximation made in §3.1, the coefficients (2.16) are only needed for the case ℓ′ = ℓ. Since
Φℓ

i,α(x) = Φℓ
0,α(x − ihℓ), substitution of the integration variables shows that the integrals

N ℓ
i−j,α,β :=

∫∫

Φℓ
i,α(x)Φℓ

j,β(y)

‖x − y‖ dxdy =

∫∫

Φℓ
i−j,α(x)Φℓ

0,β(y)

‖x − y‖ dxdy (4.1)

depend only on the difference i − j.

Remark 4.1 Let f ℓ be as in (2.11). The L2-orthogonal projection of F (x) :=
∫ fℓ(y)

‖x−y‖dy onto Sℓ yields

PℓF = PℓKf ℓ =
∑

i∈Zd

∑

0≤α,β≤p1





∑

j∈Zd

N ℓ
i−j,α,βf ℓ

j,β



Φℓ
i,α.

Set
F ℓ

i,α :=
∑

0≤β≤p1

∑

j∈Zd

N ℓ
i−j,α,βf ℓ

j,β . (4.2)

Besides the β-summation it is a discrete convolution and can be computed by fast Fourier Transform (FFT),
provided that the quantities N ℓ

k,α,β from (4.1) are known (this will be the subject of §4.2). F ℓ
i,α are the

coefficients of PℓF =
∑

i∈Zd

∑

0≤α≤p1 F ℓ
i,αΦℓ

i,α.

10

Remark 4.2 The sequence (f ℓ
j,β)j∈Zd has a finite support, since f ℓ

j,β = 0 as soon as jhℓ is outside of the

refinement box Bℓ. Let N := #{j : jhℓ ∈ Bℓ} be the data size. The sequence (N ℓ
i,α,β)i∈Zd has unbounded

support, which implies that also (F ℓ
i,α)i∈Zd has unbounded support. But since we are only interested in the

finite part {F ℓ
i,α : jhℓ ∈ Bℓ}, one can truncate the support of (N ℓ

i,α,β)i∈Zd so that the data size is O(N)

while the discrete convolution yields the same values {F ℓ
i,α : jhℓ ∈ Bℓ}. Applying fast Fourier transform, the

discrete convolution (4.2) requires O(Npd log N) arithmetical operations.

4.2 Computation of N ℓ
i,α,β

4.2.1 Properties

First we describe some helpful properties of N ℓ
i,α,β. Its dependence on ℓ is given by a factor. Since Φℓ

i,α(x) =

2ℓd/2Φ0
i,α(2ℓx), we have

N ℓ
i,α,β =

∫∫

Φℓ
i,α(x)Φℓ

0,β(y)

‖x − y‖ dxdy = 2ℓd

∫∫

Φ0
i,α(2ℓx)Φ0

0,β(2ℓy)

‖x − y‖ dxdy

= 2ℓd2ℓ

∫∫

Φ0
i,α(2ℓx)Φ0

0,β(2ℓy)

‖2ℓx − 2ℓy‖ dxdy = 2ℓ(1−d)

∫∫

Φ0
i,α(x′)Φ0

0,β(y′)

‖x′ − y′‖ dx′dy′

= 2ℓ(1−d)N0
i,α,β . (4.3)

Hence, it is sufficient to determine N0
i,α,β only for the level ℓ = 0 (or any other fixed level). For a fixed range

of the indices i, α, β these data can be calculated once for all.
Furthermore, various symmetries may be exploited.

Remark 4.3 (permutation) Let π be a permutation of {1, . . . , d}. Then

N0
i,α,β = N0

π(i),π(α),π(β),

where π(i) :=
(

iπ(1), . . . , iπ(d)

)

(π(α) and π(β) analogously).

Remark 4.4 (mirror symmetry) Let δ ∈ {1, . . . , d} . Then

N0
i,α,β = (−1)

αδ+βδ N0
i′,α,β with i′ := (i1, . . . , iδ−1,−iδ, iδ+1, . . . , id) .

Proof. Use the substitutions x′
δ := 1 − xδ, y′

δ := 1 − yδ and Φ0
0,α(1 − x) = (−1)

α
Φ0

0,α(x).

Remark 4.5 (α, β symmetry) Given α, β ≥ 0, we define the multi-indices with interchanged components
at position δ ∈ {1, . . . , d} by α′ := (α1, . . . , αδ−1, βδ, αδ+1, . . . , αd) and β′ := (β1, . . . , βδ−1, αδ, βδ+1, . . . , βd) .
Then

N0
i,α,β = (−1)

αδ+βδ N0
i,α′,β′ .

Proof. Note that7

N0
i,α,β =

∫ 1

0

∫ 1

0

k(x′
δ − yδ)Φ

0
0,αδ

(x′
δ)Φ

0
0,βδ

(yδ)dxδdyδ (4.4)

with the kernel

k(xδ − yδ − iδ) :=

∫

· · ·
∫

Φℓ
i,α(x)Φℓ

0,β(y)

‖x − y‖ dx1 · · · dxδ−1dxδ+1 · · ·dxddy1 · · ·dyδ−1dyδ+1 · · ·dyd,

where the integration is performed over all variables except xδ and yδ. Note that the shift by −iδ on the
left-hand side allows to replace Φ0

iδ,αδ
(xδ) in (4.4) by Φ0

0,αδ
(x′

δ) with x′
δ = xδ−iδ. We substitute the variables

7The given proof is more general than needed for this remark. Later, however, we need the symmetry for general kernels
k(·).

11

in (4.4) by x′
δ = 1

2 + x, yδ = 1
2 + y. Symmetry of Φ0

0,α yields

N0
i,α,β =

∫ 1/2

−1/2

∫ 1/2

−1/2

k(x − y)Φ0
0,αδ

(
1

2
+ x)Φ0

0,βδ
(
1

2
+ y)dxdy

= (−1)
αδ+βδ

∫ 1/2

−1/2

∫ 1/2

−1/2

k(x − y)Φ0
0,αδ

(
1

2
− x)Φ0

0,βδ
(
1

2
− y)dxdy.

Substitution x′ = 1
2 − x, y′ = 1

2 − y together with x − y = y′ − x′ yields

N0
i,α,β = (−1)

αδ+βδ

∫ 1/2

−1/2

∫ 1/2

−1/2

k(y′ − x′)Φ0
0,αδ

(x′)Φ0
0,βδ

(y′)dx′dy′.

Interchanging the symbols x′, y′ shows N0
i,α,β = (−1)

αδ+βδ
∫ 1/2

−1/2

∫ 1/2

−1/2
k(x′ − y′)Φ0

0,βδ
(x′)Φ0

0,αδ
(y′)dx′dy′ =

(−1)
αδ+βδ N0

i,α′,β′ .

Conclusion 4.6 If N0
i,α,β are known for indices i with 0 ≤ i1 ≤ i2 ≤ . . . ≤ id and α ≤ β, all other N0

i,α,β

can be determined by means of the previous Remarks.

4.2.2 Exact computation

At least for d ≤ 3, the integrals (4.1) can be determined exactly from the (symbolic) integration described
in [6]. For instance, for N0

0,0,0 one gets the (exact) result

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

dxdy

‖x − y‖ =
2

5
+

2

5
∗
√

2− 4

5
∗
√

3− 2 ∗ ln (2)+ 2 ∗ ln
(

1 +
√

2
)

+ 4 ∗ ln
(

1 +
√

3
)

− 2

3
∗ π,

i.e., N0
0,0,0 ≈ 1.882.

But instead of the exact computation we propose an easy but good approximation. For this purpose
we first discuss the so-called far field case, where integrands without singularity are discussed. Having
these results, it turns out that the singular cases can be treated quite easily without any further numerical
approximation.

4.2.3 Far field computation (‖i‖∞ ≥ 2)

If ‖i‖∞ ≥ 2, the integration in N0
i,α,β :=

∫∫ Φ0
i,α(x) Φ0

0,β(y)

‖x−y‖ dxdy can be reduced to the product I0
i × I0

0 of the

supports I0
i and I0

0. Since these cubes have a distance ≥ ‖i‖∞−1 ≥ 1 and therefore ‖x − y‖ ≥ ‖x − y‖∞ ≥ 1,
the integrand is an analytic function without singularity.

As shown in Appendix A.3, the data N0
i,α,β can be derived from the quantities

∫ 1

0

. . .

∫ 1

0

Φ0
0,α(y)

‖j − y‖ dy (4.5)

for j with i ≤ j ≤ i+1 by means of simple recursions. Note that ‖j − y‖ ≥ ‖j − 1‖ ≥ ‖i − 1‖ ≥ ‖i − 1‖∞ ≥ 1.
For fixed j the integration in (4.5) is to be performed in the d-dimensional cube [j− 1, j] =

∏d
δ=1 [jδ − 1, jδ] . Consider the function Fj(y) := 1/ ‖j − y‖ in [0, 1]d. Since Fj is analytic in all directions

yδ, it has a power series representation Fj(y) =
∑

ν≥0 ανyν . The basis of the monomials yν =
∏d

δ=1 yνδ

δ can

be replaced by the Legendre polynomials Φ0
0,β(y), i.e.,

Fj(y) =
∑

β≥0

kj,βΦ0
0,β(y).

Remark 4.7 By the orthonormality of the Φ0
0,α the coefficients kj,β in the representation from above are

equal to the integrals (4.5).

12

The analyticity of Fj(y) can be quantified by means of bounds of the derivatives. More precisely, Fj(y) =
1/ ‖j − y‖ is asymptotically smooth8, in particular the bounds

∣

∣

∣

∣

∣

(

∂

∂yδ

)k
1

‖j − y‖

∣

∣

∣

∣

∣

≤ (1 + O(k)) k!

‖j − y‖k+1
≤ (1 + O(k)) k!

(‖j‖∞ − 1)k+1
≤ (1 + O(k)) k! (4.6)

hold for all k ∈ N0 and all y ∈ I0
0 = [0, 1]d.

Two obvious numerical approaches can be applied.
Method A (tensor-product interpolation of the function Fj(y) := 1/ ‖j − y‖ in I0

0): For this purpose,
p + 1 points 0 ≤ ζ0 < ζ1 < . . . < ζp ≤ 1 are chosen. The one-dimensional interpolation in xδ-direction
uses the interpolation points jδ − ζk. The resulting interpolation polynomial Qp(x, y) of partial degree ≤ p
satisfies the error estimate

‖Fj − Qp‖∞,I0
0

≤ C

(p + 1)!
max

δ

∥

∥

∥

∥

∥

∂p+1

∂yp+1
δ

Fj

∥

∥

∥

∥

∥

∞,I0
0

, (4.7)

where C = C(p, d) depends on the choice of interpolation points. A good choice are the zeros of the
Chebyshev polynomial Tp+1 (transformed onto [0, 1]). In this case,

C(p, d) = 4−p−1
d−1
∑

δ=0

(

1 +
2

π
log (p + 1)

)δ

(4.8)

is an upper bound in (4.7). Together with the estimate (4.6), we get

‖Fj − Qp‖∞,I0
0

≤ C(p, d)
1 + O(p + 1)

(‖j‖∞ − 1)
p+2 . O([4 (‖j‖∞ − 1)]

−p−2
), (4.9)

where the last expression ignores the log (p + 1) contribution. In the worst case ‖j‖∞ = 2, the exponential
convergence is like O(4−p).

The polynomial Qp (restricted to I0
0) can be rewritten in the form Qp(y) =

∑

α qαΦ0
0,α(y). As in Remark

4.7 we obtain
∫ 1

0

. . .

∫ 1

0

Φ0
0,α(y)

‖j − y‖ dy ≈ qα. (4.10)

Remark 4.8 The error (4.9) corresponds to the quantities at level 0. For a general level ℓ, the factor 4−(p+1)

in (4.8) becomes (4/hℓ)
−(p+1). Hence, the error estimate (4.9) has to be replaced by

O
(

[

4

hℓ
(‖j‖∞ − 1)

]−p−2
)

. (4.11)

Remark 4.9 There are two possibilities to improve the error.
a) One can interpolate Fj by a polynomial Qp′ of higher degree p′ > p and form Qp′(x, y) =

∑

α qαΦ0
0,α(y)

including functions Φ0
0,α with p < |α| ≤ p′. The result in (4.10) uses only the coefficients with |α| ≤ p.

b) One can restrict the computation of N0
i,α,β to those coefficients with ‖i‖∞ ≥ 1 + N for some fixed

N > 1 . Then the exponential convergence in (4.11) is improved: O((4N
hℓ

)−p−2). As we will see in Remark

4.11, the coefficients N0
i,α,β, ‖i‖∞ < 1 + N, can be computed exactly from those with ‖i‖∞ ≥ 1 + N .

Method B: Perform the tensor-product Gauss quadrature with at least p + 1 nodal points. Again, one
gets error estimates involving the derivatives bounded in (4.6).

8This fact is used in multipole methods (cf. [4]) or the more general panel clustering method (cf. [12]).

13

4.2.4 Near field computation

The near field case is defined by ‖i‖∞ ≤ 1. If ‖i‖∞ = 1, the singular case x = y occurs for x ∈ ∂I0
i and

y ∈ ∂I0
0, whereas for ‖i‖∞ = 0 (i.e., i = 0) x = y occurs also for inner points. Interpolations or standard

quadratures cannot be accurate in the presence of singularities. Nevertheless, the computation of N0
i,α,β

for ‖i‖∞ ≤ 1 turns out to be an easy task, provided that the far field coefficients from above are already
determined.

The method of choice is the “hierarchical quadrature” described in [2]. First, we remark that only d + 1
cases i = (0, . . . , 0), (0, . . . , 0, 1), (0, . . . , 0, 1, 1) , . . ., (0, 1, . . . , 1), (1, . . . , 1) are to be treated (cf. Conclusion
4.6). A summary of the hierarchical quadrature method is given in the following remark.

Remark 4.10 a) Let the exact values N0
i,α,β be given for 2 ≤ ‖i‖∞ ≤ 3. Then N0

i,α,β for ‖i‖∞ ≤ 1 can be
computed by simple algebraic operations without any quadrature error.

b) If the input values N0
i,α,β, 2 ≤ ‖i‖∞ ≤ 3, contain approximation errors, these are of course transferred

to N0
i,α,β, ‖i‖∞ ≤ 1, but no further error is introduced.

We start with the case i = 1. The cubes I0
0 and I0

1 touch at the corner point (1, . . . , 1) ∈ R
d. Both cubes

are written as unions of cubes of the half mesh size h1:

I0
0 =

⋃

0≤k≤1

I1
k, I0

1 =
⋃

0≤k≤1

I1
2+k.

Further, we use the identity

Φ0
ν,α =

∑

0≤k≤1

∑

κ≤α

ξα,κ,kΦ1
2ν+k,κ with ξα,κ,k := (−1)

〈κ+α,1−k〉
ξα,κ

from Lemma 2.2. This leads to

N0
1,α,β =

∑

0≤k≤1

∑

0≤k′≤1

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′

∫∫

Φ1
2+k,κ(x)Φ1

k′,κ′(y)

‖x − y‖ dxdy

=
∑

0≤k≤1

∑

0≤k′≤1

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′N1
2+k−k′,κ,κ′ =

(4.3)

= 21−d
∑

0≤k≤1

∑

0≤k′≤1

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′N0
2+k−k′,κ,κ′. (4.12)

All coefficients N0
2+k−k′,κ,κ′ are known (i.e.,

∥

∥2 + k − k′∥
∥

∞ > 1) except N0
1,κ,κ′ which results from k = 0

and k′ = 1. We obtain the equation

N0
1,α,β = 21−d

∑

κ≤α

∑

κ′≤β

ξα,κ,0ξβ,κ′,1N0
1,κ,κ′ + R0

1,α,β with

R0
1,α,β := 21−d

∑

0≤k≤1

∑

0≤k′≤1

k′−k 6=1

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′N0
2+k−k′,κ,κ′ .

The R0
1,α,β are known quantities on the right-hand side. The equation from above is a linear system for the

p2d components N0
1,α,β

(

α, β ∈ {0, . . . , p}d
)

. Fortunately, this systems is staggered because of the inequalities

14

κ ≤ α, κ
′ ≤ β. Its explicit solution is given in the form9

N0
1,0,0 =

R0
1,0,0

1 − 21−dξ0,0,0ξ0,0,1
,

N0
1,(1,0,...,0),0 =

R0
1,(1,0,...,0),0 + 21−dξ(1,0,...,0),0,0ξ0,0,1N

0
1,0,0

1 − 21−dξ(1,0,...,0),(1,0,...,0),0ξ0,0,1
,

...

N0
1,α,β =

R0
1,α,β + 21−d

∑

κ≤α,κ′≤β,κ+κ
′ 6=α+β ξα,κ,0ξβ,κ′,1N0

1,κ,κ′

1 − 21−dξα,α,0ξβ,β,1
,

...

The sequence of computations follows the increasing values of |α| + |β| = α1 + . . . + αd + β1 + . . . + βd.
Having determined N0

i,α,β for i = 1, we consider the next case i = (0, 1, . . . , 1) . The cubes I0
0 and I0

i

touch in the edge x1 ∈ [0, 1) , x2 = . . . = xd = 1. The same procedure as above yields

N0
i,α,β = 21−d

∑

0≤k≤1

∑

0≤k′≤1

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′N0
2i+k−k′,κ,κ′.

Coefficients N0
2i+k−k′,κ,κ′ with

∥

∥2i + k − k′∥
∥

∞ ≤ 1 arise for the pairs (k,k′) from the following table:

k k′ ⇒ 2i + k− k′

a) (0, 0, . . . , 0) (1, 1, . . . , 1) (−1, 1, . . . , 1)
b) (1, 0, . . . , 0) (1, 1, . . . , 1) (0, 1, . . . , 1)
c) (0, 0, . . . , 0) (0, 1, . . . , 1) (0, 1, . . . , 1)
d) (1, 0, . . . , 0) (0, 1, . . . , 1) (1, 1, . . . , 1)

By Remark 4.4, case a) reduces to case d). But for 2i + k − k′ = 1, the values of N0
1,κ,κ′ are already

determined in the previous step. In the cases b) and c) the same index (0, 1, . . . , 1) appears. Hence,

N0
i,α,β = 21−d

∑

k,k′:

8

<

:

0 ≤ k1 = k′
1 ≤ 1, for δ = 1

0 = kδ < k′
δ = 1 for δ ≥ 2

∑

κ≤α

∑

κ′≤β

ξα,κ,kξβ,κ′,k′N0
2i+k−k′,κ,κ′ + R0

i,α,β,

where R0
i,α,β contains only known terms. Again, we can make use of a staggered system of equations starting

with

N0
(0,1,...,1),0,0 =

R0
(0,1,...,1),0,0

1 − 21−d
(

ξ0,0,0ξ0,0,(0,1,...,1) + ξ0,0,(1,0,...,0)ξ0,0,1

) .

Similarly, we proceed with i = (0, 0, 1, . . . , 1) , (0, 0, 0, 1, . . . , 1) , . . . ,0 = (0, . . . , 0).
Remark 4.10 can be generalised so that also the quantities N0

i,α,β are computable from N0
i′,α,β with larger

i′.

Remark 4.11 The same procedure as above allows to compute all N0
i,α,β with fixed ‖i‖∞ from N0

i′,α′,β′ with
‖i′‖∞ ∈ {2 ‖i‖∞ , 2 ‖i‖∞ + 1}.

5 Tensor product approximations

5.1 Preliminaries

In Remark 4.2 we have mentioned the almost linear complexity O(N log N). The difficulty is that N is large
for dimensions d ≥ 3. If, e.g., Bℓ = [−1, 1]d, the number of grid points is N = nd, where n = 2/hℓ = 21+ℓ.

9Because of Remark 4.3 not all combinations of α, β need to be determined. It suffices to consider α1 ≤ α2 ≤ . . . ≤ αd.

15

In the following we want to change the exponent d into a factor d, i.e., we aim at a complexity proportional
to dn log(n).

To introduce the next steps, we assume that the function f has the product form

f(x) = f1(x1) · f2(x2) · . . . · fd(xd). (5.1)

If the kernel function had the form

k(x) = k1(x1) · k2(x2) · . . . · kd(xd), (5.2)

the convolution

(k ∗ f) (x) =

∫

Rd

∫

Rd

k(x − y)f(y)dx

=

(∫

R

∫

R

k1(x1 − y1)f1(y1)dy1

)

· . . . ·
(∫

R

∫

R

kd(xd − yd)fd(yd)dyd

)

= (k1 ∗ f1) (x1) · (k2 ∗ f2) (x2) · . . . · (kd ∗ fd) (xd)

could be reduced to d one-dimensional convolutions.
Of course, the Newton potential is not of the form (5.2). Furthermore, we will not use the ansatz (5.1)

for f, since factors fj belonging to (one-dimensional) locally refined subspaces (2.10) of L2(R) lead to an
anisotropic grid (see Figure 5.1).

Figure 5.1: Tensor product grid

Instead we assume that f is a sum of products (5.1) with support in Bℓ and all factors belonging to the

univariate ansatz space S
(1)
ℓ corresponding to the identical step size hℓ.

The precise notations are as follows.

S
(1)
ℓ := span

{

Φℓ
ν,α : ν ∈ Z, 0 ≤ α ≤ p

}

⊂ L2(R) (one-dimensional domain R),
Sℓ := span

{

Φℓ
ν,α : ν ∈ Z

d, α ∈ {0, . . . , p}d
}

(d-dimensional domain R
d as in (2.6)),

S := span
{

u : u ∈ Sℓ and supp(u) ⊂ Bℓ for some L ≤ ℓ ≤ L
}

.

(5.3)

The representation of f is

f =

L
∑

ℓ=L

kℓ
∑

ν=1

fℓ,ν with

{

fℓ,ν(x1, . . . , xd) = f
(1)
ℓ,ν (x1) · . . . · f (d)

ℓ,ν (xd), f
(δ)
ℓ,ν ∈ S

(1)
ℓ ,

supp(fℓ,ν) ⊂ Bℓ,
(5.4)

where the box Bℓ is defined as follows. For each variable xδ (1 ≤ δ ≤ d) we define intervals (one-dimensional
boxes) . . . ⊃ Bℓ−1,δ ⊃ Bℓ,δ ⊃ . . . as in (2.8). Then

Bℓ := Bℓ,1 × . . . × Bℓ,d

defines the d-dimensional box used in (5.4).

16

Since Sℓ is equal to the d-fold tensor space
⊗d

δ=1 S
(1)
ℓ , we have fℓ,ν ∈ Sℓ as well as f ℓ :=

∑

ν fℓ,ν ∈ Sℓ

with supp(f ℓ) ⊂ Bℓ. Hence, we have again a decomposition of f into f =
∑L

ℓ=L f ℓ with f ℓ ∈ Sℓ with

supp(f ℓ) ⊂ Bℓ. The additional property is that fℓ should be representable by a hopefully small number of
terms fℓ,ν in product form (5.4).

The tensor-product representation can be justified, e.g., for analytic functions (cf. [10], [11]). But it is
even more important that functions appearing in the density function theory like the spatial orbital functions
or the electron density of molecules allow an approximation by tensor-product representations up to chemical
accurary. Details including examples for CH4, C2H6, C2H2, CH3OH can be found in [13] and [14]. Note that
just in electronic structure calculations (e.g., two-electron integrals) convolutions with the Newton potential
(d = 3) arise.

In the following we consider one term fℓ,ν , i.e., we assume that f = fℓ,ν is given in the form (5.4) and
want to obtain the (approximation of the) image u = Kf in the same form. For that purpose we have to
approximate the convolution in tensor form.

5.2 Tensor-product approximation of the Newton potential

Although the Newton potential is not of the form (5.2), it can be approximated in essential parts by sums
of products (5.2). For this purpose we make use of the approximation of the function 1/

√
t by exponential

sums
∑k

ν=1 ων exp(−ϑνt).

Remark 5.1 a) Let R > 1 (including R = ∞). Ek,R(t) :=
∑k

ν=1 ων exp(−ϑνt) is called an exponential
sum. Its difference from 1/

√
t in [1, R] with respect to the maximum norm is denoted by

η :=

∥

∥

∥

∥

∥

1√
t
−

k
∑

ν=1

ων exp(−ϑνt)

∥

∥

∥

∥

∥

∞,[1,R]

. (5.5)

b) Let [A, B] ⊂ (0,∞] with B/A = R (R from Part a)). The function

Ek,[A,B](t) :=
k
∑

ν=1

ων,[A,B] exp(−ϑν,[A,B]t) with

ων,[A,B] :=
√

Aων and ϑν,[A,B] := Aϑν (ων , ϑν from Part a))

approximates 1/
√

t in [A, B] with the accuracy

η[A,B] =

∥

∥

∥

∥

∥

1/
√

t −
k
∑

ν=1

ων,[A,B] exp(−ϑν,[A,B]t)

∥

∥

∥

∥

∥

∞,[A,B]

=
1√
A

η (η from (5.5)).

Vice versa, an approximation in [A, B] can be transformed into an approximation in [1, R].

The previous remark allows to restrict the approximation to intervals of the form [1, R].

Remark 5.2 a) The best approximation E∗
k,R is the exponential sum Ek,R with the smallest error (5.5),

which is then denoted by η∗
k,R.

b) Best approximations in [1, R] and [A, B] can be related as described in Remark 5.1.
c) The coefficients ων , ϑν of E∗

k,R are positive.
d) For fixed finite R, the error η∗

k,R decays like O(exp(−ck)) with c = c(R) > 0, while for R = ∞, still

η∗
k,R = O(exp(−c

√
k)) holds.

Substitution of t by ‖x − y‖2
yields

1

‖x − y‖ ≈ E∗
k,R

(

‖x − y‖2
)

=
∑k

ν=1
ων exp

(

−ϑν ‖x − y‖2
)

(5.6)

=
∑k

ν=1
ων

∏d

δ=1
exp

(

−ϑν (xδ − yδ)
2
)

.

17

Remark 5.3 a) If 1 ≤ ‖x − y‖ ≤
√

R, the right-hand side in (5.6) is a sum of products (5.2) and approx-
imates the Newton potential 1/ ‖x − y‖. The maximum norm of the difference of both sides from (5.6) for
x, y with 1 ≤ ‖x − y‖ ≤

√
R is described by η∗

k,R from Remark 5.2a.

b) If hℓ ≤ ‖x − y‖ ≤
√

Rhℓ, one uses the approximation

1

‖x − y‖ =
hℓ

‖(x − y) /hℓ‖
≈
∑k

ν=1
hℓων

∏d

δ=1
exp

(

−ϑν

h2
ℓ

(xδ − yδ)
2

)

.

Consider the grid from §2.3. If the far field is defined by ‖i‖∞ ≥ 2 as in §4.2.3, the minimal Euclidean
distance ‖x − y‖ is the corresponding step size hℓ. The maximal distance depends on the choice of Bℓ.
The smallest choice of Bℓ according to Remark 2.4 yields ‖x − y‖ ≤ 4

√
dhℓ. This leads to the bound

R = 16d. The largest possible bound is of course R = ∞. With suitably defined R and k depending on the
required accuracy, we choose10 the exponential sum E∗

k,R as approximation of 1/ ‖x − y‖. For ‖i‖∞ ≥ 2, the

N ℓ-coefficients are approximated by

N ℓ
i,α,β =

∫∫

Φℓ
i,α(x)Φℓ

0,β(y)

‖x − y‖ dxdy

≈ Eℓ
i,α,β := hℓ

∫∫

E∗
k,R(‖x − y‖2

/h2
ℓ)Φ

ℓ
i,α(x)Φℓ

0,β(y)dxdy =
∑k

ν=1
hℓων

∏d

δ=1
Eℓ,ν

iδ ,αδ,βδ

with new coefficients

Eℓ,ν
i,α,β :=

∫

R

∫

R

exp

(

−ϑν

h2
ℓ

(x − y)
2

)

Φℓ
i,α(x)Φℓ

0,β(y)dxdy (1 ≤ ν ≤ k, i ∈ Z, 0 ≤ α, β ≤ p) . (5.7)

Remark 5.4 a) We define Eℓ
i,α,β for all i ∈ Z

d and 0 ≤ α, β ≤ p1, not only for ‖i‖∞ ≥ 2. The error

N ℓ
i,α,β − Eℓ

i,α,β, however, is by definition only sufficiently small for ‖i‖∞ ≥ 2. For ‖i‖∞ ≤ 1, an additional

correction δN ℓ
i,α,β := N ℓ

i,α,β − Eℓ
i,α,β is necessary. A tensor representation of δN ℓ

i,α,β is mentioned in §5.3.
b) The identity Φℓ

i,α(x) = h
−1/2
ℓ Φ0

0,α(x/hℓ − i) allows to express Eℓ,ν
i,α,β by means of E0,ν

i,α,β (i.e., ℓ = 0):

Eℓ,ν
i,α,β = hℓE

0,ν
i,α,β = hℓ

∫

R

∫

R

exp
(

−ϑν (x − y + i)
2
)

Φ0
0,α(x)Φ0

0,β(y)dxdy.

For the computation of the entries E0,ν
i,α,β , one can apply the methods described in §A.2 with

k(t) := exp
(

−ϑν (t + i)
2
)

.

Note that the considerations of §A.2 belong to a fixed value of i ∈ Z. Indicating this dependence by k = k(i),

we observe k
(i)
α,+ = k

(i−1)
α,− for the quantities from (A.2).

5.3 Convolution with the Newton potential in the regular grid

We consider one term fℓ,ν(x1, . . . , xd) = f
(1)
ℓ,ν (x1) · . . . · f (d)

ℓ,ν (xd) of (5.4) and write it simply as

f(x1, . . . , xd) = f (1)(x1) · . . . · f (d)(xd)

without subscripts. The representation of the factors with respect to the basis is

f (δ) =
∑

j∈Z

f
(δ)
j,β Φℓ

j,β ∈ S
(1)
ℓ

implying

f =
∑

j∈Zd

fj,βΦℓ
j,β ∈ Sℓ with fj,β :=

∏d

δ=1
f

(δ)
jδ,βδ

. (5.8)

10Concerning coefficients and accuracies for different k and R see [7] and the mentioned web page.

18

The projected convolution of the Newton potential with f =
∑

j∈Zd fj,βΦℓ
j,β ∈ Sℓ results in

uℓ(x) =
∑

i∈Zd

ui,αΦℓ
i,α with ui,α :=

∑

j∈Zd

∑

β

N ℓ
i−j,α,βfj,β.

The previous Subsection §5.2 shows that there are approximations Ñ ℓ
i,α,β to N ℓ

i,α,β of the form

Ñ ℓ
i,α,β = Eℓ

i,α,β + δN ℓ
i,α,β , (5.9)

where δN ℓ
i,α,β = 0 for ‖i‖∞ ≥ 2. We approximate ui,α by

ui,α ≈ ũi,α :=
∑

j∈Zd

∑

β

Ñ ℓ
i−j,α,β fj,β =

∑

j∈Zd

∑

β

Eℓ
i−j,α,β fj,β +

∑

j:‖i−j‖∞≤1

∑

β

δN ℓ
i−j,α,β fj,β

=
∑k

ν=1
ων

∏d

δ=1

p
∑

βδ=0

∑

jδ∈Z

Eℓ,ν
iδ−jδ,αδ,βδ

f
(δ)
jδ,βδ

+
∑

j:‖i−j‖∞≤1

∑

β

δN ℓ
i−j,α,β fj,β.

The first sum involving Eℓ,ν
iδ−jδ,αδ,βδ

f
(δ)
jδ,βδ

reduces the discrete d-dimensional convolution to d one-dimensional

discrete convolutions. The second term involves only 3d terms w.r.t. the j-summation. To see that
each term has again a tensor structure, rewrite δN ℓ

i,α,β for all i ∈ Z
d as

∑

‖m‖∞≤1 δN ℓ,m
i,α,β with δN ℓ,m

i,α,β =

δN ℓ
m,α,β

∏d
δ=1 δiδ−m

δ
involving a product of Kronecker deltas. Hence, the tensor rank of δN ℓ

i,α,β (for fixed

α, β) is at most 3d. In fact, the tensor rank is much smaller as explained next.
For d = 2, the data δN ℓ

i,α,β which are nonzero only for ‖i‖∞ ≤ 1 can be visualised by a stencil of the form

δN ℓ
i,α,β =





D B D
C A C
D B D





with coefficients A, B, C depending on α, β (concerning difference stencils see [5, (4.2.12)]). Here we have
exploited the symmetry properties of N ℓ

i,α,β (see Remark 4.5). For this example we assume even sums αδ +βδ

of polynomial degrees, otherwise the signs must be changed. The stencil can be written as a sum of two
simple tensor products:





BC/A B BC/A
C A C

BC/A B BC/A



+





D − BC/A 0 D − BC/A
0 0 0

D − BC/A 0 D − BC/A





=
(

C A C
)





B/A
1

B/A



+
(

D − BC/A 0 D − BC/A
)





1
0
1



 .

Hence, the tensor rank is 2 instead of 3d = 9. A smaller rank than 2 is not possible unless AD = BC.

We remark that because of the symmetry, it is sufficient to consider only a 2 × 2 stencil:

(

B D
A C

)

=
(

B/A
1

)

⊗
(

C
A

)

+

(

1
0

)

⊗
(

D − BC/A
0

)

For the practically important case of d = 3, representations by rank 3 are possible. Without loss of
generality we assume again symmetry: δN ℓ

i,α,β = δN ℓ
i′,α,β for iµ = ±i′µ for µ = 1, 2, 3. As just mentioned we

can restrict i to {0, 1}3. The stencil notation for a tensor in
⊗3

ν=1 R
2 is

[

B D
A C

∣

∣

∣

∣

F H
E G

]

where these

coefficients correspond to the indices

[

(1, 0, 0) (1, 1, 0)
(0, 0, 0) (0, 1, 0)

∣

∣

∣

∣

(1, 0, 1) (1, 1, 1)
(0, 0, 1) (0, 1, 1)

]

. One verifies that

[

B D
A C

∣

∣

∣

∣

F H
E G

]

=

(

0
1

)

⊗
(

G − CF/B
E − AF/B

)

⊗
(

1
0

)

+

(

B/A
1

)

⊗
(

C
A

)

⊗
(

F/B
1

)

+

(

1
0

)

⊗
(

D − BC/A
0

)

⊗
(

AH−CF
AD−BC

1

)

.

19

This representation of tensor rank 3 requires that A, B, AD−BC do not vanish. However, the representation
is not unique. If one or more quantities of A, B, AD − BC are zero, other representations of tensor rank
3 exist. While this rank-3 representation is easy to verify, this is harder for the following representation of
rank 2:

[

B D
A C

∣

∣

∣

∣

F H
E G

]

= α

(

a1

1

)

⊗
(

a2

1

)

⊗
(

a3

1

)

+ β

(

b1

1

)

⊗
(

b2

1

)

⊗
(

b3

1

)

.

The parameters α, β, aν , bν (ν = 1, 2, 3) can be determined as follows:

a1 =
1

2

DE − AH − BG + CF + W

CE − AG
, b1 =

1

2

DE − AH − BG + CF − W

CE − AG
,

a2 =
1

2

DE − AH + BG − CF + W

BE − AF
, b2 =

1

2

DE − AH + BG − CF − W

BE − AF

with

W =

√

2 (AD − BC) (FG − HE) + 2 (BE − AF) (CH − GD) + (CF − DE)
2

+ (AH − BG)
2
.

The further parameters are

β =
C − a2A

b2 − a2
=

B − a1A

b1 − a1
, b3 =

G − a2E

β (b2 − a2)
=

F − a1E

β (b1 − a1)
, α = A − β, a3 = (E − βb3) /α

(the second equality sign for the first two expressions holds due to the definition of a1, a2, b1, b2). This
representation requires the conditions EB − AF 6= 0, CE − AG 6= 0, a1 6= b1, a2 6= b2, α 6= 0, β 6= 0. In the
case of a imaginary root W, this approach may be less advantagous.

For general d the minimal possible rank is not known to the author, but estimates are possible. The worse
rank is 2d−1. A bound from the other side will be discussed next. A general tensor in

⊗d
ν=1 R

2 contains 2d

free parameters. An ansatz of tensor rank r is

r
∑

ρ=1

αρ

⊗d

ν=1

(

aν,ρ

1

)

with r (d + 1) free parameters. Obviously, r (d + 1) ≥ 2d must hold11. This inequality is satisfied for r = d as
long as d ≤ 4. According to this consideration r ≥ 2d/ (d + 1) forms a lower bound of the rank, which would
imply an exponential cost as d → ∞. However, the assumption that the tensor contains 2d free parameters
holds only for unlimited polynomial degree p (more precisely, if p > d). For instance, p = 0 implies
α = β = 0 and therefore δN ℓ

i,0,0 = δN ℓ
i′,0,0 for all permutations i′ ∈ {0, 1}d of i. In this case the number of

free parameters is only d + 1. These parameters are bµ := δN ℓ
i,0,0 for all i with |i| = i1 + i2 + . . . + id = µ

(0 ≤ µ ≤ d). They define a subspace Vd ⊂ ⊗d+1
ν=1 R

2 of dimension d + 1. A possible representation of rank
d + 1 is

(

δN ℓ
i,0,0

)

i∈{0,1}d =

d+1
∑

ρ=1

αρ

d
⊗

ν=1

(

aρ

1

)

.

This leads to the equations
∑d+1

ρ=1 αρa
µ
ρ = bµ (0 ≤ µ ≤ d). Since

(

aµ
ρ

)

is the transposed of the Vandermond
matrix, we may fix any distinct values of aρ and can solve the system for αρ. One may even look for
representations of rank ≤ d.

In the general case of a maximal polynomial p, we consider the pair sets {(α, β) , (β, α)} with 0 ≤ α, β ≤ p.
There are P := (p + 1) (p + 2) /2 pair sets, which we denote by π1, . . . , πP . Given δN ℓ

i,α,β with α, β ∈
{0, . . . , p}, we may order the coordinates such that (αν , βν) ∈ πj for

∑j−1
µ=1 mµ + 1 ≤ ν ≤ ∑j

µ=1 mµ where

mµ are suitable integers with
∑P

µ=1 mµ = d. The tensor space
⊗d

ν=1 R
2 is isomorphic to

⊗P
µ=1

(
⊗mµ

ν=1 R
2
)

.

11Note that for d = 3 the smallest r satisfying this inequality (i.e., r = 2) is indeed an attainable rank as shown above.

20

Now
⊗mµ

ν=1 R
2 can be restricted to the respective subspace Vmµ , i.e., (δN ℓ

i,α,β)i∈{0,1}d ∈ ⊗P
µ=1 Vmµ . A

representation of (δN ℓ
i,α,β)i∈{0,1}d by

(

δN ℓ
i,α,β

)

i∈{0,1}d =
r
∑

ρ=1

P
⊗

µ=1

vµ,ρ with vµ,ρ ∈ Vmµ

is always possible for r ≥ minP
σ=1

∏P
µ=1
µ6=σ

dimVmµ = minP
σ=1

∏P
µ=1
µ6=σ

(mµ + 1) . Maximising the right-hand side

over all mµ subject to
∑P

µ=1 mµ = d shows that the rank r :=
⌈

(

d
P + 1

)P−1
⌉

is always attainable which is

only polynomial in d, not exponential as d → ∞. Again, it must be emphasised that this r may be a very
pessimistic bound. For the determination of the minimal rank (in particular under approximation aspects)
see [3].

Conclusion 5.5 For fixed α, β, the tensor Ñ ℓ
i,α,β from (5.9) can be represented as a sum of k′ = k+ r terms

of the tensor product form
∏d

δ=1 v
(ν,δ)
iδ ,α,β, i.e.,

Ñ ℓ
i,α,β =

∑k′

ν=1

∏d

δ=1
v
(ν,δ)
iδ,α,β ,

where r is the rank needed for (δN ℓ
i,α,β)i∈{0,1}d . Therefore a convolution of Ñ ℓ

i,α,β with fj,β from (5.8) reduces
to k′d one-dimensional convolutions:

∑

j∈Zd

Ñ ℓ
i−j,α,β fj,β =

∑k′

ν=1

∏d

δ=1

∑

jδ∈Z

v
(ν,δ)
iδ−jδ,α,β f

(δ)
jδ,βδ

. (5.10)

Remark 5.6 The function f(x) = f (1)(x1) · . . . ·f (d)(xd) has tensor rank 1. If f consists of a sum involving
r terms of this form (tensor rank r), the result of the convolution consists of an increased number of tensor
products. In order to reduce this number, one should apply methods which reduce the tensor rank (at the cost
of an additional error; cf. Espig [3]).

5.4 Algorithm

In principle, the algorithm is the same as in (3.2), where f =
∑

ℓ f ℓ. Here we have f ℓ =
∑kℓ

ν=1 fℓ,ν according
to (5.4) and therefore Algorithm (3.2) must be interpreted in a particular way.

• Line 4 in (3.2): u|Bℓ
:= u|Bℓ

+
(

Pℓ KPℓ f ℓ
)

|Bℓ
;

Pℓ KPℓ is replaced by the tensor product approximation with the coefficients Ñ ℓ
i,α,β. For each term fℓ,ν

the convolution follows (5.10). Note that only the result in Bℓ is to be computed (the part outside Bℓ

is done in later steps of the ℓ-loop at Line 5).

• Line 6: F := F + f ℓ;

Since also F is organised as a sum of tensor products, this addition is not performed. Instead the list
of tensor products increases by the kℓ terms f ℓ =

∑kℓ

ν=1 fℓ,ν. Here one may try to reduce the number
of terms according to Remark 5.6.

• Line 3: F := PℓF ;

By induction F ∈ Sℓ+1 holds: F =
∑kℓ+1,F

ν=1 Fℓ+1,ν , where each Fℓ+1,ν is of product form (cf. (5.4)).
Then the projection Pℓ can be performed for each direction separately:

(PℓFℓ+1,ν) (x1, . . . , xd) =
(

P
(1)
ℓ F

(1)
ℓ+1,ν

)

(x1) · . . . ·
(

P
(1)
ℓ F

(d)
ℓ+1,ν

)

(xd),

where P
(1)
ℓ is the one-dimensional prolongation, i.e., the orthogonal projection onto S

(1)
ℓ (cf. (5.3)).

The corresponding coefficients are the result of the restriction (2.15) for d = 1. Note that number of

terms is not changing: kℓ,F = kℓ+1,F in PℓF =
∑kℓ,F

ν=1 Fℓ,ν with Fℓ,ν = PℓFℓ+1,ν .

21

• Line 5: u|Bℓ\Bℓ+1
:= (Pℓ KPℓ F) |Bℓ\Bℓ+1

;

Consider one term Fℓ,ν of F =
∑kℓ,F

ν=1 Fℓ,ν . First Pℓ KPℓ Fℓ,ν is determined as in Line 4 with support

in Bℓ. Let uℓ,µ(x1, . . . , xd) = u
(1)
ℓ,µ(x1) · . . . · u(d)

ℓ,µ(xd) by one of the tensor products of the result. The
characteristic function of Bℓ+1 is again a product χ1,ℓ+1 · . . . · χd,ℓ+1. Obviously, ǔℓ,µ(x1, . . . , xd) :=
∏d

δ=1 u
(δ)
ℓ,µ(xδ)χδ,ℓ+1 equals uℓ,µ|Bℓ+1

. Therefore,

uℓ,µ − ǔℓ,µ = uℓ,µ|Bℓ\Bℓ+1
.

Note that this approach doubles the tensor rank. If the tensor rank reduction according to Remark
5.6 is intended, two versions are possible: 1) ǔℓ,µ can be treated as a term of level ℓ with support in
Bℓ, 2) since supp(ǔℓ,µ) ⊂ Bℓ+1, ǔℓ,µ can be prolonged to level ℓ + 1. Depending on this choice, the
rank reduction is done among all contributions of either level ℓ or level ℓ + 1.

References

[1] G. Beylkin, V. Cheruvu, and F. Pérez: Fast adaptive algorithms in the non-standard form for multidi-
mensional problems. J. Comp. Phys., 2006. Submitted. APPM preprint #550.

[2] S. Börm and W. Hackbusch: Hierarchical quadrature of singular integrals. Computing, 74:75–100, 2005.

[3] M. Espig: Approximation mit Elementartensorsummen. Doctoral thesis, Universität Leipzig, 2008.

[4] F. Ethridge and L. Greengard: A new fast-multipole accelerated Poisson solver in two dimensions. SISC
23:741-760, 2001.

[5] W. Hackbusch: Elliptic differential equations. Theory and numerical treatment. Springer-Verlag, Berlin,
2nd edition, 2003.

[6] W Hackbusch: Direct integration of the Newton potential over cubes. Computing 68:193–216, 2002.

[7] W. Hackbusch: Entwicklungen nach Exponentialsummen. Technischer Bericht 4, Max-Planck-Institut
für Mathematik, Leipzig, 2005.

[8] W. Hackbusch: Approximation of 1/ ‖x − y‖ by exponentials for wavelet applications. Computing,
76:359–366, 2006.

[9] W. Hackbusch: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. (to appear)
- Preprint 38, Max-Planck-Institut für Mathematik, Leipzig, 2007.

[10] W. Hackbusch und B. Khoromskij: Low-rank Kronecker-product approximation to multi-dimensional
nonlocal operators. Part I. Separable approximation of multi-variate functions. Computing 76:177-202,
2006.

[11] W. Hackbusch und B. Khoromskij: Low-rank Kronecker-product approximation to multi-dimensional
nonlocal operators. Part II. HKT representation of certain operators. Computing 76:203-225, 2006.

[12] W. Hackbusch and Z.P. Nowak: On the fast matrix multiplication in the boundary element method by
panel clustering. Numer. Math., 54:463–491, 1989.

[13] S. Rao Chinnamsetty: Wavelet tensor product approximation in electronic structure calculations. Doc-
toral thesis, Universität Leipzig, 2008.

[14] S. Rao Chinnamsetty, M. Espig, B. Khoromskij, W, Hackbusch, and H.-J. Flad: Tensor product ap-
proximation with optimal rank in quantum chemistry. J. Chem. Physics 127 (2007) 08411.

22

A Additional comments

A.1 Example of a tensor approximation of the Newton potential

As an example we consider the boxes Bℓ = 2hℓ [−1,1) of Example 2.4. The Euclidean distance of x ∈
supp(Φℓ

i,α) ⊂ Bℓ from y ∈ supp(Φℓ
j,β) ⊂ Bℓ with ‖i − j‖∞ ≥ 2 (far field case) is at least hℓ and at most

4hℓ

√
d (depending on the spatial dimension d). This implies that the approximation (5.5) is needed in the

interval [1, R] with R = 4
√

d. For the 3D-case this is R = 4
√

3 = 6.928 2 Different choices of the number
k of terms yield the following approximation errors η:

k 1 2 3 4 5 6 7 8 9
η 7.09E-2 3.58E-3 1.82E-4 9.26E-6 4.72E-7 2.41E-8 1.23E-9 6.26E-11 3.19E-12

For the cases k = 3 and k = 9, the corresponding coefficients ων , ϑν of (5.5) are given below:

ν ων ϑν

1 0.560 124 245 592 825 410 0.059 931 283 387 658 894
2 0.670 756 602 248 168 953 0.607 882 152 449 899 544
3 1.008 349 653 847 160 430 2.242 794 652 929 559 598

ν ων ϑν

1 0.324 283 398 516 544 698 0.020587 566 365 147 018 7
2 0.330 125 262 978 802 426 0.187499 336 444 026 598
3 0.342 586 070 199 041 368 0.533720 636 686 782 973
4 0.363 363 837 823 695 047 1.087171 421 568 844 598
5 0.395 369 588 643 770 928 1.898629 677 561 829 318
6 0.443 303 043 137 218 010 3.055937 748 084 754 945
7 0.515 470 983 731 095 820 4.711989 509 641 412 826
8 0.631 816 622 474 811 241 7.152604 614 505 099 386
9 0.875 684 785 527 278 758 11.055 681 349 670 407 167

In [7] and the web page given therein one finds the data for further choices of R and k.
If one wants to approximate the Newton potential on the half-infinite interval 1 ≤ ‖x − y‖ < ∞ the

accuracies η for varying k are as follows:

k 1 2 3 4 5 6 7 8 9
η 1.40E-1 4.09E-2 1.56E-2 6.83E-3 3.30E-3 1.70E-3 9.25E-4 5.24E-4 3.07E-4

A.2 Galerkin matrix entries for convolution kernels (1D case)

In the following, k : [−1, 1] → R is a general differentiable kernel function. We want to determine the values

kα,β :=

∫ 1

0

∫ 1

0

k (x − y)Φ0
0,α(x)Φ0

0,β(y)dxdy, (A.1)

where Φ0
0,α and Φ0

0,β are the one-dimensional Legendre polynomials with support in [0, 1] . Note that x − y
varies in [−1, 1] . We introduce the quantities

kα,+ :=
∫ 1

0 k (x − 1)Φ0
0,α(x)dx, k+,β :=

∫ 1

0 k (1 − y)Φ0
0,β(y)dy,

kα,− :=
∫ 1

0
k (x) Φ0

0,α(x)dx, k−,β :=
∫ 1

0
k (−y)Φ0

0,β(y)dy,
(A.2)

which use point evaluations of x or y at the upper or lower end point of [0, 1] . The calculation of k±,β can
be reduced to that of kα,± because of the next remark.

Remark A.1 The symmetry properties of Φ0
0,α imply

kα,− = (−1)
α

k+,α, kα,+ = (−1)
α

k−,α. (A.3)

23

Step 1. First the quantities kα,± are to be computed. For instance, the function k can be interpolated
in [0, 1] by a polynomial which then is reformulated by means of the transformed Legendre polynomial Φ0

0,α.

Step 2. We define

k′
α,0 :=

∫ 1

0

∫ 1

0

k (x − y)
d

dx
Φ0

0,α(x)dxdy (α ≥ 0).

Lemma A.2 The values of k′
α,0 are explicitly given by the quantities kα,± and k±,β from Step 1:

k′
0,0 = 0, for α = 0,

k′
α,0 =

√
2α + 1 (k+,0 − (−1)αk−,0) + kα,+ − kα,− for α ≥ 1.

(A.4)

Proof. Partial integration yields

k′
α,0 =

∫ 1

0

k (x − y)Φ0
0,α(x)

∣

∣

x=1

x=0
dy −

∫ 1

0

∫ 1

0

dk (x − y)

dx
Φ0

0,α(x)dxdy.

Since
Φ0

0,α(1) =
√

2α + 1, Φ0
0,α(0) = (−1)α

√
2α + 1, (A.5)

the first term equals
√

2α + 1 (k+,0 − (−1)αk−,0) . For the second term use d
dxk (x − y) = − d

dyk (x − y) and

∫ 1

0

∫ 1

0

d

dy
k (x − y)Φ0

0,α(x)dxdy =

∫ 1

0

k (x − y)|y=1
y=0 Φ0

0,α(x)dx = kα,+ − kα,− .

Step 3. Next, we compute the quantities kα,0.

Lemma A.3 Let α ≥ 0. The coefficients kα,0 can be determined from the recursion formula

kα,0 =

{

1
2
√

3
k′
1,0 for α = 0,

1

2
√

(2α+1)(2α+3)
k′

α+1,0 − 1

2
√

(2α−1)(2α+1)
k′

α−1,0 for α ≥ 1.

Proof. a) By definition (using Φ0
0,0 = 1 in [0, 1])

kα,0 =

∫ 1

0

∫ 1

0

k (x − y)Φ0
0,α(x)Φ0

0,0(y)dxdy =

∫ 1

0

∫ 1

0

k (x − y)Φ0
0,α(x)dxdy (A.6)

holds.
b) Case α = 0. The explicit values Φ0

0,0(x) = 1 and Φ0
0,1(x) = 2

√
3 (x − 1/2) show

Φ0
0,0 =

1

2
√

3

d

dx
Φ0

0,1 (0 < x < 1) .

Replacing Φ0
0,α in (A.6) by this expression yields k′

1,0/(2
√

3).
c) Case α ≥ 1. The antiderivative of Φ0

0,α equals

∫ x

0

Φ0
0,α(t)dt =

Φ0
0,α+1(x)

2
√

(2α + 1) (2α + 3)
− Φ0

0,α−1(x)

2
√

(2α − 1) (2α + 1)
(α ≥ 1, 0 < x < 1) (A.7)

(cf. [9]). Differentiation yields

Φ0
0,α =

d
dxΦ0

0,α+1

2
√

(2α + 1) (2α + 3)
−

d
dxΦ0

0,α−1

2
√

(2α − 1) (2α + 1)
(α ≥ 1, 0 < x < 1) . (A.8)

Inserting the latter identity into (A.6) yields the statement.

Step 4. Now we consider the case of kα,β with general α, β.

24

Remark A.4 The symmetry properties of Φ0
0,α, Φ0

0,β imply kα,β = (−1)
α+β

kβ,α for α, β ∈ N.

Proof. The proof of Remark 4.5 is already formulated for a general kernel k(x − y).

By the previous remark, kα,β is already known from Step 3 if either α = 0 or β = 0. Hence, we restrict
the considerations to α, β ≥ 1. The next lemma yields a recursion with respect to the first index α.

Lemma A.5 For α, β ≥ 1 the quantities kα,β satisfy the recursion

kα,β =











√
2α+1√
2α−3

kα−2,β +

√
(2α−1)(2α+1)√
(2β−1)(2β+1)

kα−1,β−1 −
√

(2α−1)(2α+1)√
(2β+1)(2β+3)

kα−1,β+1 for α ≥ 2
√

3√
(2β−1)(2β+1)

(

k0,β−1 − k+,β−1+k−,β−1

2

)

−
√

3√
(2β+1)(2β+3)

(

k0,β+1 − k+,β+1+k−,β+1

2

)

for α = 1.

Proof. First we assume α ≥ 2 and consider the linear combination

kα,β

2
√

(2α − 1) (2α + 1)
− kα−2,β

2
√

(2α − 3) (2α − 1)

=

∫ 1

0

∫ 1

0

k (x − y)

(

Φ0
0,α(x)

2
√

(2α − 1) (2α + 1)
− Φ0

0,α−2(x)

2
√

(2α − 3) (2α − 1)

)

Φ0
0,β(y)dxdy =

(A.7)

=

∫ 1

0

∫ 1

0

k (x − y)

(∫ x

0

Φ0
0,α−1(t)dt

)

Φ0
0,β(y)dxdy =

(A.8)

=

∫ 1

0

∫ 1

0

k (x − y)

(∫ x

0

Φ0
0,α−1(t)dt

)

d

dy

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy.

The partial integration with respect to y does not produce boundary terms since

1

2
√

(2β + 1) (2β + 3)
Φ0

0,β+1(y) =
1

2
√

(2β − 1) (2β + 1)
Φ0

0,β−1(y) for y ∈ {0, 1} .

The same statement holds for the boundary values of
∫ x

0
Φ0

0,α−1(t)dt at x ∈ {0, 1} . Hence,

1

2
√

(2α − 1) (2α + 1)
kα,β − 1

2
√

(2α − 3) (2α − 1)
kα−2,β

= −
∫ 1

0

∫ 1

0

dk (x − y)

dy

(∫ x

0

Φ0
0,α−1(t)dt

)

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

=

∫ 1

0

∫ 1

0

dk (x − y)

dx

(∫ x

0

Φ0
0,α−1(t)dt

)

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

= −
∫ 1

0

∫ 1

0

k (x − y)Φ0
0,α−1(x)

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

=
1

2
√

(2β − 1) (2β + 1)
kα−1,β−1 −

1

2
√

(2β + 1) (2β + 3)
kα−1,β+1

proves the statement for α ≥ 2.

25

For α = 1 we repeat the argument from above with the modification that 2
√

3
∫ x

1/2
Φ0

0,0(t)dt = Φ0
0,1(x) :

k1,β = 2
√

3

∫ 1

0

∫ 1

0

k (x − y)

(

∫ x

1/2

Φ0
0,0(t)dt

)

Φ0
0,β(y)dxdy

= 2
√

3

∫ 1

0

∫ 1

0

k (x − y)

(

∫ x

1/2

Φ0
0,0(t)dt

)

d

dy

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

= 2
√

3

∫ 1

0

∫ 1

0

dk (x − y)

dx

(

∫ x

1/2

Φ0
0,0(t)dt

) (

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

= 2
√

3

∫ 1

0

k (x − y)

(

∫ x

1/2

Φ0
0,0(t)dt

)∣

∣

∣

∣

∣

x=1

x=0

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

− 2
√

3

∫ 1

0

∫ 1

0

k (x − y)Φ0
0,0(x)

(

Φ0
0,β+1(y)

2
√

(2β + 1) (2β + 3)
−

Φ0
0,β−1(y)

2
√

(2β − 1) (2β + 1)

)

dxdy

=

√
3

2
√

(2β + 1) (2β + 3)
(k+,β+1 + k−,β+1) −

√
3

2
√

(2β − 1) (2β + 1)
(k+,β−1 + k−,β−1)

−
√

3
√

(2β + 1) (2β + 3)
k0,β+1 +

√
3

√

(2β − 1) (2β + 1)
k0,β−1.

A.3 Galerkin matrix entries in the multi-dimensional case

Now we consider a general differentiable kernel function K(z) in [−1, 1]
d

and want to determine the Galerkin
matrix entries

Kα,β :=

∫∫

K (x − y)Φ0
0,α(x)Φ0

0,β(y)dxdy for α, β ∈ N
d
0.

The application we have in mind is

K (x − y) := 1/ ‖x − y + i‖ for i ∈ Z
d, ‖i‖∞ ≥ 2, (A.9)

where Kα,β = N0
i,α,β (cf. (4.3)).

When we fix an index i ∈ {1, . . . , d} and fix values xi′ , yi′ for i′ 6= i or apply certain functionals (integra-
tions) to xi′ , yi′ , we arrive at

k(xi − yi) := K (x − y) (xi, yi ∈ R).

Renaming xi, yi by x, y, we can again apply the considerations of §A.2.
In the d-dimensional case, the quantities Kα,β depend on multi-indices α, β ∈ N

d
0. We recall that

Φ0
0,α(x) =

d
∏

j=1

Φ0
0,αj

(xj) with αj ≥ 0. We extend the range of αj to N0 ∪ {−1,−2} and use αj = −1 instead

of “+” and αj = −2 instead of “–” in (A.2). Another interpretation is that Φ0
0,αj

for αj ∈ {−1,−2} is the
Dirac functional at 2 + αj . With this replacement the definition in (A.2) (one-dimensional case) becomes

kα,+ =

∫ 1

0

k (x − 1)Φ0
0,α(x)dx =

∫ 1

0

∫ 1

0

k (x − y)Φ0
0,α(x)Φ0

0,−1(y)dxdy.

Next we introduce the function

µ(α, j, m) := (α1, . . . , αj−1, m, αj+1, . . . , αd) ,

which replaces the jth component of the multi-index α by the integer m.
With these notations the recursion from Lemmata A.3 and A.5 can be generalised to the d-dimensional

case:

26

Lemma A.6 a) For some j ∈ {1, . . . , d} let αj ≥ 0 and βj = 0. Then

Kα,β =







1
2
√

3
K

(j)
µ(α,j,1),β for αj = 0,

1

2
√

(2αj+1)(2αj+3)
K

(j)
µ(α,j,αj+1),β − 1

2
√

(2αj−1)(2αj+1)
K

(j)
µ(α,j,αj−1),β for αj ≥ 1,

where the quantities on the right-hand side are

K
(j)
α,β :=







0 for αj = 0, βj = 0,
√

2αj + 1
(

Kµ(α,j,−1),β − (−1)αj Kµ(α,j,−2),β

)

+Kα,µ(β,j,−1) − Kα,µ(β,j,−2)

}

for αj ≥ 1, βj = 0.

b) For αj ≥ 1 and βj ≥ 1 we have

Kα,β =











































√
2αj+1√
2αj−3

Kµ(α,j,αj−2),β +

√
(2αj−1)(2αj+1)√
(2βj−1)(2βj+1)

Kµ(α,j,αj−1),µ(β,j,βj−1)

−
√

(2αj−1)(2αj+1)√
(2βj+1)(2βj+3)

Kµ(α,j,αj−1),µ(β,j,βj+1)











for αj ≥ 2,

√
3√

(2βj−1)(2βj+1)

(

Kµ(α,j,0),µ(β,j,βj−1) −
Kµ(α,j,−1),µ(β,j,βj−1)+Kµ(α,j,−2),µ(β,j,βj−1)

2

)

−
√

3√
(2βj+1)(2βj+3)

(

Kµ(α,j,0),µ(β,j,βj+1) −
Kµ(α,j,−1),µ(β,j,βj +1)+Kµ(α,j,−2),µ(β,j,βj +1)

2

)











for αj = 1.

The concrete calculation can be performed in 3 steps.

Step 1 Evaluate Kα,β and Kβ,α for all αj = −1,−2 and 0 ≤ βj ≤ 2p + 1 (1 ≤ j ≤ d) .

Step 2 The recursions of Lemma A.6 are applied in alphabetic order:

1 for j := 1 to d do

2 for all β ∈ [−2, p]j−1 × {0} × [−2,−1]d−j do
3 begin for all α with α1, . . . , αj−1, αj+1, . . . , αd ∈ [−2, p] do
4 begin for αj := 0 to 2p evaluate Kα,β by Lemma A.6a; {note that βj = 0}
5 for βj := 1 to p do for αj := βj to 2p − βj do evaluate Kα,β by Lemma A.6b
6 end end;

Ad Step 1: Step 1 makes use the symmetry relations (A.3). In the main application, the quantities

Kα,β := N0
i,α,β =

∫∫ Φ0
i,α(x) Φ0

0,β(y)

‖x−y‖ dxdy are introduced for a fixed multi-index i (cf. (A.9)). The relation of i

and α in Step 1 is discussed in the next remark.

Remark A.7 Let α ∈{−1,−2}d. Then

N0
i,α,β = N0

i+α+1,−1,β.

Conclusion A.8 In Step 1, it suffices to consider the case α = −1 (i.e., αδ = −1 for all δ). If N0
i,α,β is

needed for all ia ≤ i ≤ ib and all α ∈{−1,−2}d
, one has to compute N0

i′,−1,β for all ia − 1 ≤ i′ ≤ ib.

Ad Step 2: The two loops in the lines 1,2 of the algorithm run through all β with at least one component
βj = 0 in a particular order. For j = 1 the set [−2, p]

j−1 × {0} × [−2,−1]
d−j

equals {0} × [−2,−1]
d−1

.
The loops in the lines 3,4 organise the multi-indices α with increasing component αj . Note that never

both αδ and βδ are negative, i.e., if βδ ∈ [−2,−1] in line 2, then αδ ∈ [0, p] in line 3.
In line 4, βj = 0 holds. Therefore, Lemma A.6a is applicable. Note that the computation of Kα,β

requires, e.g., Kµ(α,j,−2),β and Kµ(α,j,αj+1),µ(β,j,−1), which are already determined by the loop.
In line 5, the recursion of Lemma A.6b is performed. Only the case βj ≤ αj is considered. For βj > αj use

the symmetry identity from Remark 4.5. Although we are only interested in the coefficients for αj , βj ≤ p,
the double loop in line 5 yields results even for αj > p. This is necessary, since, e.g., the case αj = βj = p
requires coefficients for αj = p + 1 and βj = p − 1 (cf. Lemma A.6b).

After terminating the computations for a certain value j of the loop in line 1, we keep all values Kα,β for

αδ, βδ ∈ [−2, p] and not both αδ, βδ negative for 1 ≤ δ ≤ j,
(αδ, βδ) ∈ [0, p] × [−2,−1] for j + 1 ≤ δ ≤ d.

27

A.4 Coefficients ξκ,α

In Lemma 2.1 we need the coefficients ξκ,α for 0 ≤ κ ≤ p, 0 ≤ α ≤ κ. As derived in [9], these values are
obtainable by the following algorithm:

ξ0,0 := 1/
√

2;
for q := 1 to 2p do for n := 0 to q do
begin m := q − n;

if n < m then ξn,m := 0 else
begin ξn,m := an−1

2 (ξn−1,m+1/am + ξn−1,m) ;

if m > 0 then ξn,m := ξn,m + an−1

2
bm

am
ξn−1,m−1;

if n ≥ 2 then ξn,m := ξn,m − bn−1ξn−2,m

end end;

where an =
√

2n+3
√

2n+1
n+1 and bn =

√
2n+3√
2n−1

n
n+1 are the factors in the recursion formula Φℓ

i,n+1(x) =

an (−1 − 2i + 2x/hℓ)Φℓ
i,n(x) − bnΦℓ

i,n−1(x) of the Legendre basis functions.

28

