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Abstract

Using Grozman’s formalism of invariant differential operators we demonstrate the
derivation of N = 2 Camassa-Holm equation from the action of V ect(S1|2) on the
space of pseudo-differential symbols. We also use generalized logarithmic 2-cocycles to
derive N = 2 super KdV equations. We show this method is equally effective to derive
Camassa-Holm family of equations and these system of equations can also be interpreted
as geodesic flows on the Bott-Virasoro group with respect to right invariant H1- metric.
In the second half of the paper we focus on the derivations of the fermionic extension
of a new peakon type systems. This new one-parameter family of N = 1 super peakon
type equations, known as N = 1 super b- field equations, are derived from the action
of V ect(S1|1) on tensor densities of arbitrary weights. Finally, using the formal Moyal
deformed action of V ect(S1|1) on the space of Pseudo-differential symbols to derive the
noncommutative analogues of N = 1 super b- field equations.
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1 Introduction

Noncommutative geometry [5] extends the notions of classical differential geometry from
differential manifold to discrete spaces, like finite sets and fractals, and noncommutative
spaces which are given by noncommutative associative algebras. It was an idea of
Descartes that we can study a space by means of functions on the space, in other words,
the algebra of functions determines the space. Quantum physics suggests that some
physical systems should be modeled by spaces on which functions are not commutative.
In fact, C∗- algebras are natural models for the function algebras. In recent years it
is appreciated that such noncommutative spaces retain a rich topology and geometry
expressed in terms of K-theory and K-homology, as well as in finer aspects of the theory.
The subject has also been approached from a more algebraic side with the advent of
quantum groups and quantum homogeneous spaces [31].

Noncommutative geometry has recently been involved in a noncommutaive gauge
theory related to strings. Noncommutative spaces are characterized by the noncommu-
tative coordinates

[xi, xj ] = iθij, (1)

where θij are real constants. During the last few years there has been a steady growth
in the interest in noncommutative geometry, which appears in string theory in several
ways. Much attention has been paid also to field theories on noncommutative spaces
and especially Moyal deformed [33] space-time. This theory appears as certain limits of
strings, D-branes and M -theory.

Noncommutative gauge theories are naively realized from ordinary commutative the-
ories just by replacing all products of the fields with ⋆ product. String theory proposed
a new non-commutative gauge theories that describe the dynamics of branes. The case
of a general non-Abelian gauge group is dealt with a construction of a Seiberg-Witten
map [39], i.e. a map which connects the gauge theory on the noncommutative space
with gauge theory on a commutative space and for this purpose the ⋆-product formalism
is used.

Several classical integrable models have been generalized to noncommutative spaces
[10, 20]. Also, under the Moyal deformation, the self-dual Yang-Mills equation is consid-
ered to preserve the integrability in the same sense as in commutative cases. Noncom-
mutative KdV and nonlinear Schrödinger equations are derived from the reduction of
self dual Yang-Mills equation [21, 28] and other methods [13-16]. There exist a method,
namely the bicomplex method [10], to yield noncommutative integrable equations which
have many conserved quantities. Certainly all these equations are derived formally from
the Lax representation by replacing ordinary product by ⋆ product.

Noncommutative extension of integrable systems such as the KdV equation, the
super KdV equation are also one of the hot topics in noncommutative geometry and
physics. In fact, some time ago Kupershmidt [26] considered a generalization of the
Moyal approach to the problem of quantization of classical integrable dynamical sys-
tems. The nature of these noncommutative integrable equations are strange. They do
not have good integrable property and on top of that Noncommutative extension of
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(1 + 1)-dimensional equations introduces infinite number of time derivatives. But they
do possess the existence of infinite number of conserved quantities which are widely
accepted as definition of complete integrability of underlying equations.

Roughly there are two different methods to construct such noncommutative extension
of integrable systems. By deforming the Lax equation (for example, [20]) one can derive
such equations. This is a bit adhoc formalism and does not incorporate geometry.
Recently a deformation of the algebra of diffeomorphism is constructed by Wess and
coworkers [2] for canonically deformed spaces with constant deformation parameter θ.
Using this method we constructed the noncommuative version of periodic KdV and
the Burgers equation [17], and this gives us the second method for the construction
of Moyal deformed integrable systems. Although this method is far more geometrical
than Lax equation method but certainly we faced problems for not having a proper
(noncommutative) Hamiltonian formalism, since infinite time derivatives hidden inside
the ⋆–product. One must remember that the deformation theory is a homotopy theory
and does not incorporate dynamics easily.

The motivation of this present article to offer another interesting method of con-
struction of noncommutative integrable systems. This method has been sketched in our
earlier papers [15, 16, 18]. We embed the vector field and its dual to pseudodifferential
symbols on S1 [35, 38]. These are functions on cotangent bundle. We use logarithmic
2-cocycle [25, 27] to derive the dispersion term. Therefore we lift the systems on the
space of pseudodifferential symbols where the natural action of vector field on its dual
is given by Poisson action. Thus coadjoint action [16] of Virasoro algebra on its dual
can be manifested in a simple manner. In this paper we apply Grozman [14] programme
of invariant bilinear differential operators on tensor fields to compute this action. It is
shown that this scheme can be applied to the N = 2 supersymmetry theory [41] provided
one must take care of anticommutative properties of fermions. In this work we reexam-
ine the proof of N = 2 supersymmetric KdV equation using Grozman prescription. We
also derive the N = 2 supersymmetric Camassa-Holm equation from our method. In
both cases we derive explicit representation of the second Hamiltonian structures.

By deforming the Poisson action to Moyal action we obtain the quantum integrable
systems. In fact Kupershmidt [26] also proposed such method to quantize integrable
systems. We argue that this method is deeply rooted inside the Moyal-Weyl-Wigner for-
malism. The Moyal algebra (C∞(M), {., .}Moyal) is an algebra of quantum observables
and it can be continously reduced the Poisson algebra (C∞(M), {., .}PB) of classical
observables. Using this new approach we derive various integrable and superintegrable
systems. Using this approach we derive various integrable and superintegrable systems.
In this method we are able to quantize a completely new and exotic super b-field equa-
tion. This new class of partial differential equations recently obtained by Degasperis
Holm and Hone [6, 7] using the asymptotic integrability method. The second member of
this one-parameter family of pdes is called Degasperis-Procesi equation [8]. Degasperis
et al. proved the exact integrability of the new equation by constructing its Lax pair
and explain its relation to a negative flow in the Kaup-Kupershmidt hierarchy via a
reciprocal transformation.
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Devchand and Schiff [9] showed that the fermionic extension of the Camassa-Holm
equation arises as a geodesic flows of an invariant H1-metric on the group of supercon-
formal transformations. In this paper we focus on to fermionic extension of the b-field
equations. We derive this equation from the action of V ect(S1|1) on tensor densities
of weight b form embedded in ψD(S1). We also derive the noncommutative version of
these system of equations. Therefore we also able to quantize a completely new and
exotic super b-field equation. The advantage of this method is that we can avoid the
the quantization of coadjoint orbit to derive quantum (or noncommutative ) integrable
systems.

This paper is organized as follows: In Section 2 we give a brief description of
pseudodifferential symbols on S1 and the construction of KdV equations. We introduce
generalized Souriau cocycle in Section 3. In this section we demonstrate the construction
of the N = 2 super KdV equation. Section 4 is devoted to the construction of the
N = 2 supersymmetric Camassa-Holm equations. We also show its geodesic connection
to superconformal group. Section 5 is devoted to the construction of the b field and
super b-field equations. Finally, the noncommutative ( or Moyal deformed) analogue of
the super peakon type equations are given in Section 6.

Acknowledgement This paper is the vastly modified version of paper presented in
Noncommutative Geometry and Physics workshop at Newton Institute, September 3-8,
2006. Hence author would like to thank the organizers of this workshop. He is extremely
grateful to Valentin Ovsienko and Chandrasekhar Devchand for numerous explanations
and correspondences. He is also particularly grateful to Jürgen Jost, Giovanni Landi,
George Wilson and Shahn Majid for their interest. He is particularly grateful to Peter
Gilkey for valuable suggestions. Finally author expresses grateful thanks to MPI-MIS
for gracious hospitality.

2 Background: Pseudodifferential Symbols on

S1 and KdV equation

The ring of pseudodifferential symbols on S1, ΨD(S1), is defined to be the ring of formal
Laurent series

∑
k≥k0

fk(x) ξ
k over C∞(S1) with finite number of positive powers. There

are two differentiations defined in this ring ΨD(S1):

∂ξ :
∑

k

fkξ
k 7−→

∑

k

kfkξ
k−1 ∂ :

∑

k

fkξ
k 7−→

∑

k

f ′kξ
k. (2)

These differentiations may be used to define the symbolic multiplication on the ring by
setting

(F ◦G) =

∞∑

k=0

1

k!
:
∂kF

∂ξk
(x, ξ)

∂kG

∂xk
(x, ξ) : .

Here : : is called the Normal Ordering; it is defined by

: f(x)ξkg(x)ξl := f(x)g(x)ξk+l.
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This multiplication rules yields an associative and and a Lie algebra operation on
the ring. The commutator and the residue map are defined, respectively, by setting
[F,G] = F ◦G−G ◦ F and res : ψD(S1)→ C∞(S1). The “trace operation” is defined
by

Tr(F ) =
∫
S1 res Fdx =

∫
S1 f−1dx. (3)

The main property of the residue (or trace) is for F,G ∈ ψD(S1),

Tr([F,G]) =
∫
res [F,G] dx = 0 .

The embedding of the vector field π(f(x)∂) = f(x)ξ enables one to pass from the
Virasoro algebra to the algebra of groups of area preserving diffeomorphisms. The dual
of the vector field is identified with u(x)ξ−2 ∈ F2.

This algebra of embedded vector fields can be extended via logathimic cocycle.

Theorem 1 (Kravchenko and Khesin) Let F and G be pseudo differential symbols
on the circle The nontrivial central extension
ψD(S1) is given by the cocycle

c(F,G) =
∫
res ([ln ξ, F ], G) . (4)

The restriction of Kravchenko-Khesin cocycle [25] to the subalgebra of vector fields
is the Gelfand–Fuchs cocycle of the Virasoro algebra. This follows from a simple calcu-
lation

c(f(x)ξ, g(x)ξ) =
∫
res ([lnξ, f(x)ξ] ◦ g(x)ξ)

=
∫
res(f ′(x)− f ′′(x)

2 ξ−1 + f ′′′(x)
3 ξ−2 + · · ·)g(x)ξ

= 1
6

∫
f ′′′(x)g(x) dx.

The term containing the ξ−2 ∈ F2 in the expansion

S(f(x)
d

dx
) = f ′′′(x)ξ−2

is called the Souriau cocycle of the Virasoro algebra. One should note that the space of
tensor density of degree 2 is the regular dual of V ect(S1).

2.1 Construction of full KdV equation

Our goal is to give a geometric formulation of noncommutative integrable systems. Let
us reformulate the Euler-Poincaré flow in a following form:

Definition 1 Let dH be the gradient of the Hamiltonian function H(u). The Euler-
Poincaré equation induced by the action of V ect(S1) on its dual is:

ut = ad∗(dH)ξuξ
−2 ≡ {(dH)ξ, uξ−2}. (5)
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Theorem 2 The Euler-Poincaré flow which is induced by the action of V ect(S1) on
the extended space of ψD(S1) is defined as

ut = {
δH

δu
ξ, uξ−2}+ (

δH

δu
)′′′ξ−2 . (6)

Let H = 1
2

∫
S1 u

2 dx. This yields the KdV equation

ut + uxxx + 3uux = 0 . (7)

Proof: The action of V ect(S1) on the extended ΨD(S1) comes from two sources;
(a) the orginal action of V ect(S1) on ΨD(S1) and (b) Souraiu term. The term f ′′′(x)ξ−2

in the following equation is the Souraiu term.
The coadjoint action of V ect(S1) on its dual u(x)ξ−2 is given by

ad∗f(x)ξu(x)ξ
−2 = {f(x)ξ, u(x)ξ−2}

= −(
∂

∂ξ
(f(x)ξ)

∂

∂x
(uξ−2 −

∂

∂x
(f(x)ξ)

∂

∂ξ
(uξ−2)

= −(fu′ + 2f ′u)ξ−2.

Therefore the action of V ect(S1) on the extended ΨD(S1) is given by

ãd∗f(x)ξ(u(x)ξ
−2, f ′′′(x)ξ−2) = {f(x)ξ, u(x)ξ−2}+ f ′′′ξ−2

= (fu′ + 2f ′u+ f ′′′)ξ−2 . (8)

One can easily use equation (8) to compute the second Hamiltonian operator OKdV

of the KdV equation which corresponds to the action of V ect(S1) on the extended
ψD(S1) given by:

OKdV = ∂u+ u∂ + ∂3. (9)

2

3 The N = 2 Neveu-Schwarz super algebra

and construction of the N = 2 Super KdV equa-

tion

Let us introduce the Neveu-Schwarz superalgebra. Consider the space of −1/2-tensor
densities F1/2 on S1. There exists a natural Lie superalgebra structure on the space of
V ect(S1)⊕F1/2. The anticommutator

[, ]+ : F1/2 ⊗F1/2 −→ V ect(S1) ∈ F1

is just the product of tensor densities:

[ψ(x)(dx)−1/2, φ(x)(dx)−1/2]+ := ψ(x)φ(x)
d

dx
.
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The space of −1/2 densities on S1 can be periodic or anti-periodic

φ(x)(dx)−1/2, φ(x+ 2π) = ±φ(x),

known as Ramond space and Neveu-Schwarz space respectively and these spaces of
−1/2-tensor densities are V ect(S1)-module. The Neveu-Schwarz space is customarily
assigned by F−

1/2.

Definition 2 Let F−
−3/2 be the space of antiperiodic 3/2 densities. The space

g = V ect(S1)⊕F−
1/2
⊕F−

1/2
⊕ C∞(S1)

defines a N = 2 Lie superalgebra structure, it is known as N = 2 Neveu-Schwarz algebra
g. The (regular) dual space of the Neveu-Schwarz algebra is given as

g
∗ = F−2 ⊕F

−
−3/2 ⊕F

−
−3/2 ⊕F

−
−1

Since we consider only the Neveu-Schwarz algebra so we drop the ‘−’ sign from F .

Let us now embed the Neveu-Schwarz algebra into space of pseudodifferential sym-
bols. We obtain following mappings for algebra

(f(x)
d

dx
+ φi(x)(dx)

−1/2 + g(x)) 7−→ (f(x)ξ + φi(x)ξ
1/2 + g(x)),

and the corresponding dual is given by

(u(x)dx2 + ηi(x)(dx)
3/2) + w(x)(dx) 7−→ (u(x)ξ−2 + ηi(x)ξ

−3/2 + w(x)ξ−1),

where sum over repeated index is implied. One must note that N = 2 superconformal
algebra has two fermionic fields, denoted by φ1 and φ2, and two bosonic fields u(x) and
w(x).

Proposition 1 (Grozman) The classification of invariant bilinear differential opera-
tors on tensor fields is due to P. Grozman. Let us recall the zeroth-order and the first
order cases:

1. There exists a suitable constant so that a zeroth-order operator Fν ⊗Fµ −→ Fν+µ

has the form
φ(x)(dx)ν ⊗ u(x)(dx)µ 7−→ kφ(x)u(x)(dx)ν+µ . (10)

2. Every first order operator Fν ⊗Fµ −→ Fν+µ+1 is given by

{φ(x)(dx)ν , u(x)(dx)µ} = (νφ(x)u′(x)− λφ′(x)u(x))(dx)ν+µ+1. (11)

For every (ν, µ) 6= (0, 0), the operator (11) is the only Diff(S1) operator, otherwise
there are two linearly independent operators φd(u) and d(φ)u, where d is the de
Rham differential operator.
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Let us study the action of the Neveu-Schwarz algebra on u(x)ξ−2 + η(x)ξ−3/2. The
computation of this action is based on the Grozman formalism [14] of bilinear invariant
differential operators on tensor densities.

Lemma 1 The Hamiltonian operator O corresponding to the action of the N = 2
Neveu-Schwarz algebra on u(x)ξ−2 + ηi(x)ξ

−3/2 + w(x)ξ−1 ∈ ΨD(S1) yields

O =




u∂ + ∂u 1
2∂η1 + η1∂

1
2∂η2 + η2∂ w∂x

∂η1 + 1
2η1∂ −1

2u
1
2∂w + 1

2w∂
k4

2 η2

∂η2 + 1
2η2∂ −1

2w∂ −
1
2∂w −1

2u
k3

2 η1

∂w k1

2 η2
k2

2 η1 0


 . (12)

Proof: Let Fλ be the space of −λ-densities on S1. Any zeroth-order differential operator
is the operator of multiplication by a (µ− λ) density:

φ(x)(dx)µ−λ : u(x))(dx)λ 7−→ φ(x)u(x)(dx)µ.

In standard Darboux coordinates this can be written as:

φ(x)ξ−µ+λ : u(x))ξ−λ 7−→ φ(x)u(x)ξ−µ.

Moreover, there exists a pair of duals (η1(dx)
3/2, η2(dx)

3/2) corresponding to a pair
−1/2 densities functions (φ1(x)(dx)

−1/2, φ2(x)(dx)
−1/2). It is clear that φ1(x) acts on

its dual η1 in an obvious way and η2 by the principle of zeroth-order differential operator.

Hence, the action of f(x)ξ + φi(x)ξ
1/2 + g(x) ∈ sV ect(S1) on its dual is:

ad∗
f(x)ξ+φi(x)ξ1/2+g(x)

(u(x)ξ−2 + ηi(x)ξ
−3/2 +w(x)ξ−1)

= {f(x)ξ, u(x)ξ−2 + ηi(x)ξ
−3/2 + w(x)ξ−1}+ {φ1(x)ξ

1/2, η1(x)ξ
−3/2 +w(x)ξ−1}

+{φ2(x)ξ
1/2, η2(x)ξ

−3/2} − {φ2(x)ξ
1/2, w(x)ξ−1}+ {g(x), w(x)ξ−1}+

k

2
φi(x)u(x)ξ

−3/2

+
k1

2
φ1(x)η2ξ

−1 +
k2

2
φ2(x)η1(x)ξ

−1 +
k3

2
g(x)η1ξ

−3/2 +
k4

2
g(x)η2ξ

−3/2

where the last expression follows from the definition of zeroth operator and we have
chosen k = −1

2 . Therefore, we obtain the Hamiltonian operator from this expression,
thereby completing the proof:

=
(
fu′ + 2f ′u+ 1

2φiη
′
i + 3

2φ
′
iηi + fw′ + f ′w

)
ξ−2 +

(
f(x)η′ + 3

2f
′ηi(x)−

1
2φi(x)u(x) + (−1)i−1 1

2(φiw
′ + φiw

′) + k3

2 g(x)η1 + k4

2 g(x)η2

)
ξ−3/2

+
(
g(x)w′(x) + k1

2 φ1η2 + k2

2 φ2(x)η1(x)
)
ξ−1. 2

Comment One must careful to apply Grozman prescription for extended supersym-
metry case. In this situation we encounter multiple fermions. Thus the action should
respect the ordering of fermions. This does not appear in N = 1 case, since we just play
with a single fermion.
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Remark All these constants k and kis are free parameters. These play an important
role in integrability. For N = 1 case we have just one parameter k and and its value
directly connected to nature of the system. It can be shown that the supersymmetric
may be bihamiltonian for particular values ks. Following Oevel and Popowicz [37] we
assume k = −1 = k4 = −k3 = −k2 = k1. Many of these kis are chosen in such a way so
that one can perform cancellation of certain terms.

Our goal is to construct the noncommutative analogue of the super-KdV equation.
Thus, once again we use the modified definition of the Euler-Poincaré equation to obtain
the dispersionless super-KdV equation.

Definition 3 The Euler-Poincaré equation induced by the action of supersymmetric
vector field sV ect(S1) on its dual F−2 + F−3/2 + F−3/2 + F−1 is defined as

(uξ−2 + η1ξ
−3/2 + η2ξ

−3/2 + wξ−1)t

= ad∗
( δH

δu
ξ+ δH

δη1
ξ1/2+ δH

δη2
ξ1/2+ δH

δw
)
(uξ−2 + η1ξ

−3/2 + η2ξ
−3/2 + wξ−1) (13)

3.1 Generalization of Souriau cocycle to N = 2 supercon-
formal algebras

Let Φi and Ψi be the odd parts of the super ψD(S1). The nontrivial central extension
of the Fermionic part of the super ψD(S1) is:

cfermionic(Φi,Ψi) =
∫
res([lnξ,Φi(x)]Ψi) dx . (14)

Let us compute the pair of cocycles connected to the fermions.

cfermionic(φi(x)ξ
1/2, ψi(x)ξ

1/2) =
∫
res([lnξ, φi(x)ξ

1/2]ψiξ
1/2) dx

=
∫
res((φ′iξ

−1/2 − 1
2φ

′′
i ξ

−3/2 + · · ·)ψiξ
1/2)

=
∫
res(· · · − −1

2φ
′′
i ψiξ

−1 + · · ·) = 1
2

∫
φ′′i ψi dx.

There exists another bosonic cocycle in N = 2 superconformal algebra, given by

cboson(v(x), w(x)) =
∫
res ([lnξ, v(x)] ◦ w(x))

=
∫
v′(x)w(x) dx.

Thus using the definition of logrithmic cocycle we derive the two cocycle of N = 2
Neveu-Schwarz algebra.

Proposition 2 The expression of N = 2 superalgebra 2 cocycle in component form is
given as

Ω
(
(f1

d

dx
, φ1(dx)

−1/2, φ2(dx)
−1/2, f2(x)), (g1

d

dx
, ψ1(dx)

−1/2, ψ2(dx)
−1/2g2(x))

)

=

∫

S1

(f ′′1 g
′
1 + φ1ψ

′′
1 + φ2ψ

′′
2 − f2g

′
2) dx.
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Thus N = 2 Lie superalgebra can be extended by the two cycle Ω. This allows us
to compute the super-Hamiltonian operator for N = 2 super KdV equation.

Proposition 3 The super-Hamiltonian operator Oskdv2
corresponding to the action of

the centrally extended N = 2 Neveu-Schwarz algebra on its extended dual
(
u(x)ξ−2 +

ηi(x)ξ
−3/2 + w(x)ξ−1, c

)
yields

Oskdv2
=




−∂3 + 2u∂ + 2∂u ∂η1 + 2η1∂ ∂η2 + 2η2∂ 2w∂x

2∂η1 + η1∂ ∂2 − u ∂w + w∂ −η2

2∂η2 + η2∂ −w∂ − ∂w ∂2 − u η1

∂w η2 −η1 ∂


 , (15)

where we have normalized the operator O.

Thus we give alternative derivation of super-Hamiltonian operator, given by [37].
We consider the following Laberge-Mathieu [29] Hamiltonian function

H =
1

2

∫
(u2 − ww′ − ηiη

′
i + auw2 − 2awη1η2) dx (16)

to study flow on the orbits of N = 2 superconformal algebra. Using bosonic superfield

Φ = θ2θ1u(x) + θ1η1 + θ2η2 + w(x)

Hamiltonian H can be rewritten as

H =
1

2

∫
dxdθ1dθ2(ΦD1D2Φ +

a

3
Φ3).

Using the Hamiltonian operator Oskdv2
and Hamiltonian H we obtain N = 2 super

KdV equation, given by Labelle and Mathieu [see [29], eqn. (2.4), also citeop].

4 Geodesic Flows on group of area preserving

diffeomorphisms on cyclider

Groups of area-preserving diffeomorphisms and their Lie algebras play an important
role in modern physics literature. It is known that in a suitable basis, the Lie algebra
of the group SDiff(2) tends to that of SU(N) as N →∞.

Using Adler’s trace formula [1] we fix the ad-invariant quantity

TrL =

∫

C
Ldxdξ. (17)

Thus, we can define a weakly nondegenerate invariant inner product [3] on sdiff(2) by

< L,M > = Tr(LM) =

∫

C
LM dxdξ L,M ∈ sdiff(2). (18)

The Lie-Poisson bracket on sdiff(2) is given by

{{f, g}}(α) =< α, {
δf

δα
,
δg

δα
} >, (19)

where δf
δα denotes the Frechét derivative. Here we have used the double curly bracket

notations from Bloch et. al [3].
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4.1 Geodesic flow with respect to H
1-norm

We study geodesic flow on the area preserving diffeomorphism group with respect to
H1-Sobolev norm on the sdiff(A) algebra. It is defined by

< L,M >=

∫

C
LM dxdξ +

∫

C
L′M ′dxdξ L,M ∈ sdiff(2), (20)

where L′ denotes derivatives with respect to both x and ξ. But since all L and M are
polynomial ξ. Hence for all practical purposes it boils down to

< L,M >=

∫

C
LM dxdξ + ν

∫

C
LxMxdxdξ ν ∈ R. (21)

In other words ′ always means the derivative with respect to x.

Let us compute again the coadjoint action:

Lemma 2 The coadjoint action with respect to H1 metric is given by

ad∗F (G)|H1 = (1− ν∂2)−1{(F, (1 − ν∂2)G}. (22)

Proof: We start from

< F, {G,H >H1=

∫

C
F ′{G,H}′dxdξ +

∫

C
F{G,H}dxdξ

=

∫

C
{F ′, G′}Hdxdξ +

∫

C
{F ′, G}H ′dxdξ

=

∫

C
{F, (1 − ν∂2)G}Hdxdξ.

Let us compute now the L.H.S. of equation (22)

L.H.S. =

∫

A
(ad∗GF )Hdxdξ +

∫

A
(ad∗GF )′H ′dxdξ

=

∫

A
[(1− ν∂2)ad∗GF ]Hdxdξ.

Thus by equating the R.H.S. and L.H.S. we obtain the above formula.
2

Therefore, we conclude:

Proposition 4 The Euler-Poincaré equation with respect to right invariant H1 metric
on the dual space of sdiff(2)∗ yields

∂m

∂t
= −ad∗δH

δu

m, (23)

where m = (1− ∂2)u and H is Hamiltonian.

Thus we justify the replacement of u by m = u−uxx for the computation of peakon
type equations, and it is not at all a computational trick.
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4.2 Computation of N = 2 Supersymmetric Camassa-Holm
equation

In this Section we derive N = 2 super Camassa-Holm equation by replacing all variables
by their Helmholtz counterparts. In our previous section we justify the replacement for
the computation of peakon type equations.

Lemma 3 The Hamiltonian operator Osuper corresponding to the H1- action of f(x)ξ+
φi(x)ξ

−1/2 + g(x) ∈ V ect(S1|2) on the dual space of the Neveu-Schwarz algebra on
u(x)ξ−2 + ηi(x)ξ

−3/2 + w(x)ξ−1 yields

Osuper = (1− ν∂2
x)−1




2m∂ + 2∂m ∂β1 + 2β1∂ ∂β2 + 2β2∂ 2n∂x

2∂β1 + β1∂ −m ∂n+ n∂ −β2

2∂β2 + β2∂ −n∂ − ∂n −m β1

∂w β2 −β1 0


 , (24)

where m = u− νuxx, βi = ηi − νηixx and n = w − νwxx.

Proof: This follows directly from our previous results

ad∗
f(x)ξ+φi(x)ξ1/2+g(x)

(u(x)ξ−2 + ηi(x)ξ
−3/2 +w(x)ξ−1)|H1

= (1− ν∂2)−1{f(x)ξ + φi(x)ξ
1/2 + g(x), (1 − ν∂2)(u(x)ξ−2 + ηi(x)ξ

−3/2 + w(x)ξ−1)}

and the computation of the left hand side {., .} is similar to previous section.
2

Once we transfer the Helmholtz operator to left hand side we express EP equation
in the following framework.

Definition 4 The Euler-Poincaré equation induced by the action of N = 2 supersym-
metric V ect(S1) on its dual F−2 + F−3/2 + F−3/2 + F−1 with respect to H1 norm is
defined as

(mξ−2 + βiξ
−3/2 +wξ−1)t = ad∗

( δH
δu

ξ+ δH
δηi

ξ1/2+ δH
δg

)
(mξ−2 + βiξ

−3/2 + w(x)ξ−1), (25)

where m = u− νuxx, βi = ηi − νηixx and n = w− νwxx are the Helmholtz counter parts
of u, ηi and w respectively.

Proposition 5 The Euler-Poincaré flow with respect to H1-metric on the dual space
of N = 2 Neveu-Schwarz algebra yields the N = 2 super Camassa-Holm equation

mt = 4mux + 2mxu+ 4amwwx + amxw
2 − 3ηiη

′′
i + νη′iη

′′′
i + 3a(wη2β1 + wβ2η1)x

+2aw(β′1η2 − η1β
′
2)− 2n(x)w′′′ + 2an(x)(uw)x − 2an(x)(η1η2)x (26)

β1t = 3(β1u+
1

2
aβ1w

2)x − β
′
1(u+

1

2
aw2) +mη′1 + amwη2 − 2(n(x)η′2)x

+2(nwη1)x + n′(η′2 − awη1) + β2(w
′′ − auw + aη1η2) (27)
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β2t = 3(β2u+
1

2
aβ2w

2)x − β
′
2(u+

1

2
aw2) +mη′1 − amwη1 + 2(n(x)η′1)x

+2a(n(x)wη2)x − n
′(η′1 + awη2) + β1(−w

′′ + auw − aη1η2) (28)

nt(x) = (nu+
1

2
nw2)x − β2(η

′
1 + awη2) + β1(η

′
2 − awη1). (29)

Proof: We use the above definition for our proof. 2

Unfortunately there are not so much cancellation of terms due the existence Helmholtz
functions are absence of cocycle terms. These two play very important role to write the
N = 2 super KdV equation in a compact form.

4.3 N = 2 supersymmetric Camassa-Holm equation in co-
variant form

Clearly one can see that the N = 2 is bit cumbersome in component form. One easily
express this in superfield form. Here we express the

We define the supercircle S1|2 in terms of its superalgebra of functions denoted by
C∞

C
(S1|2) consisting of elements of the form

F (X) = f(x) + θ1φ1(x) + θ2φ2(x) + θ1θ2g(x), (30)

where f , g and φi are smooth functions on S1. Here X stands for the triplet (x, θ1, θ2),
we assume x is an arbitrary parameter on S1 and θ1 and θ2 are formal Grassmann
coordinates. These anticommuting variables satisfy

θ1θ2 = −θ2θ1, θ2
1 = θ2

2 = 0.

Identifying the element (w, η2, η1, u) ∈ V ect(S
1|2)∗ with the odd (parity) dual super

element
U = w + θ1η2 + θ2η1 + θ1θ2u.

In the superfield form the (second) super Hamiltonian operator of N = 2 super
Camassa-Holm equation can be rewritten as

O
′

super = (1− ν∂2
x)−1(2∂xM + 2M∂x − (DiM)Di), (31)

where the superfieldM = U−νUxx. This allows us to express theN = 2 supersymmetric
Camassa-Holm equation in a more compact form.

Proposition 6 The Euler-Poincaré flow on the dual of N = 2 superconformal algebra
with respect to H1 norm yields the N = 2 super Camassa-Holm equation

Mt + 2(MD1D2U)x − ǫijDiMDjUx + a(MU2)x + aM(U2)x − aDiMDiU = 0. (32)

Moreover this supersymmetric equation is equivalent to equations (26-29).

13



Proof: We use the Hamiltonian equation

Ut = O
′

super(
δH

δU
),

where H = 1
2

∫
dX(UD1D2U + a

3U
3). Thus we obtain

Mt = (2∂xM + 2M∂x − (DiM)Di)(D1D2U +
a2

2
U2)

to obtain our result.
2

5 Euler-Poincaré flow and (super) b–field equa-

tion

In this section we derive of the Degasperis–Procesi equation and b-field equation. The
DP equation is considered to be the second member of the one parameter b-field family
of partial differential equations, which is given by

mt = 3mux +mxu, m = u− uxx. (33)

At first our goal is to derive this equation from the action of V ect(S1) on tensor
densities. It is clear that

{fξ, gξ−(b−1)} = (fg′ − (b− 1)f ′g)ξ(b−1).

Thus we consider the deformation of the algebra of vector fields

[v,w]b :=
b

2
[v,w] −

b− 2

2
(vw)x (34)

= vwx − (b− 1)vxw .

We note that the deformation is symmetric and a total divergence, reminiscent of the
Dorfman bracket. This b–bracket allows interpretation as an action of V ect(S1) on
F(b−1)(S

1). For b = 2 this is merely the vector field action corresponding to the Lie
bracket. The b–bracket is clearly not skewsymmetric. However, it has several interesting
properties.

There exists a pairing [13]
Fλ ⊗F1−λ → R

given by

〈a(x)(dx)λ, b(x)(dx)1−λ〉 =

∫
a(x)b(x) dx.

Therefore the above pairing allows us to identify the dual of F(b−1)(S
1) with F−b(S

1).
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Definition 5 The generalized EPDiff flow induced by the action V ect(S1) on ΨD(S1)
space is defined as

mt = {
δH

δu
ξ,mξ−b}, (35)

where m = u− νuxx is the standard Helmholtz operator acting on u.

It is clear that equation (37) is equivalent to Hamiltonian flow on the tensor densities
F−b of weight b ( or b-forms) given by

ut = OH1

b

δH

δu
.

Theorem 3 Suppose we define Hamiltonian H = 1
2

∫
S1 u

2 dx. The Euler–Poincaré
equation for the right invariant H1 metric on tensor densities F−b ( the dual space of b
algebra) yields the b–field equation

mt = mxu+ bmux, m = u− νuxx. (36)

Proof: The action of δH
δu on mξ−b is given by

ad δH
δu

(x)ξm(x)ξ−b

= −(
∂

∂ξ
(
δH

δu
ξ)
∂

∂x
(mξ−b)−

∂

∂x
(
δH

δu
ξ)
∂

∂ξ
(mξ−b)

= −(
δH

δu
m′ + b(

δH

δu
)′m)ξ−b−1.

Substituting δH
δu = u we obtain our result. 2

This equation was introduced in Degasperis, Holm and Hone [6, 7] based on De-
gasperis and Procesi [8] who singled out the cases b = 2 Camassa-Holm equation and
b = 3 Degasperis-Procesi (DP) equation. Hamiltonian structure from the Euler-Poincaré
formalism is given in [19].

5.1 Supersymmetric b–field equation

Let us study the fermionic (i.e. N = 1 supersymmetry) extension of the b–field equation.
Consider the space of −(2b − 1)/2–tensor densities F−2b−1/2. There exists a natural
action of Lie superalgebra V ect(S1)⊕F1/2 on Fb ⊕F−2b−1/2.

In our case, the super b bracket is the deformation of the Neveu-Schwarz supercon-
formal algebra, consisting of pairs (u(x), φ(x)), where u is a bosonic field and φ(x) is a
fermionic field. The bracket is defined by

[(u, φ), (v, ξ)]b = (uvx − (b− 1)uxv, uξx − (b−
3

2
)uxξ − (b− 1)vφx +

1

2
vxφ). (37)

Consideration of the supersymmetrisation of this algebra then opens the door to the
construction of supersymmetric extensions of the b-field equations.
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Remark A vector field Xf on S1|1, for any f ∈ C∞
C

(S1|1), is said to be contact if it
preserves the contact distributions. The contact bracket is defined by [Xf ,Xg] = X{f,g},

where the space C∞
C

(S1|1) is thus equipped with a Lie superalgebra structure given by

{f, g} = fg′ − f ′g + (−1)p(f)p(g)+1 1

2
D(f)D(g), (38)

where D = ∂
∂θ + θ ∂

∂x . The super b bracket that we are considering belongs to a class of
generalized contact bracket [12] which extends to densities of arbitrary weight:

{., .} : Fλ(S1|1)⊗Fµ(S1|1)→ Fλ+µ+1(S
1|1),

explicitly given by

{f, g} = λfg′ − µf ′g + (−1)p(f)p(g)+1 1

2
D(f)D(g). (39)

Lemma 4 The Hamiltonian operator Ob corresponding to the action of the Neveu-
Schwarz algebra on m(x)ξ−b + β(x)ξ−2b−1/2 ∈ ΨD(S1) yields

O = −

(
∂m+ (b− 1)m∂ 1

2∂β + (b− 1)β∂

∂β + 2b−3
2 β∂ 1

2m

)
(40)

Proof: It follows straight away from

ad∗
f(x)ξ+φ(x)ξ1/2(m(x)ξ−b + β(x)ξ−2b−1/2)

= {f(x)ξ,m(x)ξ−b + β(x)ξ−2b−1/2}+ {φ(x)ξ1/2, β(x)ξ−2b−1/2}

−
1

2
φ(x)m(x)ξ−3/2,

where the last expression follows from the definition of zeroth operator given by Grozman
and we have chosen k = −1

2 .
2

Proposition 7 Let δH
δu = 2u and δH

δη = 8ηx. The Euler-Poincaré flow on F−b +
F−2b−1/2, yields the supersymmetric b–field equation

mt = 2mxu+ 2bmux + 4(2b − 1)βηxx + 4βxηx

βt = 2βxu+ 4mηx + (2b− 1)βux . (41)

Proof: It is clear that ( δH
δu ,

δH
δη ) ∈ V ect(S1|1). Thus computing the (coadjoint)

action ad∗δH
δu

(x)ξ+ δH
δη

ξ1/2
(m(x)ξ−b + β(x)ξ−2b−1/2) for δH

δu = 2u and δH
δη = 8ηx we obtain

our desired result.
2
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6 Noncommutative analogue of the Kuper Camassa-

Holm and supersymmetric b–field equations

Finally in this section we propose another construction of noncommutative ( or Moyal
deformed) integrable systems. In particular, we demonstrate the derivation of noncom-
mutative super peakon type systems. The main idea of this construction is to replace
Poisson action by Moyal action of vector fields V ect(S1) ( or V ect(S1|1 ) on the space
of pseudodifferential symbols,

6.1 Construction of Noncommutative bosonic systems

All the equations described in this article can be ⋆ deformed using following rules:
(A) All Poisson brackets should be replaced by Moyal brackets [33] defined by:

{F,G}Moyal :=
F ⋆ G−G ⋆ F

κ
. (42)

(B) The derivatives act on the ⋆-deformed space in a usual way.

We will study two types of systems here - one is purely bosonic ( or ordinary) system
and other one is N = 1 supersymmetric system.

The bosonic part can be quantized by using the Moyal product

f ⋆M g = fexp
[i~

2
(
←−
∂q
−→
∂p −

←−
∂p
−→
∂q)

]
g. (43)

The Moyal star product replaces the ordinary product between functions on the phase
space.

Definition-Proposition 1 Let dH be the gradient of the Hamiltonian. In the non-
commutative case V ect(S1) acts on the ⋆- deformed dual embedded in ΨD(S1) is given
by

ut = {dH(x)ξ, u(x)ξ−2}Moyal + 1
6 (dH)′′′ξ−2

= (dH ⋆ u′ + 2dH ′ ⋆ u+ 1
6dH

′′′)ξ−2. (44)

Corollary 1 Suppose H = 1
2

∫
S1 u

2 dx. The Moyal deformed Euler-Poincaré flow on
F−2 yields the noncommutative KdV (ncKdV) equation

ut = u ⋆ ux + 2ux ⋆ u+ uxxx. (45)

Proposition 8 Let dH be the gradient of the Hamiltonian with respect to Helmholtz
functionm. Let V ect(S1) acts on the ⋆- deformed space of tensor densities F−b embedded
in ΨD(S1). The noncommutative analogue of the EPDiff flow is given by

mt = {dH(x)ξ,m(x)ξ−b}Moyal

= dH ⋆ m′ + b dH ′ ⋆ m. (46)

Suppose H =
∫
S1 mudx, we obtain the noncommutative b–field equation

mt + u ⋆ mx + bux ⋆ m = 0. (47)

Proof: Straightforward. 2
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6.2 Construction of Noncommutative N = 1 super b-field
systems

Non
Noncommutativity in superspace naturally arise in string theory in several contexts.

Imposing the worldsheet supersymmetry to the noncommutativity relation of the space-
time creates ⋆ products between the boson-boson, boson-fermion and fermion-fermion
fields. It is known that the ⋆ product of two superfields is a superfield.

In this study the Moyal deformed super b-field equation using results of noncommu-
tative superspaces [11, 22].

Here we invoke a generalization of Moyal-Weyl deformation to functions on super-
phase space. This algebraic structure corresponds to the quantization of systems with
both, bosonic and fermionic degrees of freedom. The fermionic variables involves a
⋆-product that is given by

φ ⋆C ψ = φexp
[ i~

2
(
←−
∂θi

−→
∂θi

)
]
ψ. (48)

This star product is called the Clifford star product because it leads to a cliffordization
of the Grassmann algebra of the odd coordinates θi. Moreover, the star anticommutator
is given by

{θi, θj}C = θi ⋆C θj + θj ⋆C θi = ~δij .

Proposition 9 The Euler-Poincaré flow with respect to H1-metric on the Moyal de-
formed dual space of Neveu-Schwarz algebra yields the noncommutative Kupershmidt-
Camassa-Holm equation

mt + 4ux ⋆ m+ 2u ⋆ mx + 4ηx ⋆ βx + 12ηxx ⋆ β = 0

βt + 2u ⋆ βx + 3ux ⋆ β + +4ηx ⋆ m = 0 (49)

for (super) Hamiltonian δH
δu = 2u and δH

δη = 8ηx.

Proof: The Euler-Poincaré equation induced by the action of Moyal deformed su-
persymmetric V ect(S1) on its dual F−2 + F−3/2 is given by

(mξ−2 + η̃ξ−3/2)t

= {
δH

δu
ξ, u(x)ξ−2 + ηξ−3/2}Moyal + {

δH

δη
ξ1/2, ηξ−3/2}Moyal +

1

2

δH

δη
m(x) ⋆ ξ−3/2.(50)

Therefore, using Hamiltonian δH
δu = 2u and δH

δη = 8ηx we obtain our desired result.
2

Similarly one can compute the noncommutative version of supersymmetric b–field
equation.

Proposition 10 The Euler-Poincaré flow with respect to H1-metric on ⋆- deformed
F−b + F− 2b−1

2

yields the Moyal deformed supersymmetric b–field equation

mt + 2bux ⋆ m+ 2u ⋆ mx + 4ηx ⋆ βx + 4(2b − 1)ηxx ⋆ β = 0

βt + 2u ⋆ βx + (2b− 1)ux ⋆ β + +4ηx ⋆ m = 0 (51)
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Obviously, the best way to consider such deformations through the introduction of
the (super) Poisson bracket between two superfields and consider the Moyal-Weyl star
product of superfields.

7 Outlook

In the present paper, we have constructed various noncommutative integrable and su-
perintegrable systems in (1 + 1) through embedding of vector fields and its dual on
the space of pseudodifferential symbols on S1. In this process we have tacitly moved
the coadjoint action to Poisson action. We have used Grozman’s method coupled with
the anticommutativity properties of fermions to compute these actions. Then replacing
the Poisson action by Moyal action we have constructed the noncommutative or Moyal
deformed integrable systems. We claim that this method is much more elegant and
geometrical than previously known methods. It would be nice to formulate the solu-
tions of these equations - hope one should be able implement the methods developed by
Takasaki [40] to study the geometry of the corresponding Riemann-Hilbert problem in
some Moyal algebra valued loop group.
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