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Abstract. Schur functions provide an integral basis of the ring of symmetric functions. It is
shown that this ring has a natural Hopf algebra structure by identifying the appropriate product,
coproduct, unit, counit and antipode, and their properties. Characters of covariant tensor
irreducible representations of the classical groups GL(n), O(n) and Sp(n) are then expressed
in terms of Schur functions, and the Hopf algebra is exploited in the determination of group-
subgroup branching rules and the decomposition of tensor products. The analysis is carried
out in terms of n-independent, universal characters. The corresponding rings, CharGL, CharO

and CharSp, of universal characters each have their own natural Hopf algebra structure. The
appropriate product, coproduct, unit, counit and antipode are identified in each case.

1. Introduction

The aim here is to provide a uniform setting for dealing with characters of finite-dimensional
irreducible representations of the classical groups GL(n), O(n) and Sp(n). More specifically,
the intention is to determine certain group-subgroup branching rules and formulae for the
decomposition of tensor products of irreducible representations of all of these groups by using
Schur functions and the Hopf algebra of these symmetric functions, as described most recently
in [1, 2]

2. The Hopf algebra of symmetric functions

Let x = (x1, x2, . . . , xn) be a sequence of n indeterminates and let Λ(n) = Z[x]Sn be the ring of
polynomial symmetric functions of the indeterminates x1, x2, . . . , xn. This ring may be graded

by the total degree, d, of such polynomials, so that we may write Λ(n) = ⊕d Λ
(n)
d . An integral

basis of Λ
(n)
d is provided by the Schur functions [3, 4]

sλ(x) =
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∣
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∣
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∣
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∣

∣

∣

, (1)

specified by partitions λ = (λ1, λ2, . . . , λn) of weight |λ| = λ1 + λ2 + · · · + λn = d and length
ℓ(λ) = p ≤ n, so that λ1 ≥ λ2 ≥ · · · ≥ λp > 0 with λi = 0 for any i > p.

Within the ring Λ(n), products of Schur functions decompose as follows:

sλ(x) sµ(x) =
∑

ν

cν
λµ sν(x) , (2)



where the coefficients cν
λµ are known as Littlewood-Richardson coefficients. They are all non-

negative integers and may be evaluated by means of the Littlewood-Richardson rule [3, 4].
If we move to a sequence x = (x1, x2, . . .) of countably many independent indeterminates,

then for all partitions λ of weight |λ| = d with d finite, there exists a universal Schur function
sλ(x) of x = (x1, x2, . . .) [4] such that for all finite n we have sλ(x1, x2, . . . , xn, 0, 0, . . .) =

sλ(x1, x2, . . . , xn) ∈ Λ
(n)
d . This stability property enables us to define the ring Λ of symmetric

functions. This is the ring generated by sλ(x) for all partitions λ. Within this ring Λ, the
multiplication rule is again given by (2), and still within Λ, skew Schur functions [3, 4] are
defined by:

sν/λ(x) =
∑

µ

cν
λµ sµ(x) . (3)

Each partition λ defines a Young diagram F λ whose successive rows lengths are the parts of
λ, and whose successive column lengths are the parts of the conjugate partition, denoted here
by λ′. Then for all x = (x1, x2, . . .) and y = (y1, y2, . . .) Cauchy’s formula and its inverse take
the form [3, 4]:

J(x, y) =
∏

i,a

(1 − xiya)
−1 =

∑

λ

sλ(x) sλ(y); (4)

I(x, y) =
∏

i,a

(1 − xiya) =
∑

λ

(−1)|λ| sλ(x) sλ′(y). (5)

It follows that

J(x, y) I(x, y) =
∑

λ

sλ(x) sλ(y)
∑

µ

(−1)|µ| sµ(x) sµ′(y)

=
∑

λ,µ,ν

cν
λµ sν(x) (−1)|µ| sλ(y) sµ′(y) =

∑

µ,ν

sν(x) (−1)|µ| sν/µ(y) sµ′(y) .

However J(x, y) I(x, y) = 1 = s0(x) s0(y), so that by comparing coefficients of sν(x) we have
the Schur function identity:

∑

µ

(−1)|µ|sν/µ(y) sµ′(y) = δν,0 s0(y) , (6)

for all y, where the sum is to be taken over all partitions µ.
The ring Λ of symmetric functions has the structure of a Hopf algebra, Symm =

(Λ,m,∆, ι, ǫ,S), by virtue of the following identification of operators and their action [1, 2]:

• Product m: m(sλ ⊗ sµ)(x) = sλ(x) · sµ(x) = sλ(x) sµ(x) =
∑

ν cν
λµ sν(x).

• Unit ι: ι(1) = s0(x).

• Coproduct ∆: sν(x, y) =
∑

λ,µ cν
λµ sλ(x) sµ(y) =

∑

λ sλ(x)⊗sν/λ(y) =
∑

µ sν/µ(x)⊗sµ(y).

• Counit ǫ: ǫ(sλ(x)) = δλ0.

• Antipode S: S(sλ(x)) = (−1)|λ| sλ′(x).

Here x = (x1, x2, . . .), y = (y1, y2, . . .) and x, y = (x1, x2, . . . , y1, y2, . . .), which is sometimes
written as x + y, the addition of two alphabets of indeterminates. In what follows we tend to
favour the use of · rather than m to signify a product.

This particular Hopf algebra Symm has the following properties:

Commutativity: sλ · sµ = sµ · sλ since sλ(x) sµ(x) = sµ(x) sλ(x).



Cocommutativity: ∆(sν) =
∑

ζ sζ ⊗ sν/ζ =
∑

ζ sν/ζ ⊗ sζ since sν(x, y) = sν(y, x).

Associativity: sρ · (sσ · sτ ) = (sρ · sσ) · sτ since sρ(x) (sσ(x) sτ (x)) = (sρ(x) sσ(x)) sτ (x).

Coassociativity: (I ⊗ ∆)(∆(sλ)) = (∆ ⊗ I)(∆(sλ)) since sλ(x, (y, z)) = sλ((x, y), z).

In addition we may verify the following general requirements of any Hopf algebra:

Antipode identity: · (S ⊗ I)∆ = ι ǫ = · (I ⊗ S)∆ since, thanks to (6), we have

· (S ⊗ I)∆(sλ) =
∑

µ

· (S ⊗ I) (sµ ⊗ sλ/µ) =
∑

µ

S(sµ) · sλ/µ

=
∑

µ

(−1)|µ|sµ′ · sλ/µ = δλ0 s0 = ι δλ0 = ι ǫ(sλ) .

Counitarity: · (ǫ ⊗ I)∆ = I = · (I ⊗ ǫ)∆ since

· (ǫ ⊗ I)∆(sλ) =
∑

µ

· (ǫ ⊗ I) (sµ ⊗ sλ/µ) =
∑

µ

· (δµ0 ⊗ sλ/µ) = 1 · sλ = sλ = I(sλ).

Product and coproduct compatibility: ∆ (·) = (· ⊗ ·) (∆ ⊗ ∆) since

∆ (·)(sλ(z) sµ(w)) = ∆(sλ(z) sµ(z)) = sλ(x, y) sµ(x, y)

= (· ⊗ ·) (sλ(x, y) sµ(u, v)) = (· ⊗ ·) (∆ ⊗ ∆)(sλ(z) sµ(w)) .

This last property is the homomorphism property of the coproduct:

∆(sλ · sµ) = ∆(sλ) · ∆(sµ) or more generally ∆(X · Y ) = ∆(X) · ∆(Y ) , (7)

for any X,Y ∈ Λ.
At this stage it is convenient to introduce a bilinear scalar product, (· | ·), on Symm. This is

defined by (sλ | sµ) = δλµ [4]. With this definition we have:

(sν | sλ · sµ) =
∑

ζ

cζ
λµ (sν | sζ) = cν

λµ ; (sν/λ | sµ) =
∑

η

cν
λη (sη | sµ) = cν

λµ ;

(∆(sν) | sλ ⊗ sµ) =
∑

σ,τ

cν
στ (sσ ⊗ sτ | sλ ⊗ sµ) =

∑

σ,τ

cν
στ δσλ δτµ = cν

λµ ,

so that
(sν | sλ · sµ) = (sν/λ | sµ) and (sν | sλ · sµ) = (∆(sν) | sλ ⊗ sµ) . (8)

For any X =
∑

σ aσ sσ we let sλ·X = sλ · X =
∑

σ aσ (sλ · sσ) and sλ/X =
∑

σ aσ sλ/σ.
With this notation, we can extend the first part of (8) so that for any X =

∑

σ aσ sσ we have

(sλ |X · sµ) =
∑

σ

aσ (sλ | sσ · sµ) =
∑

σ

aσ (sλ/σ | sµ) = (sλ/X | sµ). (9)

In addition, it should be noted that for X =
∑

σ aσ sσ we have aσ = (X | sσ) so that

X =
∑

σ

(X | sσ) sσ (10)

Finally, for any X =
∑

σ aσ sσ and Y =
∑

σ bσ sσ, we have X = Y if and only if
(X | sσ) = aσ = bσ = (Y | sσ) for all σ. It follows that

s(λ/µ)/ν = sλ/(µ·ν) (11)



since (s(λ/µ)/ν | sσ) = (sλ/µ | sν sσ) = (sλ | sµ sν sσ) = (sλ | sµ·ν sσ) = (sλ/(µ·ν) | sσ) for all σ, and

s(µ·ν)/ρ =
∑

σ,τ

cρ
στ sµ/σ · sν/τ , (12)

since (s(µ·ν)/ρ | sλ) = (sµ · sν | sρ · sλ) = (sµ ⊗ sν |∆(sρ · sλ)) =
∑

σ,τ

cρ
στ (sµ ⊗ sν | sσ ⊗ sτ ∆(sλ))

=
∑

σ,τ

cρ
στ (sµ/σ ⊗ sν/τ |∆(sλ)) =

∑

σ,τ

cρ
στ (sµ/σ · sν/τ | sλ) for all λ.

3. Characters of the classical groups

Let M(m,n) be the set of all m × n matrices over C. Then the classical groups under
consideration here are:

GL(n) = {X ∈ M(n, n) | detX 6= 0} ;
O(n) = {X ∈ GL(n) |X Gn Xt = Gn} with Gt

n = Gn ;
Sp(n) = {X ∈ GL(n) |X Jn Xt = Jn} with J t

n = −Jn .

It might be noted that for n = 2k+1 the matrix Jn is necessarily singular, and may be chosen [5]
so that:

Sp(2k + 1) =

[

Sp(2k) M(2k, 1)
0 · · · 0 GL(1)

]

. (13)

Thus Sp(2k + 1) is not semisimple. Nor is it reductive.
The eigenvalues of an arbitrary group element X may be parametrised as follows [3]:

GL(n) : x1, x2, . . . , xn with x1x2 · · · xn 6= 0.

SL(n) : x1, x2, . . . , xn with x1x2 · · · xn = 1.

SO(2k + 1) : x1, x2, . . . , xk, x1, x2, . . . , xk, 1.

O(2k + 1)\SO(2k + 1) : x1, x2, . . . , xk, x1, x2, . . . , xk,−1.

Sp(2k) : x1, x2, . . . , xk, x1, x2, . . . , xk.

SO(2k) : x1, x2, . . . , xk, x1, x2, . . . , xk.

O(2k)\SO(2k) : x1, x2, . . . , xk−1, x1, x2, . . . , xk−1, 1,−1.

Sp(2k + 1) : x1, x2, . . . , xk, x1, x2, . . . , xk, x2k+1.

where xi = x−1
i for all i.

Each covariant tensor irreducible representation, V λ
GL(n), of GL(n) is specified by a partition

λ of length ℓ(λ) ≤ n. Let X ∈ GL(n) have eigenvalues (x1, x2, . . . , xn) and let ρ =
(n − 1, n − 2, . . . , 1, 0). Then the character of this irreducible representation is given by [3, 4]:

ch V λ
GL(n) =

aλ+ρ(x)

aρ(x)
=

∣

∣

∣
x

λj+n−j
i

∣

∣

∣

∣

∣

∣
xn−j

i

∣

∣

∣

= sλ(x) . (14)

Thanks to the stability property of Schur functions with respect to the number n of
indeterminates, we may define the corresponding universal character of GL(n) by

ch V λ
GL = {λ}(x) = sλ(x) , (15)

where x = (x1, x2, . . .). For each finite n the characters ch V λ
GL(n) are recovered from the universal

characters ch V λ
GL merely by setting x = (x1, x2, . . . , xn, 0, 0, . . . , 0).



In a similar way, there exist covariant tensor irreducible representation, V λ
O(n) and V λ

Sp(n), of

O(n) and Sp(n), respectively. The corresponding characters ch V λ
O(n) and ch V λ

Sp(n) may each be

defined in terms of determinants. More important, from our point of view, is that there exist
corresponding universal characters [6, 7] denoted by

ch V λ
O = [λ](x) and ch V λ

Sp = 〈λ〉(x) , (16)

with x = (x1, x2, . . .) arbitrary. These are universal in the sense that for any finite n the
characters ch V λ

O(n) and ch V λ
Sp(n) are obtained by specialising x to (x1, x2, . . . , xn, 0, 0, . . . , 0)

with x1, x2, . . . , xn restricted to the eigenvalues of the appropriate group elements parametrised
as above.

The universal characters (16) are themselves defined by means of the generating functions [3]:

∏

i,a

(1 − xiya)
−1

∏

a≤b

(1 − yayb) =
∑

λ

[λ](x) {λ}(y) ; (17)

∏

i,a

(1 − xiya)
−1

∏

a<b

(1 − yayb) =
∑

λ

〈λ〉(x) {λ}(y) . (18)

This leads to [3, 8, 6, 7]:

Theorem 3.1 The universal characters ch V λ
G of the orthogonal and symplectic groups are given

by

[λ](x) = {λ/C}(x) = sλ/C(x) where C(x) =
∏

i≤j

(1 − xixj) ; (19)

〈λ〉(x) = {λ/A}(x) = sλ/A(x) where A(x) =
∏

i<j

(1 − xixj) , (20)

respectively.

Proof: For O(n), it follows from (17) that the character [λ](x) is the coefficient of sλ(y) in
J(x, y)C(y). Hence, from (4), (9) and (10) we have

[λ](x) = (
∏

i,a

(1 − xiya)
−1

∏

a≤b

(1 − yayb) | {λ}(y) )

= (
∑

σ

{σ}(x) {σ}(y) C(y) | {λ}(y) )

=
∑

σ

{σ}(x) ({σ}(y) · C(y) | {λ}(y) )

=
∑

σ

{σ}(x) ({σ}(y) | {λ/C}(y) ) = {λ/C}(x).

For Sp(n) one simply replaces a ≤ b by a < b, and C(y) by A(y). This gives: 〈λ〉(x) = {λ/A}(x),
as required.

4. Branching rules

In order to allow the possibility of extending results to a wider class of subgroups of the
general linear group, we consider any subgroup H(n) of GL(n), whose group elements X ∈
H(n) ⊂ GL(n) have eigenvalues x = (x1, x2, . . . , xn). We assume, just as in the case of O(n)
and Sp(n), that there exist irreducible representations V λ

H(n) of H(n), specified by partitions



λ, with characters ch V λ
H(n) that may be determined by specialising from x = (x1, x2, . . .) to

x = (x1, x2, . . . , xn, 0, . . . , 0), with appropriate x1, x2, . . . , xn, the universal characters

ch V λ
H = [[λ]](x) . (21)

If the embedding H(n) ⊂ GL(n) is such that there exists two series of Schur functions S(x) and
T (x) with the properties:

[[λ]](x) = {λ/S}(x) with S(x) T (x) = 1 (22)

then
{λ}(x) = [[λ/T ]](x) . (23)

As a result we immediately have the branching rule:

GL(n) ⊃ H(n) : {λ} → [[λ/T ]] . (24)

Applying this to O(n) and Sp(n), we immediately have [3, 8]:

Theorem 4.1 The branching rules for the decomposition of representations of GL(n) under

restriction to the subgroups O(n) and Sp(n) take the form:

GL(n) ⊃ O(n) : {λ} → [λ/D] with D = C−1 =
∏

i≤j

(1 − xixj)
−1 ; (25)

GL(n) ⊃ Sp(n) : {λ} → 〈λ/B〉 with B = A−1 =
∏

i<j

(1 − xixj)
−1 . (26)

It is well known that [8, 9]

B = {0} + {12} + {22} + {14} + {32} + {2212} + {16} + · · ·

D = {0} + {2} + {4} + {22} + {6} + {42} + {23} + · · ·

where D involves partitions all of whose parts are even, and B the conjugate of such partitions.
The branching rules obtained using this identification of D and B are exemplified in Table 1.

Table 1. Branching rule examples.

GL(n) ⊃ O(n): {λ} → [λ/D]

{4} → [4] + [2] + [0]
{14} → [14]
{2212} → [2212] + [212] + [12]

GL(n) ⊃ Sp(n): {λ} → 〈λ/B〉

{4} → 〈4〉
{14} → 〈14〉 + 〈12〉 + 〈0〉
{2212} → 〈2212〉 + 〈22〉 + 〈212〉 + 〈14〉 + 2 〈12〉 + 〈0〉



5. Tensor products

We return to the general case of the subgroup H(n) of GL(n) with universal characters defined
by [[λ]] = {λ/S}. Let the coproduct of T = S−1 take the form

∆(T ) = (T ⊗ T ) · ∆′′(T ) with ∆′′(T ) =
∑

σ,τ

bT
στ {σ} ⊗ {τ} , (27)

for some, as yet undetermined, coefficients bT
στ . Then, we have

Theorem 5.1 The decomposition of products of universal characters of H(n) takes the form:

[[λ]] · [[µ]] =
∑

σ,τ

bT
στ [[(λ/σ) · (µ/τ ]]. (28)

Proof: Note that from (22) and (23)

[[λ]] · [[µ]] = {λ/S} · {µ/S} = [[((λ/S) · (µ/S))/T ]] . (29)

This implies that the multiplicity of [[ν]] in [[λ]] · [[µ]] is the same as the multiplicity of {ν} in
{((λ/S) · (µ/S))/T}, that is:

({((λ/S) · (µ/S))/T} | {ν}) = ({(λ/S) · (µ/S)} | T · {ν})

= ({λ/S} ⊗ {µ/S} | ∆(T · {ν}))

= ({λ/S} ⊗ {µ/S} | (T ⊗ T ) · ∆′′(T ) · ∆({ν}))

= ({λ/ST} ⊗ {µ/ST} | ∆′′(T ) · ∆({ν}))

= ({λ} ⊗ {µ} |
∑

σ,τ

bT
στ {σ} ⊗ {τ} · ∆({ν}))

=
∑

σ,τ

bT
στ ({λ/σ} ⊗ {µ/τ} | ∆({ν}))

=
∑

σ,τ

bT
στ ({λ/σ} · {µ/σ} | {ν}) ,

from which the required formula (28) follows
In order to apply this to any given subgroup H(n) of GL(n) it is necessary to evaluate the

coefficients bT
στ appearing in the coproduct of T . In the case of O(n) and Sp(n) we have T = D

and T = B, respectively, for which we have the coproduct expansions

∆(D) = (D ⊗ D) · ∆′′(D) with ∆′′(D) =
∑

σ

{σ} ⊗ {σ} ; (30)

∆(B) = (B ⊗ B) · ∆′′(B) with ∆′′(B) =
∑

σ

{σ} ⊗ {σ} . (31)

This can be seen by noting that:

D(x, y) =
∏

i≤j

(1 − xixj)
−1

∏

i,a

(1 − xiya)
−1

∏

a≤b

(1 − yayb)
−1

= D(x)
∑

σ

{σ}(x) {σ}(y) D(y) ;

B(x, y) =
∏

i<j

(1 − xixj)
−1

∏

i,a

(1 − xiya)
−1

∏

a<b

(1 − yayb)
−1

= B(x)
∑

σ

{σ}(x) {σ}(y) B(y) .

Now we are in a position to apply (28) to the case of O(n) and Sp(n). We find [10, 11, 9, 6, 7]:



Theorem 5.2 The tensor product decomposition rules for universal characters of O(n) and

Sp(n) take the form:

[λ] · [µ] =
∑

σ

[(λ/σ) · (µ/σ)] and 〈λ〉 · 〈µ〉 =
∑

σ

〈(λ/σ) · (µ/σ)〉 . (32)

Proof: In the case of O(n) it is merely necessary to note that T = D and bD
στ = δσ,τ from (30).

Using this in (28) gives

[λ] · [µ] =
∑

σ,τ

bD
στ [(λ/σ) · (µ/τ)] =

∑

σ

[(λ/σ) · (µ/σ)] . (33)

Similarly, in the case Sp(n) we have T = B and bB
στ = δσ,τ from (31). Again using this in (28)

gives

〈λ〉 · 〈µ〉 =
∑

σ,τ

bB
στ 〈(λ/σ) · (µ/τ)〉 =

∑

σ

〈(λ/σ) · (µ/σ)〉 . (34)

These rules are exemplified in Table 2, along with an example for GL(n) that is included for
comparative purposes. Remarkably, the universal tensor product rules for O(n) and Sp(n) are
identical. However, it is important to note that for finite n, when x = (x1, x2, . . .) is suitably
specialised, modification rules given elsewhere [12, 9] distinguish them.

Table 2. Tensor product decompositions.

GL(n): {22} · {21} = {43} + {421} + {321} + {322} + {3212} + {231}

O(n): [22] · [21] = [43] + [421] + [321] + [322] + [3212] + [231]
+[41] + 2[32] + 2[312] + 2[221] + [213]
+[3] + 2[21] + [13] + [1].

Sp(n): 〈22〉 · 〈21〉 = 〈43〉 + 〈421〉 + 〈321〉 + 〈322〉 + 〈3212〉 + 〈231〉
+〈41〉 + 2〈32〉 + 2〈312〉 + 2〈221〉 + 〈213〉
+〈3〉 + 2〈21〉 + 〈13〉 + 〈1〉.

6. Classical group character rings

Following an approach described in [2], the universal characters {λ}, [λ] and 〈λ〉, of the general
linear, othogonal and symplectic groups are linked to each other by means of the following
identities:

{λ} = [λ/D] = 〈λ/B〉 ; {λ/C} = [λ] = 〈λ/BC〉 ; {λ/A} = [λ/AD] = 〈λ〉 . (35)

By virtue of these identities each of these sets of characters {λ}, [λ] and 〈λ〉 forms a basis of
Λ. However, as we have seen, their product rules within the character rings CharGL, CharO
and CharSp are different. They are tabulated in the first line of Table 3. Moreover, within
these same character rings, the coproduct of the Hopf algebra Symm induces the coproducts
given in the second line of Table 3. These coproduct formulae are just the universal form
of the branching rules [8] for the group-subgroup restrictions GL(n + m) ⊃ GL(n) × GL(m),
O(n + m) ⊃ O(n) × O(m), and Sp(n + m) ⊃ Sp(n) × Sp(m). To complete the specification of
the Hopf algebra structure of CharGL, CharO and CharSp it is only necessary to specify the
unit ι, counit ǫ and antipode S. These are also given in Table 3, where A and C signify the sets
of partitions α and γ appearing in the expansions of A and C [8, 9].



Table 3. Hopf algebra structure of group character rings [2]

CharGL CharO CharSp

m({µ} ⊗ {ν}) = {µ} · {ν} m([µ] ⊗ [ν]) =
∑

ζ [(µ/ζ) · (ν/ζ)] m(〈µ〉 ⊗ 〈ν〉) =
∑

ζ〈(µ/ζ) · (ν/ζ)〉

∆({λ}) =
∑

ζ{λ/ζ} ⊗ {ζ} ∆([λ]) =
∑

ζ [λ/ζ] ⊗ [ζ/D] ∆(〈λ〉) =
∑

ζ〈λ/ζ〉 ⊗ 〈ζ/B〉

ι(1) = {0} ι(1) = [0] ι(1) = 〈0〉

ǫ({λ}) = δλ,0 ǫ([λ]) =
∑

γ∈C(−1)|γ|/2 δλ,γ ǫ(〈λ〉) =
∑

α∈A(−1)|α|/2 δλ,α

S({λ}) = (−1)|λ|{λ′} S([λ]) = (−1)|λ|[λ′/AD] S(〈λ〉) = (−1)|λ|〈λ′/CB〉

7. Conclusions

Universal characters of irreducible representations of the classical groups have been identified.
These have been expressed in terms of Schur functions, and Hopf algebra manipulations have
allowed us to calculate branching rules and tensor product decompositions. The analysis covers
covariant tensor representations of GL(n), O(n) and Sp(n), and may be extended to other
subgroups of GL(n) [1]. Such an extension using higher rank invariants, leads in some cases to
finite subgroups.

It should be stressed that, for any finite n, modification rules are needed to interpret the
results [10, 12, 9]. In addition, for n odd, the subgroup Sp(n) of GL(n) is neither semisimple nor
reductive. However, for n = 2k+1 the results remain valid if each character 〈λ〉 is interpreted as
the character of a representation V λ

Sp(2k+1) that is no longer irreducible but is indecomposable [5].
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