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In order to understand basic principles of the double layer formation in room temperature 

ionic liquids, we have performed Molecular Dynamic simulations for a simplified system: dense 

assembly of charged Lennard-Jones spheres between charged walls. For simplicity, in this first 

investigation we have considered the cations and anions of the same size. We have calculated the 

corresponding values of the double layer capacitance as a function of the electrode potential and 

compared the results with existing theories. We have found that the capacitance curve does not follow 

the U-shape of the Gouy-Chapman theory, but has a bell-shape in agreement with the mean-field 

theory that takes into account the effect of limited maximum packing of ions. The wings of capacitance 

decrease inversely proportional to the square root of electrode potential, as prescribed by the mean-

field theory and the charge conservation law that the latter obeys at large electrode polarizations.  We 

have found, however, that the mean-field theory does not quantitatively reproduce the simulation 

results at small electrode potentials, having detected there remarkable overscreening effects (ionic 

correlations). The plots for the distributions of ions near the electrode at different electrode charges 

show that for the considered system the double layer is not one layer thick. The overscreening effects, 

dominating near the potential at the point of zero charge (p.z.c.), are suppressed by the high electrode 

polarizations with the onset of the so called ‘lattice saturation effect.’ The maximum of the capacitance 

bell coincides with the p.z.c., but only for this ‘symmetric’ system: if sizes of cation and anion are 

different the maximum will be shifted away from the p.z.c.                      

 

Introduction 
Research on room temperature ionic liquids (ILs) is booming. However, until 

recently, it did not refer to electrochemistry of ILs, in spite of their potential importance 

in supercapacitors and fuel cells. The structure and properties of the electrical double 

layer at an electrode/IL interface remained, essentially, unexplored; for years Ref. [
1
] 

was the only one to quote in the context of experimental double layer capacitance as a 

function of electrode potential.  It is hard to say whether this was due to difficulties 

with the experimental double layer studies in molten salts [
2
], or due to the lack of a 

reliable statistical-mechanical description of ILs.   

However, now the situation is rapidly changing. Pair interaction potentials 

between ions of different ILs have been obtained in various approximations [
3
]. 

Molecular dynamic simulations based on them are were used to investigate in silico the 

bulk structure of ILs [
4
] as well as structure near interfaces [

5,6
]. Experimental studies of 

various structure-related properties of ILs have been reported (see, e.g. a special issue 

of JPC B [
7
]). The situation became ripe for theory and simulations of the double layer 

in ILs at electrified interfaces, as well as for their systematic experimental studies.   

A recent feature article in JPCB focussed on fundamentals of the double layer in 

ILs [
8
], and was followed by publications reporting new measurements of the double 

layer capacitance at different electrodes in a wide range of electrode potentials [
9
,
10

]. 

Ref [
8
] stressed that one cannot apply the Gouy-Chapman-Stern theory of diluted 

electrolytes to these dense ionic systems and discussed possible more involved 

approaches. As the simplest among them, an alternative mean-field theory was 

suggested that took into account natural constraints on the ion packing in ILs. That 

theory suggested a more general formula for the diffuse layer capacitance containing 



the Gouy-Chapman theory as a particular case,   not applicable for dense ILs [
8
]. 

Independently, Kilic, Bazant and Adjdari [
11

] published the same expressions for the 

capacitance and potential distribution near a charged wall. Later derivations of 

particular cases of the capacitance results of Refs [
8,11

] were reported [
12,13

]  

The idea of the approach in all these works was similar to the old theory of 

Eigen and Wicke for the bulk properties of concentrated electrolytes [
14

]. Moreover, as 

it became clear from the recent meticulous investigations into the history of this 

question by Martin Basant and Mustafa Kilic [
15

] these ideas have been developed 

earlier by Bikerman [
16

] and Dutta and Bagchi [
17

]. It was also recently discovered by 

Kilic and Bazant, that refs [
8,11,12

] all missed a paper by Freise [
18

] who had derived an 

identical formulae for the potential distribution and for the diffuse double layer 

capacitance, again in the context of concentrated electrolytes. It was not surprising, 

however, that Freise’s work was essentially forgotten. Corrections that Freise’s paper 

predicted for the diffuse layer capacitance have never been observed in liquid 

electrolytes, because for the most studied solvents and electrodes they take place at 

potentials far after the onset of Faraday processes. The situation should be different for 

ILs, where these formulae could be relevant.   

Had this series of works given more confidence to the results of the mean-field 

theory? Certainly not. Generally, one never knows when the mean-field theory should 

work, without comparing it with an exact solution or a more detailed microscopic 

theory, both non-existing for dense ILs. Therefore, such theory must be verified by 

experiments and/or computer simulations.  

In this article we report a systematic analysis of the capacitance of the double 

layer of a simple dense ionic liquid made of positively and negatively charged Lennard-

Jones spheres. This study is targeted to answer several questions that are principal for 

understanding the behaviour of dense ionic systems near charged walls, rather than 

exactly reproduce properties of real molecular ILs. Without understanding of the 

detailed mechanism of screening of electric field in this model system it would be hard 

to rationalize double layer properties of more complex ILs. The work was triggered by 

some questions raised in Ref. [
8
] and may be considered as an attempt to give first 

answers to some of them.  

 

Mean-field theory vs overscreening. Is double layer in IL one layer 

thick?  
There are several models of the double layer in dense ionic systems to refer to 

and compare with simulation results.  

 

Mean field theory  

This model extends the Gouy-Chapman theory of space charge near a charged 

surface. This is often combined with a ‘Stern model’ of the compact layer to give for 

the double layer specific capacitance (per unit surface area) C, 

1 1 1

d cC C C
= +           (1) 

where 
d

C  is the diffuse layer part, whereas 
c

C  is the compact layer part.  

Various models for the compact layer part where discussed (for review see 

[
8
]), that consider 

c
C  either constant or being a function of electrode potential.  

Assuming the former and for the anions and cations of the same size, one can estimate  



*
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c

C
d

ε

π
=           (2)  

Here d is the distance of the closest approach of ions to the electrodes, and *ε  is the 

number interpreted as an effective dielectric constant of the compact layer. Generally 

both can be functions of the electrode potential.  In absence of any more involved 

effects, the mere difference in sizes of anions and cations will give rise to the potential 

dependence of 
c

C . For instance, smaller anions, give rise to smaller distance of 

closest approach at positive electrode polarization, and thus larger 
c

C . The 

capacitance 
c

C will then have a sigmoidal shape with a positive slope near the 

potential of zero charge.  

The diffuse layer capacitance in the Gouy-Chapman theory reads 

( )cosh / 2c DC C u= ;                                         (3) 

we have used here dimensionless potential  

/ Bu eU k T= ,                     (4) 

where   T  is the absolute temperature,  U is the total potential drop across the double 

layer, e , the elementary charge, and DC , is the so called ‘Debye capacitance’ [
8
] 
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with  Debye length defined through the bulk average salt concentration c  as 

1

24
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D

k T
L

e c

ε
κ

π
−≡ =          (5) 

and ε  standing for the high frequency dielectric constant of the IL. This one is 

measured at the frequencies higher than inverse characteristic times of translational 

motion of ions but lower than any other higher frequency modes such as ion pair 

librational modes, damped vibrational modes and the electronic polarizability of ions. 

The value of ε  varies between ILs in the range near 10 [
19

].  

  If we will rewrite the result in the form 

4 ( )
d

eff

C
L u

ε

π
=          (6) 

the Gouy–Chapman theory gives 

 
( )

( )
cosh / 2

D
eff G

L
L u L

u
= =          (7) 

which is known as Gouy length. The fact that the latter decreases unlimitedly with 

potential (corresponding to ulimited increase of diffuse layer capacity), is of course 

unphysical because of the finite size of ions. Whereas this constraint was never 

reached in the double layer theory for ordinary electrolytes, in ILs it is very near.    

Modification of the Gouy-Chapman theory taking into account the finite value 

of the maximal possible concentration of ions [
8,11

] leads to a more general expression 

for the diffuse layer capacitance, which reads 

2
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Pay attention here to the only parameter of the theory,γ , defined as the ratio of the average 

salt concentration c  ( 0c  is the average bulk number density of cations or anions 0 / 2c c= ) 

to the maximal possible local concentration of ions (both cations and anions) maxc . The 

cumbersome factor in the r.h.s. is what radically differs this formula from the Gouy-

Chapman law, to which is reduces exactly in the limit of 0γ = .   

The result may again be rewritten in the form of Eq.(6), but with the screening 

length 

( )
( )

( )

( )
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and its behaviour is quite different from the Gouy one. With large potentials the screening 

length grows as a square rout of potential 

 2 | | , 1eff DL L u uγ≈ >>          (10) 

whereas at 

 , 0eff DL L u≈ →          (11)   

We are not going into further details of capacitance behaviour described by Eq.(6); all 

its aspects where discussed in detail in previous references -- the most tutorial presentation of 

it one may find in Ref. [
8
]. The most important points for the reader of the present paper are 

as follows: 

• The U-like capacitance curve of the Gouy-Chapman theory is not the one prescribed 

by the mean-field theory with finite-size effects for any 1/ 3γ > [
8
].  

• The wings of the capacitance curve decrease inversely proportional to the square root 

of potential.  This reflects the fact that the characteristic length of the field penetration 

into the ionic liquid grows with potential square-root-wise. It extends to a number of 

layers and is certainly not one layer thick. 

Importantly, for a system in which maxc  is an absolute maximum, i.e. it cannot be decreased 

by any further increase of the electrode potential, the square root law for capacitance, as it 

follows from Eq.(8), reads 

/ 2 | | , 1
d D

C C u uγ≈ >>         (12) 

This law, associated with the so called ‘effect of lattice saturation’(for review see [
20

]), can 

be, actually, derived based exclusively on the charge conservation principle [
8
], without any 

specific mean-field model. To our knowledge, for dense ionic systems this derivation was 

first given in Ref. [
20

]; for similar reasons an analogous law emerges in the theory of space 

charge in semiconductors [
21

].  

 

Overscreening 

The statistical mechanical theory of ionic liquids, considered as a dense mixture of hard 

spheres, was able to give so far only the linear response expression for the capacitance, i.e. C 

at u=0 (for an overview and pertinent references see 10
th

 section in Ref[
8
]).  It never gave  

( 0)
eff D

L u L→ ≈  , because it predicted entirely different character of screening than the mean 

field theory can. This mode of screening is called “overscreening” [
22

]. This statistical theory 

does not need to introduce any compact layer because the capacitance in it is calculated as a 

response of the whole semi-infinite liquid as it is.   

Within the overscreening theory, when the charge on electrode is infinitesimally 

small, the first layer near the electrode delivers a much larger counterion charge than 

“requested” by the electrode.  The second layer overcompensates it by the charge of the 

opposite sign, and these oscillations extend, decaying, over several layers into the bulk. The 



period of oscillations is determined by the average distance between ions. The effect is 

predetermined by the character of nonlocal dielectric function of such liquids [
23

] which itself 

reflects the packing trends. The overscreening manifests itself in various phenomena in dense 

ionic and dipolar systems [
24,25

]. In the context of nonlinear response, this effect is referred to 

‘strong correlations’ (see, e.g. [
26

]), not covered by the mean field theory.  

The fact that the short range structure of the liquid cannot be neglected, becomes 

obvious from the following estimate. Taking 10ε = and T =300-500 K we obtain for LD the 

the value smaller than the size of a typical cation of ‘room temperature’ ILs [
27

,
28

]. Thus, any 

‘Debye-like’ theory should not work at such ionic densities, and the short-range correlations 

must be important.  

There is a point of view that when the latter is true, one should simply conclude that 

“the double layer in ionic liquid is one layer thick” [
29

], making any further ‘details’ 

irrelevant. It is supported by a popular interpretation of a pioneering Dogonadze-Chizmadjev 

work on the double layer in molten salts [
30

], which actually does not exactly implies it.   

One of the tasks of our simuations will be to check this conjecture. Generally, 

comparing the mean field theory with the overscreening theory, we have all reasons to expect 

that close to the potentials of zero charge the mean field theory will not give a correct result. 

We are going to check this as well.   Will the mean-field theory, however, give better results 

for larger electrode potentials? This is the third question that our simulations will answer.  

 

Simulation system: model and methods 

The IL was modeled as a 1 to 1 mixture of counter-like singly charged spheres with a 

short-range repulsive Lennard-Jones potential 
12

0

( )LJ B
ru r k T

r
� �= � �
� �

. The radius of 

the spheres r0 was taken to be 0.5 nm, the same for cations and anions.  Electrostatic 

interactions between the spheres were described by a Coulomb law with dielectric 

constant = 2.0, which accounts for electronic polarizability of the cations and anions.  

We put 1050 cations and 1050 anions between two electrodes in a periodic 

rectangular box with dimensions in X and Y direction equal to 11 nm and the 

dimension in Z direction equal to 45 nm. The electrodes were modeled as two parallel 

XY square lattices made of charged Lennard-Jones spheres with radii 0.11 nm with 

the inter-sphere distance equal 0.11 nm. Surface charge densities on the electrodes 

were varied by the partial charge of the lattice spheres. The electrodes were separated 

by the 30 nm distance, so, there was a 15 nm slab of vacuum behind the electrodes.  

For simulations we used Gromacs 3.3 software
31

. The electrostatic interactions 

were treated with use of Particle-Mesh Ewald summation method with some 

corrections for slab geometry proposed in Ref. [
32

]. We performed 14 molecular 

dynamic productive runs of 20 ns at constant box volume, number of particles and 

temperature, preceded by a 10 ns equilibration runs. In all runs the simulation 

temperature was kept at 450 K using Berendsen thermostat method
33

.  

Each run was performed for a given charge density of the electrodes in the 

interval between  -48  to ± 48 �C/cm
2
. 

 

Results and Discussion 

 

Figure 1 shows strong oscillations of electrostatic potential near each electrode 

extending approximately to 7 nm from the electrode surfaces to the bulk.  



 
 

Figure 1.  
Potential profiles across the simulations box in z-directions between two electrodes. The potentials u 

are given in the units of kBT/e which for the simulation temperature equals to 38.8 mV. Each curve 

corresponds to different charge density, as shown in the legend.  
 

The response of the liquid is symmetric for the anode and cathode, because cations 

and anions have the same radii. The studied system is shown to be large enough so 

that the space charge regions at two opposite electrodes do not overlap. We therefore 

show the results for the double layer at one of the electrodes, charged negatively.  

 In order to understand the structure of the double layer, the bar plots of Fig.2 

show partitioning of cations and anions in consecutive layers near the electrode, each 

of the thickness of one ionic diameter (1nm).  

At small and moderate electrode charges (up to 10µ≈ C/cm
2
) the effect of 

overscreening is clearly seen in the first two layers. Indeed, the first layer delivers 

larger net counter-charge density then the charge density on the electrode. The second 

layer overcompensates this by exaggerated negative charge, and off it goes leading to 

further decaying oscillations.  

This effect is absent for larger charge densities. It is minor at 16σ µ≈ C/cm
2
, 

but at 32σ µ≈ C/cm
2  

the character of screening becomes different. The first layer, 

although totally composed of cations, can no longer deliver the full countercharge, 

because of the maximal admissible concentration of ions in each layer. The second 

layer has the same sign of the charge, almost exclusively composed of cations. But 

these two layers together contribute more countercharge than the electrode ‘demands’. 

The third and the fourth layers overcompensate the difference, leading to some weak 

oscillations in the subsequent layers.  

 

 



 
Figure 2.  
Partial charge densities per unit cross-section area in the first seven monolayers near the cathode, 

scaled to the absolute values of surface charged density of the electrode, σ . Blue bars correspond to 

cations, red bars to anions. The bulk numbers for the cation (cyan) and anion (magenta) scaled 

densities are shown by horizontal lines as a guide for the eye. These results are shown for four 

indicated values of σ . Circles display the particle density per unit cross-section area in the 

corresponding layer, also scaled to the number of charges per unit surface area of the electrode.  

 

Upper part of Fig.3 shows the simulation data for the dependence of the 

surface charge density versus dimensionless potential. The corresponding capacitance 

values derived from that plot are shown in the inset. We see that capacitance 

decreases with the potential drop across the double layer. This corroborates the 

predictions of the mean field theory with finite ion-size effects, but not the Gouy-

Chapman theory. To test how close the mean-field theory is to the simulation, we first 

checked whether the square root law (12) is observed. It approximately does, and 

from fitting to it we could obtain the high frequency dielectric constant 7ε ≈ , which 

is a plausible value, as discussed above.  

We then plotted (lower part of Fig.3) the result of the mean field theory for 

this value of  ε  and compared it with the corresponding curve of the Gouy-Chapman 

theory, and the one obtained from the simulations. We see that the Gouy-Chapman 

theory is entirely off-key, whereas the mean-filed theory behaves qualitatively similar 

to the simulations. It, however, exaggerates the value of the capacitance at small 

voltages by almost an order of magnitude. This is not unexpected, in view of the 

overscreening effect clearly observed in the simulations (Fig.2).  

The inset shows a kind of interpolation result obtained if one corrects Gouy-

Chapman and the mean-field theories by the addition of the compact layer. It does not 

help the Gouy-Chapman but it works well for the mean-field case, at the compact 

layer effective dielectric constant *ε =5, Eq.(5), and the compact layer width d equal 

to the ion radius. The both values are reasonable.   



 
Figure 3.  
(top) Surface charge density vs dimensionless potential drop (Eq.4) across the double layer. The inset 

shows the results of the simulated capacitance in with vs potential in volts. (bottom). Capacitance of the 

double layer calculated by different methods: red dash-dotted line – Gouy-Chapman theory with 7ε =  

; blue dashed line – results given by Eq. 8  ; black solid line  – simulation results. For the sake of 

comparison, all capacitance values presented on this graph are normalized to the value of Debye 

capacitance (calculated with 7ε = ).  The inset shows the same values but for the total capacitance, 

calculated with a correction for a Stern layer with a potential-independent capacitance (calculated for d 

=0.5 nm and * 5ε = ).  

 

The last figure demonstrates the validity of the square root law. It also displays 

the simulation data for the position of the center of mass of the counter charge defined 

as  

 
/ 2 / 2

0 0
/ 2

0

( ) ( )

( )

Z Z

Z

dz z z dz z z

dz z

ρ ρ

λ
σ

ρ

= ≡
−


 




        (13) 

where integration of extends to the middle of the simulation box of width Z. One can 

see that it also follows the square root law.   



 
Figure 4.  
Inverse values of the double layer capacitance vs the square root values of the dimensionless potential 

u. The capacitance values were calculated by different methods: red dash-dotted line – Gouy-Chapman 

theory; blue dashed line – results given by Eq. 8. All parameters and scaling are the same as in Fig.3 . 

Black solid line – simulation results. The inset shows the simulation data for the position of the center 

of mass of the counter charge distribution, �.  

 

 

Conclusions 

We have analyzed the structure of the double layer of a model ionic liquid and 

found that in this system --  

• the overall bell-shape character of capacitance as a function of electrode 

potential, and no signs of the Gouy-Chapman behaviour; 

• substantial overscreening effects at small electrode polarizations; 

• a well observed ‘lattice saturation’ effect at large polarizations; 

• double layer in IL is not one layer thick; the situation is more complicated 

 

The limits of applicability of the generealized mean-field theory were established. 

 Note, that the simulations and theoretical analysis have been performed for 

the case of cations and anions of the same size. As a continuation of this work we will 

study the effect of difference in size of cation and anion; for such asymmetric systems 

the capacitance will have no maximum at the potential of zero charge. The maximum 

will be shifted away from the p.z.c. as discussed in ref [
8
]. For this reason it is 

premature to compare this theory with experiments; the simulation itself was targeted 

to illuminate the basic principles of the structure of the double layer in ionic liquids. 
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