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Abstract. We use Witten’s volume formula to calculate the cohomological
pairings of the moduli space of flat SU(3) connections. The cohomological
pairings of moduli space of flat SU(2) connections is known from the work of
Thaddeus-Witten-Donaldson, but for higher holonomy groups these pairings
are largely unknown. We make some progress on these problems, and show
that the pairings can be expressed in terms of multiple zeta functions.
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1. Introduction

This article emerges from the recently obtained connection between quantum field
theory and algebraic geometry and it is devoted to the study of some cohomological
properties of the moduli space of flat SU(3) connections over a Riemann surface.
Roughly speaking, one can study the cohomological pairings in three different
ways, the first method was due to Thaddeus [32], the second one by Witten [38, 39]
Donaldson [13] also proposed another method. The most updated one was proposed
by Jeffrey and Kirwan [24, 25].

The moduli space M(n, d) of semistable rank n degree d holomorphic vector
bundles with fixed determinant on a compact Riemann surface Σ is a smooth
Kähler manifold when n and d are coprime [2, 3, 12, 30]. Jeffrey and Kirwan
[24, 25] gave full details of a mathematically rigorous proof of certain formulas
for intersection pairings in the cohomology of moduli space M(n, d) with complex
coefficients. These formulas have been found by Witten by formally applying his
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version of nonabelian localization to the infinite-dimensional space A of all U(n)-
connections on Σ and the group of gauge transformations. Jeffrey and Kirwan
used nonabelian localization technique to a certain finite-dimensional extended
moduli space from which moduli space M(n, d) of semistable rank n degree d
may be obtained by ordinary symplectic reduction. In this way they obtained the
Witten’s formulas. It has been known [23] that a moduli space of flat connections
on principal G-bundles over Σ as a Marsden-Weinstein symplectic quotient of a
finite-dimensional symplectic manifold [16] by a G-action.

We use the Verlinde’s formula [32, 35] of conformal field theory and com-
plex geometry. Verlinde’s formula gives the dimension of the space of conformal
blocks in the WZW model on a Riemann surface. E. Verlinde’s [35] result on the
diagonalization of the fusion algebra gives a compact formula for the dimension
of the space of conformal blocks. This formula coincides with the dimension of
H0(MG, L⊗k) where MG is the moduli space of flat G bundles over the Riemann
surface Σg of genus g and L is the generator of Pic(MG). The formula for the
dimension of these spaces, which is independent of Riemann surface Σ, was proved
by A. Tsuchiya, K. Ueno and Y. Yamada [33]. The Verline formula has given rise
to a great deal of excitement and new mathematics of infinite-dimensional variety
(it is an ind-scheme) [9, 14, 27].

We can write the celebrated Verlinde’s formula as

dimH0(MG, L⊗k) =
∑

α

1

S2g−2
0,α

. (1.1)

Here α runs over the representatives of G which are the highest weights of inte-

grable representations of the corresponding affine group Ĝ at level k and Sα,γ is
a matrix arising from the modular transformation of the character of the affine

group Ĝ at level k. If χα(τ) is the character of Ĝ at level k with highest weight α,
then S is defined by the formula

χα(−1/τ) =
∑

β

Sαβχβ(τ).

As an example we see that when G = SU(2) then

Sij = (
2

k + 2
)1/2sin

π(i + 1)(j + 1)

k + 2
.

Hence we obtain

dimH0(M, L⊗k) = (
k + 2

2
)g−1

k∑

j=0

(
1

sinπ(j+1)
k+2

)2g−2. (1.2)

The volume of the moduli space is obtained from the Verlinde’s formula (1.1)
and given by

V olF (M) = limk→∞k−ndimH0(M, L⊗k). (1.3)
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The Hirzebruch-Riemann-Roch formula is

dim H0(M, L⊗k) = < exp(kc1(L))Ṫ d(M),M >,

where Td(M) denotes the Todd class. For large k, this yields ( for G = SU(2))

dim H0(M, L⊗k) ∼ k3g−3

(3g − 3)!
< c1(L)3g−3,M > .

Since c1(L) is represented by the symplectic form ω in de Rham cohomology,

hence <c1(L)3g−3,M>
(3g−3)! coincides with the volume of the moduli space V ol(M).

Incidentally, Witten gave a volume formula for moduli space of flat connec-
tions for general G. It is given by

V ol(M) =
♯Z(G).(V ol(G))2g−2

(2π)dimM

∑

α

1

(dimα)2g−2
(1.4)

where α runs over all the irreducible representations of G. Here ♯Z(G) is number
of elements in the centre of G.

In principle, although Witten’s volume formula is applicable to any G, but
unfortunately there are some computational problems arise when G = SU(n) for
n ≥ 3. In this case the main problem that one must face is to find out the matrix
Sαβ from the modular transformation of the Weyl-Kac character formula [18, 22].

In this article we obtain the volume formula for G = SU(3) by computing
the matrix Sαβ ,

S0λ =
8√

6(k + 3)
sin

πλ1

k + 3
sin

πλ2

k + 3
sin

π(λ1 + λ2)

k + 3
. (1.5)

Computation of volume formula is a two step process. At first, we obtain the
Verlinde’s formula for moduli space of SU(3) flat connection by substituting the
value of Sαβ in (1). We obtain

Proposition 1.1.

dimH0(M, L⊗k) =
(k + 3)2g−26g−1

26g−6

∑

λ1,λ2

(
1

sin πλ1

k+3sin πλ2

k+3sinπ(λ1+λ2

k+3

)2g−2.

In the next step using the above formula and Witten’s prescription for large
k limit, we obtain volume of the moduli space of flat SU(3) connection this yields

Proposition 1.2.

V ol(M)SU(3)) = 3
6g−1

(2π)6g−6

∞∑

n1,n2

n
−(2g−2)
1 n

−(2g−2)
2 (n1 + n2)

−(2g−2).
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Here the zeta function appears in the volume of flat SU(3) connection V ol(M)SU(3))

ζg(A, 2g − 2) =

∞∑

n1,n2

1

n2g−2
1 n2g−2

2 (n1 + n2)2g−2
(1.6)

is a member of a family of much larger class of zeta functions, known as multiple
zeta function. The Euler-Zagier multiple zeta functions are nested generalizations
of the Riemann zeta function [36, 37]. They are defined as

ζk(s1, . . . , sk) =
∑

0<n1<···<nk

n−s1
1 · · ·n−sk

k .

Here, s1, · · · , sk ∈ Z, s1 ≥ 2, sj ≥ 1 for 2 ≤ j ≤ k. For k = 1, this reduces to
Riemann’s zeta function. We call k the length or depth of s, and |s| =

∑
sj the

weight of s.

Unlike Riemann zeta function one could determine several algebraic relations
between the multiple zeta values (MZV). One type of such relations appears when
one multiples two such series, in fact, one gets a linear combination of MZV. A
simple example is stated below:

ζ(s)ζ(s′) =
∑

n≥1

1

ns

∑

m≥1

1

ms′

=
∑

n>m

+
∑

n<m

+
∑

n=m

= ζ(s, s′) + ζ(s′, s) + ζ(s + s′),

this is a quadratic relation among zeta values.

In general the quadratic relation is given as

ζ(s)ζ(s′) =
∑

σ

σ.

This manipulation leads to define a product called stuffle product [6]. This is a
formal sum defined recursively by

aP ∗ bQ = a(P ∗ bQ) + b(aP ∗ Q) + (a + b)(P ∗ Q).

A simple example is

ζ(s)2 = 2ζ(s, s) + ζ(2s).

Then for s = 2, ζ(2) = π2/6 and ζ(4) = π4/90, hence we obtain

ζ(2, 2) =
∑

m>n≥1

(mn)−2 =
π4

120
.

Another example is ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).
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Remark. In the same way as the stuffle product arises in the reorganization
of multiple sums, multiple integrals lead to the definition of shuffle product of
words over alphabet (with two letters) X = {x0, x1}. The words are given as

X∗ = {xa1
0 xb1

1 · · ·xak

0 xbk

1 }. This product is defined by the same formula as the
stuffle product except that last term in the sum is omitted. The algebraic rela-
tions between multiple polylogarithms

Li(s1···sk)(z) =
∑

n1>n2>···nk≥1

zn1

ns1
1 · · ·nsk

k

|z| < 1 ∀sj ≥ 1

is generated by the shuffle relation. In fact these multiple polylogarithms can be
expressed as iterated Chen integrals, and from this representation one obtains
shuffle relations ( for example, see [7] ).

In our case, Don Zagier [40, 41] gave a formula calculating the values of this
particular multiple zeta function. This is also derived using stuffle product. The
key formula to compute our volume form is given by

∞∑

m,n

1

msns(m + n)s
=

4

3

∑

0≤r≤s;reven

(
2s − r − 1

s − 1

)
ζ(r)ζ(3s − r). (1.7)

Witten’s volume formula can be extended to the moduli space of vector bun-
dles with marked points z1, z2, ......., zp ∈ Σg. We associate to each marked point
zi an irreducible representation Γ of GC. If λ is the highest weight of Γ, then
(λ, αmax) ≤ k where αmax is the highest root and ( , ) is the basic inner product
(see appendix, [22]): alternatively λ is in the fundamental domain of the action
of the affine Weyl group at level k + h on the Cartan subalgebra ( Lie algebra of
the maximal torus). We sum over representations Γ for which if λ is the highest
weight of Γλ, the representation of dimension (n + 1) and all the marked points
are labelled by Γnr

. We associate a complex vector space to each labelled Riemann
surface.

The generalized Verlinde’s formula for a group G in the presence of marked
points [38] is

dimH0(MG, L⊗k ⊗
⊗

i
Γni

) =

k∑

j=0

1

S2g−2+p
0,j

p∏

i=1

Sni,j (1.8)

and the vector space H0(MG, L⊗k ⊗ ⊗
iΓni

) is independent of the details of the
positions of the marked points.

Similarly the volume of the generalized moduli space can be obtained from
this generalized Verlinde’s formula (1.8) by extracting the term at the large k limit
(1.3).
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The volume formula for G = SU(2) with marked points is

V olF (Mt) = 2.
1

2g−1π2g−2+p

p∑

n=1

∏p
i=1 sin(πnti)

n2g−2+p
. (1.9)

Our strategy is to compute the volume from the Verlinde formula in the large
k limit, rather than using Witten’s volume directly and this will be our recipe to
find the volume of the moduli space.

Unlike the SU(2) case we obtain the volume formula for the moduli space of
flat SU(3) connection in terms of the multiple zeta function or double Bernoulli
numbers [4, 5].

We obtain the volume formula of the moduli space of flat SU(3) connection
over one marked point Riemann surface.

Proposition 1.3.

V olF (Mt) =
3.6g−1

26g−6π6g−3

∑ sin πn1t1. sin πn2t2. sin π(n1 + n2)(t1 + t2)

n2g−1
1 n2g−1

2 (n1 + n2)2g−1

t1 and t2 is restricted to

0 < ti < 1.

When we expand out the sine terms we obtain a comprehensive volume formula
to find the intersection pairings of moduli space.

Witten’s idea is based on the symplectic volume of the moduli space of flat
connections. The moduli space M of flat connections of any semi-simple group G
is a symplectic variety with a symplectic form ω. The volume of the moduli space
of flat SU(n) connections is

V olS(M) =
1

r!

∫

M

ωr

where r = (n2 − 1)(g − 1) = (g − 1) dim G is the dimension of the moduli space.

Witten showed [38] that the Reidemeister torsion of a Riemann surface
equipped with a flat connection determines a natural volume form on the moduli
space of flat connections which agrees with the symplectic volume. Given a chain
complex C• that computes H∗(Σ, ad(E)), we define the torsion τ(C•) is a vector
in

(det H0(Σ, ad(E)))−1 ⊗ det H1(Σ, ad(E)) ⊗ det H2(Σ, ad(E)))−1.

For an irredicible flat connection,

H0(Σ, ad(E)) = H2(Σ, ad(E)) = 0.

So τ(C•) defines a vector in det H1(Σ, ad(E)). Witten [38] gave the actual road
map to compute volume of M.
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Motivation. The result of this paper was first appeared in [19]. Aparantly one
would ask why do we need another paper to study cohomological pairings when
Jeffrey and Kirwan [24, 25] gave full details of a mathematically rigorous proof of
Witten’s formulas for intersection numbers in the moduli spaces of flat connections.
Indeed the knowledge of the volume formula in principle allows us to calculate the
full list of cohomology pairings for the moduli space of arbitrary rank.

Our article is an explicit example of the computation of intersection pairings
in the cohomology of moduli space of flat SU(3) connections. This involves the
computation of multiple zeta functions and hence it is fairly difficult to compute
intersection pairings for higher rank vector bundles. Our approach is based on the
volume of moduli spaces of parabolic bundles prescribed by Witten. Jeffrey-Kirwan
formulation yields formulas for all intersection numbers, whereas our approach
yield formulas for the intersection numbers of restricted cases, for example we
exclude some cases that could yield the intersection numbers of some algebraic
cycles in the moduli spaces.

2. Background about moduli space

Let Σg be a compact Riemann surface of genus g. Let E be the G bundle over
Σg — here G can be any compact Lie group. For simplicity we shall work with
the special case G = SU(n). Let us consider the space of flat G connections over
a Riemann surface Σg. We consider the space Hom(π, G)/G which parametrizes
the conjugacy classes of homomorphisms

π1(Σg) −→ G.

Now π1(Σg) has generators A1, A2, ....., Ag, B1, B2, ....., Bg which satisfy

g∏

i=1

[Ai, Bi] = 1.

It follows that H1(Σg, G) is the quotient by G of the subset of G2g lying over 1 in
the map Gg × Gg → G given by

∏
[Ai, Bi]. This shows clearly that H1(Σg, G) is

a compact Hausdorff space.

Let us fix our structure group G = SU(n). Let us consider a point x ∈ Σg.
Suppose we cut out a small disc D around the point x. We fix the holonomy of
the connection around the disc D to be exp(2πip/n), where p and n are coprime
to each other. Actually this holonomy exp(2πip/n) around the point x ensures the
irreducibility of the connection.

Consider a map

fg : SU(n)g × SU(n)g 7−→ SU(n)
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defined by

(A1, B1, . . . , Ag, Bg) 7−→
g∏

i

AiBiA
−1
i B−1

i

In particular we select the subspace Wg = f−1
g (exp(2πip/n) of SU(n)2g.

A point, say x, in the space SU(n)g ×SU(n)g is considered to be reducible if
there exists a matrix T in SU(n) such that (TAiT

−1, TBiT
−1 . . .) are all diagonal.

When n > 2, we should include also those points where there exist matrices that
can be simultaneously block diagonalised, for example in the case of SU(3) this
would go into S(U(2)×U(1)). If x is a reducible point of SU(n)2g then fg(x) = I
so the connections take values in the abelian subgroup of SU(n).

Now it follows that the diagonal conjugation action of SU(n)/Z(G) = PU(n)
(where Z(G) is the centre of SU(n)) on SU(n)2g clearly preserves Wg and also by
Schur’s Lemma the restriction of the action is free. Hence the quotient Wg/PU(n)
is a smooth compact Hausdorff space, it is a manifold of dimension 2(g − 1)dimG.

We can give an equivalent description of this moduli space in the holomorphic
way ( see [2, 20, 21]). The space of connection A over E is an affine space modeled
on Ω1(Σg, adE), such that the tangent space of A at any point is canonically
identified with Ω1(Σg, adE). Let us consider a decomposition of

Ω1(Σg, adE) ⊗ C = Ω1,0(Σg, adEC) ⊕ Ω0,1(Σg, adEC)

If we consider an isomorphism between Ω1(Σg, adE) and Ω0,1(Σg, adEC) , we
obtain a complex structure on the modeled space of A and hence also on A. We say
A is the space of ∂̄ operators on EC . In the holomorphic picture we must restrict
to a stable bundle [29] in order to obtain a smooth moduli space. A holomorphic
vector bundle E is semi-stable over a Riemann surface, if for all sub-bundles F it
satisfies

degF

rankF
≤ degE

rankE
Here degree stands for the value of the first Chern class. The vector bundle E
is a stable bundle if this inequality is strict. When the degree and the rank are
coprime then all the semi stable bundles are stable. In this holomorphic picture
the moduli space is interpreted as the space of gauge equivalence classes of stable
vector bundles i.e. M(Σ, G) = AS/GC , where Aut(EC) = GC acts on AS with the
constant scalars as the only isotropy group. The celebrated theorem of Narasimhan
and Seshadri [30] connects both the pictures and it states that stable bundle arising
from the representations of π1 give irreducible representation.

Theorem 2.1 (Narasimhan-Seshadri). [30] A holomorphic vector bundle of rank n
is stable if and only if it arises from an irreducible projective unitary representation
of the fundamental group. Moreover isomorphic bundles correspond to equivalent
representation.
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The more general moduli space of flat SU(n) connections over punctured
Riemann surfaces have been studied by Mehta and Seshadri [28]. In the presence
of a marked point on

∑
g we associate a conjugacy class of SU(n) to it.

Γ ∼




e2πiγ1/n 0 · · · 0

0 e2πiγ2/n · · · 0
· · · · · · · · · · · ·
0 0 · · · e2πiγn/n




for all 0 < γi < 1 , where
∑n

i=1 γi = 0. The holonomy around this marked point
takes value in this conjugacy class. In presence of the marked points z1, z2, ....., zp

we associate a set of conjugacy classes Γi of SU(n). Consider a homomorphism

π1(Σg − (z1 ∪ z2 ∪ .... ∪ zp)) −→ G

such that the loop around each zi takes values in Γi, and the moduli space is the
quotient by G of the fibre over 1 in the multiplication map

Γ1 × Γ2 × · · · × Γp −→ SU(n).

In other words, when we factor out the conjugacy we obtain the moduli space
of parabolic bundles with weight (γ1, . . . , γn). The dimension of the generalized
moduli space [3] is

2(g − 1)dimG +

p∑

j=1

dimΓj .

This moduli space of parabolic bundles over the punctured Riemann sur-
face can be given a holomorphic picture too. Mehta and Seshadri [28] have given
the notion of stability in this case. This involves assigning weights given by the
eigenvalues of Γi at each marked point.

3. Volume of the moduli space of SU(2) flat connections

Let us quickly recapitulate the known case. We recall that Sαβ is obtained from
the modular transformation induced on the characters of level k. Let χα(τ) be

the character of the affine group Ĝ then by the modular transformation τ → 1
τ

([DF],[Ka]) we obtain matrix Sαβ , where α is the highest weight.

χα(−1

τ
) =

∑

β

Sαβχβ(τ)

The key way to construct this character is from Weyl-Kac formula ( for example
[11, 26]). We define the character of the representation L(λ) to be the function

chλ(t) = trL(λ)exp(t)
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where t ∈ t̂ and t̂ is the Cartan subalgebra of ŝln. The Weyl- Kac character formula
is given by

trL(λ)exp(t) =

∑
sign(w)exp(w(λ + ρ)|t)∑

sign(w)exp(w(ρ)|t)
where summations run over w in the Weyl group. Weyl - Kac character formula
is essentially same as Weyl character formula; It differs only two minor ways, i,e
besides the usual root vectors, we also describe states by the number operator and
the c-number term. Then k is the eigenvalue of the number operator.

The affine Weyl group Waff is the semi-direct product of the ordinary Weyl
group and the translation Tλ given by the co-root λ∨ of the highest root λ.

Sij = (
2

k + 2
)

1
2
sinπ(i + 1)(j + 1)

k + 2
Using Verlinde’s formula we obtain

dimH0(M, Lk) =
∑

j

(
1

S0,j
)2g−2

R.H.S =
∑

j

(
1

S0,j
)2g−2

= (
k + 2

2
)g−1

k∑

j=0

(
1

sinπ(j+1)
k+2

)2g−2.

Since our goal is to obtain a formula for the volume of the moduli space M
we need to extract a term proportional to kdimCM = k3g−3 for k −→ ∞. The two
regions, namely, j << k and k− j << k make equal contributions. In order to see
this we use asymptotic analysis.

3.1. Asymptotic analysis and computation of volume of moduli spaces

We want to show that this is asymptotic to

2k3g−3

2g−1π2g−2
.

∞∑

r=1

1

r2g−2
as k −→ ∞.

We will assume that g ≥ 2 and write n = 2g − 2 ≥ 2. We will also replace k by
l = k + 2, so the sum is:

Σl = (
l

2
)n/2

l−1∑

j=1

(
1

sin(πj/l)
)n.

We divide this sum into the combination from j ≤ l/2, j ≥ l/2: these are essentially
the same so it suffices to treat the first one. For ǫ > 0, we write

l/2∑

j=1

(
1

sin πj/l
)n =

[ǫl]∑

j=1

(
1

sin πj/l
)n +

l/2∑

[ǫl]+1

(
1

sin πj/l
)n
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= S + T, ( say ) .

We want to compare the sum S with S ′ =
∑∞

j=1(
l

πj )n. The difference S−S′ arises

from two factors – approximating the sin function by its derivative and changing
the range of summation. For the first case we have, for small ǫ and j/l < ǫ,

πj/l ≥ sin(πj/l) ≥ πj/l − 1/6(πj/l)3.

This implies that, for some constant C,

(
l

πj
)n ≤ (

1

sin(πj/l)
)n ≤ (

kn

πj
)n(1 + C(

j

l
)2).

So

|
[ǫl]∑

j=1

(
1

sin(πj
l )

)n −
[ǫl]∑

j=1

(
l

πj
)n|

≤ C
ǫl∑

j=1

ln−2

jn−2
≤ C′ln−1,

for some C ′ ( since these are O(l) terms in the sum).
For the second factor:

∞∑

j=1

(
l

πj
)n −

[ǫl]∑

j=1

(
l

πj
)n

=

∞∑

[ǫl]+1

(
l

πj
)n = O(ln−1)

by comparing with the integral
∫ ∞

ǫl x−ndx. So we see that S−S ′ is O(ln−1). Finally
consider the other term T :

T =

l/2∑

[ǫl]+1

(
1

sin(πj/l)
)n.

In this sum
sin(πj/l) ≥ δ(ǫ)

say so, for fixed ǫ, T = O(l) ( the number of terms in the sum). Putting all of
this together we see that

Σl = (
l

2
)n/2.(2

∞∑

j=1

(
l

πj
)n + O(ln−1),

which gives the result required.

So for large k, we obtain

dimH0(M, Lk) ∼ 2(
k + 2

2
)g−1

k∑

j=o

(
k + 2

π(j + 1)
)2g−2
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2
k3g−3

2g−1π2g−2

∞∑

n=1

1

n2g−2
.

This finally yields

dimH0(M, Lk) = 2
k3g−3

2g−1π2g−2
ζ(2g − 2). (3.1)

From the algebraic geometry point of view this dimension can be expressed
via Hirzebruch-Riemann-Roch theorem [17]

dimH0(M, Lk) =< exp(kc1(L)).T d(M),M >

and for large k,

dimH0(M, Lk) ∼ k3g−3

(3g − 3)!
< c1(L)3g−3,M > . (3.2)

Now c1(L) is represented by the symplectic form ω in de-Rham cohomology. Hence

< c1(L)3g−3,M >

(3g − 3)!

coincides with Vol(M) So equating the (10) and (11), we obtain

V ol(M) = 2
1

(2π2)g−1

∞∑

n=1

n−(2g−2)

= 2
ζ(2g − 2)

(2π2)g−1

This is known as Witten’s volume formula [38] of the moduli space of flat SU(2)
connection.

4. Volume of the moduli space of flat SU(3) connections

We first recall some definitions of affine ŜU(3) characters (for example, [11, 26]).

The affine ŜU(3) characters are labelled by a highest weight Λ = λ1Λ1 + λ2Λ2

where Λi are the fundamental weights and the set of components {λi} are the

non-negative integers. If the height of affine ŜU(3) is n = k + 3 with level k ≥ 0,
the highest weights corresponding to unitary representations satisfy λ1 + λ2 ≤ k.

There are thus (k+1)(k+2)
2 = (n−1)(n−2)

2 independent affine characters. To see these
more explicitly, let us consider shifted weight λ = Λ + Λ1 + Λ2 = p1Λ1 + p2Λ2.
Unitarity of the representations implies that λ belongs to the fundamental domain
W

W = {λ = p1Λ1 + p2Λ2 , pi ≥ 1 and p1 + p2 ≤ n − 1}
where Λi are the fundamental weights and the set of components {pi} are truncated
by the level k. W is known as Weyl alcove (see for example, [8, 15, 26]).
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Our starting point will be Weyl- Kac character for ŜU(3). We obtain the
matrix Sαβ( see details in [26]) from the modular transformations τ −→ − 1

τ of χ.

The S matrix of ŜU(3) is given below.

S0λ =
8√

6(k + 3)
sin

πλ1

k + 3
sin

πλ2

k + 3
sin

π(λ1 + λ2)

k + 3
, (4.1)

which can be also derived from Weyl-Kac factorized form [11]:

φλ =
sin πλ1

k+3sin πλ2

k+3sinπ(λ1+λ2)
k+3

sin2 π
k+3sin 2π

k+3

after normalization .

Note that k + 3 is the shifting of level k, and the shifting will be exactly
equal to the Coxeter number of the group G. The Coxeter number of SU(n) is
n. Substituting the modular transformation S0λ in (1) we obtain the Verlinde’s
formula for the moduli space of flat SU(3) connections.

dimH0(M, Lk) =
(k + 3)2g−26g−1

27g−7

∑

λ1,λ2

(
1

sin πλ1

k+3sin πλ2

k+3sinπ(λ1+λ2

k+3

)2g−2. (4.2)

Here the summation satisfies λ1 + λ2 ≤ k + 2.

To find the volume, again our goal is to extract the term proportional to

kdimcM = k8g−8

for k −→ ∞.

Like the SU(2) case , here the contribution for large k comes from 3 different
regions. Finally we obtain ,

dimH0(M, Lk) ∼ 3
k8g−8

(2π)6g−62g−1
6g−1

∞∑

λ1=1,λ2=1

1

λ2g−2
1

1

λ2g−2
2

1

(λ1 + λ2)2g−2

dimH0(M, Lk) ∼ 3
k8g−8

(2π)6g−62g−1
6g−1ζg(2g − 2)

where this generalized zeta function

ζg(2g − 2) =
∑

n
−(2g−2)
1 n

−(2g−2)
2 (n1 + n2)

−(2g−2)

can be expressed in terms of double Bernoulli numbers [4, 5, 31] or multiple zeta
functions [40, 41].

Hence using the Riemann-Roch formula , for large k −→ ∞ we obtain,

dimH0(M, Lk) ∼ k8g−8

(8g − 8)!
< c1(L)8g−8,M >
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Again c1(L) is represented by the symplectic form ω and

< c1(L)8g−8,M >

(8g − 8)!

coincides with V ol(M). Hence we obtain

V ol(M)SU(3)) = 3
6g−1

(2π)6g−62g−1
ζg(2g − 2)

Finally, using the formula [41] of the multiple zeta function
∞∑

m,n

1

msns(m + n)s
=

4

3

∑

0≤r≤s;reven

(
2s − r − 1

s − 1

)
ζ(r)ζ(3s − r)

we obtain following examples.

Example For g = 2 we know the value of the zeta function from Don Zagier
[40, 41]. ζ2(λ, 2) = (2π)6/7!36. So the volume is

V ol(M) = 3.
6

(2π)6.2
.
(2π)6

7!36
= 1/4.7!

This is the first generalization of Witten’s result [38] for moduli space of
SU(2) flat connection to moduli space of flat SU(3) connections.

5. Cohomological pairings of the moduli space

This is the central theme of the whole talk. Our goal here is to find out the coho-
mological pairings of the moduli space of flat SU(3) connections on the Riemann
surface. Our recipe to find the volume will be to use a generalized Verlinde’s for-
mula (for the marked point case) (1.8) in the large k-limit. This volume formula
contains all the information of certain cohomological pairings .

5.1. Review of Donaldson-Thaddeus-Witten’s work on SU(2) moduli space

Let M1 be the moduli space of flat SU(2) connections. For a rational number
0 < t < 1, we consider Mt to be the moduli space of flat connections on Σg − x,
such that monodromy around x is in the conjugacy classes of SU(2)

T =

(
exp(iπt) 0

0 exp(−iπt)

)

One can show that for t close to 1, Mt is a CP 1 bundle over the moduli
space M1.

CP1 −−−−→ Mty

M1
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For Mt, we still have a natural symplectic structure ω but the periods of ω
are no longer integers. Then ω is expressed by a + th in H2(Mt) generated by
a ∈ H2(M1) and h ∈ H2(Mt) takes value 1 on the fibre. Hence for small t, its
symplectic volume will be

V olS(Mt) =<
1

(3g − 2)!
(a + th)3g−2, [Mt] >

Using the relation h2 = b ∈ H4[M1] we can expand the above expression

1

(3g − 2)!

( 3g−2
2 )∑

j=0

(
3g − 2
2j + 1

)t2j+1a3g−3−2jbj[M1]. (5.1)

On the other hand we use Witten’s prescription [38] to obtain the volume
of the moduli space of flat SU(2) connections over the Riemann surface with p-
marked points from the generalized Verlinde’s formula (8) in the large k limit.

V olF (Mt) = 2.
1

2g−1π2g−2+p

p∑

n=1

∏p
i=1 sin(πnti)

n2g−2+p

This volume for the one marked point case is

V ol(Mt) =
2

2g−1π2g−1

∞∑

n=1

sin(nπt)

n2g−1
. (5.2)

Equating two expressions (5.1) and (5.2), one obtains the pairing in terms of
Bernoulli numbers.

< ambn, [M] >= (−1)g m!

(g − 1 − m)!
21−g(2g−1−m − 2)Bm−g+1

where m = 3g − 3 − 2j and we have used

ζ(2k) =
(−1)k+1(2π)2k

2.(2k)!
B2k

This exactly coincides with Thaddeus formula [32] which is verified by Donaldson
[13] using topological gluing techniques extracted from the Verlinde algebra.

After the demonstration of the known case we shall give our result in the
remaining part of the article.

5.2. Cohomological pairings for SU(3) connection

This is the final part of the article. Our goal is to obtain the cohomological pairings
for the moduli space of flat SU(3) connections.

To begin with, let Mt be the moduli space of flat SU(3) connections over
a Riemann surface Σg − x having one marked point x such that the holonomy
around x is characterized by two rational numbers t1 , t2 satisfying 0 < t1 < 1
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and 0 < t2 < 1.The prescribed holonomy around x takes values in the conjugacy
classes of SU(3)

Θ ∼




e2πit1/3 0 0

0 e2πit2/3 0

0 0 e−2πi(t1+t2)/3





Then for small values of t, Mt is the bundle over the ordinary smooth moduli
space and the flag manifold is the fibre on it. It can be represented by

F −−−−→ Mty

M1

In other words, the fiber is a flag manifold

F =
SU(3)

U(1) × U(1)
=

SL(3, C)

B+
,

where B+ is the Borel subgroup of SL(3, C). We now give a brief description of
the flag manifold from the classic Bott and Tu [10].

5.2.1. Flag manifolds and cohomology. We define a flag in a complex vector space
V of dimension n as a sequence of subspaces

V1 ⊂ V2 ⊂ ........... ⊂ Vn , dimCA = i.

Let Fl(V ) be the collection of all flags in V . Any flag can be carried into any other
flag in V by an element of the general linear group GL(n, C), and the stabilizer
of a flag is the Borel subgroup B+ of the upper triangular matrices. Then a set
Fl(V ) is isomorphic to the coset space GL(n, C)/B+. The quotient of any smooth
manifold by the free action of a compact Lie group is again a smooth manifold.
Hence Fl(V ) is a manifold and it is called the flag manifold of V .

Similarly we can construct a flag structure on bundles. Let π : E −→ M be
a C∞ complex vector bundle of rank n over a manifold M . The associated flag
bundle Fl(E) is obtained from E by replacing each fibre Ep by the flag manifold
Fl(Ep), the local trivialization

φα : E|Uα
≃ Uα × Cn

induces a natural trivialization

Fl(E)|Uα
≃ Uα × Fl(Cn).

Since GL(n, C) acts on Fl(Cn) we may take the transition function of Fl(E) to
be those of E.

Let us discuss a few things about split manifold. Given a map σ : Fl(E) −→
M we can define a split manifold as follows:

1. the pull back of E to F (E) splits into a direct sum of line bundles

σ−1E = L1 ⊕ ........... ⊕ Ln.
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2. σ∗ embeds H∗(M) in H∗(Fl(E)).

The split manifold Fl(E) is obtained by a sequence of n− 1 projectivization.
We shall now apply all these to obtain cohomology rings of flag manifolds.

Proposition 5.1. The associated flag bundle Fl(E) of a vector bundle is the split
manifolds.

Proof: Given in Bott [10] ( chapter 4).

�

If E is a rank n complex vector bundle over M , then the cohomology ring of
its projectivization is

H∗(P (E)) = H∗(M)[c1, ....., cn, d1, ....., dn]/{C(S)C(Q) = π∗C(E)}

where c1, ....., cn are the Chern classes of universal subbundle S and d1, ......, dn

are those of the universal quotient bundle Q. Also C(S) and C(Q) denote the
total Chern classes of S and Q respectively. The flag manifold is obtained from a
sequence of (n − 1) projectivization

H∗(Fl(E))

= H∗(M)[C(S1), ...., C(Sn−1), C(Q1, ....., Qn−1)]/C(S1)...C(Sn−1)C(Qn−1) = C(E)

If

hi = C1(Si)i = 1...n − 1

hn = C(Qn−1)

then we have

H∗(Fl(E)) = H∗(M)[h1, .., hn]/(

n∏

i=1

(1 + hi)) = C(E))

In order to obtain the cohomology ring of the flag manifold F [10] we have to
consider a trivial bundle over a point.

H∗(F ) = R[h1, ..., hn]/(

n∏

i=1

(1 + hi) = 1)

For a special case , when n = 3, we obtain

H∗(F ) = R[h1, h2, h3]/(
3∏

i=1

(1 + hi) = 1).
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5.2.2. Computation of the intersection pairings. We are going to apply our previ-
ous scheme. Since Mt is a bundle over M1, and so we can pull back the cohomology
from the base manifold M1. In fact, it is not hard to see that the symplectic form
ω represents the class

a + t1h1 + t2h2 ∈ H2(Mt),

where a ∈ H2(M1) and hi ∈ H2(Mt). So from this symplectic form the volume
will be the following

V olS(Mt) =<
1

(8g − 5)!
(a + t1h1 + t2h2)

8g−5, [Mt] >

When we expand out this expression we obtain the following results.

Proposition 5.2.

V olS(Mt) =
∑

k,l

1

(8g − 5 − k − l)!k!l!
tk1tl2 < a8g−5−k−lhk

1hl
2, [Mt] >

But to get the exact pairing we have to use the knowledge of Witten’s volume
function for small t1, t2 and also we use the following identities viz.
h2

1 = b ∈ H4 ; h2
2 = c ∈ H4 ; −h1h2 = d ∈ H4 ;

h2
1h2 = e ∈ H6 ; −h2

2h1 = f ∈ H6 ;

Note that h2
1h2 = −h1h

2
2 = fundamental class of Flag manifold, these are top

cohomology modules. The key lemma for obtaining the cohomology ring over the
moduli space M1 follows from the Leray-Hirsch theorem [10]

Theorem 5.3. (Leray-Hirsch) Let E be a fibre bundle over a manifold M with
fibre F . Assume M has finite good cover and suppose there are global cohomology
classes e1, e2, ..........., er on E which when restricted to each fibre freely generate
the cohomology of the fibre. Then H∗(E) is a free module over H∗(M) with basis
{e1, e2, .........., er} i.e.

H∗(E) ∼= H∗(M) ⊗ R[e1, e2, ....., er]

∼= H∗(M) ⊗ H∗(F).

Now we state an important statement.

Lemma 5.4. The fundamental classes of Mt is the product of the fundamental
classes of the moduli space without marked point M1 and the fundamental classes
of the flag manifold.

We use the same recipe, i.e. extracting volume from the generalized Verlinde’s
formula (1.8) to find the volume of the moduli space.
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If we feed the value of Sαβ of ŜU(3) obtained from the modular transforma-
tion of the Weyl-Kac character in (8) and repeat the derivation as in the previous
section we obtain the torsion volume

V olF (Mt) =
3.6g−1

27g−7π6g−3

∑ sinπn1t1sinπn2t2.sinπ(n1 + n2)(t1 + t2)

n2g−1
1 n2g−1

2 (n1 + n2)2g−1
.

This is the generalization of Witten’s volume formula for the moduli space of flat
SU(3) connections. It is a volume of the moduli space of flat SU(3) connections
over a Riemann surface of genus g with one marked point.

After a tedious calculation which makes use of the Taylor expansion of
sinπn1t1, sinπn2t2 and sinπ(n1 + n2)(t1 + t2) the above expression for small
t1, t2 gives us a comprehensive formula.

Proposition 5.5.

V ol(Mt) = 3.6g−1

27g−7π6g−3

∑
n

∑
j

(−1)j1+j2+j3π2j1+2j2+j3 t
2(j1+j3−j4)+1
1 t

2(j2+j4)+2
2

(2j1+1)!(2j2+1)!(2j3−2j4)!(2j4+1)!n
2g−2j1−2
1 n

2g−2j2−2
2 (n1+n2)2g−2j3−2

This is the key formula for getting the cohomology pairings of the moduli
space of flat SU(3) connections, this is Witten’s volume formula for moduli space
of flat SU(3) connections. This formula is too big but can be handled for some
lower genus cases.

5.3. Concrete examples

It is clear that the two volumes of the moduli space, namely the symplectic volume
V olS(Mt) and the volume from Verline’s formula V ol(Mt) in claim 9 are equal.

Using this simple prescription we obtain the explicit examples of the coho-
mological pairings of the moduli space of flat SU(3) connections. These pairing is
expressed in terms of multiple zeta function [40, 41] or double Bernoulli numbers
[4, 5]. Equating the powers of tk1tl2 we obtain explicit pairings.

1. We consider genus = 3. Thus we obtain

< a10e1f1[M] >=
3.7!5!3!.22.8.9.10

28.(2π)6
ζSU(3)

From Zagier’s formula we now come to know that the value this function is
(2π)6./7!.36. Hence

< a10e1f1[M] >= (10.9.3.6.2).(24.5!)/4.36.26 = 5.9.15 = 675

2. Once again consider genus = 3. We obtain

< a10f2[M] >=
10.9.8.6.7!6!.22

(2π)6.28
2

ζ(2, A)

i.e.

< a10f2[M] >= 10.9.8.5!.22/28 = 1350
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Thus, we give two explicit examples of pairings. Indeed it is really hard to
compute any arbitrary higher genus pairings. Hope our readers realise the degree
of complications for further computations of intersection pairings.
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