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Abstract

We analyze the structure of the Föppl-von Kármán shell equations of linear elas-

tic shell theory using surface geometry and classical invariant theory. This equation

describes the buckling of a thin shell subjected to a compressive load. In particular,

we analyze the role of polarized Hessian covariant, also known as second transvectant,

in linear elastic shell theory and its connection to minimal surfaces. We show how

the terms of the Föppl-von Kármán equations related to in-plane stretching can be

linearized using the hodograph transform and relate this result to the integrability of

the classical membrane equations. Finally, we study the effect of the nonlinear second

transvectant term in the Föppl-von Kármán equations on the buckling configurations

of cylinders.
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1 Introduction to the Föppl-von Kármán plate equa-

tions

A thin, elastic shell under loading must satisfy both physical constraints (forces must balance)
and geometric constraints (the Gauss-Mainardi-Codazzi equations must be satisfied for the
shell’s middle surface). In the linear von Kármán shell theory for a spherical shell, these
constraints are expressed in terms of the normal deformation w(x, y, t) of the shell and the
Airy stress function F (x, y, t), which is a potential for the in-plane stress tensor Nij;

Nxx =
∂2F

∂y2
, Nxy = −

∂2F

∂x∂y
, Nyy =

∂2F

∂x2
(1)

when the system is in static balance. For a spherical shell of radius of curvature R, the linear
von Kármán equations read

D∇4w = C∇2F, (2)

1

Eh
∇4F = C∇2w, (3)

where C = 1
R
. The coefficient of the hyperdiffusive term in (2) is the bending modulus

D = Eh3

12(1−µ2)
, where E and µ are the Young’s modulus and Poisson’s ratio of the material, and

h is the shell thickness. The first equation (2) describes the balance of forces normal to the
plate coming from bending of the shell (D∇4w) and in-plane stresses (C∇2F ). The second
equation (3) is a compatibilty condition that relates the in-plane stresses to the geometry
(Gaussian curvature) of the deformed surface. As the in-plane stresses are linearly related
to the in-plane strains (changes in the metric as the shell deforms), this is an expression of
Gauss’s Theorema Egregium. Although one equations arises from a physical constraint and
the other from a geometric constraint, their form is analogous; the system is invariant under
the interchange of w and F , as noted and discussed by Calladine (1980).

Rogers and Schief (2003a,b) reveal a similar analogy between the classical shell membrane
equations and the Gauss-Codazzi-Mainardi equations. These authors show that the system
consisting of the membrane shell equations together with the Gauss-Codazzi-Mainardi equa-
tions is an integrable system. The shell membrane equations are nonlinear, but in contrast
to the von Kármán equations, treat the shell of being of nearly zero thickness ( h = 0) and
therefore do not include bending the bending term D∇4w. In this paper, we consider the
nonlinear static Föppl-von Kármán equations

D ∇4w
︸︷︷︸

Laplacian2

+C∇2F − (F, w)(2)

︸ ︷︷ ︸

2nd transvectant

= 0 (4)

1

Eh
∇4F
︸︷︷︸

Laplacian2

= C∇2w −
1

2
(w, w)(2)

︸ ︷︷ ︸

Hessian covariant

. (5)
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In (4) and (5), the quantity

(F, w)(2) =
∂2F

∂x2

∂2w

∂y2
+

∂2F

∂y2

∂2w

∂x2
− 2

∂2F

∂x∂y

∂2w

∂x∂y

which is equivalent to (cof∇2f) : ∇2w. Here, cofA = (det A)A−1, and A : B =
∑n

i,j=1 aijbij

for n = dimA = dimB. For small deformation slopes (that is, |∇w|2 ≪ 1), 1
2
(w, w)(2) is

approximately the Gaussian curvature of the deformed surface z = w(x, y).
The nonlinear terms in equations (4) and (5) break the invariance of the linear equations

considered by Calladine. Nevertheless, the equations remain similar to each other under the
interchange of w and F ; in particular, the bracket (·, ·)(2) appears in both equations. In clas-
sical invariance theory (Olver 1982,1987,1999), this bracket is called the second transvectant.
This is also known as polarized Hessian covariant. In this article we treat these two terms
in a same footing. The explicit forms of the transvectants appear in the definition of Moyal
bracket which appears in quantum mechanics as the essentially unique deformation of the
classical Poisson bracket.

The precense of the polarized Hessian covariant or second transvectant term in the Föppl-
von Kármán equations makes for a very interesting geometry. Our aim in this semi-expository
paper is to explore its contribution to the geometry of the Föppl-von Kármán equations. In
other words, we analyze the geometrical contribution of polarized Hessian covariant term in
the von Kármán shell equations on pattern formation.

The paper is organized as follows: An explanation of the von Kármán equations is
presented in Section 2. We give a brief description of the transvectant and its connection to
the polarized Hessian covariant in Section 3. In Section 4, we study the polarized Hessian
covariant and its relation to minimal surfaces. The hodograph method, or Whitham’s ap-
proach, is applied to study the Föppl-von Kármán equations in this section and the result is
compared to the integrability of the classical membrane equations. Section 5 is devoted to
the contribution of the second transvectant to the Föppl-von Kàrmàn buckling configuration.

2 Derivation of the Föppl-von Kármán equations

In this section, we describe the derivation of the Föppl-von Kármán equations. For details
of the derivation see (Atanakovich 2000, Gould 1999, Novozhilov 1961).

A shell Σ of constant thickness h is represented by the set of points

r(x, y) + zN, −
h

2
≤ z ≤

h

2
(6)

in R3 for some smooth function r(x, y) : Ω ⊂ R2 → R3 describing the middle surface Γ of the
shell with normal vectors N(x, y). The following computes the elastic energy of deformations
of this shell under the Kirchhoff hypotheses, namely

3



KH1: The shell deformation takes straight lines perpendicular to the original middle
surface to straight lines of the same length perpendicular to the deformed middle surface. In
other words, the deformation of the shell takes a point r(x, y)+ zN to a point r′(x, y)+ zN′,
where r′ is the middle surface of the deformed shell, and NX′ is the normal vector function
to the surface r′.

KH2: The stresses acting normal to the planes {r(x, y)+zN : z fixed, (x, y) ∈ Ω} parallel
to the middle surface are negligible in comparison to the other stresses.

Additionally, we will assume the von Kármán hypotheses, namely

vKH1: Terms of order hk, where k is the minimum value of the principal curvature
functions on the middle surface, are neglectable.

vKH2: The deformations of the shell in the plane of the middle surface are negligible in
comparison with the deformation normal to the middle surface.

Furthermore, we assume the shell to be homogeneous and isotropic.
We can assume that the parameterization of Σ by (6) is orthogonal so that the metric in

this coordinate system is given by

ds2 = H2
1dx2 + H2

2dy2 + dz2.

Here, the Hi are the Lamé coefficients, related to the first and second fundamental forms

I = A2dx2 + B2dy2, II = Ak1dx2 + Bk2dy2 (7)

on the surface Γ by H1 = A + k1z, H2 = B + k2z. To define a deformation of Σ, we
first express a deformation of the middle surface Γ via displacements along the unit tangent
vectors to yield a surface Γ′ given by

r′ = r + ∆ = r + utx + vty + wN,

where tx = rx

|rx|
and ty = ry

|ry|
. The deformed shell Σ′ is then represented by the set of points

r′(x, y) + zN′, −
h

2
≤ z ≤

h

2
,

where N′(x, y) is the normal vector function to Γ′. The metric on Γ′ is assumed, by the
Kirchhoff hypotheses, to be of the form

ds2 = (A + ǫxx + z(k1 + κxx))
2 dx2 + (ǫxy + zκxy)dxdy + (B + ǫyy + z(k2 + κyy))

2 dy2 + dz2.

The ǫij form the strain tensor and measure stretching of the middle surface Γ, and the κij

form the bending tensor and measure the change in curvature of Γ. We write

ǫxx(z) = ǫxx + zκxx, ǫxy(z) = ǫxy + zκxy, ǫyy(z) = ǫyy + zκyy.
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The strains ǫij and changes in curvature κij can be written in terms of the displacements
u, v, w as follows:

ǫxx ≃
∂u

∂x
+

1

2

(
∂w

∂x

)2

+k1w, ǫyy ≃
∂v

∂y
+

1

2

(
∂w

∂y

)2

+k2w, ǫxy ≃
∂u

∂y
+

∂v

∂x
+

(
∂w

∂x

) (
∂w

∂y

)

,

(8)
and

κxx ≃ −
∂2w

∂x2
, κyy ≃ −

∂2w

∂y2
, κxy ≃ −2

∂2w

∂x∂y
, (9)

where we have assumed that the gradient ∇w is small with respect to one. The stress tensor
of the shell depends on the strains as well as a field T which can describe temperature effects
(Wawrzynek 1980), growth (Newell et. al. 2007), or external forces. Assuming that stresses
are linearly related to strains, the components of the stress tensor are given by

σxx(z) =
E

1 − µ2
(ǫxx(z) + µǫyy(z) − Txx − µTyy), (10.a)

σyy(z) =
E

1 − µ2
(ǫyy(z) + µǫxx(z) − Tyy − µTxx), (10.b)

σxy(z) =
E

2(1 + µ)
(ǫxy(z) − Txy). (10.c)

The conditon that the divergence of the stress tensor be zero gives rise to the equations

0 = −
δE

δu
=

∂Nxx

∂x
+

∂Nxy

∂y
, (11)

0 = −
δE

δv
=

∂Nxy

∂x
+

∂Nyy

∂y
, (12)

and

0 = − D∇4w + Nxx

∂2w

∂x2
+ Nyy

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y

+

(
∂Nxx

∂x
+

∂Nxy

∂y

)
∂w

∂x
+

(
∂Nxy

∂x
+

∂Nyy

∂y

)
∂w

∂y

− C(Nxx + Nyy),

(13)

where we have taken k1 = k2 = C, D = Eh3

12(1−µ2)
= Eh3ν2, and

Nxx =
Eh

1 − µ2
(ǫxx(z = 0) + µǫyy(z = 0) − Txx − µTyy) , (14.a)

Nyy =
Eh

1 − µ2
(ǫyy(z = 0) + µǫxx(z = 0) − Tyy − µTxx) , (14.b)

Nxy =
Eh

2(1 + µ)
(ǫxy(z = 0) − Txy) . (14.c)
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The equations (11) and (12) admit the introduction of a scalar potential F (x, y) such that

Fxx = Nyy, Fyy = Nxx, Fxy = −Nxy.

Equation (13) then becomes

D∇4w − (F, w)(2) + C∇2F = 0. (15)

We also have that

1

Eh
∇4F =

1

Eh
[Fyyyy + Fxxxx − µ(Fyyxx + Fxxyy) − 2(1 + µ)(−Fxyxy)]

= −
1

2
(w, w)(2) +

1

R
∇2w −

∂2

∂x2
Tyy −

∂2

∂y2
Txx −

∂2

∂x∂y
Txy.

That is,
1

Eh
∇4F +

∂2

∂x2
Tyy +

∂2

∂y2
Txx +

∂2

∂x∂y
Txy = −

1

2
(w, w)(2) + C∇2w. (16)

For the isotropic case Txx = Tyy = T , Txy = 0,

1

Eh
∇4F + ∇2T = −

1

2
(w, w)(2) + C∇2w. (17)

3 Transvectants, Hessian covariant and the Föppl-von

Kármán equation

In this section we briefly recapitulate the definitions of transvectants. The Hessian of a
binary form and the Jacobian of a pair of forms, are special cases of a general prescription
of constructing covariants known as “ transvectants”.

Definition 3.1 The nth order transvectant of two variables u(x, t) and v(x, t) is the function

(F, w)(n) =
∂n(F, w)

∂(x, y)n
=

n∑

j=0

(−1)j

(
n
j

)

∂n−j
x ∂j

yF · ∂j
x∂

n−j
y w.

The nth transvectant (F, w)(n) is symmetric or skew-symmetric under interchange of F
and w depending on whether n is even or odd:

(F, w)(n) = (−1)n(w, F )(n).

In particular, any odd transvectant of a form with itself automatically vanishes. It has been
found (Guha, 2006) that the symmetric bracket also plays a very important role in pattern
formation theory and geometry of dissipative systems (Shahshahini, 1972).
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The first two examples are the product (F, w)(0) = Fw and the Jacobian determinant
(F, w)(1) = Fxwy − Fywx.

The second transvectant appears in the Föppl-von Kármán equations of plate mechanics
in elasticity.

∂2(F, w)

∂(x, y)2
=

∂(Fx, wy)

∂(x, y)
−

∂(Fy , wx)

∂(x, y)

= Fxxwyy − 2Fxywxy + Fyywxx.

In particular, the second transvectant product

(F, w)(2) = Fxxwyy − 2Fxywxy + Fyywxx (18)

is known as the polarized Hessian covariant.
A function F (x, y) is homogeneous of degree n = deg(F ) if

F (λx, λy) = λnF (x, y).

Remark 3.2 (a) The important Hessian covariant is obtained as the second transvectant of
a function with itself:

H [w] =
1

2
(w, w)(2) = wxxwyy − w2

xy.

(b) We find that Eq. (3) is connected to the Hessian covariant associated to the second
transvectant. In our case, additional factors are incorporated into the second transvectant.

Let us introduce differential hyperforms; by this one can encode the transvectant identity
as an identity of the hyperform. For example, the identity

Fxxwyy − 2Fxywxy + Fyywxx = −D2
x(Fywy) + DxDy(Fxwy + Fywx) − D2

y(Fxwx)

for the second order hyperjacobian (in two variables ) translates into an identity of the form

d2u ∗ d2v = d2(du ∗ dv),

for second order hyperforms.
The ∗ product is called the Pieri product and it replaces the wedge product for the

ordinary case.
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3.1 Geometrical interpretation of the transvectant

The second transvectant is connected to second order hyperform; geometrically one can
realise this as follows (Olver 1982, 1987). Let M be a differentiable manifold. Corresponding
to each Young diagram λ we associate a hyperform bundle by applying the Schur functor
Lλ pointwise to the cotangent bundles T ∗M . Hyperforms are the smooth sections of the
hyperform bundle, alternatively smooth sections of Ξλ are called λ-hyperforms. There exist
a differential dµ

λ for each shape µ ⊃ λ such that it takes λ- hyperforms to µ- hyperforms,
so that the coefficients are differentiated µ/λ times. These differential operators commute
and dµ

λ = 0 if µ/λ has two or more boxes in any column or rows. Thus hyperform bundles
and the corresponding differentials form a complex, differential hypercomplex. The deRham
complex is a special case of hypercomplex, in this case Young diagram λ is a single column.

The classical approach to transvectants is based on an important invariant differential
operator originally introduced by Cayley, known as the omega process.

Definition 3.3 The second order differential operator

Ωαβ = detΩαβ =

∣
∣
∣
∣
∣

∂
∂xα

∂
∂yα

∂
∂xβ

∂
∂yβ

∣
∣
∣
∣
∣

=
∂2

∂xα∂yβ

−
∂2

∂xβ∂yα

is known as the omega process with respect to the variables (xα, yα) and (xβ, yβ).

Lemma 3.4 The nth order transvectant of a pair of smooth functions F (x, y) and w(x, y)
is given by

(F, w)(n) = Tr(Ωαβ)n[F (xα, yα)w(xβ, yβ)].

We can easily define the Moyal-star product with the help of this omega process.

Definition 3.5 (A) The Moyal-star product of the two functions F (x, y) and w(x, y) is the
formal series

F ⋆~ w = Tr[exp(~Ωαβ)Fαwβ] =

∞∑

n=0

~
n

n!
(F, w)(n),

where ~ is a Planck’s constant acting as a scalar parameter.
(B) The Moyal bracket is defined by

{F, w}Moyal =
F ⋆~ w − w ⋆~ F

2~
= Tr

sinh ~Ωαβ

~
Fαwβ.

It boils down to the Poisson bracket for ~ −→ 0.
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4 Polarized Hessian covariant, minimal surfaces and

the Föppl-von Kármán equations

In this section we show the connection between the transvectant and minimal surfaces. Here
we tacitly assume the approach of Lighthill (1965,1967). In this section we are going accept
slightly different notation.

For a slowly varying wavetrain, the wave field can be described by a phase function θ(x, t)
which is a smoothly varying function. This dynamics is known as Whitham dynamics. In
terms of θ, the local frequency and local wave number are defined by

ω = −θy, k = θx.

With this prescribed phase function θ, Lighthill applied the Whitham averaged variational
principle

δ

∫ y2

y1

∫ x2

x1

F (−θy, θx)dxdt = 0. (19)

This leads to the celebrated Euler-Lagrange equation

∂

∂y
(
∂F

∂ω
) −

∂

∂x
(
∂F

∂k
) = 0, (20)

and this can be expressed as a second order quasi-linear partial differential equation for θ

Fωωθyy − 2Fωkθyx + Fkkθxx = 0, (21)

where all subscripts represent partial derivatives. By an appropriate Legendre transforma-
tion, Lighthill transformed this into a linear equation for a new dependent variable

w(x, y) = kx − ωy − θ,

so that w(x, y) satisfies

(F, w)(2) = Fωωwkk − 2Fωkwωk + Fkkwωω = 0. (22)

Let us consider the Lagrangian

F =
√

a2 + w2
x + α2w2

y, (23)

where
α = k2 − k − 1.

Since (19) has no w dependence, the Euler-Lagrange equation becomes

∂x(
∂F

∂wx

) + ∂y(
∂F

∂wy

) = 0.
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This immediately yields the Born-Infeld or minimal-surface equation (Guha, 2004)

(a2 + w2
x)wyy − 2wxwywxy + (

a2

α2
+ w2

y)wxx = 0. (24)

A minimal surface is a surface which locally solves the Plateau problem - that is, the
problem of finding the surface of smallest area bounded by a given closed space curve.
Analytically, it is defined by the condition that the mean curvature is identically 0. A
minimal surface parametrized as {x, y, w(x, y)} therefore satisfies equation (24).

The Born-Infeld equation is not of divergent type. This can be checked neatly via the
contact geometry proposed by Lychagin (1979). Suppose M is the smooth symplectic space
T ∗

R
2 endowed with the canonical symplectic form Ω. Lychagin’s idea is to define, for any

differential form ω ∈ Ωn(T ∗M), where n is the dimension of M , a second order differential
operator ∆ω : C∞(M) → Ωn(M) such that

∆ω(w) = (dw)∗(ω).

Here dw : M → T ∗M is the natural section defined by w. A primitive 2-form is a differential
form ω ∈ Ω2(M) such that ω ∧ Ω = 0. For the Born-Infeld equation (21) the corresponding
primitive form is

ω = (a2 + p2
1)dq1 ∧ dp2 − p1p2(dq1 ∧ dp1 − dq2 ∧ dp2) − (

a2

α2
+ p2

2)dq2 ∧ dp1,

where q1 = x and q2 = y. Since

dω = −3(p1dp2 + p2dp1) ∧ Ω,

where Ω = dq1 ∧ dp1 + dq2 ∧ dp2, we say that the Born-Infeld equation is not of divergent
type.

Returning to the Föppl-von Kármán equations, we write the equation (14) with C = 0
as

D(∇4w) = (2gyy + w2
y)wyy + [2(1 − µ)gxy + 2wxwy] wxy + (2gxx + w2

x)wxx

+µ
[
(2gxx + w2

x)wyy − 2wxwywxy + (2gyy + w2
y)wxx

]
,

(25)

where gxx = ux − Txx, gyy = vy − Tyy, and gxy = uy + vx − Txy. Note that, for a2 = 2gxx,
α2

a2 = 2gyy, the minimal surface equation appears in the second line of (25).
The compatibility equation (5) was derived in Section 2 by combining the two equations

(here written with C = 0)

∂

∂x

(
2gxx + w2

x + µ(2gyy + w2
y)

)
+ (1 − µ)

∂

∂y
(gxy + wxwy) = 0, (26)

∂

∂y

(
2gyy + w2

y + µ(2gxx + w2
x)

)
+ (1 − µ)

∂

∂x
(gxy + wxwy) = 0. (27)

Our goal is to transform the system (25,26,27) into a system of linear equations using
Whitham’s methods.
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4.1 Linearization by the hodograph method

Following Whitham’s method of solving the minimal surface equation (Whitman 1999; Dey
2003), we write the equations (25,26,27) in linear form. Introducing complex coordinates
z = x + iy, z = x − iy and defining ξ = wz̄, ν = wz = ξ̄, the equations reduce to the system
of first-order differential equations;

ξz − νz̄ = 0,

D∂z∂z̄ξz = (γ3 + ν2)ξz̄ +
1 + µ

1 − µ
(γ2 + 2νξ)ξz + (γ̄3 + ξ2)νz,

0 = γ5 + νξz̄ +
3 − µ

1 + µ
(ν + ξ)ξz + ξνz,

0 = γ7 − νξz̄ +
3 − µ

1 + µ
(ν − ξ)ξz + ξνz,

where γ1 = 1
2
(gyy−gxx+igxy, γ2 = gxx+gyy, γ3 = −γ1−µγ̄1

1−µ
, γ4 = ∂x(2gxx+2µgyy)+(1−µ)∂ygxy,

γ5 = γ4/2(1 + µ), γ6 = ∂y(2gyy + 2µgxx) + (1 − µ)∂xgxy, γ7 = −iγ6/2(1 + µ).

To obtain a system of linear equations, we apply the hodograph transformation, which
interchanges the independent (ξ, ν) and dependent (z, z̄) variables through the relation

[
zξ zν

z̄ξ z̄ν

] [
ξz ξz̄

νz νz̄

]

=

[
1 0
0 1

]

. (28)

The bilaplacian term D∂z∂z̄ξz does not simplify under this transformation, but neglecting
the term D∇4w we obtain the linear system

z̄ν − zξ = 0, (29)

0 = (γ3 + ν2)zν +
1 + µ

1 − µ
(γ2 + 2νξ)z̄ν + (γ̄3 + ξ2)z̄ξ, (30)

0 = γ5 + νzν +
3 − µ

1 + µ
(ν + ξ)z̄ν + ξz̄ξ, (31)

0 = γ7 − νzν +
3 − µ

1 + µ
(ν − ξ)z̄ν + ξνz. (32)

Historically, the Föppl-von Kármán equations were first proposed by Föppl in 1907
without the bilaplacian term D∇4w. Föppl’s equations thus included all terms of the
full Föppl-von Kármán equations that come from in-plane stretching. The bilaplacian
D∇4w = Eh3

12(1−µ2)
∇4w (which becomes more relevant for larger thickness h) comes from

bending of the shell and was added by von Kármán in 1910. That the equations of Föppl
can be linearized using the hodograph method makes for an interesting comparison with
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the integrability of classical membrane equations as demonstrated by Rogers and Schief
(2003a,b). For a membrane (a shell without thickness, i.e. a surface) with fundamental
forms given by (7), the classical membrane equations read

κ1Nxx + κ2Nyy + p1 = 0, (33)

(NxxB)x +
(A2Nxy)y

A
− NyyBx + ABp2 = 0, (34)

(NyyA)y +
(B2Nxy)x

B
− NxxAy + ABp3 = 0, (35)

where the pi are external forces acting on the membrane-shell and, as in the Föppl-von
Kármán equations, the in-plane stress tensor is denoted by Nij . Equation (33), with p3 taken
to be zero, corresponds to the first Föppl-von Kármán equation (4) without the bending term
D∇4w. Equations (34,35) correspond to the second Föppl-von Kármán equation (5) which is
the combination of the two in-plane stress equilibrium equations (11,12). Rogers and Schief
show how the equations (33,34,35), together with the Gauss-Mainardi-Codazzi equations,
form an integrable system within an integrable class of so-called O-surface equations studied
by Schief and Konopelchenko (2003). What we have shown here is that the Föppl-von
Kármán equations, written in terms of the normal deflection w and the second transvectant
(·, ·)(2), retain, in the linearizability of their terms corresponding to membrane stretching,
the integrability which is present in the classical membrane equations.

5 Buckling of Cylindrical Shells

To study the effect of the nonlinear second transvectant term in the Föppl-von Kármán
equations on the buckling configurations, we consider a simple example of a cylindrical shell
on an elastic foundation and under azimuthal pressure. Such a situation arises, for example,
in growing plants, where the shell is the outer skin of the plant that is constrained to a soft
foundation of inner plant tissue (Shipman & Newell 2005). The azimuthal pressure arises
if the outer skin grows at a different rate than the foundation. Adding the effects of the
foundation to the Föppl-von Kármán equations , and denoting the longitudinal, respectively
angular, coordinate on the cylinder by x, respectively y, the nondimensionalized equations
for a cylinder read

ζwt + ∇4w + P
∂2

∂y2
w + C

∂2F

∂x2
− (F, w)(2) + κw + γw3 = 0 (36)

∇4F − C
∂2

x2
w + (w, w)(2) = 0. (37)

In (36), we have added an evolution term ζwt, and the foundation is captured by the terms
κw + γw3. The constant P in (36) is P = −NααΛ2

D
, where Nαα is the azimuthal stress.

Compressive stress is therefore given by P > 0.
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When the stress P is larger than the critical value Pc = 2, the uniform static solution w0 =
0, F0 = 0 of the equations (36,37) is linearly unstable and certain configurations are amplified.
We write the deviations w(x, y, t) from w0 as

∑N
j=1(Aj(t)e

i(ljx+mjy) +complex conjugate and
the deviations F from F0 in terms of the complex amplitudes Aj by solving (37) iteratively.
Substituting these expression into (36), we obtain, via a standard multiple scales analysis,
equations for the evolutions of the amplitudes Aj. See (Shipman and Newell 2005) for
details of the calculations; here we aim for a geometric interpretation of the results of these
calculations. The amplitude equations read

ζ
∂

∂t
A~k

=
∑

~k∈A

σ(~k)A~k
+

∑

~kr+~ks+~k=0

τ(~kr, ~ks, ~k)A∗
rA

∗
s − 3γA~k



|A~k
|2 + 2

∑

~kl 6=~k

|Al|
2



 (38)

The first sum in (38) is taken over all wavevectors which are in the active set A, which is

the set of ~k = (l, m) for which the (real) linear growth rates

σ(~k = (l, m)) = −(l2 + m2)2 + Pm2 − κ − C2 l4

(l2 + m2)2

are greater than some small negative number. The cubic terms in (38) arise from all wavevec-

tor triads in A–that is, all triplets ~k1, ~k2, ~k3 of wavevectors in A such that ~k1 + ~k2 = ~k3. The
coefficient

τ(~k1, ~k2, ~k3) = −C(l1m2 − l2m1)
2

3∑

j=1

l2j
(l2j + m2

j )
2

is a result of the transvectant terms in (36,37).
The system (38) is gradient; the time dependence of the A~k

is given by ζ ∂
∂t

A~k
= − δE

δAj
,

where

E =
∑

σ(~k = (l, m))A~k
A∗

~k
−

∑

τpqr(A~kp
A~kq

A~kr
+ A∗

~kp
A∗

~kq
A∗

~kr
) +

∑

γcdAcA
∗
cAdA

∗
d. (39)

Our task to find the wavevectors ~k = (l, m) and corresponding amplitudes A~k
that solve

the system (38) and minimize the energy (39). We fix P = 2.5 = Pc + 0.5, where Pc = 2
is the critical value of P at which the homogeneous solution becomes linearly unstable
to a deformation with wavevector ~kc = (0, 1) and look for energy-minimizing solutions as
functions of the curvature parameter C to which the coefficient τ is linearly proportional.
We find that the energy-minimizing solution has the form

w =

3∑

j=1

Aj cos(ljx + mjy), (40)

for real amplitudes Aj and

~k1 = (L,
1

2
), ~k2 = (−L,

1

2
), ~k3 = (0, 1).
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The amplitudes Aj and the wavenumber L are functions of C; for small C (i.e. for C < 0.5),
we have that A1 = A2 = 0, A3 6= 0, and for large C, A1 = A2 ≃ A3. The configuration thus
becomes more hexagonal as C increases; two examples are shown in Fig. 1.

Consider the deformed shells as regular surfaces M = {(x, y, z = w(x, y)) ∈ R3} with
metric

ds2|R3 =
a2

α2
dx2 + a2dy2 + dz2.

The induced metric on M is given by

ds2|M = (
a2

α2
+ w2

x)dx2 + 2wxwydxdy + (a2 + w2
y)dy2.

Taking the Taylor series expansion of (40) at the origin, we have that

wx ≃
3∑

j=1

Ajl
2
jx, wy ≃

3∑

j=1

Ajm
2
jy.

The coefficients mxx :=
∑3

j=1 Ajl
2
j and myy :=

∑3
j=1 Ajm

2
j determine locally the change in

the metric. We plot the ratio mxx

myy
in Fig. 2 as a function of C.

Figure 1: Two buckling configurations, found by minimizing the energy (39) for (a) C = 0.51
and (b) C = 0.7. Shown are the graphs of the deformations w =

∑3
j=1 Aj cos(ljx+mjy) of a

cylinder for (a) A1 = A2 = 1.06, A3 = 5, l1 = −l2 = 0.816, l3 = 0, m1 = m2 = 1/2, m3 = 1,
and (b) A1 = A2 = 4.1, A3 = 6.6, l1 = −l2 = 1.016, l3 = 0, m1 = m2 = 1/2, m3 = 1
.
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Figure 2: The metric ratio mxx

myy
as a function of the curvature contant C.

6 Conclusions and Outlook

We have studied the second transvectant as part of the Föppl-von Kármán equations, its
background in geometry, its linearization via the hodograph transformation, and its influ-
ence on the metric of buckling configurations. The second transvectant and the resulting
nonlinear terms in the amplitude equations (38) were essential to obtaining the hexagonal
buckling confifurations. The coefficient τ which comes from the polarized Hessian covariant
terms depends on the geometry of the shell before buckling. The dependence of the metric
coefficients mxx, myy on the underlying geometry would be interesting for further study.
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