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Abstract

In analogy with the load and the metage in hydrodynamics, this paper defines magnetohydro-

dynamic load and magnetohydrodynamic metage in the case of magnetofluids. They can be used

to write the magnetic field in MHD in Clebsch’s form. It has been shown herein how these two

concepts can be utilised to derive the magnetic analogue of the Ertel’s theorem and also, how in

the presence of non-trivial topology of the magnetic field in the magnetofluid one may associate

the linking number of the magnetic field lines with the invariant MHD loads. The paper illustrates

that the symmetry translation of the MHD metage in the corresponding label space generates the

conservation of cross helicity.
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I. INTRODUCTION

In a pioneering paper[1], Lynden-Bell and Katz introduced the concept of load and metage

in the hydrodynamical flows to show that the content of Kelvin’s circulation theorem is

contained in the conservation of a particular function of load; if that very function is same for

two flows then the flows are isocirculational. In the case of MHD flows, one can define similar

analogous quantities that, as we shall see in this paper, can prove to be quite significant

both physically and mathematically.

A magnetofluid (also termed hydromagnetic fluid or MHD fluid) of infinite conductivity

but possibly compressible and viscous is quite an interesting class of fluids in which the flow

velocity (~v) and the magnetic field ( ~B) interact actively; in general, ~B cannot be considered

to be a passively advected quantity. Anyway, owing to the Alfvén’s theorem, ~B remains

frozen in the magnetofluid; as we shall see, this property helps to design three active scalars

that remain conserved on the fluid particles allowing themselves to be used as the particle

labels which by definition, although vary continuously throughout the fluid, remain fixed on

the fluid particles and hence serve as possible coordinates of the label space in the Lagrangian

description of the flow. With the comment that these scalars may become passive scalars

in certain well-studied cases e.g., in kinematic dynamo problem[2] wherein one basically

studies the instability around ~B = 0 state of MHD because there the magnetic field itself is

treated to be passively advected, let us now look for the aforementioned advected scalars.

II. MHD LOAD AND MHD METAGE

We take an isolated volume of magnetofluid of negligible resistivity. ~B will be penetrating

it all throughout. Due to solenoidal nature, some magnetic field lines will be entirely inside

the magnetofluid and some will penetrate out of the boundaries and complete the loop

outside the magnetofluid. Lets assume that the later type of field lines begin at some the

initial point on the surface which we term as “entry” to leave the magnetofluid at some

corresponding final points on the boundary that we call “exit”. Having taken such a line,

we construct a magnetic flux tube of small cross-section around the line which serves as a

sort of axis to the tube. Obviously, for the magnetic field loops lying entirely within the

magnetofluid, the “entry” and “exit” collapse onto the same point and hence one should keep
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in mind that in the calculation that follows one would need to introduce a “cut” somewhere

on the flux tube defined about such a loop. We also assume for the time being that the

magnetic field lines are neither knotted nor linked.

Let ∆S(l) be the cross-section of the tube at a distance l from the entry and at that

point let the mass of the infinitesimal disk of fluid of thickness dl be dm. So, mass of the

tube (up to the first order in ∆S(l)) is

∆m =

∫ exit

entry

dm =

∫ exit

entry

ρ(l)∆S(l)dl (1)

Again, if ∆φ is the strength of the flux tube then similarly one has

∆φ = B(l)∆S(l) (2)

Using the relation (2) in the equation (1) and taking the limit as the cross section of the

flux tube going to zero, one arrives at

λ ≡
dm

dφ
=

∫ exit

entry

ρ(l)

B(l)
dl (3)

where λ may be called “magnetohydrodynamic load” in analogy with the “load” in hydro-

dynamics. Now, we give this scalar λ the status of the scalar field by defining λ at a point

as the λ of the field line passing through that point. As, λ is constant along the magnetic

field line, so it must satisfy the equation:

~B.~∇Λ = 0 (4)

i.e., Λ = λ̃ is a solution of the relation (4); we have

~B.~∇λ = 0 (5)

and as λ remains constant with the motion of the field line due to the frozen condition of

the magnetic field, we can write the following mathematical form for the condition:

Dλ

Dt
= 0 (6)

Again, let Λ = λ̃ be another solution of the relation (4) such that

∂λ̃

∂λ
= 0 (7)
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So, one has like the equation (5), a similar equation for λ̃ that we shall call “conjugate

magnetohydrodynamic load” due to the reasons which will become obvious in due course.

λ̃ naturally satisfies (by definition) the following equation:

~B.~∇λ̃ = 0 (8)

From the equations (5) and (8) we can write

~B = C(~∇λ × ~∇λ̃) (9)

because ~B is orthogonal to both ~∇λ and ~∇λ̃. Here, due to the solenoidal nature of the

magnetic field, one may conclude taking divergence of the relation (9) that

C = C(λ, λ̃) (10)

Redefining, λ̃ as
∫ λ̃

0
C(λ, λ̃)dλ̃ we can do away with C to get ultimately from the relation

(9):

~B = ~∇λ × ~∇λ̃ (11)

which is the form of magnetic field associated with Clebsch parametrised magnetic vector

potential. So, now ~B automatically satisfies the relation ~∇. ~B = 0. λ and λ̃ are then called

Clebsch variables or Euler potentials. This form of relation (11) can always be written

locally but since the field lines are neither knotted nor linked (as has been assumed in the

beginning), we may hope to allow λ and λ̃ be global Euler potentials. This would mean that

total magnetic helicity has to be zero[3] — a fact that is consistent with the non-existence

of any kind of mutually linked field lines[4]. It may be noted that the support of magnetic

field here is simple-connected. A very interesting geometrical interpretation for the relation

(11) is that the part of the field line inside the magnetofluid is basically the curve formed

due to the intersection of the surface of constant λ with the surface of constant λ̃. Hence,

the specification of the families of the such surfaces is an alternative way of specifying the ~B

in the magnetofluid; λ and λ̃ though do not vary along the field lines, distinguish between

the field lines. These Clebsch variables may be utilised to get an intuitive physical picture of

a magnetostatic equilibrium and of MHD flows because the level surfaces of these variables

are nothing but the magnetic flux surfaces that remain frozen in the ideal magnetofluid.

A third scalar is now needed to complete the set of coordinates of the label space. Let us
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refer the equation (3) again and change the upper limit from “exit” to some floating point

(which we shall call “float”), on the narrow tube about the field line, at a distance l from

the “entry”. Using the concepts of conservations of mass and magnetic strength, define the

following Lagrangian invariant scalar which we define as “magnetohydrodynamic metage”

µ:

µ ≡
dmf

dφ
=

∫ float

entry

ρ(l)

B(l)
dl (12)

where the subscript “f” on m refers to the fact that one is interested only in the mass of the

tube up to the length ending at the floating point. Due to the frozen nature of the magnetic

field line, the floating point moves with the fluid and this makes µ a candidate for labeling

the fluid elements. One, thus, has

Dµ

Dt
= 0 (13)

Also, from the relation (12) it follows that

~B.~∇µ = ρ (14)

From the equations (5), (8), (11) and (14), one finds that the Jacobian J is

J ≡
∂(λ, λ̃, µ)

∂(x, y, z)
= (~∇λ × ~∇λ̃).~∇µ = ρ (15)

Now this value of J confirms that λ, λ̃ and µ are the independent variables in the Lagrangian

description and we can think of a label space with coordinates (λ,λ̃,µ). The coordinate

system (λ,λ̃,µ) may be treated as curvilinear coordinate system in the usual (x, y, z) space.

One can choose ~∇λ, ~∇λ̃ and ~∇µ as basis vectors in this curvilinear coordinate system. As

λ̃ is a label so it must satisfy the following equation:

Dλ̃

Dt
= 0 (16)

So just like λ, λ̃ is a Clebsch type co-moving scalar field. Also, from the relations (6), (16)

and (11) the usual induction equation written below must follow.

∂ ~B

∂t
= ~∇× (~v × ~B) (17)

~v being the velocity field of the MHD flow.

As a rather simple example that very naively illustrates the concept of MHD load and MHD
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metage, we take a static configuration of an infinitely long cylinder of magnetofluid. The

radius of the cylinder is R. A uniform magnetic field ~B = Bẑ (along z-axis) threading the

cylinder perpendicular to the axis that is taken to be the y-axis. In accordance with the

equation (3), the MHD load of a point on a magnetic field line lying at a distance x (measured

in the x-axis perpendicular to both the cylinder’s axis and the magnetic field lines) from the

cylinder’s axis is evidently λ = 2ρ
√

(R2 − x2)/B. For this particular field line, the MHD

metage given by the equation (12) has its value running from zero to λ = 2ρ
√

(R2 − x2)/B

depending on where on the field line the floating point is: when the floating point is on the

bottom µ = 0 and as the floating point happens to be the top, µ = λ. Now the surfaces

of constant MHD load are, obviously, the planes (in the magnetofluid) whose normals are

parallel to the x-axis and keeping in mind the relation (11), the surfaces of constant conjugate

MHD load should be the planes whose normals are parallel to the y-axis i.e., the axis of the

cylinder. One can then naturally picture the magnetic field lines inside the MHD fluid as

the locus of points at the intersections of these two kinds of surfaces.

III. MHD LOAD AND MAGNETIC ERTEL’S THEOREM

One can always define a vector potential ~A for ~B. Although ~A is always non-unique in

the sense that gradient of any scalar field may always be added to it without changing the

~B and hence one would notice that in the arguments that follow it hardly matters which ~A

one is choosing. Anyway, with respect to the basis vectors of the coordinate system (λ,λ̃,µ),

~A may be written as

~A = A1
~∇λ1 + A2

~∇λ2 + A3
~∇λ3 (18)

For convenience, we have renamed (λ,λ̃,µ) as (λ1, λ2, λ3). Lets define

~Bp ≡ ~∇λ × ~A (19)

where, ~∇λ ≡ (∂/∂λ1, ∂/∂λ2, ∂/∂λ3). Seemingly, the relation (19) suggests that ~Bp is the

magnetic field measured in the curvilinear coordinate system (λ,λ̃,µ). We shall see below

(equation (26)) that each component of ~Bp is a conserved quantity which may be interpreted

as

Bλ ≡

(

~B

ρ
.~∇

)

λ (20)
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To see so lets start by recalling that due to the frozen nature of the magnetic field which is

the result of the following equation valid in the MHD of infinite conductivity:

D

Dt

(

~B

ρ

)

=

(

~B

ρ
.~∇

)

~v (21)

As the infinitesimal displacement ~δx between two moving fluid particles follow equation

similar to the equation (21), we have

d ~δx

dt
= ( ~δx.~∇)~v (22)

Due to the relation (6), one can easily put the equations (21) and (22) to good use and can

churn out in the process the following equation:

D

Dt

{(

~B

ρ
.~∇

)

λ

}

= 0 (23)

that may be simply interpreted as the conservation of Bλ on fluid particles; obviously this

is the analogue of Ertel’s theorem[5] in MHD.

Now, the vector potential ~A (see relation (18)), may also be written as

~A = A′
1î + A′

2ĵ + A′
3k̂ (24)

The transformation rule for the components of ~A in two different basis vectors (refer to

relations (18) and (24) is:

A′
i =

∂λj

∂xi

Aj (25)

This rule (25) and the relation (15) allows one to establish that

(~∇λ × ~A)i = Bλi
(26)

This is what we wanted to arrive at. Comparing the relations (19), (23) and (26) we can see

that the magnetic field measured in the curvilinear coordinate system (λ,λ̃,µ) is a conserved

quantity, i.e.,

D ~Bp

Dt
= 0 (27)

This is the physical interpretation of this conservation and the essence of MHD analogue of

Ertel’s theorem.
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IV. MHD LOADS AND LINKING NUMBER

A useful function of λ may be defined in a steady MHD flow. Steady, by definition, means

the explicit independence of the physically measurable quantities from time; hence ρ and ~B

do not depend on time in the case of steady MHD flow. The definition of λ (equation (3))

would then suggest that the magnetohydrodynamic load as well is not dependent on time.

Lets define the function

Φ(λ) ≡

∫

λ

~B.d~S (28)

that basically gives the strength of the flux through a large magnetic field tube surfaced by

a locus of points having constant λ; for convenience of discussion we henceforth shall mean

such a tube when we shall be using the phrase “tube of load λ” and shall denote the mass

within it by M(λ). From the definitions (3) and (28), we can very well write

dM

dλ
= λ

dΦ

dλ
(29)

If λ = λ0 is the MHD load at the center line of the tube of load λ, one may note that

M(λ0) = 0; Φ(λ0) = 0 (30)

Hence, from the equation (29) one notices that Φ(λ) and M(λ) and MHD load can be related

to each other by dint of the following relations:

M(λ) =

∫ λ

λ0

λ′dΦ(λ′)

dλ′
dλ′ =

∫ Φ(λ)

0

λ(Φ′)dΦ′ (31)

Φ(λ) =

∫ λ

λ0

1

λ′

dM(λ′)

dλ′
dλ′ =

∫ M(λ)

0

dM ′

λ(M ′)
(32)

One of the interesting mathematical applications of defining Φ(λ) is that through it the

concept of MHD load λ can go on to express magnetic helicity in its own terms as should

be obvious from what follows.

Consider the case that the magnetic field lines spiral around toroids which lie entirely

within the magnetofluid. Such an arrangement would inherently introduce magnetic helicity

in the flow. This should be evident from the fact that one can build such a structure by

“Dehn surgery”, i.e. by cutting a closed magnetic flux tube at a section, twisting the free

ends through a relative angle that is integral multiple of 2π, and reconnecting; for simplicity’s
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sake one may suppose that the resulting twist is uniformly distributed round the tube. The

support of the magnetic field is, thus, multiply-connected The pair of independent global

Euler potentials is, in general, non-existent in such a scenario[3]. We can no longer use

equation (11) to represent magnetic field globally. However, one may extend the concept of

MHD load as follows putting it to good use.

Obviously, two fluxes of magnetic lines of force are associated with each toroid: one being the

flux threading the meridional cross-section of the toroid and the other being the one which

penetrates the inner boundary of the equatorial section of the toroid. Let the strengths

of the fluxes be Φm and Φe respectively. In this non-trivial topology, one can define two

invariant MHD loads to characterise the toroid as

λm ≡
dM

dΦm

; λe ≡
dM

dΦe

(33)

where M is the mass inside the torus that provides the magnetic field lines a compact

support V on whose boundary ∂V , n̂. ~B = 0.

Now, a conserved pseudo-scalar quantity viz., magnetic helicity[4, 6, 7] is given by:

H ≡

∫

V

~A. ~BdV (34)

The integrand here measures how much ~A rotates about itself times its modulus; thereby

making the name magnetic helicity apt because it gauges the relative curling and braiding

of the lines of ~A and ~B. Thus, H gives an intuitive measure as to what degree the field

lines resemble helices. The most important property of H which is of our concern is that

it takes non-vanishing values only if the topology of the integral curves of magnetic field

is non-trivial. Obviously in the definition (34), ~A is not unique, for, a term ~∇θ, θ being

a scalar field can always be added to it keeping ~B unchanged. Let us ponder over this

non-uniqueness of the vector potential[8]. For smooth discussion’s sake, we assume for the

time being that the volume is simply connected. Suppose Ai → Ai + ∂iθ, then from the

definition (34) of magnetic helicity we can find the change δH in H to be:

δH =

∫

V

~∇θ. ~Bd3x =

∮

∂V

θ ~B.n̂d2x (35)

where n̂ is the unit vector perpendicular to the infinitesimal surface element d2x and we have

used the solenoidal nature of magnetic field and Gauss divergence theorem. The relation (35)

amounts to saying that the magnetic helicity will be gauge invariant in case the surface ∂V
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bounding V is a magnetic surface i.e., ~B.n̂ = 0 on ∂V . This condition for gauge invariance

is rather strong because if ~B.n̂ 6= 0 on ∂V then one cannot seek refuge in Coulomb gauge

for it is too loosely defined inside V with no information about the outside field whatsoever.

More starkly, it means that different solenoidal vector potentials inside V can correspond

to Coulomb potentials of fields which have different structures outside V . Now if we relax

the condition that V is simply connected, then the line integrals of ~A about the ‘holes’ in

the possibly multiply connected region have to be specified in order to have gauge-invariant

magnetic helicity within ∂V on which ~B.n̂ = 0.

It is well-known[9] that if the flux strength in the tube before the ‘Dehn surgery’ was Φ

and the number of twists required to get the toroidal configuration mentioned above be n

(i.e., the linking number of any pair of the magnetic field lines is n) then

H = nΦ2 (36)

But since in the configuration under study, one may use relations (33) to rewrite the defini-

tion (34) as:

H =

∫ M

0

Φe(M
′)

[

d

dM ′
Φm(M ′)

]

dM ′ (37)

It is of interest to note that using the relations (33), (36) and (37), one may express the

linking number in terms of the invariant MHD loads as in the following relation:

n =
1

Φ2

∫ M

M ′=0

∫ M ′

M ′′=0

dM ′′dM ′

λe(M ′′)λm(M ′)
(38)

This evidently provides a physical and topological significance for the MHD loads.

V. MHD METAGE AND CROSS HELICITY

Like the topological conserved quantity magnetic helicity, in the non-viscous MHD with

infinite conductivity one has yet another conserved quantity viz., cross helicity defined as

follows:

Hc ≡

∫

V

~v. ~BdV (39)

It measures the degree of mutual knottedness[4] of the vorticity field and the magnetic field;

this remains constant even though the vortex lines are no longer frozen in the fluid. In
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this section, we shall prove that an appropriate symmetry displacement associated with the

infinitesimal change in the MHD metage µ generates cross helicity conservation. A similar

analysis[10] with hydromagnetic load and metage yields conservation of helicity.

The equation for an ideal non-dissipative MHD flow is:

∂~v

∂t
+ (~v.~∇)~v = −

~∇P

ρ
−

~B × (~∇× ~B)

µ0ρ
− ~∇ψ (40)

where ψ is the external potential and µ0 is the permeability of the medium. If s is the specific

entropy and ε(ρ, s) is the specific internal energy, one can write the following Lagrangian

corresponding to the equation (40):

L =

∫

V

[

1

2
v2 − ε(ρ, s) − ψ −

B2

2µ0ρ

]

ρd3x (41)

The pressure P is related to ε(ρ, s) via the thermodynamical relation:

P = ρ2

(

∂ε

∂ρ

)

s

(42)

The action is defined as:

A ≡

∫ t2

t1

Ldt (43)

Following the notations developed in the section (III), as ~x is the position vector of a particle

labeled by ~λ = (λ1, λ2, λ3), the trajectories are given by:

~x = ~X(~λ, t) (44)

where ~X is a vectorial function that induces a mapping that if assumed one-to-one, can

have an inverse. We would distinguish between the variations ∆ incurred on a given label

(i.e., at a point in the label space) and the variations δ at a fixed point in the real space.

If infinitesimal changes ∆ ~X are made in the trajectories, for any quantity F one has the

following relation[11]:

δF = ∆F − ∆ ~X.~∇F (45)

Now, we have the continuity equation and the induction equation as follows respectively:

Dρ

Dt
≡

∂ρ

∂t
+ (~v.~∇)ρ = −ρ(~∇.~v) (46)

D ~B

Dt
≡

∂ ~B

∂t
+ (~v.~∇) ~B = ( ~B.~∇)~v − ~B(~∇.~v) (47)
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They respectively suggest following variations inducing changes in ρ and ~B:

∆ρ = −ρ(~∇.∆ ~X) (48)

∆Bi = Bj∂j∆Xi − Bi∂j∆Xj (49)

Similarly, as is generally assumed if the specific entropy s of a fluid particle is constant, then

∆s = 0 (50)

Also, the corresponding variation of ~v is:

∆vi =
D

Dt
∆Xi (51)

Equipped with these relations, we proceed to apply variation on the action (43) rewritten

explicitly below

A =

∫ t2

t1

dt

∫

V

d3x

[{

1

2
v2 − ε(ρ, s) − ψ

}

ρ −
B2

2µ0

]

(52)

We shall consider that suitably differentiable variations in the particle trajectories vanish

for t outside [t1, t2] and ∆ ~X.n̂ = 0 on the boundary of V . Therefore, we have starting from

the expression (52):

δA =

∫ t2

t1

dt

∫

V

d3x

[

{

v2

2
− ε − ψ

}

δρ + ρ {~v.δ~v − δε − δψ} −
~B.δ ~B

µ0

]

(53)

⇒ δA =

∫ t2

t1

dt

∫

V

d3x

[{

v2

2
− ε − ψ

}

(∆ρ − ∆ ~X.~∇ρ) + ρ
{

~v.∆~v − ~v(∆ ~X.~∇)~v − ∆ε + ∆ ~X.~∇ε

−∆ψ + ∆ ~X.~∇ψ
}

−
1

µ0

{

~B.∆ ~B − ~B.(∆ ~X.~∇) ~B
}

]

(54)

⇒ δA =

∫ t2

t1

dt

∫

V

d3x

[{

v2

2
−

∂

∂ρ
(ρε) − ψ

}

∆ρ + ρ~v.δ~v − ρ
∂ε

∂s
∆s − ρ~∇ψ.∆ ~X − ∆ ~X.~∇

{

ρv2

2
− ρε − ρψ

}

−
1

µ0

{

Bi(Bj∂j)∆Xi − Bi(Bi∂j∆Xj) − ∆ ~X.~∇

(

B2

2

)}]

(55)

⇒ δA =

∫ t2

t1

dt

∫

V

d3x

[(

~∇

{

ρv2

2
− ρ

∂

∂ρ
(ρε) − ρψ

}

−
D

Dt
(ρ~v) − ρ~∇ψ − ~∇

{

ρv2

2
− ρε − ρψ

})

.∆ ~X

−
1

µ0

{

−∂j(BiBj) + ∂iB
2 −

1

2
∂iB

2

}

∆Xi

]

+

[
∫

V

d3xρ~v.∆ ~X

]t2

t1

(56)

⇒ δA =

[
∫

V

d3λ~v.∆ ~X

]t2

t1

−

∫ t2

t1

dt

∫

V

d3x

[

D

Dt
(ρ~v) + ~∇P + ρ~∇ψ −

( ~B.~∇) ~B

µ0
+ ~∇

(

B2

2µ0

)

]

.∆ ~X (57)

We pause here a bit and explain the steps involved in the above calculation. To reach from

(53) to (54), we have used (45); and (54) in turn used (49) to yield (55). In arriving at
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(56), relations (48), (50) and (51) have been taken into account followed by integration by

parts of the appropriate terms. The final step, relation (57) follows from (56) by simple

rearrangement and by using the relation (42). At this point, we argue that the variation is

a symmetry displacement (i.e., a displacement that makes δA zero) and allow the equations

(40) and (46) to hold during the process of variation. Hence, the equation (57) yields:
∫

V

(~v.∆ ~X)d3λ = constant (58)

Simply because one is always free to choose a new set of variables (λ′
1, λ

′
2, λ

′
3) such that

∂(~λ′)

∂(~λ)
≡

∂(λ′
1, λ

′
2, λ

′
3)

∂(λ1, λ2, λ3)
= 1, (59)

the ~λ chosen to satisfy equation (15) is not unique. Hence, if the new set of variables does

not modify the domain of integration, the value of the Lagrangian in the definition (41)

remains the same. It is nothing but the fascinating concept of relabeling symmetry.

As for the magnetic field lines lying entirely within the hydromagnetic fluid are always

closed, we can translate MHD metage µ without affecting the Lagrangian; this means that

the appropriate symmetry displacement is:

∆ ~X = −
∂ ~X

∂µ
∆µ (60)

where, ~x = ~X(λ, λ̃, µ) is the transformation whose Jacobian is given by the inverse of the

Jacobian given in the relation (15). Thus, in the additional light of the fact that varying

Lagrangian of the equation (41) by a constant ∆µ keeps L unaffected, the relation (58)

becomes:
∫

V

~v.
∂ ~X

∂µ
Jd3x = constant (61)

⇒

∫

V

~v.

(

ρ
∂ ~X

∂µ

)

d3x = constant (62)

But the relation (14) suggests[12]

ρ
∂ ~X

∂µ
= ~B (63)

and therefore putting (63) in (62), we arrive at the result:

Hc =

∫

V

~v. ~BdV = constant (64)
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In a rather more technical terms, one might choose to say that a one parameter translation

group (a special subgroup of Arnold’s symmetry group[13]) in the label space when repre-

sented by MHD load, MHD conjugate load and MHD metage has generated the conservation

of cross helicity.

VI. CONCLUSION

In short, we have introduced the concept of magnetohydrodynamic load in the case of

MHD with untangled magnetic field lines and extended the definition for the non-trivial case

of toroidal configuration of the magnetic field lines in MHD. The elegant relation between the

MHD loads and the magnetic helicity has been utilised to establish the relation (38) that very

nicely connects the linking number of a pair of arbitrary magnetic field lines in the toroidal

configuration discussed in the paper with the invariant loads in the magnetofluid having

infinite conductivity. The MHD analogue of Ertel’s theorem is rederived for the advected

scalar – MHD load. Moreover, the role of the MHD metage in generating the conservation

of cross helicity in non-viscous non-resistive magnetofluid has been discussed. Besides, this

work motivates one to take up similar study, by defining analogous loads and metage, on

the conservation of stream-helicity conjectured recently[14] in the case of ordinary fluids.
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