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HARNACK’S INEQUALITY FOR SOME NONLOCAL EQUATIONS AND

APPLICATION

JÉRÔME COVILLE

Abstract. In this paper, we establish a Harnack’s inequality for positive solutions of the
nonlocal inhomogeneous problem

Z

Ω

J

„

x − y

g(y)

«

u(y)

gn(y)
dy − a(x)u,

where Ω ⊂ R
n is an open set, J is a probability density with compact support and g, b are

positive bounded functions. For some particular a(x), using the Harnack’s Inequality, we
also construct a positive solution of the above equation.

1. Introduction and Main results

In the past few years much attention has been drawn to the study of nonlocal reaction
diffusion equations , where the usual elliptic diffusion operator is replaced by a nonlocal one
of the form

(1.1) L[u] :=

∫

Ω
k(x, y)u(y) dy − b(x)u,

where Ω ⊂ R
n, k ≥ 0 satisfies

∫
Rn k(y, x)dy = 1 for all x ∈ R

n and b(x) ∈ C(Ω), see
among other references [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 20, 21, 22]. Such types of
diffusion processes have been widely used to describe the dispersal of a population through
its environment in the following sense. As stated in [16, 17, 19] if u(y, t) is thought of as a
density at location y at time t and k(x, y) as the probability distribution of jumping from
location y to location x, then the rate at which individuals from all other places are arriving
to location x is ∫

Ω
k(x, y)u(y, t) dy.

On the other hand, the rate at which individuals are leaving location x to travel to all other
places is −b(x)u(x, t).

Equation (1.1) can be seen as a nonlocal analog of the usual elliptic operator

M := aij(x)∂ij + bi(x)∂i + c(x).

Indeed, let us rewrite equation (1.1) in the following way
∫

Ω
k(x, y)[u(y) − u(x)] dy − c(x)u = 0 in Ω,(1.2)

with c(x) := b(x)−
∫
Ω k(x, y)dy. Setting z = x− y and performing a formal Taylor expansion

of u in the integral, we can rewrite the nonlocal operator as follows∫

x−Ω
k(x, x − z)[u(x − z) − u(x)] dy = aij(x)∂iju + bi(x)∂iu + R[x, ∂ijku]
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with aij(x) and bi(x) defined by the following expressions

aij(x) =
1

2

∫

x−Ω
k(x, x − z)zizj dz

bi(x) =

∫

x−Ω
k(x, x − z)zi dz.

Therefore, on smooth functions, L appears as a perturbation of M involving higher deriva-
tives.

For the uniform elliptic operator M, it is well known that positive solutions of the equation

(1.3) M[u] = 0

satisfy a Harnack’s inequality, see [15, 18]. That is,

Harnack’s inequality

Let u be a positive solution of (1.3), then for any compact subset ω of Ω, such that ω ⊂⊂ Ω,

there exist a constant C(ω) such that

sup
ω

u ≤ C inf
ω

u.

In this work, we investigate the validity of such Harnack’s inequality for positive solutions
of (1.1) when the kernel k(x, y) takes the form

(1.4) k(x, y) = J

(
x − y

g(y)

)
1

gn(y)
,

where J is a continuous probability density and the function g is bounded and positive. Such
type of diffusion kernel was recently introduced by Cortazar et al. [8] in order to model a
one dimensional non homogeneous dispersal process. More precisely, we are interested in
finding simple conditions on J , g, b and Ω such that a Harnack’s inequality holds for positive
solutions of the following equation :

(1.5)

∫

Ω
J

(
x − y

g(y)

)
u(y)

gn(y)
dy − b(x)u = 0. in Ω.

That is to say:

Harnack’s Inequality for nonlocal equation :

Let u ∈ C(X, R) be a positive solution of (1.5). Then, for any compact subset ω of Ω such

that ω ⊂ Ω, there exists a constant C(ω) such that

sup
ω

u ≤ C inf
ω

u.

Harnack’s inequality plays an important role in modern analysis of nonlocal equations
because it provides various important a priori estimates. In particular, it is a key estimate
in the construction of a positive solution of the principal eigenvalue problem

(1.6)

∫

Rn

J

(
x − y

g(y)

)
u(y)

gn(y)
dy − b(x)u = −λ1u in R

n,

see [8]. It is therefore of great interest to investigate the existence of such estimates.
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Throughout this paper, we will always assume that J and g satisfy the following assump-
tions:

J ∈ Cc(R
n) ∩ L1(Rn), J ≥ 0,

∫

Rn

J(z) dz = 1 (H1)

g ∈ L∞(Ω), 0 ≤ g ≤ β (H2)

1

gn
∈ L1

loc (H3)

b ∈ C(Ω̄), b(x) > 0 (H4)

where Cc(R
n) denotes the set of continuous functions with compact support. Without loss of

generality, we will also assume that the support of J is contained in the unit ball. Under the
above assumptions on J , g, and b, we first prove the following:

Theorem 1.1. Assume (H1−H4) hold and let J and g be such that J(0) > 0 and g ≥ α > 0.
Then, for any compact set ω ⊂⊂ Ω, there exists C(J, ω, b, g) such that for all positive bounded

solutions u of (1.5) we have

u(x) ≤ Cu(y) for all x, y ∈ ω.

Our next result concerns the case when g is allowed to vanish and/or the compact set ω can
touch the boundary. In such cases, we usually don’t have a pointwise Harnack’s inequality.
However, we still have some kind of uniform estimate. More precisely, with S 6= ∅ the set of
zeroes of g, we have the following:

Theorem 1.2. Assume (H1−H4) hold and let J be such that J(0) > 0. Assume further that

Ω∩S ⊂⊂ Ω and let ω ⊂ Ω̄ be a compact set. Then there exists a positive constant η∗ such that

for any 0 < η ≤ η∗ there exists a compact set ω′ ⊂⊂ Ω and a constant C(J, ω,Ω, ω′, b, g, η)
such that the following holds

(i) {x ∈ Ω|d(x, ∂(ω ∩ Wη)) > η} ⊂ ω′, where Wη := {x ∈ Ω|g(x) > η}
(ii) for all positive solution u of (1.5) the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω′ ∩ ω.

As a direct consequence of Theorem 1.2, when Ω is a bounded domain we get a uniform
estimate on positive solutions u of (1.5). More precisely, we have

Corollary 1.3. Let Ω, J and g be as in the Theorem 1.2 and assume that Ω is a bounded
domain. Then there exists a positive constant η∗ such that for any 0 < η ≤ η∗ there exists a
compact set ω′ ⊂⊂ Ω and a constant C(J,Ω, ω′, b, g, η) such that the following hold

(i) {x ∈ Ω|d(x, ∂Wη) > η} ⊂ ω′

(ii) for all positive bounded solution s u of (1.5),

sup
Ω

u ≤ Cu(y) for all y ∈ ω′.

Under an extra assumption on the regularity of the compact set ω, we have a more precise
description of the set ω′. Namely, we prove the following result

Theorem 1.4. Let S, J and g be as in Theorem 1.2 and let ω ⊂ Ω̄ be a compact set satisfying

a uniform inner cone condition. Then there exists a positive constant η∗, such that for any

0 < η ≤ η∗ there exists a constant C(J, ω,Ω, b, g, η) such that for all positive solution u of

(1.5) the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ {y ∈ Ω|g(y) > 2η}.
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As a corollary of Theorem 1.4, we get a Harnack’s inequality up to the boundary when
g > α and Ω is a bounded regular domain. More precisely, we have:

Corollary 1.5. Let Ω, J , g and b be as in Theorem 1.1 and assume that Ω is a bounded
domain satisfying a uniform inner cone condition. Then there exists a constant C(Ω, g, J, b)
such that for all positive bounded solutions u of (1.5) the following holds

sup
Ω

u ≤ C inf
Ω

u.

Our last result is an application of these Harnack’s type estimates to the construction of a
positive solution of (1.5) for a particular b(x). More precisely, let us consider the equation

(1.7)

∫

Rn

J

(
x − y

g(y)

)
u(y)

gn(y)
dy − a(x)u = 0 in Ω,

where a(x) is defined as follows:

a(x) :=

{ ∫
Ω J

(
y−x
g(x)

)
dy

gn(x) if x 6∈ S

1 otherwise

For this equation, we have the following result

Theorem 1.6. Let Ω, S, J and g be as in Theorem 1.2. Then there exists a positive solution

p of (1.7).

1.1. Comments.

We first point out that such Harnack’s inequalities extend easily to the case of dispersal
kernels k(x, y) of the form

k(x, y) = J

(
x1 − y1

g1(y)
;
x2 − y2

g2(y)
; . . . ;

xn − yn

gn(y)

)
1∏n

i=1 gi(y)
.

The above dispersal kernel is a natural generalization of (1.4) which takes into account that
each coordinate is influenced differently by the environment.

From the proof, we note that the regularity condition imposed on the coefficient is not
optimal and can be weakened. In particular, the results hold as well, when we assume that
b(x) ∈ L∞(Ω) with infΩ̄b(x) ≥ b0 > 0 and J ∈ L1(Rn) is a non negative, compactly supported
function satisfying the following condition:

∃ c0 > 0, ǫ0 > 0 such that min
y∈B(0,ǫ0)

J(y) > c0.

Along the proof, we observe that the Harnack’s inequalities extend also to non negative
kernel k(x, y) which are positive on the diagonal. More precisely, the Harnack’s inequalities
hold as well for k(x, y) satisfying the following conditions

k(x, y) ∈ Cc(Ω × Ω), k ≥ 0,

∫

Ω
k(x, y) dy < +∞ ∀x ∈ Ω (H̃1)

∃ c0 > 0, ǫ0 > 0 such that min
x∈Ω

(
min

y∈B(x,ǫ0)
k(x, y)

)
> c0. (H̃2)

We also want to emphasize that since there is no condition on the open set Ω, the Harnack’s
inequalities (Theorems 1.1 , 1.2 and 1.4) hold as well when Ω = R

n. In the later case, when
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g is allowed to vanish, the assumption Ω∩S ⊂⊂ Ω can be weakened. More precisely, we only

require that for any subset S̃ of S there exists a ball B(x0, R) such that

B(x0, R) ∩ S̃ ⊂⊂ B(x0, R).

Corollary 1.7. Let J, b, g be as in Theorem 1.2 and assume that S satisfies the above con-
dition. Let ω ⊂ R

n be compact set. Then, there exists a positive constant η∗ such that for
any 0 < η ≤ η∗ there exists a constant C(J, ω, b, g, η) such that for all positive solutions u of
(1.5) the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω ∩ {y ∈ Ω|g(y) > 2η}.

We also want to stress that whereas the classical Harnack’s inequality obtained in Theorem
1.1 is still true for positive solutions of the classical uniformly elliptic equation (1.3), its
extension up to the boundary (Corollary 1.5) is not. The validity of such extension is a
consequence of the nonlocal character of the equation we have considered.

We also want to point to recent work on Harnack’s inequality for fractional operators by
Bass and Kassmann [2] and by Cortazar et al. [8] in the particular case of a symmetric kernel
in one dimension. In the later, the authors obtained a different type of Harnack’s inequality
for bounded positive solutions p of (1.4). Namely, they showed that

∀ (x, y) ∈ [−M,M ] × R, u(x) ≤ A

∫ y+β

y−β

u(z) dz,

where the constant A depends only on M, J and g. An extension of this type of estimate to
equation (1.5) is currently under investigation.

Let us now briefly explain our strategy for obtaining such Harnack’s inequalities. It is well
known (see [15, 18]) that harmonic functions (i.e ∆u = 0) satisfy the mean value equality

u(x) =

∫

B(x,r)
u(y)

dy

|B(x, r)|
,

which holds for any ball B(x, r) ⊂⊂ Ω. Harnack’s inequality is then easily derive from this
property. Our main idea is to view a positive solution u of (1.5) as a positive function
satisfying some mean value equality

u(x) =
1

b(x)

∫

Ω
u(y) dµ(x, y),

for some given measure dµ, and to use this formulation to obtain uniform estimates depending
only on ω, J and b. However, the later mean value property is fundamentally different in at
least two ways from the one satisfied by harmonic functions. First, the measure dµ(x, y) is
not anymore homogeneous and may be singular in the variable y. Second, the solution of
equation (1.5) satisfies the mean value equality for the fixed domain Ω, whereas for harmonic
functions the mean value equality holds for any ball compactly included in Ω. All the difficulty
in obtaining such estimates arises from these two differences.

Since Corollaries 1.3 and 1.7 come as a straightforward application of the main Theorems,
we skip their proofs.

1.2. Organization of the paper.

The paper is organized as follows. In a first section, we establish some uniform estimates
satisfied by positive solutions of (1.5). Then in section 3, we prove the different Harnack’s
inequalities in Corollary 1.5, Theorems 1.1,1.2 and 1.4. Finally, in the last section we deal
with the construction of a solution (Theorem 1.6).
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2. Local uniform estimates

In this section we establish some local uniform estimates, which play an essential role in
deriving the Harnack’s Inequality.

Lemma 2.1. Let Ω ⊂ R
n be a connected domain and u a continuous positive solution of

(1.5). Let Ω′ ⊂ Ω be a compact set such that g ≥ α > 0 in Ω′. Then there exists ǫ∗ > 0 so

that for all ǫ ≤ ǫ∗, there exists Ωǫ and C(α, β, J, ǫ, b) such that
∫

Ωǫ

u(y) dy ≥ C

∫

Ω′

u(y) dy.

Moreover, Ωǫ satisfies the following inclusion
{
x ∈ Ω′|d(x, ∂Ω′) > αǫ

}
⊂ Ωǫ ⊂

{
x ∈ Ω′|d(x, ∂Ω′) >

αǫ

2

}
.

Proof :

Since Ω′ ⊂ Ω and u is non negative, it follows that

(2.1)

∫

Ω′

J

(
x − y

g(y)

)
u(y)

gn(y)
dy − b(x)u(x) ≤ 0 in Ω.

Since Ω′ is compact and u continuous, we can integrate (2.1) over Ωǫ ⊂⊂ Ω′ and it follows
∫

Ωǫ

∫

Ω′

J

(
x − y

g(y)

)
u(y)

gn(y)
dy ≤

∫

Ωǫ

b(x)u(x) dx.

Using that g ≥ α > 0 in Ω′, Fubini’s Theorem and setting z = x−y
g(y) , we end up with

∫

Ωǫ

b(x)u(x) dx ≥

∫

Ω′

u(y)

gn(y)

(∫

Ωǫ

J

(
x − y

g(y)

)
dx

)
dy(2.2)

≥

∫

Ω′

u(y)

(∫

Ωǫ,y

J(z) dz

)
dy(2.3)

where Ωǫ,y := Ωǫ−y
g(y) . We claim that

Claim 2.1. There exits Ωǫ and c0 > 0 so that for all y ∈ Ω′,∫

Ωǫ,y

J(z)dz > c0.

Observe that by proving the claim we end the proof of the lemma. Indeed, assuming the
claim is proved, then from the above inequality we derive

∫

Ωǫ

b(x)u(x) dx ≥

∫

Ω′

u(y)

(∫

Ωǫ,y

J(z) dz

)
dy

≥ c0

∫

Ω′

u(y)dy.

Hence, ∫

Ωǫ

u(x) dx ≥
c0

‖b‖∞

∫

Ω′

u(y)dy.

¤

Let us now prove the claim.
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Proof of the claim

By assumption, since J(0) > 0, there exists r0 > 0 and c0 such that minB(0,r0) J > c0.

Let ǫ ≤ min{ r0
2 ; 1

4} be such that the two sets

Ω′
ǫ := {x ∈ Ω′| d(x, ∂Ω′) ≥ ǫα}(2.4)

Ω̃′
ǫ := {x ∈ Ω̄′| d(x, ∂Ω′) ≤

ǫα

2
}(2.5)

are non empty disjoint sets. Choose Ωǫ smooth so that Ω′
ǫ ⊂ Ωǫ and Ωǫ ∩ Ω̃′

ǫ = ∅. By
construction, we have for all y ∈ Ω′, d(y, Ωǫ) < ǫα and Ω̄ǫ is compact. Since Ωǫ is uniformly
smooth there exists δ > 0 small and k ∈ N

∗ so that for all z ∈ Ωǫ, B(z, δ) ⊂ Ω′ and
∃z′ ∈ Ωǫ ∩ B(z, δ) so that

(2.6) B(z′,
δ

k
) ⊂ B(z, δ) ∩ Ωǫ.

Now, pick y ∈ Ω′. Since Ω̄ǫ is compact, there exists z0 ∈ Ω̄ǫ so that ‖y − y0‖ = d(y, Ωǫ).
Using (2.6), it follows that

B(z′0,
δ
k
) − y

g(y)
⊂ Ωǫ,y.

Take now s ∈ B(z′0,
δ
k
) and compute ‖s−y‖

g(y) :

‖s − y‖

g(y)
≤

‖s − z′0‖ + ‖z0 − z′0‖ + ‖z0 − y‖

α

≤
δ

kα
+

δ

α
+ ǫ.

By choosing δ ≤ r0α
4 small enough, since k ≥ 1, we achieve

‖s − y‖

g(y)
≤ r0.

From the above construction, we have the following
∫

Ωǫ,y

J(z)dz ≥

∫
B(z′0, δ

k
)−y

g(y)

J(z) dz

≥ c0

∫
B(z′0, δ

k
)−y

g(y)

dz

≥ c0µ(B(0,
δ

kβ
)).

Since the above computation is independent of y ∈ Ω′, the claim is proved.
¤

Remark 2.2. Observe that from the computation, the parameter ǫ has a certain degree of
freedom and can be chosen at our convenience.

Let us now show another important estimate.
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Lemma 2.3. Let Ω ⊂ R
n be a connected set and u a positive continuous function satisfying

(1.5). Let Ω′ ⊂ Ω be such that g ≥ α > 0 in Ω′. Then for any Ω′′ ⊂⊂ Ω′ there exists δ and a

constant C(β, J, α, δ, b) such that

∀x ∈ Ω′′, u(x) ≥ C

∫

B(x,δ)
u(y) dy.

Proof:

Let d := d(Ω′′, ∂Ω′) and by assumption d > 0. Since u satisfies (1.5) and is positive, at
x ∈ Ω we have

b(x)u(x) ≥

∫

Ω′

J

(
x − y

g(y)

)
u(y)

gn(y)
dy

≥

∫

B(x,β)∩Ω′

J

(
x − y

g(y)

)
u(y)

gn(y)
dy.

For δ < d small enough, since J(0) > 0, α ≤ g ≤ β in Ω′ and ‖b‖∞ < C, we have

u(x) ≥

∫

B(x,δ)∩Ω′

J

(
x − y

g(y)

)
u(y)

gn(y)
dy

≥
minB(0,δ) J

βn‖b‖∞

∫

Bδ(x)∩Ω′

u(y) dy.

Since δ < d, it follows that for any x ∈ Ω′′, B(x, δ) ⊂ Ω′. Hence, the Lemma is proved.
¤

Let us now prove our last estimates.

Lemma 2.4. Let Σ ⊂⊂ Ω be regular and η > 0 such that

Ωη :=
⋃

x∈Σ

B(x, 2η) ⊂⊂ Ω.

Let u ∈ C(Ω) be a positive function satisfying the following property:

(2.7) ∃C0 > 0 such that u(y) ≥ C0

∫

B(y,η)
u(s) ds for all y ∈ Ωη.

Then for all x ∈ Σ, there exists a constant C(x) independent of u such that
∫

B(x, η
4
)
u(s) ds ≥ C(x)

∫

Σ
u(s) ds.

The proof of this Lemma relies essentially on the following technical Lemma that we prove
later on.

Lemma 2.5. Let Σ ⊂⊂ Ω, η > 0 and u ∈ C(Ω) as in Lemma 2.4. Then for all x ∈ Σ and

r ≤ η, there exists a constant C(x, r) and d ∈ R independent of u such that
∫

B(x,r)
u(s) ds ≥ C(x)

∫

B(x,r+d)
u(s) ds.

8



Assume for the moment that the above Lemma 2.5 holds and let us prove Lemma 2.4

Proof of Lemma 2.4:

Let x ∈ Σ be fixed and let us denote m =
∫
B(x, η

4
) u(s) ds. Now, define the following set:

Γx := {y ∈ Σ|∃C such that m ≥ C

∫

B(y,η)
u(s) ds}.

Let us first show that Γx is non-empty. Since x ∈ Σ, then B(x, η
4 ) ⊂ Ωη and for all y ∈ B(x, η

4 ),

u(y) ≥ C0

∫

B(y,η)
u(s) ds.

Therefore,

m =

∫

B(x, η
4
)
u(y) dy(2.8)

≥ C0

∫

B(x, η
4
)

(∫

B(y,η)
u(s) ds

)
dy(2.9)

≥ C0

∫

B(x, η
4
)∩Σ

(∫

B(y,η)
u(s) ds

)
dy.(2.10)

From the later inequality (2.10), it follows that there exists y0 ∈ B(x, η
4 ) ∩ Σ such that

(2.11)
m

C0µ(B(x, η
4 ) ∩ Σ)

≥

∫

B(y0,η)
u(s) ds.

Therefore, y0 ∈ Γx and Γx 6= ∅. Now let us consider

ω∞ :=
⋃

y∈Γx

B(y,
η

2
).

We claim that

Claim 2.2. Σ ⊂ ω∞.

Observe that by proving the claim, we also prove the Lemma. Indeed, assume the claim is
proved. Since Σ is compact, there exists a finite number of balls B(yi,

η
2 ) covering Σ. That is

to say, for some N ∈ N,

Σ ⊂
N⋃

i=1

B(yi,
η

2
).

9



Now since yi ∈ Γx, it follows that

m ≥
N∑

i=1

C(yi)

N

∫

B(yi,η)
u(s) ds

≥
N∑

i=1

infi C(yi)

N

∫

B(yi,η)
u(s) ds

≥
infi C(yi)

N

∫
SN

i=1 B(yi,η)
u(s) ds

≥
infi C(yi)

N

∫

Σ
u(s) ds.

Hence the lemma is proved.
¤

Let us now turn our attention to the proof of the claim.

Proof of the claim

Since Γx 6= ∅, Σ∩ ω∞ 6= ∅. Assume now by contradiction that Σ 6⊂ ω∞ and choose y ∈ ω∞

such that B(y, η
4 ) ∩ ∁ω∞ 6= ∅, where ∁ω∞ denotes the complementary set of ω∞. Then there

exists z ∈ Σ ∩ ∁ω∞ and r > 0 such that B(z, r) ⊂ B(y, η
4 ) ∩ ∁ω∞. Now since y ∈ ω∞, there

exists ỹ ∈ Γx such that y ∈ B(ỹ, η
2 ). Therefore B(z, r) ⊂ B(ỹ, η). Using that ỹ ∈ Γx it follows

that

m ≥ C(ỹ)

∫

B(ey,η)
u(s) ds ≥ C(ỹ)

∫

B(z,r)
u(s) ds.

Using now Lemma 2.5 with z and B(z, r) yields

m ≥ C(ỹ)

∫

B(ey,η)
u(s) ds ≥ C ′(ỹ)

∫

B(z,r+d)
u(s) ds.

Now if r + d < η, using Lemma 2.5 with B(z, r + d) instead of B(z, r) yields

m ≥ C

∫

B(z,r+2d)
u(s) ds.

By induction, since z ∈ Σ, there exists p ∈ N such that r + pd ≥ η and

m ≥ C

∫

B(z,r+pd)
u(s) ds.

Thus, z ∈ Γx, which is a contradiction. Hence, Σ ⊂ ω∞.
¤

Let us now turn our attention to the proof of the technical Lemma 2.5.

Proof of Lemma 2.5

Let us fix y ∈ Σ. Since r ≤ η, (2.7) holds for any element z ∈ B(y, r). Therefore, we have

(2.12)

∫

B(y,r)
u(s) ds ≥ C0

∫

B(y,r)

(∫

B(z,η)
u(s) ds

)
dz.

10



Let us now consider the annulus A := A(y, r′, r), for some r′ < r which will be chosen later on.
Observe that A can be covered by a finite numbers of balls B(z, r − r′), where z ∈ ∂B(y, r′).
Namely, we have for some N(r − r′) ∈ N,

A ⊂

N(r−r′)⋃

1

B(zi, (r − r′)).

Now, choose r′ close to r, such that r−r′ ≤ η
4 and for any N(r−r′)−tuplet (z̃1, z̃2, . . . , z̃N(r′−r))

such that z̃i ∈ B(zi, r − r′) we have

A(y, r′, r′ +
η

2
) ⊂

N(r−r′)⋃

i=1

B(z̃i, η).

Now consider, Ai := B(zi, (r − r′)) ∩ A. For each Ai, it follows from (2.12) that

(2.13)

∫

B(y,r)
u(s) ds ≥ C0

∫

Ai

(∫

B(z,η)
u(s) ds

)
dz.

Therefore, on each Ai there exists a point z̃i ∈ Ai such that

(2.14)

∫

B(y,r)
u(s) ds ≥ C0µ(Ai)

∫

B(eyi,η)
u(s) ds.

Since µ(Ai) = µ(Aj) for all i, j, we end up with

∫

B(y,r)
u(s) ds ≥

C0µ(Ai)

N(r − r′)

N∑

i=1

∫

B(ezi,η)
u(s) ds

≥
C0µ(Ai)

N(r − r′)

∫
SN

i=1 B(ezi,η)
u(s) ds.

Since, z̃i ∈ B(zi, (r − r′)) for all i, using the geometric condition it follows that
∫

B(y,r)
u(s) ds ≥ C0µ(Ai)

∫

A(y,r′,r′+ η
2
)
u(s) ds.

Therefore,
∫

B(y,r)
u(s) ds ≥

C0µ(Ai)

2

∫

A(y,r′,r′+ η
2
)
u(s) ds +

1

2

∫

Br(y)
u(s) ds

≥ C

∫

B(y,r)∪A(y,r′,r′+ η
2
)
u(s) ds

≥ C

∫

B(y,r′+ η
2
)
u(s) ds,

where C := min{C0µ(Ai)
2 , 1

2}.
Hence, with d := η

2 − (r − r′) > 0, we achieve
∫

B(y,r)
u(s) ds ≥ C

∫

B(y,r+d)
u(s) ds.

¤
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3. Harnack’s inequalities

We are now in position to prove the different Harnack’s inequalities, Theorems 1.1, 1.2 and
1.4. A simple proof of Theorem 1.1 can be obtained using Theorems 1.2 and 1.4, so let us
first prove Theorem 1.2.

Proof of Theorem 1.2:

Before we begin, let us make some remarks and introduce some notation. First observe
that if the estimates in Theorem 1.2 holds for a given compact set ω ⊂ Ω, then the estimates
holds as well for any compact set ω̃ ⊂ ω. Indeed, since estimates in Theorem 1.2 holds for ω,
there exists a positive constant η∗(ω) such that for any 0 < η ≤ η∗(ω) there exists a compact
set ω′(η) ⊂⊂ Ω and a constant C(J, ω,Ω, ω′, b, g, η) such that the following holds

(i) {x ∈ Ω|d(x, ∂(ω ∩ Wη)) > η} ⊂ ω′(η), where Wη := {x ∈ Ω|g(x) > η}
(ii) for all positive solution u of (1.5) the following inequality holds:

u(x) ≤ Cu(y) for all x ∈ ω, y ∈ ω′ ∩ ω.

Since ω̃ ⊂ ω, for η < η∗(ω) small enough we achieve

{x ∈ Ω|d(x, ∂(ω̃ ∩ Wη)) > η} ⊂⊂ ω ∩ Wη.

Let us now fix η. By the above inclusion, we can choose η′ < η∗(ω) such that

{x ∈ Ω|d(x, ∂(ω̃ ∩ Wη)) > η} ⊂ {x ∈ Ω|d(x, ∂(ω ∩ Wη′)) > η′} ⊂ ω′(η′).

Using now (ii), it follows that any positive solutions of (1.5) satisfies

sup
eω

u ≤ sup
ω

u ≤ C(η′) inf
ω′(η′)∩ω

u ≤ C(η′) inf
ω′∩eω

u.

Therefore the estimates in Theorem 1.2 holds for ω̃.
From the above observation, we can restrict our attention to compact set ω ⊂ Ω such that

S ⊂⊂ ω. Fix now ω and let us define the following sets

ωη :=
⋃

x∈ω

B(x, η) ∩ Ω

Zη := {y ∈ Ω|g(y) < η}

Wη := {y ∈ Ω|g(y) ≥ η}.

Since 1
gn ∈ L1

loc, let us choose η∗ small enough such that

(3.1)

∫

ω∩Zη∗

dy

gn(y)
≤

infω b

2‖J‖∞
.

Since S ⊂⊂ ω, we can choose η∗ smaller if necessary to achieve ωη∗ ∩ Zη ⊂ ω. Fix now,
0 < η ≤ η∗. We are now in a position to prove the Theorem.

Step 1: Now, define the following bounded set

Ω(ω) :=
⋃

x∈ω

B(x, β),

12



and set the measure dµ = dy
gn(y) , which is well defined since 1

gn ∈ L1
loc. Since J is compactly

supported, it follows that in ω, u satisfies

u(x) =
1

b(x)

∫

Ω(ω)∩Ω
J

(
x − y

g(y)

)
u(y)dµ(y)(3.2)

=
1

b(x)

∫

Ω(ω)∩Zη

J

(
x − y

g(y)

)
u(y)dµ(y) +

1

b(x)

∫

Ω(ω)∩Wη

J

(
x − y

g(y)

)
u(y)dµ(y).(3.3)

Observe that for x ∈ ω, y ∈ Zη ∩ (Ω(ω) \ ωη), we have
∣∣∣∣
x − y

g(y)

∣∣∣∣ ≥ 1.

Therefore since supp(J) ⊂ B(0, 1), it follows that for x ∈ ω

1

b(x)

∫

Ω(ω)∩Zη

J

(
x − y

g(y)

)
u(y)dµ(y) =

1

b(x)

∫

ωη∩Zη

J

(
x − y

g(y)

)
u(y)dµ(y)

and from (3.3) we get

(3.4) u(x) ≤
1

b(x)

∫

ωη∩Zη

J

(
x − y

g(y)

)
u(y)dµ(y) +

‖J‖∞
infω b(x)

∫

Ω(ω)∩Wη

u(y)dµ(y).

Since u is continuous and ω is compact, u achieves its maximum at some point, say x0 ∈ ω.
At this point, from (3.4) we have:

(3.5) u(x0) ≤
1

b(x0)

∫

ωη∩Zη

J

(
x0 − y

g(y)

)
u(y)dµ(y) +

‖J‖∞
infω b(x)

∫

Ω(ω)∩Wη

u(y)dµ(y).

Using that ωη ∩ Zη ⊂ ω and (3.1), it follows that

(3.6) u(x0) ≤
u(x0)

2
+

‖J‖∞
infω b(x)

∫

Ω(ω)∩Wη

u(y)dµ(y).

Therefore,

(3.7) u(x0) ≤
2‖J‖∞

infω b(x)

∫

Ω(ω)∩Wη

u(y)dµ(y).

From (3.3), using that u, J and g are non-negative, it follows that for all x ∈ Ω we have

(3.8) u(x) ≥
1

b(x)

∫

Ω(ω)∩Wη

J

(
x − y

g(y)

)
u(y)dµ(y).

Since g ≥ η in Ω(ω) ∩ Wη, from Lemma 2.1 there exists ǫ∗ > 0 such that for all 0 < ǫ ≤ ǫ∗,
there exists a non empty set Ωǫ ⊂⊂ Ω(ω)∩Wη and a constant C(J, η,Ω(ω)∩Wη, b) such that

{x|d(x, ∂(Ω(ω) ∩ Wη)) ≥ ǫη} ⊂ Ωǫ ⊂
{

x|d(x, ∂(Ω(ω) ∩ Wη)) ≥
ǫη

2

}

and

(3.9)

∫

Ωǫ

u(y)dµ(y) ≥ C

∫

Ω(ω)∩Wη

u(y)dµ(y).

Recall that from the proof of Lemma 2.1, we also have ǫ ≤ ǫ∗ ≤ 1
4 . Thus, we have

{x|d(x, ∂(Ω(ω) ∩ Wη)) ≥ η} ⊂ {x|d(x, ∂(Ω(ω) ∩ Wη)) ≥ ǫη} ⊂ Ωǫ.

13



Step 2: Choose now δ < min
{

ǫη
8 , ǫ

8

}
, where ǫ and η are defined by the previous Step, and

consider the set

Ωδ :=
⋃

x∈Ωǫ

B(x, 2δ).

By construction, Ωδ ⊂ Ω(ω)∩Wη and g ≥ η in Ωδ. Using Lemma 2.3, for any x ∈ Ωǫ we have

(3.10) u(x) ≥ C

∫

B(x,δ)
u(s)ds.

Step 3. Using now that Ωǫ is compact, we can cover it with a finite number of ball of radius
δ
4 . That is, for some N ∈ N, we have

Ωǫ ⊂
N⋃

i=1

B(xi,
δ

4
).

Now, for x ∈ Ωǫ there exists xi such that x ∈ B(xi,
δ
4). Since B(xi,

δ
4) ⊂ B(x, δ) by (3.10),

it follows that

u(x) ≥ C

∫

B(x,δ)
u(s) ds ≥ C

∫

B(xi,
δ
4
)
u(s) ds.

Using now Lemma 2.4, we end up with

(3.11) u(x) ≥ C

∫

B(x,δ)
u(s) ds ≥ CC(xi)

∫

Ωǫ

u(s) ds.

Setting C0 := minC(xi) and collecting (3.7), (3.8) and (3.11), it follows that for all x ∈ Ωǫ

we have

u(x0) ≤ CC0u(x).

Therefore, for all y ∈ ω and x ∈ Ωǫ we have

u(y) ≤ CC0u(x).

Hence, for all y ∈ ω and x ∈ Ωǫ ∩ ω we have

u(y) ≤ CC0u(x).

¤

Let us now treat the case of smooth domains ω and prove Theorem 1.4.

Proof Theorem 1.4:

The proof follows essentially 4 steps.

Step 1: As above, we can restrict our attention to a compact set ω ⊂ Ω such that S ⊂⊂ ω.
Now let us define the sets Ω(ω) :=

⋃
x∈ω B(x, β)∩Ω and Wη as in the above proof. Following

a similar argument, for a point x0 ∈ ω where u achieves its maximum and for small enough
η, say η ≤ η1, we have

(3.12) u(x0) ≤
2‖J‖∞

infω b(x)

∫

Ω(ω)∩Wη

u(y)dµ(y).
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Step 2: For any ν ∈ R, let us consider the set ων := {x ∈ ω|d(x, ∂ω) ≥ ν} and C(x, θ, a) be
the cone issued from x with angle θ and height a. On one hand, since S ⊂⊂ ω, there exists
ν0 > 0 such that ω \ω4ν0 ∩S = ∅. On the other hand, since ω satisfies an uniform inner cone
condition, it follows that for ν small enough, say ν ≤ ν∗, there exists r(ν) > 0 such that for
any x ∈ ω \ ων , there exists x̄ ∈ ω such that

B(x̄, r) ⊂ Cx,θ,a ∩ (ων \ ω4ν)

B(x̄, r) ⊂ B(x, β).

Let us now fix ν ≤ min{ν0, ν
∗} and take η∗ := minΩ(ω)\ω4ν

g. By construction, η∗ > 0.
Now take any x ∈ ω \ ων . From (1.5), using the uniform inner cone property, we have

u(x) =
1

b(x)

∫

Ω
J

(
x − y

g(y)

)
u(y)

gn(y)
dy(3.13)

≥
1

b(x)

∫

Cx,θ,a∩B(x,β)
J

(
x − y

g(y)

)
u(y)

gn(y)
dy(3.14)

≥
1

b(x)

∫

B(x̄,r)
J

(
x − y

g(y)

)
u(y)

gn(y)
dy.(3.15)

Recall that g ≥ η∗ in B(x̄, r). Therefore, since J(0) > 0, b > 0, there exists δ0 and C0

independent of x such that B(x̄, δ0) ⊂ B(x̄, r) and

(3.16) u(x) ≥ C0

∫

B(x̄,δ0)
u(y) dy.

Fix now η ≤ min{η1

2 , η∗

2 } such that Wη \ W2η ⊂⊂ ων , and let

d := d
(
ων ∩ W2η, ∂(Ω(ω) ∩ Wη)

)
.

By construction, we have d > 0. Indeed, since η ≤ η∗, we have ∂(Ω(ω)∩Wη) = Γ1∪Γ2 where

Γ1 ⊂ (Ω(ω) \ ω ν
2
) and Γ2 ⊂ (Wη \ W 3η

4
). Therefore, for any x ∈ ων ∩ W2η

d(x,Γ1 ∪ Γ2) ≥ d
(
x, (Ω(ω) \ ω ν

2
) ∪ (Wη \ W 3η

4
)
)

> 0.

Step 3: Let ν and η be defined by the above steps. Since d > 0, choosing ǫ small enough,
say ǫ ≤ d

2η
, it follows that

ων ∩ W2η ⊂ {x|d (x, ∂(Ω(ω) ∩ Wη)) ≥ ǫη}.

Now, since g ≥ η in Ω(ω) ∩ Wη, from Lemma 2.1 there exists ǫ∗ so that for all 0 < ǫ ≤ ǫ∗

there exists a non empty set Ωǫ and a constant C(J, η,Ω(ω) ∩ Wη, b, ǫ) such that

{x|d(x, ∂(Ω(ω) ∩ Wη)) ≥ ǫη} ⊂ Ωǫ ⊂
{

x|d(x, ∂(Ω(ω) ∩ Wη)) ≥
ǫη

2

}

and

(3.17)

∫

Ωǫ

u(y)dy ≥ C

∫

Ω(ω)∩Wη

u(y)dy.

Observe that by choosing ǫ ≤ min{ǫ∗, d
2η
}, we also have ων ∩ W2η ⊂ Ωǫ.
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We now fix ǫ ≤ min{ǫ∗, d
2η
} and choose δ < ǫη

8 , and consider the set

Ωδ :=
⋃

x∈Ωǫ

B(x, 2δ).

By construction, we have Ωǫ ⊂⊂ Ωδ ⊂ Ω(ω) ∩ Wη and g ≥ η in Ωδ. Therefore, from Lemma
2.3 there exists δ1 and C such that for any x ∈ Ωǫ, we have

(3.18) u(x) ≥ C

∫

B(x,δ1)
u(s)ds.

Step 4: Take now δ∗ ≤ min{δ0, δ1}, where δ0 is defined in (3.16). Covering Ωǫ with a finite

number of balls of radius δ∗

4 , (i.e. for some N ∈ N, Ωǫ ⊂
⋃N

i=1 B(xi,
δ∗

4 )), and using a similar
argument as in the proof above yields

u(x0) ≤ CC0u(x) for all x ∈ Ωǫ,

where C := minC(xi). Since ων ∩ W2η ⊂ Ωǫ, it follows that

(3.19) u(x0) ≤ CC0u(x) for all x ∈ ων ∩ W2η.

From (3.16), we also get that for all x ∈ ω \ ων ,

u(x) ≥ C

∫

B(x̄,δ0)
u(s) ds,

where B(x̄, δ0) ⊂ ων \ ω4ν . Since x̄ ∈ ων ∩ W2η ⊂ Ωǫ and δ∗ ≤ δ0, it follows that

u(x) ≥ C

∫

B(x̄,δ0)
u(s) ds ≥ CC

∫

B(xi,
δ∗

2
)
u(s) ds.

Using Lemma 2.4, it yields

u(x) ≥ CC(xi)

∫

Ωǫ

u(s) ds(3.20)

≥ CC0

∫

Ωǫ

u(s) ds.(3.21)

Combining now (3.21) and (3.12), we end up with

(3.22) u(x0) ≤ CC0u(x) for all x ∈ (ω \ ων).

Hence, from (3.22) and (3.19) we get

(3.23) u(x) ≤ CC0u(y) for all x ∈ ω, y ∈ ω ∩ W2η.

¤

Let us now prove Theorem 1.1.

Proof of Theorem 1.1:

The proof follows easily from Theorems 1.2 and 1.4. Indeed, let ω ⊂⊂ Ω be a compact set.
Then, since d(ω, Ω) > ν for some positive ν, there exists a regular compact set ω̃ such that
ω ⊂ ω̃. Applying now Theorem 1.4, there exists η∗ such that for all positive η ≤ η∗, there
exists a constant C(η) such that for any positive solution u of (1.5), we have

u(x) ≤ C(η)u(y) for any x ∈ ω̃, y ∈ ω̃ ∩ {z ∈ Ω|g(z) ≥ η}.

Recall that g ≥ α in Ω. It follows that

u(x) ≤ C(α)u(y) for any x, y ∈ ω̃.
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Now since, ω ⊂ ω̃, the above inequality holds as well on ω.
¤

Finally, let us prove Corollary 1.5.

Proof of Corollary 1.5

Since Ω is bounded and regular, using Theorem 1.4 and corollary 1.3, we have

sup
Ω

u ≤ C(η)u(y) for any y ∈ Ω ∩ {z ∈ Ω|g(z) ≥ η}.

Recalling that g ≥ α in Ω, it follows that

sup
Ω

u ≤ C(α)u(y) for any y ∈ Ω.

Hence,
sup
Ω

u ≤ C(α) inf
Ω

u(y).

¤

4. Construction of non trivial positive solution of a particular nonlocal

equation

In this section, we deal with the construction of a positive solution of (1.7) and prove
Theorem 1.6.

Proof of Theorem 1.6:

We treat two cases
Case 1: Ω bounded.

First, let us assume that Ω is bounded. Let us define the operator T ∈ L(C(Ω)) by

Tu :=
1

a(x)

∫

Ω
J

(
x − y

g(y)

)
u(y)

gn(y)
dy,

where

a(x) :=

{ ∫
Ω J

(
y−x
g(x)

)
dy

gn(x) for x 6∈ S

1 otherwise.

Since 1
gn(y) ∈ L1

loc, T is a compact operator. Moreover T is positive since g,a and J are

non-negative functions. Using now the Krein-Rutman Theorem, there exist an eigenvalue λ

and an eigenfunction φ > 0 such that

1

a(x)

∫

Ω
J

(
x − y

g(y)

)
φ

g(y)
dy = λφ.

Integrating the equation over Ω, it follows that λ = 1, and φ is our desired solution.
Case 2: Ω unbounded.

Assume now that Ω is any open set and let Ωn be an increasing sequence of bounded subsets
such that limn→∞Ωn = Ω. Since S ⊂⊂ Ω, we can also assume that for all n ∈ N, S ∩Ωn ⊂⊂
Ωn. Let φn denote the associated solution to Ωn with the normalization φ(x0) = 1 for some
fixed x0 ∈ Ωn that we will choose later on. Since n ∈ N, S ⊂⊂ Ωn and (Ωn)n∈N is an
increasing sequence of sets, for some η1 small we have

⋂

n∈N

(Ωn ∩ Wη1) = Ω0 ∩ Wη1 6= ∅.

Let us choose x0 ∈ Ω0 ∩ Wη1 .
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Let us now fix n ∈ N and consider the sequence of functions (φn+k)k∈N. By construction,
φn+k satisfies the equation

∫

Ωn+k

J

(
x − y

g(y)

)
φn+k(y)

gn(y)
dy − an+k(x)φn+k = 0.

Since Ωn is an increasing sequence of bounded sets, for any k ∈ N we have Ωn ⊂ Ωn+k. Using
Theorem 1.2 with Ωn and φn+k, it follows that for any k ∈ N there exists a constant η∗k, such
that for all η ≤ η∗k there exists ω′

n+k and a constant Cn+k(J, g, η, ‖an+k‖∞, β,Ωn) such that

{x ∈ Ωn+k|d(x, ∂(Ωn ∩ Wη)) > η} ⊂ ω′
n+k(4.1)

sup
Ωn

φn+k ≤ Cn+k(η)φn+k(x) for all x ∈ ω′
n+k.(4.2)

For each k ∈ N, let us choose ηk such that

Ωn ∩ Wη1 ⊂ {x ∈ Ωn|d(x, ∂Wηk
) > ηk}.

Using the monotonicity of the sequence (Ωn)n∈N, it follows that

Ω0 ∩ Wη1 ⊂ Ωn ∩ Wη1 ⊂ {x ∈ Ωn|d(x, ∂Wηk
) > ηk} ⊂ ω′

n+k.

Therefore, from the above set inclusion and (4.2), it follows that

(4.3) sup
Ωn

φn ≤ Cn+k(ηk)φn(x0) ≤ Cn+k(ηk).

Now, observe that the sequence of positive functions (an+k(x))k∈N is increasing in Ωn and
uniformly bounded. The monotonicity property follows easily from the monotonicity of the
Ωn. Indeed, recall that for any x ∈ Ωn \ S we have

an+k(x) =

∫

Ωn+k

J

(
y − x

g(x)

)
dy

gn(x)
.

Therefore, using that Ωn ⊂ Ωn + 1 and that J, g are non negative functions, it follows that

an+k(x) =

∫

Ωn+k

J

(
y − x

g(x)

)
dy

gn(x)
≤

∫

Ωn+k+1

J

(
y − x

g(x)

)
dy

gn(x)
= an+k+1(x).

On the other hand, for x ∈ S, we have an(x) = 1 for all n ∈ N. Thus, an+k ≤ an+k+1 in Ωn.
From the definition of an, we also get easily the uniform bound. For any x ∈ Ωn \ S, using

a change of variable we have

an(x) =

∫

Ωn

J

(
y − x

g(x)

)
dy

gn(x)
≤

∫

Ωn−x
g(x)

J(z) dz ≤ 1.

Using that (an(x))n is uniformly bounded independent of n and increasing in Ωn, we can
make the constant Cn+k independent of k. Therefore, for all k ∈ N, φn+k is uniformly bounded
in Ωn. Now, since φn+k is uniformly continuous on Ωn, using Arzela-Ascoli’s Theorem we
can extract from (φn+k)k∈N a subsequence which converges uniformly in Ωn. By a standard
diagonal argument, we can extract from (φn)n∈N a subsequence which converges to a function
φ uniformly on every compact subset ω of Ω. Using that J has compact support and the
Lebesgue dominated convergence theorem, passing to the limit in the equation yields

∫

Ω
J

(
x − y

g(y)

)
φ

g(y)
dy − a(x)φ = 0.

¤
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