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Abstract

We consider a gradient interface model on the lattice with interaction
potential which is a non-convex perturbation of a convex potential. We show
using a one-step multiple scale analysis the strict convexity of the surface
tension at high temperature. This is an extension of Funaki and Spohn’s
result [10], where the strict convexity of potential was crucial in their proof.
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1 Introduction

We consider an an effective model with gradient interaction. The model describes
a phase separation in R

d+1, eg. between the liquid and vapor phase. For simplicity
we consider a discrete basis ΛM ⊂ Z

d, and continuous height variables

x ∈ ΛM −→ φ(x) ∈ R.

This model ignores overhangs like in Ising models, but gives a good approximation
in the vicinity of the phase separation. The distribution of the interface is given
in terms of its Gibbs distribution with nearest neighbor interactions of gradient
type, that is, the interaction between two neighboring sites x, y depends only on
the discrete gradient,∇φ(x, y) = φ(y) − φ(x). More precisely, the Hamiltonian is
of the form

HM (φ) =
∑

x,y∈ΛM+1,|x−y|=1

V (φ(y) − φ(x)) (1.1)
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where V ∈ C2(R) is a function with quadratic growth at infinity:

V (η) ≥ A|η|2 −B, η ∈ R (1.2)

for some A > 0, B ∈ R.
For a given boundary condition ψ ∈ R

∂ΛM , where ∂ΛM = ΛM+1 \ ΛM , the
(finite) Gibbs distribution on R

ΛM+1 at inverse temperature β > 0 is given by

µβVM ,ψ(dφ) ≡ 1

ZβM,ψ

exp(−βHM (φ))
∏

x∈ΛM

dφ(x)
∏

x∈∂ΛM

δψ(x)(dφ(x)).

Here ZβM,ψ is a normalizing constant given by

ZβM,ψ =

∫

R
ΛM+1

exp(−βHM (φ))
∏

x∈ΛM

dφ(x)
∏

x∈∂ΛM

δψ(x)(dφ(x)).

One is particularly interested in tilted boundary conditions

ψu(x) =< x, u >=

d
∑

i=1

xiui

for some given ’tilt’ u ∈ R
d. This corresponds to an interface in R

d+1 which stays
normal to the vector nu = (u,−1) ∈ R

d+1.
An object of basic relevance in this context is the surface tension or free energy

defined by the limit

σ(u) = lim
M→∞

− 1

β
logZβM,ψu

. (1.3)

The existence of the above limit follows from a standard sub-additivity argu-
ment. In fact the surface tension can also be defined in terms of the partition
function on the torus, see below and [10]. In case of strictly convex potential V
with

c1 ≤ V
′′ ≤ c2 (1.4)

where 0 < c1 ≤ c2 <∞, Funaki and Spohn showed in [10] that σ is strictly convex.
The simplest strictly convex potential is the quadratic one with V (η) = |η|2,

which corresponds to a Gaussian model, also called gradient free field or harmonic
crystal. Models with non quadratic potentials V are sometimes called anharmonic
crystals.

The strict convexity of the surface tension σ plays a crucial role in the deriva-
tion of the hydrodynamical limit of the Landau-Ginsburg model in [10].

Under the condition (1.4), a large deviation principle for the rescaled profile
with rate function given in terms of the integrated surface tension has been derived
in [7]. Here also the strict convexity of σ is very important. Both papers [10] and
[7] use very explicitely the condition (1.4) in their proof. In particular they rely on
the Brascamp Lieb inequality and on the random walk representation of Helffer
and S̈jostrand, which requires a strictly convex potential V .

The objective of our work is to prove strict convexity of σ also for some non
convex potential. One cannot expect strict convexity for any non convex V , see
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below. Our result is perturbative at high temperature (small β), and shows strict
convexity of σ(u) at every u ∈ R for potentials V of the form

V (η) = V0(η) + g0(η)

where V0 satisfies (1.4) and g0 ∈ C2(R) has a negative bounded second derivative
such that

√
β · ‖g′′

0‖L1(R) is small enough.
Our proof is based on the scale decomposition of the free field as the sum of two

independent free fields φ1 and φ2, where we choose the variance of φ1 small enough
to match the non-convexity of g. This particular type of scale decomposition was
used earlier by Haru Pinson in [11], who also suggested to us the use of this

approach. The partition function ZβN,ψu can be then expressed in terms of a
double integral, with respect to both φ1 and φ2. We fix φ2 and perform first the
integration with respect to φ1. This yields a new induced Hamiltonian, which is
a function of the remaining variable φ2. The main point is that our choice of the
variance of φ1 and smallness of β allow us to show convexity in φ2 of the induced
Hamiltonian. Of course this Hamiltonian is no longer of the simple form (1.1),
in particular we lose the locality of the interaction. However an extension of the
technique introduced in [7] shows strict convexity of σ. The idea behind the proof
is that one can gain convexity via integration. This procedure is called ”one step
decomposition”, since we perform only one integration. Of course this procedure
could be iterated which would allow to lower the temperature. However for general
non convex g we do not expect that this procedure works at low temperature for
every tilt u.

At low temperature an approach in the spirit of [5], [4] looks more promising
[1].

Finally note that, due to the gradient interaction, the Hamiltonian has a con-
tinuous symmetry. In particular this implies that no infinite Gibbs state exists
for the lower lattice dimensions, d = 1, 2 where the field ”delocalizes” as M → ∞,
c.f. [8]. On the other hand, it is very natural in this setting to consider the
gradient Gibbs distributions, that is the image of µVM ,ψ under the gradient op-

eration φ ∈ R
Z
d −→ ∇φ. It is easy to verify that this distribution depends only

on ∇ψ, the gradient of the boundary condition, in fact one can also introduce
gradient Gibbs distributions in terms of conditional distributions satisfying DLR
conditions, c.f. [10]. Using the quadratic bound (1.1), one can easily see that
the corresponding measures are tight. In particular for each tilt u ∈ R

d one can
construct a translation invariant gradient Gibbs state µ̃u on Z

d with mean u:

Eµ̃u [φ(y) − φ(x)] =< y − x, u > .

Under (1.4), Funaki and Spohn proved the existence and unicity of extremal,
ie. ergodic, gradient Gibbs state, for each tilt u ∈ R. In the case of non convex V ,
unicity of the ergodic states can be violated, even at u = 0 tilt, c.f. [2]. However
in this situation, the surface tension is not strictly convex at u = 0.

2 Main result and outline of the proof

We study the convexity properties of the free energy (as a function of the tilt
u) for non-convex gradient models on a lattice. Using the results of [10], we
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work on the torus, instead of the box ΛM , see Remark 2.4 below. Thus, let
T
d
M = (Z/MZ)d = Z

d mod (M) be the lattice torus in Z
d, let u ∈ R

d and let
β > 0. For a function φ : T

d
M → R, we consider the discrete derivative

∇iφ(x) = φ(x+ ei) − φ(x) (2.5)

and the Hamiltonian

H(u, φ) =
∑

x∈Td
M

d
∑

i=1

[

V i
0 (∇iφ(x) + ui) + gi0(∇iφ(x) + ui)

]

, (2.6)

where V i
0 is convex and gi0 is non-convex (see (2.11) below). We consider the

partition function

ZβM (u) =

∫

X
e−βH(u,φ)mM ( dφ), (2.7)

where

X = {φ : T
d
M → R : φ(0) = 0} (2.8)

and

mM ( dφ) =
∏

x∈Td
M

\{0}
dφ(x)δ0( dφ(0)), (2.9)

and the free energy

fβM (u) = − 1

β
logZβM (u). (2.10)

We will prove

Theorem 2.1 Suppose that V i
0 and gi0 are C2 functions on R and that there exist

constants C0, C1, C2 and

0 < C1 ≤ (V i
0 )′′ ≤ C2, − C0 ≤ (gi0)

′′ ≤ 0. (2.11)

Set

C̄ = max

(

C0

C1
,
C2

C1
− 1, 1

)

. (2.12)

If (gi0)
′′ ∈ L1(R) and for i ∈ {1, 2, . . . , d}

4

π
(12dC̄)1/2

√

βC1
1

C1
||(gi0)′′||L1(R) ≤

1

2
, (2.13)

then

(D2fβM )(u) ≥ C1

2
|TdM | Id, ∀u ∈ R

d, (2.14)

where |TdM | = Md denotes the number of points in T
d
M . In other words, the free

energy per particle is uniformly convex, uniformly in M .
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Remark 2.2 The main point is that the convexity estimate (2.14) holds uniformly
in the size M of the torus. Indeed a direct calculation of D2f1

M yields at u

D2f1
M (u) =

〈

D2
uH(u, ·)

〉

H
− varHDuH(u, ·), (2.15)

where

〈f〉H =

∫

X f(φ)e−H(u,φ)mM ( dφ)
∫

X e
−H(u,φ)mM ( dφ)

(2.16)

and

varHf =
〈

(f − 〈f〉H)2
〉

H
. (2.17)

Now one might expect that a condition like (2.13) implies that
〈

(D2
uH(u, ·)

〉

H
≥

cC1|TdM | Id (see Lemma 4.1 below). The problem is that naively the variance term
scales like |TdM |2 since DuH is a sum of d|TdM | terms. To get a better estimate,
one has to show that in a suitable sense, the terms

covH (Du(V0 + g0)(u+ ∇iφ(x)), Du(V0 + g0)(u+ ∇jφ(y))) (2.18)

decay if |x−y| is large. If H is not convex such a decay of correlations is, presently,
only proved for the class of potentials studied in [6]. As discussed above, the
Helffer-Sjöstrand estimates do not apply directly. The main idea is to rewrite
ZβM (u) as an iterated integral in such a way that each integration involves a con-
vex hamiltonian to which the Helffer-Sjöstrand theory can be applied (see (2.42)
below).

Remark 2.3 Instead of ||g′′0 ||L1(R) one can also use bounds on lower order deriva-
tives. More precisely, condition (2.13) can, for example be replaced by

50√
2π
dC̄(βC1)

3/4 1

C1
||g′0||L2(R) ≤

1

2
(2.19)

(see Remark 4.2 below). In view of the estimate

∫

R

(g′0)
2(s) ds =

∫

R

g0(s)g
′′
0(s) ds ≤ C0||g0||L1(R), (2.20)

we can see that (2.13) can be replaced by

cd2C̄3(βC1)
3/2 1

C1
||g0||L1(R) ≤

1

4
(2.21)

with c = 2500
2π .

Remark 2.4 Note that the surface tensions defined in (1.3) and (2.10) coincide
(see, for example, [10]). Because of this, we will work from now on with the
definition of the surface tension on a torus, as it is easier to use.
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Outline of the proof for Theorem 2.1

Step 1: Scaling argument

A simple scaling argument shows that it suffices to prove the result for

β = 1, C1 = 1. (2.22)

Indeed, suppose that the result is true for β = 1 and C1 = 1. Given β, V i
0 and gi0

which satisfy (2.11) and (2.13), we define

Ṽ i
0 (s) = βV i

0

(

s√
βC1

)

, g̃i0(s) = βgi0

(

s√
βC1

)

. (2.23)

Then

1 ≤ (Ṽ i
0 )′′ ≤ C2

C1
, − C0

C1
≤ (g̃i0)

′′ ≤ 0,

||(g̃i0)′′||L1(R) =
√

βC1
1

C1
||(gi0)′′||L1(R). (2.24)

Hence Ṽ i
0 , g̃i0 satisfy the assumptions of Theorem 2.1 with β = 1 and C1 = 1.

Thus

D2f1
M (·, Ṽ i

0 , g̃
1
0) ≥

1

2
|TdM | Id. (2.25)

On the other hand, the change of variables

φ̃(x) =
√

βC1φ(x), ũ =
√

βC1u (2.26)

yields

Ṽ i
0

(

ũi + ∇iφ̃(x)
)

= V i
0 (u+ ∇iφ(x)) (2.27)

and thus

ZβM (u, V i
0 , g

i
0) = (βC1)

−(|TdM |−1)/2Z1
M (ũ, Ṽ0, g̃0). (2.28)

Hence

fβM (u, V0, g0) = const(β,C1) +
1

β
f1
M

(

√

βC1u, Ṽ0, g̃0

)

. (2.29)

Thus (2.25) implies (2.13), as claimed.

Step 2: Separation of the Gaussian part

Next we separate the Gaussian part in the Hamiltonian. From now on, we will
always assume that β = 1 and C1 = 1. Set

V1(s) = V0(s) −
1

2
s2, g = V1 + g0. (2.30)

Then

0 ≤ V ′′
1 ≤ C2 − 1, − C0 ≤ g′′ ≤ C2 − 1 (2.31)
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and the Hamiltonian can be rewritten as

H(u, φ) =
∑

x∈Td
M

d
∑

i=1

1

2
(ui + ∇iφ(x))2 +G(u, φ), (2.32)

where

G(u, φ) =
∑

x∈Td
M

d
∑

i=1

g(ui + ∇iφ(x)). (2.33)

Since for all functions φ on the torus and for all i ∈ {1, 2, . . . d}
∑

x∈Td
M

∇iφ(x) = 0, (2.34)

we get

H(u, φ) =
1

2
|TdM ||u|2 +

1

2
||∇φ||2 +G(u, φ), (2.35)

where ||∇φ||2 =
∑

x∈TM

∑d
i=1 |∇iφ(x)|2. Let

Z0 =

∫

X
e−

1

2
||∇φ||2mM ( dφ). (2.36)

Then the measure

µ =
1

Z0
e−

1

2
||∇φ||2mM ( dφ) (2.37)

is a Gaussian measure. Its covariance C is a positive definite symmetric operator
on X (equipped with a standard scalar product (φ, ψ) =

∑

x∈Td
M
φ(x)ψ(x)) such

that

(C−1φ, φ) = ||∇φ||2, ∀φ ∈ X. (2.38)

The partition function thus becomes (recall that we take β = 1)

ZM (u) = Z0e
− 1

2
|TdM ||u|2

∫

X
e−G(u,φ)µ( dφ). (2.39)

Step 3: Decomposition of µ and Helffer-Sjöstrand calculus

By standard Gaussian calculus, µ = µ1 ∗ µ2, where µ1 and µ2 are Gaussian with
covariances

C1 = λC, C2 = (1 − λ)C, where λ ∈ (0, 1). (2.40)

More explicitly, for i ∈ {1, 2}

µi( dφ) =
1

Zi
e
− 1

2λi
||∇φ||2

mM ( dφ), where λ1 = λ, λ2 = 1 − λ. (2.41)
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Thus

ZM (u) = Z0e
− 1

2
|TdM ||u|2

∫

X

∫

X
e−G(u,ψ+θ)µ1( dθ)µ2( dψ). (2.42)

To write the free energy in a more compact form, we introduce the renormalization
maps Ri. For f ∈ C(Rd ×X) we define Rif by

e−Rif(u,a) :=

∫

X
e−f(u,a+b) dµi(b). (2.43)

Taking the logarithm of (2.42), we get

fM (u) = const(M) +
1

2
|TdM ||u|2 + (R2R1G)(0, u). (2.44)

The main point now is that the map

H1(θ) = G(u, ψ + θ) +
1

2λ
||∇θ||2 (2.45)

becomes uniformly convex for sufficiently small λ. This will allow us to use the
Helffer-Sjöstrand representation to get a good lower bound for D2(R1G), which
involves, roughly speaking, the expectation of Gi,x(θ) = g′′0(ui+∇iψ(x)+∇iθ(x))
with respect to e−H1 (see (4.82)). This expectation can be controlled in terms of
||g′′0 ||L1(R) (see Lemma 4.1). Under the smallness condition (2.13) one then easily
obtains the lower bound for D2(R2R1G) (see (4.85) and (4.87)).

3 Consequence of the Helffer-Sjöstrand representation

Let U andX be finite-dimensional inner product spaces, let C be a positive definite
symmetric operator on X and let µC be the Gaussian measure with covariance C
on X, i.e

µC(db) =
1

ZC
e−

1

2
(C−1b,b) db, (3.46)

where db is the dim X dimensional Hausdorff measure on X (i.e db =
∏

dbi if
the bi are the coordinates with respect to an orthonormal basis). For a continuous
function f ∈ C(U ×X) we define RCf by

e−RCf(u,a) =

∫

X
e−f(u,a+b) dµC( db). (3.47)

In the situation we will consider, b→ f(u, a+ b) + 1
2(C−1b, b) will be convex and

hence bounded from below so that the right hand side of the above identity is
strictly positive.

For f ∈ C2(U ×X) we write D2f(u, a) for the Hessian at (u, a), viewed as an
operator from U ×X to itself. The restriction of the Hessian to X is denoted by
D2
Xf := PXD

2fPX , where PX is the orthogonal projection U ×X → X. On the
level of quadratic forms we thus have

(

D2
Xf(u, a)(u̇, ȧ), (u̇, ȧ)

)

=
(

D2f(u, a)(0, ȧ), (0, ȧ)
)

. (3.48)
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From the Helffer-Sjöstrand representation of the variance (see, e.g., [9] (2.6.15))
and the duality relation

1

2

(

A−1a, a
)

= sup

b∈D(A
1
2 )

(

(a, b) − 1

2
(Ab, b)

)

, (3.49)

which holds for any positive definite self-adjoint operator A on a Hilbert space Y0,
one immediately obtains the following estimate:

Lemma 3.1 Supppose that H ∈ C2(X), supX |D2H| < ∞ and there exists a

δ > 0 such that

D2H(a) ≥ δ Id, ∀a ∈ X. (3.50)

Set

Y0 = {K ∈ L2
loc(X) :

〈

|DK|2
〉

H
<∞}, (3.51)

Y = {K ∈ Y0 :
〈

||D2K||2HS
〉

H
<∞}, (3.52)

where the derivatives are understood in the weak sense and

‖DK2‖2
HS :=

∑

x,y∈Td
M

\{0}

(

∂2

∂φ(x)∂φ(y)
K

)2

(3.53)

denotes the Hilbert-Schmidt norm. Then for all G ∈ Y we have

varHG = sup
K∈Y

〈

2(DG,DK) − (DK,D2HDK) − ‖D2K‖2
HS

〉

H
(3.54)

Therefore

varHG ≤ sup
K∈Y

〈

2(DG,DK) − (DK,D2HDK)
〉

H
. (3.55)

We will use (3.55) from Lemma 3.1 in the proof of the lemma below.

Lemma 3.2 Suppose that f ∈ C2(U × X) and supU×X |D2f | < ∞. Suppose

moreover that there exists a δ > 0 such that

D2f(u, a) + C−1 ≥ δ Id, ∀(u, a) ∈ U ×X. (3.56)

Then Rf ∈ C2(U ×X) and for all u, u̇ ∈ U, a, ȧ ∈ X
(

(D2Rf)(u, a)(u̇, ȧ), (u̇, ȧ)
)

≥ inf
K∈Y

〈(

D2f(u, a+ ·)(u̇, ȧ−DK(·), (u̇, ȧ−DK(·))
)〉

H,a

+
〈

(C−1DK(·), DK(·))
〉

Hu,a
(3.57)

where

Hu,a(b) = f(u, a+ b) +
1

2
(C−1b, b), (3.58)

〈g〉Hu,a =

∫

g(b)e−Hu,a(b) db
∫

e−Hu,a(b) db
. (3.59)
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Proof

We have

e−Rf(u,a) =

∫

X
e−[f(u,a+b)+ 1

2
(C−1b,b)] db. (3.60)

It follows from (3.56) that

f(u, a+ b) +
(

C−1(a+ b), (a+ b)
)

≥ 1

2
δ|a+ b|2 − c (3.61)

and standard estimates yield

f(u, a+ b) + (C−1b, b) ≥ 1

4
δ|b|2 − c

(

1 + |a|2
)

. (3.62)

Hence, by the dominated convergence theorem, the right-hand side of (3.60) is
a C2 function in (u, a) and the same applies to Rf since the right-hand side of
(3.60) does not vanish.

To prove the estimate (3.57) for D2Rf , we may assume without loss of general-
ity that a = 0, u = 0 (otherwise we can consider the shifted function f(·−u, ·−a)).
Set

h(t) := Rf(tu̇, tȧ). (3.63)

Then

h′′(0) =
(

D2(Rf)(0, 0)(u̇, ȧ), (u̇, ȧ)
)

. (3.64)

Now

h(t) = − log

∫

X
e−f(tu̇,tȧ+b)µC( db), (3.65)

h′(t) =

∫

X e
−f(tu̇,tȧ+b)Df(tu̇, tȧ+ b)(u̇, ȧ)µC( db)

∫

X e
−f(tu̇,tȧ+b)µC( db)

(3.66)

and

h′′(0) =
〈(

D2f(0, ·)(u̇, ȧ), (u̇, ȧ)
)〉

H
− varHDf(0, ·)(u̇, ȧ), (3.67)

where

H(b) = f(0, b) +
1

2
(C−1b, b). (3.68)

By assumption,

D2H(b) ≥ δ Id, (3.69)

i.e. H is uniformly convex. �

Hence by (3.55) from Lemma 3.1

−varHg ≥ inf
K∈Y

〈

−2(Dg,DK) + (DK,D2HDK)
〉

H
. (3.70)
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Apply this with

g(b) = Df(0, b)(u̇, ȧ) (3.71)

and write

D2H = D2
Xf + C−1. (3.72)

Then

−2(Dg,DK) + (DK,D2HDK)

= −2D2f(0, ·) ((u̇, ȧ), (0, DK)) +D2f(0, ·) ((0, DK), (0, DK))

+(C−1DK,DK). (3.73)

Together with (3.70) and (3.67) this yields (3.57). �

4 Proof of Theorem 2.1

By (2.44)

fM (u) = const(M) +
1

2
|TdM ||u|2 + (R2R1G)(0, u), (4.74)

where

G(u, φ) =
∑

x∈Td
M

d
∑

i=1

gi(ui + ∇iφ). (4.75)

We first estimate D2R1G from below. By (2.31)

(gi)′′ ≥ −C0 ≥ −C̄ (4.76)

(recall that we always assume C1 = 1). By (2.12), we have C̄ ≥ 1. If we take

λ =
1

2C̄
(4.77)

then

Hu,ψ(θ) := G(u, ψ + θ) +
1

λ
||∇θ||2 (4.78)

is uniformly convex, i.e.

D2Hu,ψ(θ)(θ̇, θ̇) ≥ C̄||∇θ̇||2 ≥ δM C̄||θ̇||2, (4.79)

with δM > 0. Here we used the discrete Poincare inequality

||∇η||2 ≥ δM ||η||2 for η ∈ X (4.80)
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which follows from a simple compactness argument since T
d
M is a finite set. Hence,

by Lemma 3.2, we have

(

D2R1(G)(u, ψ)(ū, ψ̄), (ū, ψ̄)
)

≥ inf
K∈Y

{

〈

∑

x∈Td
M

d
∑

i=1

(gi)′′ (ui + ∇iψ(x) + ∇i · (x))
(

ui + ∇iψ(x) −∇i
∂K

∂φ(x)
(·)

)2

+
1

λ

∑

x∈Td
M

d
∑

i=1

∣

∣

∣

∣

∇i
∂K

∂φ(x)

∣

∣

∣

∣

2
〉

Hu,ψ

}

, (4.81)

where Y is defined by (3.52). Now (gi)′′ = (V i)′′ + g′′0 ≥ g′′0 (see (2.30) and
(2.31)) and together with the estimate (a − b)2 ≤ 2a2 + 2b2 and the assumption
−C0 ≤ g′′0 ≤ 0, this yields

(

D2R1(G)(u, ψ), (u̇, ψ̇), (u̇, ψ̇)
)

≥ 2
∑

x∈Tdm

d
∑

i=1

〈

(gi0)
′′(ui + ∇iψ(x) + ∇i · (x)) (ui + ∇iψ(x))2

〉

Hu,ψ

+

〈

(

1

λ
− 2C0

)

∑

x∈Td
M

d
∑

i=1

∣

∣

∣

∣

∇i
∂K

∂φ(x)
(·)

∣

∣

∣

∣

2
〉

Hu,ψ

, (4.82)

where 1
λ − 2C0 ≥ 0. We will now use the following result, which will be proven at

the end of this section.

Lemma 4.1 For h ∈ L1(R)∩C0(R), ψ ∈ X, x ∈ T
d
M and i ∈ {1, 2, . . . d} consider

F ∈ C(X) given by

F (θ) = h(ui + ∇iψ(x) + ∇iθ(x)). (4.83)

Then

∣

∣

∣
〈F 〉Hu,ψ

∣

∣

∣
≤ 2

π
(12dC̄)1/2||h||L1(R). (4.84)

Together with (4.82), the smallness condition (2.13) and the relation
∑

x∈Td
M
∇iψ(x) =

0, this lemma yields

D2R1G(u, ψ)(u̇, ψ̇)(u̇, ψ̇)

≥ −1

2

∑

x∈Td
M

d
∑

i=1

∣

∣

∣
u̇i + ∇iψ̇(x)

∣

∣

∣

2
= −1

2
|TdM ||u̇|2 − 1

2
||∇ψ̇||2. (4.85)

Thus

H2(ψ) := (R1G)(u, ψ) +
1

2(1 − λ)
||∇ψ||2 (4.86)
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is uniformly convex and another application of Lemma 3.2 gives

(

D2(R2R1G)(u, 0)(u̇, 0), (u̇, 0)
)

≥ inf
K

〈

D2(R1G)(u, ·)(u̇,−DK)(u̇,−DK) +
1

1 − λ
||∇DK||2

〉

H2

≥ −1

2
|TdM ||u̇|2 + inf

K

{ (

1

1 − λ
− 1

2

)

〈

||∇DK||2
〉

H2

}

≥ −1

2
|Tdm||u̇|2, (4.87)

where in the last inequality we used that fact that 1
1−λ − 1

2 ≥ 0. In view of (4.74),
this finishes the proof of Theorem 2.1.

Proof of Lemma 4.1

Note that u and ψ are fixed. Since the function h̃(s) = h(ui+∇iψ(x)+ s) has the
same L1 norm as h, it suffices to prove the estimate for the function F ∈ C(X)
given by

F (θ) = h(∇iθ(x)). (4.88)

Moreover, we write H instead of Hu,ψ. Let

ĥ(k) =

∫

R

e−iksh(s) ds (4.89)

denote the Fourier transform of h. Then

||ĥ||L∞(R) ≤ ||h||L1(R) (4.90)

and

h(s) =
1

2π

∫

R

eiksĥ(s) dk. (4.91)

Set

A(k) = 〈Fk〉H , where Fk(θ) = eik∇iθ(x). (4.92)

Then

〈F 〉H =
1

2π

∫

R

A(k)h(k) dk (4.93)

and, in view of (4.90), it suffices to show that

∫

R

|A(k)|dk ≤ 4(12dC̄)1/2. (4.94)

First note that |Fk| = 1. Hence

|A(k)| ≤ 1, ∀k ∈ R. (4.95)
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To get decay of A(k) for large k we use integration by parts. First note that for
Gi ∈ C1(X), with supa∈X e

−δ|a|(|Gi|(a) + |DGi|(a)) <∞ for all δ > 0, we have
〈

∂G1

∂φ(x)
G2

〉

H

=

〈

−G1
∂G2

∂φ(x)

〉

H

+

〈

∂H

∂φ(x)
G1G2

〉

H

. (4.96)

Assume first that x ∈ T
d
M \ {0}. Then

Fk(θ) = − 1

k2

∂2Fk
∂θ2(x)

(θ) (4.97)

and thus

−k2A(k) =

〈

∂2Fk
∂θ2(x)

· 1
〉

H

=

〈

∂Fk
∂θ(x)

∂H

∂θ(x)

〉

H

= −
〈

Fk
∂2H

∂θ2(x)

〉

H

+

〈

Fk

(

∂H

∂θ(x)

)2
〉

H

. (4.98)

Since |Fk| = 1, this yields

|A(k)| ≤ 1

k2

〈
∣

∣

∣

∣

∂2H

∂θ2(x)

∣

∣

∣

∣

〉

H

+
1

k2

〈

(

∂H

∂θ(x)

)2
〉

H

. (4.99)

Application of (4.96) with G2 = 1, G1 = ∂H
∂θ(x) gives

〈

∂2H

∂θ2(x)

〉

H

=

〈

(

∂H

∂θ(x)

)2
〉

H

. (4.100)

Thus

|A(k)| ≤ 2

k2

〈∣

∣

∣

∣

∂2H

∂θ2(x)

∣

∣

∣

∣

〉

H

. (4.101)

Now recall that

H(θ) =
∑

x∈Td
M

d
∑

i=1

gi (ui + ∇iψ(x) + ∇iθ(x)) +
1

2λ
|∇iθ(x)|2. (4.102)

Since λ−1 = 2C̄, it follows that
∣

∣

∣

∣

∂2H

∂θ2(x)

∣

∣

∣

∣

≤ 2d

(

sup
R

∣

∣(gi)′′
∣

∣ +
1

λ

)

≤ 6dC̄. (4.103)

Hence

|A(k)| ≤ 12dC̄

k2
. (4.104)

Using (4.104) for |k| ≥ (12dC̄)1/2 and (4.95) for |k| ≤ (12dC̄)1/2, we get (4.94).

Finally, if x = 0 we note that

Fk(θ) = − 1

k2

∂2

∂θ2(ei)
Fk(θ) (4.105)

and we proceed as before. �
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Remark 4.2 The proof shows that for h = g′′ we can also use norms involving
only lower derivatives of g. In particular, we have

|
〈

g′′
〉

H
| ≤ 1

2π

∫

R

|ĝ′′(k)||A(k)|dk

≤ 1

2π
||ĝ′(k)||L2(R)

(
∫

R

k2|A(k)|2 dk

)1/2

≤ 1√
2π

||g′||L2(R)

(

2

(

1

3
+ (12dC̄)2

))1/2

, (4.106)

where we used (4.95) for |k| ≤ 1 and (4.104) for |k| ≥ 1.

Remark 4.3 Note that our proofs can be very easily adapted to any decomposi-
tion of µ = µ1 ∗ µ2, where µ1 and µ2 are Gaussian with covariances C1 and C2,
such that Hu,ψ(θ) := G(u, ψ + θ) + 1

2(C−1θ, θ) is uniformly convex.

Remark 4.4 The procedure for the one-step decomposition can be iterated and
the proofs can be adapted to the multi-scale decomposition; iterating the method
would lower the temperature and weaken the conditions on the pertubation func-
tion g. However, our iteration procedure would not allow us to get results involving
the low temperature case.

Examples

(a) V (s) = s2 + a− log(s2 + a), where 0 < a < 1. Then C1 = C2 = 2, C0 = 2
a ,

||(gi0)′′||L1(R) = 2
√

1
a and β ≤ a2π2

6×162d
.

2

4

6

8

V(s)

-4 -2 0 2 4 s

Figure 1: Example (a)

(b) Let 0 < δ < 1 and
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V (s) =

{

x2

2 − 4
δ4
x3(δ − x)3 if 0 ≤ x ≤ δ

x2

2 otherwise.

Then C1 = C2 = 1, C̄ = 6
5 , ||(gi0)′′||L1(R) ≤ 3

10
√

5
δ5 and β ≤

(

5
√

5dπ
2δ

)2
.

Note that if δ << 1, the surface tension is convex for very large values of β.

0.002

0.004

0.006

0.008

V(s)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 s

Figure 2: Example (b)

(c) Let p ∈ (0, 1) and 0 < k2 < k1. Let

V (s) = − log

(

pe−k1
s2

2 + (1 − p)e−k2
s2

2

)

.

Then

V ′′
0 (s) =

pk1e
−k1 s

2

2 + (1 − p)k2e
−k2 s

2

2

pe−k1
s2

2 + (1 − p)e−k2
s2

2

and

g′′0(s) = − p(1 − p)(k1 − k2)
2s2

p2e−(k1−k2) s
2

2 + 2p(1 − p) + (1 − p)2e(k1−k2) s
2

2

.

We have

k2 ≤ V ′′
0 (s) ≤ pk1 + (1 − p)k2 and − p(k1 − k2)

1 − p
≤ g′′0(s) ≤ 0,

where the lower bound inequality for g′′0(s) follows from the fact that g′′0(s)

attains its minimum for s ≥
√

2
k1−k2 . Then

||g′′0(s)||L1(R) ≤
2p

1 − p

√

(k1 − k2)π and β ≤
(

1 − p

16p

)2 πk2

12dC̄(k1 − k2)
.
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Note that example c) is the one used in [2] to prove that unicity of ergodic
states can be violated for non-convex V for large enough β.
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