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We have tested the reference interaction site model (RISM) for the case of the

hypernetted chain (HNC) and the partially linearized hypernetted chain (PLHNC)

closures improved by a repulsive bridge correction (RBC) for ionic hydrated species.

We have analyzed the efficiency of the RISM/HNC+RBC and RISM/PLHNC+RBC

techniques for decomposition of the electrostatic and the nonpolar hydration energies

on the energetic and the enthalpic parts for polyatomic ions when the repulsive bridge

correction is treated as a thermodynamic perturbation, and investigate the repulsive

bridge effect on the electrostatic potential induced by solvent on solute atoms. For

a number of univalent and bivalent atomic ions, molecular cations and anions the

method provides hydration energies deviating only by several percents from the

experimental data. In most cases the enthalpic contributions to the free energies

are also close to the experimental results. The above models are able to satisfactory

predict the hydration energies as well as the electrostatic potential around the ionic

species. For univalent atomic ions they also provide qualitative estimates of the

Samoilov activation energies.



2

Introduction

Ion hydration is one of the most fundamental physico-chemical processes occurring in

chemical and biological systems. Many efforts have been spent for theoretical and exper-

imental studies of ion hydration properties1–4 and various theoretical methods have been

developed to investigate solvation effects. The dielectric continuum model5 treats solvent

molecules in an implicit way, while molecular simulations6,7 and methods based on the

integral equation theory (IET)8–32 are considered as explicit solvation models. Although

the molecular simulations are more realistic and give the most reliable insight into micro-

scopic processes, they dramatically increase the computational time required for the calcula-

tions. The IET provides an alternative ’low-cost’ technique for treating molecular effects in

liquids8–32. At present there are several approaches based on integral equations. The molec-

ular Ornstein–Zernike (MOZ) theory is the method to calculate three- dimensional (3D)

solvation structure in molecular liquids. The MOZ theory treats the orientation dependence

of intermolecular interactions through the rotational invariant expansions of interaction po-

tentials and correlation functions9. The recent MOZ calculations10–14 have indicated that

the theory is able to reproduce the thermodynamic, dielectric, and structural properties

for aprotic solvents. Another method is the reference interaction site model (RISM) pio-

neered by Chandler and Andersen8 and then extended to the polar liquids by the XRISM

treatment17,18. The theory is based on calculations of radial distribution functions (RDF)

via the site-site Ornstein-Zernike (SSOZ) integral equation. The theory has been success-

fully applied to calculate structural and thermodynamic properties of various chemical and

biological systems16,19. Recently, 3D extensions of the RISM theory have been developed to

obtain 3D correlation functions of interaction sites of solvent molecules around a solute of

arbitrary shape20–31,34,35.

In the original XRISM procedure17,18 the hypernetted chain closure (HNC) was em-

ployed to take into acount the nonlinear response of solvent. The advantage of the

RISM/HNC approximation resides in the fact it is well suited for the description of liq-

uids containing polar solutes. However, the predictions coming from this method are rather

poor for the thermodynamics of hydrophobic solvation and provide only a qualitative pic-

ture for the solvation of charged solutes, since the RDF amplitudes responsible for hydrogen

bonding are overestimated. Although the 1D HNC closure provides physically reasonable
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results for polar polyatomic solutes hydrated in water at normal conditions, it can become

divergent in the case of a very deep well of the attractive potential between the solute and

individual solvent sites. To eliminate this artefact, a partial linearization of the HNC closure

(PLHNC) have been proposed in Refs.26,27. In fact, it combines the HNC for the region of

the density profile depletion and the mean spherical approximation for the regions of enrich-

ment.

Beyond the RISM/HNC and RISM/PLNHC approximations, an additional effective

repulsion has to be introduced to account solute steric constrains. The orientational average

of the Boltzmann factor for a repulsive core potential of the whole solvent molecule has been

incorporated in the 3D RISM/HNC closure22 to account the steric constrains. Kovalenko

and Hirata29 have extended this repulsive bridge correction (RBC) to the one-dimensional

RISM approach. Since it operates only with the solute-solvent RDFs, it is essentially sim-

pler and faster than the 3D RISM treatment. On the other hand, the predictive capabilities

of the 1D RISM/HNC improved by the RBC are comparable with that obtained by the

sophisticated 3D RISM treatment33.

Due to the simplicity and the accuracy of the method, the RISM/HNC model im-

proved by the RBC (RISM/HNC+RBC) is a promising method to study complex solutions

including polyatomic ions. In general, accurate calculations of solvated molecules have to

take into account of quantum degrees of freedom36. For this purpose, a combined RISM -

self-consistent-field (SCF) approach has been developed more than a decade ago37–39. In this

method the solvent structure is treated on the classical footing with use of the RISM theory,

while the electronic structure of the solute is calculated by quantum chemistry methods at

various level of accuracy. Apart of the original RISM-SCF formulations37–39, there are some

more sophisticated models based on this approach which take into account 3D details of the

solvent structure40,41 and the electron density distribution42 as well as alternative couplings

for the solute-solvent interactions43. However, for the purposes of our study we decided to

employ the simplest estimates and apply the quantum chemical calculations only to evaluate

changes in the electronic energy of the solute.

The goal of our study is to apply the RISM/HNC+RBC and the RISM/PLHNC+RBC for

investigations of thermodynamic and structural properties of hydrated atomic and molecular

ions. We will focus on the effect of the repulsive bridge corrections on the calculated values

of the free energy of the charged molecular solutes. Among other quantities we will evaluate
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the Samoilov activation energy (amount of energy required to strip a water molecule away

from the first solvation shell of an ion as compared to that for another water molecule) and

will compare the results with the Samoilov experiments on viscosity44. We will calculate the

RDFs and the electrostatic potential around different ions and compare them with results

of molecular dynamics (MD) simulations. The calculated thermodynamic parameters of

ionic hydration will be also compared with available experimental data. In addition, we

will analyze the efficiency of the RISM/HNC+RBC and RISM/PLHNC+RBC technique

for decomposition of the electrostatic and the nonpolar hydration energies on the entropic

and the enthalpic parts for polyatomic ions when the repulsive bridge correction is treated

as thermodynamic perturbation. We will also investigate the repulsive bridge effect on the

electrostatic potential induced by the solvent on solute atoms.

We will outline the method in Section II, the details of calculations will be described in

Section III, while the results of the calculations will be presented and discussed in Section

IV.

Method

Following Refs.37–39 the solvation energy (∆G) of a hydrated molecule can be defined

as the sum of the change in the intramolecular energy of solute (∆E) and the solvation free

energy (∆µ) which contains all of the contributions from the solvent:

∆G = ∆E + ∆µ. (1)

The change in the intramolecular energy ∆E is due to the polarization of the solute electron

density interacting with the solvent. To estimate this quantity we employ the linear response

theory (LRT)45 which gives us the following equation:

∆E =
1

2

∑

u

Vu∆qu, (2)

where ∆qu is the change in partial charge of the u-site, which is determined as the difference

between the partial charges of the solute in vacuum and solvent, respectively, while Vu is

the electrostatic potential induced by the solvent at the solute u-site. In the case of the

water solvent it can be expressed via total solute-oxygen (huO) and solute-hydrogen (huH)

correlation functions

Vu = 4πn0

∫ ∞

0
[2qHhuH(r) + qOhuO(r)]rdr, (3)
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where n0 is the averaged water density, while qH and qO are hydrogen and oxygen charges

of water molecule. We calculate the correlation functions by the RISM equation:

Huv = Wu ∗ Cuv ∗ [Wv + n0H
vv]. (4)

The superscripts v and u refer to the solvent and the solute, respectively, the symbol ∗
corresponds to the convolution integration, the matrix elements of H and C are matrices

built from the site-site total and the direct correlation functions, respectively, and W is the

intramolecular correlation matrix. The Fourier transform of the matrix elements of W is

given by ŵij(k) = δij + (1 − δij) sin(klij)/klij , where i and j denote molecular sites of the

same molecule, and lij is the intramolecular distance between i and j sites. In the above

equation, the solvent matrices Wv and Hvv do not change during the calculations and we

regard them as input data. They are calculated separately and stored in computer memory.

Both the matrices H and C can be obtained by Eqn. (4) coupled with a closure relation:

cuj(r) = exp[−βUuj(r) + γuj(r) + Buj(r)] − γuj(r) − 1, j = O, H, (5)

here Uuj(r) is the intermolecular site-site potential, γuj(r) = huj(r) − cuj(r) is the indirect

correlation function, Buj(r) is a bridge function, β = (kBT )−1 where kB is the Boltzmann

constant, and T is the absolute temperature. The case B = 0 corresponds to the HNC

closure. The PLHNC26,27 applies linearization of the exponent in (5) depending on the sign

of the index Iuj(r) = −βUuj(r) + γuj(r) + Buj(r):

cuj(r) = exp[Iuj(r)] − γuj(r) − 1, Iuj(r) < 0, cuj(r) = −βUuj(r) Iuj(r) > 0. (6)

The solute-solvent intermolecular potentials are represented by the Lennard-Jones (LJ) and

the coulomb terms:

Uuj(r) = 4εuj([
σuj

r
]12 − [

σuj

r
]6) +

quqj

r
. (7)

The LJ parameters σuj and εuj are determined according to the standard combining rules,

σuj = (σu + σj)/2 and εuj =
√

εuεj.

To complete the expression for the hydration energy (1) we should derive the expres-

sion for the excess chemical potential ∆µ via correlation functions. In the case of HNC

approximation there is an explicit formula for ∆µ46:

β∆µ = −4πn0

∑

uj

∫ ∞

0
[cuj(r) +

1

2
cuj(r)huj(r) −

1

2
h2

uj(r)]r
2dr, (8)
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while for the PLHNC it is expressed as26

β∆µPLHNC = −4πn0

∑

uj

∫ ∞

0
[cuj(r) +

1

2
cuj(r)huj(r) −

1

2
h2

uj(r)Θ(−huj(r))]r
2dr. (9)

The Kirkwood charging formula47 can be employed in the general case, it is written in the

site-site formalism as:

∆µ = 4πn0

∑

uj

∫ 1

0
dλ
∫ ∞

0
[1 + huj(r, λ)]

∂Uuj(r, λ)

∂λ
r2dr, (10)

where λ is the coupling parameter. This relation requires calculation of solute-solvent cor-

relation functions huj(r, λ) at different values of λ. Typically, two coupling parameters λnel

and λel are introduced to calculate the nonpolar and the electrostatic free energy contri-

butions, respectively28. The former is considered as a scaling factor of the LJ radius, i.e.

σuj(λnel) = λnelσuj , while the coupling parameter λel is introduced as a scaling factor of the

solute charge, qu(λel) = λelquj . Thus, we express ∆µ as

∆µ = ∆µnel + ∆µel, ∆µel =
∑

u

qu

∫ 1

0
Vu(λelqu)dλel.

Using linear approximation for integration over λel, we rewrite it as

∆µel ≈
∑

su

qu[Vu(0) +
qs

2
V ′

su], (11)

where V ′
su is the matrix of the approximating coefficients, while Vu(0) = Vu(qu = 0) is the

nonzero potential arising even for nonpolar solute due to different distribution of oxygen

and hydrogen sites of water molecules around the solute. It is responsible for asymmetry of

solvation of cations and anions48,49. If the matrix V ′
su = ∂Vs/∂qu is charge independent, we

have quadratic dependence of the solvation energy on the solute charge, which corresponds to

the LRT approach. In general case, the dependence V ′
su(λel) is smooth and can be estimated

with the use of few intermediate points of integration.

To reduce the overestimated hydrogen bonding in the RISM/HNC(PLHNC) models

we use the repulsive bridge correction (RBC)29 in the corresponding closures:

exp[−Bij(r)] =
∏

l 6=j

wil(r) ∗ exp[−4βǫlj(
σlj

r
)12]. (12)

Such correction factor has been proposed for the 3D orientational reduction of the MOZ

equation for an one-component molecular liquid22. Similar empirical bridge corrections have
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been also employed to treat hydration of organic molecules by the 3D RISM scheme28 as

well as to evaluate electronic structure of organic solutes by the combined 3D RISM/QM

method50. Kovalenko and Hirata29 proposed to take the repulsive core as the sum of the

LJ terms, since the orientational average of the potential yields a soft repulsion extending

beyond the LJ repulsive core throughout the first hydration shell and provides the correct

dependence of the hydration chemical potential on the solute size29.

The nonelectrostatic contribution ∆µnel is calculated by the perturbation scheme pro-

posed in Ref.29:

β∆µnel = β∆µHNC
nel + 4πn0

∑

uj

∫ ∞

0
gHNC

uj (r)[exp[−Buj(r)] − 1]r2dr, (13)

where the correlation functions are taken at zero bridge function Buj(r) = 0, and ∆µHNC
nel

is calculated by (8). The perturbation treatment is essentially simpler and faster than the

complete thermodynamic integration, but provides reasonable accuracy for evaluations of

hydrated hydrophobic and polar organic solutes29,51.

To describe the solvation properties we decompose the excess chemical potential into

the enthalpic and the entropic contributions. Since experiments are most commonly done

at fixed pressure p, it is convenient to decompose the hydration chemical potential into the

excess solvation entropy ∆S and the excess solvation enthalpy ∆H in the following manner:

∆S =

(
∂∆µex

∂T

)

p

, ∆Es = ∆µ + T∆S. (14)

But this definition demands calculations of the solvent RDFs on each step of the temperature

increase. Another way to calculate these contributions is to express the excess chemical

potential as a sum of an energetic term and an entropic one which are both functions of

only the solute-solvent interactions:

∆Esolv = n0

∑

uj

∫
guj(r)Uuj(r)dr, T∆Su = ∆Esolv − ∆µ. (15)

In the case one does not need to calculate the derivative ∂∆µ/∂T and, therefore, the integral

(15) can be easily evaluated. The difference ∆Es − ∆Esolv is the reorganization energy of

the solvent, which does not contribute to the chemical potential since it is exactly counter-

balanced by a term in the solvation entropy.



8

Computational details

We have tested our approach for different atomic and molecular ions. The LJ param-

eters of the ions have been derived from the OPLS force field52,53, they are listed in Table

1 where we have used the notations similar to that in Ref.53. The small Lennard-Jones

parameter σH = 0.4Å is attributed to the highly charged hydrogen sites in order to avoid

numerical singularities. Although the OPLS force field require the geometric combination

rule for the LJ solute-solvent parameters, we have employed the arithmetic rules described

above, because the geometric rule results in the small size of hydrogen and hence to abnor-

mal hydrogen bonding.

Since the hydration of ionic species depends significantly on the values of partial

charges of solute atoms, we have derived the solute charges using QM calculations instead of

direct use of the OPLS charges for the relevant molecular ions. To derive the partial atomic

charges of the solutes we have implemented the Kollman procedure54 with the deMon pro-

gram based on the linear combination of Gaussian-type orbitals55. This method is able to

evaluate the charges by fitting the electrostatic potential (ESP). The ESP procedure leads

to the following expression of the electronic charges38:

q
(e)
i = −

∑

j

Dijtr(PA)j−ξ
∑

j

Dij , (16)

where the matrix D is equal to inverse matrix [
∑

l ωl/δrljδrlj]
−1, where δrli = |rl − ri| is

the distance between the grid point l and the solute atom i, while ωl is its weight, P is the

self-consistent density matrix and A is the supermatrix whose elements are:

Aµνi(r) =
∑

l

ωl

δrli

〈φµ|
1

| r− rl|
|φν〉, (17)

where φν are the contracted cartesian gaussian functions. The Lagrange multiplier ξ can be

expressed as:

ξ =
−∑ij Dijtr(PA)j−Ne

∑
ij Dij

, (18)

where Ne is the total number of the electrons. The extra grid points inside the 1.4 van-der-

Waals radius were removed to avoid ESP singularities near to the nuclear position of the

solute. We excluded also the grid points outside the 2.0 van-der-Waals radius because the

ESP integration over them do not influence numerically the charge values. The ESP calcula-

tions were carried out using a fixed Lebedev grid of 200 radial shell points and 1202 angular
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points for each shell. All calculations have been performed at local density approximation

(LDA) level using the exchange correlation functional derived by Vosko, Wilk, and Nusair56

and double zeta for valence electrons plus one polarized function (DZVP)58 as basis set. To

avoid calculations of the four-center coulomb integrals, gaussian-type auxiliary A2 functions

have been used. The numerical calculation of the density was performed employing directly

the DZVP basis set for the numerical integration of the exchange correlation functional.

Although the self-consistent reaction field (SCRF) procedure can be adopted to evalu-

ate the solvent-field solute charge polarization, the earlier estimates45 have indicated the

contribution of the polarization energy to the hydration free energy to be small for the

considered charged species, therefore one can apply less sophisticated procedure to evaluate

this contribution. In this work we have used more simplified LRT version and applied the

Polarizable Continuum Model (PCM) to estimate the polarization contribution. Compar-

ison of the PCM and the RISM-SCF evaluations57 have indicated that both the methods

predict similar mean force potentials, but there is a difference in the calculated polarization

energies. Some advanced models42 could be more accurate for evaluating partial changes,

but, as a whole, the influence of the procedure evaluating partial charges on the free energy

of the studied charges species is to be minor (see the next section).

Table 1 reports the difference between the solute gas-phase charges and the solute SCRF

charges calculated by the Kollman method54. Although the deviation of the calculated

charges from that parameterized by the OPLS53 is about 10-15% it essentially affects the

polarization energy ∆E of solutes.

The ESP charges were used as input data for RISM calculations. We employed the

modified version of the extended simple point charge model for water59. The water density

n0 is assumed to be equal to 0.997 g/cm3 at room temperature. For calculation of water

RDFs we used a reformulation of the RISM with dielectric corrections60,61. For accurate

screening of the long-range interactions within the framework of this method, the inter-

molecular Coulomb potential qiqj/r is rescaled as A(ǫ)qiqj/r where the scalar factor A is

defined via the phenomenological dielectric constant ǫ and the dipole moment m of the water

molecule as

A =
1 + ǫ (3y − 1)

3y (ǫ − 1)
, y =

4πβρm2

9
. (19)

We notice that this procedure is only applied for the solvent-solvent interaction potential,

the solute-solvent Coulomb potential remains unchanged. This approach makes use of the
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solute site σ(Å) ǫ(kcal
mol

) q ∆q solute site σ(Å) ǫ(kcal
mol

) q ∆q

H3O
+ HW 0.4 0.046 +0.5189 +0.025 OH− HW 0.4 0.046 +0.2463 -0.095

OW 3.166 0.1554 -0.5569 -0.076 OW 3.166 0.1554 -1.2463 +0.071

NH4
+ H 1.2 0.0157 +0.4683 -0.009 NH−

2 H 1.2 0.0157 +0.2021 +0.087

N3 3.25 0.17 -0.8732 +0.038 N3 3.25 0.17 -1.4042 -0.173

CN− C 3.816 0.086 -0.5693 +0.066 OCl− OW 3.166 0.1554 -0.6898 -0.077

N3 3.25 0.17 -0.4307 -0.066 Cl 4.417 0.1178 -0.3102 +0.077

HO−
2 HW 0.4 0.046 +0.3324 +0.071 HCC− CT 3.816 0.086 -0.1479 0.058

OW 3.166 0.1554 -0.7572 -0.015 CT 3.816 0.086 -0.8521 -0.115

OW 3.166 0.1554 -0.5752 -0.056 HC 2.5 0.03 0.0782 0.057

CH3O
− CT 4.2 0.3 +0.2024 -0.045 CHOO− C 3.816 0.086 +0.6228 +0.005

O 3.15 0.25 -0.9785 -0.102 O2 2.96 0.21 -0.7367 -0.039

HC 2.5 0.03 -0.0741 0.049 HC 2.5 0.03 -0.1494 +0.071

(CH3)3C
+ C+ 3.55 0.07 +0.5588 +0.085 CH3S

− S 4.25 0.5 -0.9352 -0.108

CT 3.5 0.066 -0.5352 -0.034 CT 4.2 0.3 -0.2767 +0.022

HC 2.5 0.03 +0.222 +0.002 HC 2.5 0.03 +0.0707 +0.029

CH3COO− C 3.75 0.105 +0.8061 -0.009 CH3NH−
3 N3 3.25 0.17 -0.3363 +0.107

O2 2.96 0.21 -0.7809 -0.048 HC 2.5 0.03 +0.3456 -0.013

CT 3.5 0.066 -0.4200 -0.033 CT 3.5 0.066 -0.1529 -0.032

HC 2.5 0.03 +0.0569 +0.046 HC 2.5 0.03 +0.1508 -0.012

TABLE I: LJ parameters and atomic charges for molecular ions.

known asymptotic form of the correlation functions and, in general, more sophisticated

nontrivial closures can be applied62.

The solute-solvent correlation functions for pure water have been calculated by the

wavelet-based algorithm63–65 before fitting the charges and calculations of solute-solvent

correlation functions. The method proposes an expansion of site-site correlation functions

into the wavelet series and further calculations of the approximating coefficients. To solve

the integral equations we have applied the hybrid scheme in which the coarse part of the
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solution is calculated by wavelets with the use of the Newton-Raphson (NR) procedure,

while the fine part is evaluated by the direct iterations. The Coifman 2 basis set is employed

for the wavelet treatment of the coarse solution. We generated wavelets with n = 4096

grid points and δr = 0.02645Å step size, the number of approximating coefficients smax is

equal to 25 for each site-site correlation function, while the level of resolution is j0 = 4. As

well as in the conventional scheme, to speed up convergence we have initially solved RISM

equations for uncharged solute species and then we have repeated the same calculations

by increasing the charge using the previous solution as an initial guess. The system was

gradually charged up to the target charge. The set is solved iteratively until the required

accuracy is achieved. The precision parameter determining the measure of the accuracy is

the root mean square residual equal to 10−6 for the NR loop and to 10−5 for the Picard

iterations63,65. The electrostatic contribution ∆µel to the free energy is calculated with the

use of the charging procedure at five different values of coupling parameter λel.

Results and discussion

Earlier we have calculated the hydration free energies of atomic and molecular ions

by the RISM/HNC within the OPLS force field66,67, and indicated that the RISM/HNC

model overestimates systematically the absolute values of hydration free energy for anions,

and underestimates that for cations by 20-40%. Moreover the RISM/HNC procedure is not

convergent in several cases. All these effects are due to overestimation of RDF amplitudes

responsible for hydrogen bonding. The discrepancy becomes to be more pronounced for

small sized solutes where hydrogen bonding effect is stronger. In this paper we have calcu-

lated the hydration energy for the series of atomic and molecular ions by the HNC+RBC

and PLHNC+RBC models and decomposed the hydration energies into the enthalpic and

entropic parts. Table 2 lists the calculated hydration energies, the enthalpies, and the en-

tropies for atomic ions and the corresponding experimental data45,68. There is a difference

between the enthalpic and energetic parts due to the difference in the entropic changes at

constant pressure and volume, i.e. ∆∆H = ∆H − ∆Es = Tαn0(∂∆µ/∂n0)T , where α is

the isobaric thermal expansion coefficient of pure water. Since the difference is small under

normal conditions (several kcal/mol) and comparable with the accuracy of our calculations,

we ignore it to simplify the evaluations of the enthalpic changes. As it is seen, the models
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underestimate absolute values of the hydration energy for atomic ions. The predictive capa-

bilities of the method decrease for very small and very large ionic solutes. The average error

does not exceed 6% however the discrepancy becomes up to 20% in the case of Cs+. The

calculated electrostatic contribution to the hydration entropy is an good agreement with

the experimental data, however the calculated total entropies deviate sufficiently from the

experiment. This artefact is supposed to be mainly caused by inaccurate evaluations of the

entropic part of nonelectrostatic contribution ∆µnl. The agreement between the calculated

and experimental results is better for cations then that for anions due to minor effect of

hydrogen bonding in the first case. Although the RISM/HNC+RBC provides less deviation

from the experiment than that obtained by the RISM/PLHNC+RBC model, the difference

between these two models is insignificant.

Ion −∆G −∆H −T∆S

HNC PLHNC Exp HNC PLHNC Exp HNC PLHNC Exp

Li+ 107.3(-0.6) 105.5(-1.1) 122.1 112.4(-0.4) 109.6(-0.5) 130.9 5.0(0.2) 4.1(0.6) 8.8

Na+ 89.9(-2.7) 89.2(-3.3) 94.8 93.9(-1.3) 92.6(-1.5) 105.0 4.0(1.3) 3.5(1.8) 6.6

K+ 76.2(-6.2) 75.9(-6.9) 80.6 79.2(-2.8) 78.7(-3.1) 84.5 3.0(3.5) 2.8(3.8) 3.9

Rb+ 71.6(-8.2) 71.4(-8.9) 75.5 74.3(-3.5) 73.9(-3.9) 78.8 2.7(4.7) 2.5(5.1) 3.3

Cs+ 65.2(-12.1) 65.2(-12.9) 67.8 67.4(-4.8) 67.3(-5.3) 70.7 2.2(7.2) 2.1(7.6) 2.9

Mg2+ 426.4(2.4) 418.3(1.5) 454.2 430.3(2.2) 430.3(2.4) 476.4 29.0(-0.2) 12.0(0.9) 22.2

Ca2+ 364.6(1.2) 357.6(0.1) 379.5 368.1(1.9) 368.1(1.9) 396.1 12.6(0.8) 10.5(1.8) 16.6

Sr2+ 333.2(-1.6) 329.2(-2.6) 339.7 339.4(0.4) 339.4(0.2) 355.6 12.0(2.0) 10.1(2.8) 15.9

Ba2+ 304.9(-4.1) 302.4(-5.2) 314.0 311.6(-0.6) 311.6(-1.0) 327.2 10.6(3.5) 9.2(4.2) 13.2

F – 117.9(1.9) 116.4(0.5) 107.0 124.7(3.3) 124.7(3.3) 115.4 9.9(1.4) 8.3(2.8) 8.4

Cl– 81.3(-5.5) 81.1(-6.9) 78.1 84.0(0.5) 84.0(0) 82.1 2.9(6.0) 2.9(6.9) 4.0

Br– 79.0(-6.7) 78.9(-8.0) 69.2 81.5(0) 81.5(-0.5) 72.1 2.6(6.7) 2.6(7.5) 2.9

I– 69.3(-10.8) 69.2(-12.2) 60.3 70.6(-0.7) 70.6(-1.3) 61.5 1.4(10.1) 1.4(10.9) 1.2

TABLE II: The experimental45,68 hydration energies and the electrostatic and nonelectrostatic con-

tributions (in parenthesis) to the total excess chemical potential, the enthalpies, and the entropies

for hydrated atomic ions (kcal/mol), calculated by the PLHNC+RBC and the HNC+RBC models.

To reveal structural properties of the atomic ions, we follow the idea of Hirata and
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ion Mg2+ Ca2+ Li+ Na+ K+ Cs+ Cl− Br− I−

PLHNC+RBC 3.7 2.4 1.3 0.65 0.1 -0.21 -0.23 -0.28 -0.61

Exp44 2.61 0.45 0.73 0.25 -0.25 -0.33 -0.27 -0.29 -0.32

TABLE III: The calculated (PLHNC+RBC) and the experimental activation energies (kcal/mol)

for various hydrated ions.

Chong69 and calculate the activation energy required to strip a water molecule away from

the first solvation shell of an atomic ion as compared to that for another water molecule

to its next coordination shell. For this purpose we use the following method which is sim-

ilar to that has been used in Refs.69,70 – we evaluate the site-site mean force potentials

wuj = −β−1 ln(guj(r)), where guj(r) is the ion-oxygen and ion-hydrogen RDFs for cations

and anions, respectively. Then we evaluate the activation energy Ei as a difference between

the first maximum and the first minimum of the corresponding mean force potential (mfp).

Finally, the relative activation energy ∆E of a water molecule in an ion coordination shell is

calculated as ∆E = Ei −E0, where E0 is the activation energy of a water molecule transfer-

ring from a first shell around another water molecule to its next coordination shell, which is

evaluated via the corresponding hydrogen-oxygen mfp of pure water. Table 3 lists the results

calculated by the PLHNC+RBC model and the Samoilov data on the activation energies

extracted from the viscosity experiments44 for various hydrated ions. As it is seen, there

is qualitative agreement between the experimental and the calculated data for monovalent

ions. The theory overestimates the activation energies by 0.4 kcal/mol for atomic cations

and provides quite accurate results for anions. But the theory fails for bivalent ions. The

latter may be caused by many-body effects of hydrogen bonding formation, which can not

be interpreted in terms of site-site mpf, but requires 3D evaluations.

We have also calculated the hydration energies, the enthalpies, and the entropies

for polyatomic ions. Table 4 lists the experimental results45,68 and data calculated by the

PLHNC+RBC and HNC+RBC models. Although the theory overestimates the absolute

values of hydration energy for polyatomic cations and underestimates for polyatomic

anions, the average deviation does not exceed 6%. The difference between the calculated

and experimental hydrations energies increases for very small and very large ionic solutes

like as for atomic ions. The evaluations of the entropic contributions are less satisfactory
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FIG. 1: The computed (RISM/PLHNC+RBC) versus the experimental45,68 hydration free energies

for (in kcal/mol) for molecular and atomic ions. The atomic ions are indicated by open circles,

while the polyatomic ones by filled circles.

for both the HNC+RBC and the PLHNC+RBC models. The influence of intramolecular

solute contribution ∆E and nonlectrostatic contribution ∆µnl are small with respect to the

electrostatic one ∆µel. Such behavior is typical for ionic systems and has been reported

before45. Table 5 proves this effect, indicating the electrostatic (Sel), the nonelectrostatic

(Snel), and the polarization (Spol) contributions to the entropies of hydrated ions (kcal/mol).

As it is seen, the nonpolar contribution is overestimated. By our opinion this artefact is

caused by that the thermodynamic perturbation theory is not appropriate for estimations

in this case, since the main contribution is determined by the cavity effect. In principle,

the later may be eliminated by an appropriate choice of the bridge for the nonelectrostatic

part73, but the study of this effect is beyond the scope of this paper. Figure 1 and Figure 2
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Ion −∆G −∆H

HNC PLHNC EXP HNC PLHNC EXP

OH– 119.5(-1.6) 118.3(-2.9) 110.0 135.2(0.8) 129.4(0.5) 120.1

CN– 81.6(-0.8) 81.6(-2.1) 75.0 85.5(2.3) 85.4(2.1) 79.4

OCl– 83.8(-3.2) 83.6(-4.5) 80.7 90.9(2.4) 90.5(2.1)

NH+
4 86.8(-1.0) 84.0(-2.5) 81.0 91.6(0.9) 87.7(0.4) 87.6

HCOO– 84.1(2.8) 84.4(1.3) 80.0 89.8(4.9) 89.7(4.8) 85.9

CH3O
– 99.2(3.9) 98.9(2.5) 95.2 101.2(6.6) 101.4(6.4)

HCC– 87.7(-1.5) 87.6(-2.8) 76.1 95.0(2.1) 94.7(1.9)

NH–
2 108.7(-2.0) 108.2(-3.5) 92.3 119.7(1.1) 118.5(0.7)

HO–
2 103.5(0.5) 103.(-0.7) 97.3 113.8(2.6) 112.7(2.5)

H3O
+ 103.1(-1.0) 99.5(-2.5) 105.0 107.7(0.8) 104.5(0.4) 113.9

CH3COO– 86.6(2.0) 87.9(0.8) 80.0 94.0(6.0) 95.0(5.9)

(CH3)3C
+ 57.8(-0.3) 59.1(-1.8) 57.9(5.4) 58.3(5.4)

CH3S
– 75.2(4.6) 75.1(3.2) 76.0 79.3(10.3) 79.2(10.2)

CH3NH+
3 59.4(2.3) 59.4(1.2) 71.0 60.9(3.9) 60.9(3.9)

TABLE IV: The experimental45,68 hydration energies and the electrostatic and nonelectrostatic

contributions (in parenthesis) to the total excess chemical potential,and the enthalpies for hydrated

polyatomic ions (kcal/mol), calculated by the PLHNC+RBC and the HNC+RBC models.

demonstrate the correlations between the computed and the experimental hydration ener-

gies and enthalpies for molecular and atomic ions, respectively. Therefore, the HNC+RBC

and PLHNC+RBC models are satisfactory to estimate hydration energies of molecular and

atomic ions, since it provides the hydration energies for the selected ions within 5-10% of

accuracy. Although our results are dependent on the force field parameters, we believe

that this drawback can be eliminated by an appropriate choice of the bridge functions. A

’smart’ strategy for making this choice will be a matter of our forthcoming study.

We have also studied how the improved RISM models treat the electrostatic properties

of hydrated ions. Figure 3 shows the comparison of the data on the distance dependence

of the electrostatic potential Φ(r) = 8πn0qH

∫∞
0 [hBrH(r) − hBrO(r)]rdr of Br− hydrated
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FIG. 2: The computed (RISM/HNC+RBC) versus experimental45 hydration enthalpies for molec-

ular and atomic ions (in kcal/mol). The notions are the same as in Fig. 1.

in water under normal conditions. Although the RDFs calculated by integral equations

are different from what obtained by the MD with the use of the GROMACS package71,

the difference between the HNC+RBC and the MD data are minor72. In contrast to the

simple HNC closure the bridge correction is able to provide accurate calculations for the

electrostatic potential at small distances.

To analyze the charge effect on the electrostatic potential we have calculated the

potential versus the charging parameter. The dependence of electrostatic potential on the

charging parameter is close to the linear one66, slightly deviating from the linear behaviour at

small solute charges. The employment of the repulsive bridge does not change qualitatively

this behaviour, although the nonlinear effects become more pronounced. Figure 4 shows

the derivative of the electrostatic potential versus the charging parameters λel for NH+
4 and
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Molecule −T∆Sel −T∆Snel −T∆Spol EXP

HNC PLHNC HNC PLHNC HNC PLHNC

OH– 12.7 11.1 2.4 3.4 2.6 2.6 10.1

CN– 3.9 3.8 3.0 4.2 0 0 4.4

OCl– 7.2 6.9 5.6 6.6 2.7 2.7

NH+
4 4.8 3.7 2.0 3.0 -0.3 -0.2 6.6

HCOO– 5.6 5.3 2.1 3.5 1.5 1.5 5.9

CH3O
– 9.9 9.4 2.7 3.9 4.2 4.1

HCC– 7.3 7.1 3.6 4.7 2.7 2.6

NH–
2 11.0 10.3 3.1 4.2 3.4 3.3

HO–
2 10.4 9.7 2.1 3.2 2.4 2.4

H3O
+ 4.7 4.9 1.8 2.9 1.2 1.1 8.9

CH3COO– 7.4 7.1 4.0 5.0 3.3 3.4

(CH3)3C
+ 0.2 -0.7 5.7 7.2 0.6 0.6

CH3S
– 4.1 4.1 5.7 7.1 2.4 2.4

CH3NH+
3 1.6 1.5 1.7 2.7 0.2 0.2

TABLE V: The experimental45 and the calculated electrostatic (Sel), nonelectrostatic (Snel), and

the polarization (Spol) contributions to the entropies of hydrated polyatomic ions (kcal/mol).

OH− ions. As it is seen, this dependence is well approximated by the third-order polynom

like as for atomic charged solutes (see for example Fig. 4 in74). But the approximating

coefficients are quite different for anions and cations. Such behaviour clearly indicates the

asymmetry of the hydration for anions and cations, however few universal classes of hydrated

ions can be revealed. Such universal classes have been previously studied by MD for atomic

ions75.
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FIG. 3: The distance dependence of the electrostatic potential Φ(r) measured in atomic units

for Br− ion hydrated in water under normal conditions. The solid curve corresponds to the MD

calculations, while the dashed one to the RISM/HNC+RBC, while the dotted one to the HNC

evaluations. The inset shows the RDF hBrH(r) − hBrO of Br− hydrated in water under normal

conditions.

We have also compared the accuracy of the computation of electrostatic potential. Figure

5 demonstrates the correlation between calculations of absolute values of the electrostatic

potential at atoms of molecular ions. The QM calculations are provided by the PCM, the

RISM data by the HNC+RBC model. As it is seen, the calculations by the improved HNC

model is quite satisfactory with respect to that obtained by the QM methods.

Thus, using the 1D RISM/HNC+RBC and the 1D RISM/PLHNC+RBC models we

evaluated systematically the structural and thermodynamic properties for series of hydrated

atomic and molecular ions. We have shown that the above models are able to satisfac-

tory predict the hydration energies as well as the electrostatic potential around the charged
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FIG. 4: The derivative V ′
u = ∂Vu/∂λ of the electrostatic potential with respect to the charge versus

charging parameters λel solid line corresponds to nitrogen in NH+
4 , while the dashed one to oxygen

in OH−.

solutes. For univalent atomic ions they provide qualitative estimates of the Samoilov acti-

vation energy. Although the evaluations of nonelectrostatic entropic contributions are not

in agreement with the experimental data, we believe that this drawback can be eliminated

by an additional parameterization of the repulsive bridge similar to that has been done in

Ref.28.

The advantage of the models is that they operate only with the radial distributions of

the solvent atoms around solute sites and, therefore, are essentially simpler and faster than

the 3D RISM treatment. Within the framework of the models we have to evaluate only

∆µnel, Vu(0), and V ′
su for computing the solvation free energy of ions. This can be done

before quantum computations and then stored. More sophisticated analysis of the accuracy

of different hybrid RISM-QM methods will be presented in the forthcoming paper.
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FIG. 5: The correlation between the calculations of absolute values of the electrostatic potential

at atoms of molecular ions. The QM calculations are provided by the PCM, the RISM data by the

HNC+RBC models.
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