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1 Introduction

It is well known that quantum entanglement plays very important roles in quantum in-

formation theory. One of the main tasks in quantum information theory is to find out

how many different ways multipartite pure states can be entangled. It has been shown

that entangled qudits are less affected by noise than entangled qubits [1, 2]. In quantum

cryptography it is more secure against evesdropping attacks using entangled qutrits or

qudits than using qubits [3, 4, 5, 6]. These facts motivate our interest in multi-dimensional

entangled states.

As the concept of entanglement is related to the nonlocal properties of a state, local

quantum operations can not affect the intrinsic nature of entanglement[7]. It is natural and

meaningful to classify pure states in terms of stochastic local operations and classical com-

munication (SLOCC). In [8] it was shown that SLOCC equivalent pure states can carry

out the same quantum-informational tasks with non-null possibly different possibilities,

and two N -partite states Ψ and Φ are equivalent under SLOCC if and only if there exist

invertible local operations (ILOS) F [1], · · · , F [N ] such that Ψ = F [1] ⊗ F [2] ⊗ · · · ⊗ F [N ]Φ.

In recent years, a lot of efforts have been made on classification of multipartite en-

tanglement under SLOCC [3][9-18]. In [15] an inductive method of classifying n-qubit

entanglement under SLOCC has been presented, from which the entanglement classifica-

tion of three and four qubits have been obtained. In the classification of biqutrit pure

1



states some entanglement measures have been also used [3]. In [9] a range criterion has

been used to judge the equivalence of two states under SLOCC. The classification of en-

tanglement in 2×m×n systems is investigated. In [10] the complete SLOCC classification

of multipartite entanglement in 2 × 2 × n cases has been studied in two different ways.

It has been proved that a pure state of four qubits can be transformed into nine families

by determinant one SLOCC operations [13]. In [14] 3-qubit states under SLOCC on the

basis of the canonical forms and on the local unitary operator polynomial invariants have

been classified.

In this paper we study the classification of biqutrit and triqutrit pure states under

SLOCC by using the method introduced in [15]. According to the dimensions of the right

singular vector spaces of the coefficient matrices of the states, we obtain explicitly all the

inequivalent classifications of biqutrit states and triqutrit states under SLOCC.

2 Classification of biqutrit entanglement

Let {ei}i=1,...,m and {fj}j=1,...,n denote the bases in C
m and C

n, respectively. Any bipartite

state Ψ ∈ Cm ⊗ Cn can be written as

Ψ =
m

∑

i=1

n
∑

j=1

cij ei ⊗ fj, (1)

cij ∈ C. We denote C = (cij)m,n the coefficient matrix of the state Ψ.

According to the singular value decomposition, an m × n matrix C can always be

decomposed as C = V ΣW †, where V , W are unitary matrices and Σ is a diagonal matrix

with non-negative entries (singular values), Σij = σiδij, i = 1, . . . , m, j = 1, . . . , n and

σk ≥ 0 for all k. The columns vi of V = [v1 v2 . . . vm] (resp. wi of W = [w1 w2 . . . wn])

are called left (resp. right) singular vectors of C.

Since the relevant singular vectors will be those associated to non-null singular values,

in the following we refer as singular vectors only to those vk and wk for which σk > 0. We

denote by Γ (resp. Π) the subspace generated by the left (resp. right) singular vectors, i.e.

Γ = span{v1, . . . , vk} (resp. Π = span{w1, . . . , wk}). From the Schmidt decomposition of

bipartite pure states, state (1) is separable if and only if dimW = 1 (or dimV = 1) [15].

Let Ψ, Ψ̄ ∈ C
m ⊗ C

n denote two bipartite states related by SLOCC, i.e.

Ψ̄ = F [1] ⊗ F [2](Ψ), (2)

where F [1] and F [2] are non-singular operators upon C
m and C

n, respectively. Similar

to the two-qubit case [15], in terms of singular decomposition one can prove that the
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corresponding coefficient matrices C of Ψ, C̄ of Ψ̄ in an arbitrary product basis are

related through

C̄ = (F [1]TV )Σ(F [2]†W )†, (3)

i.e. if vj and wj are the left and right singular vectors of the coefficient matrix C respec-

tively, then the new left and right singular vectors with respect to C̄ will be F [1]T (vj) and

F [2]†(wj) respectively.

For simplicity in stead of (2), we write Ψ̄ = F [1]T ⊗ F [2]†(Ψ) in the following. We first

consider the biqutrit (n = m = 3) case. In this case, the coefficient matrix of an arbitrary

pure state in C
3 ⊗ C

3 can be expressed as

C =









C11 C12 C13

C21 C22 C23

C31 C32 C33









.

The dimensions of the right singular subspaces Π could be either 1, 2 or 3.

If dimΠ = 1, we can choose ILOS F [1] and F [2] such that

F [1](v1) =
1

σ1
e1, F [2](w1) = e1,

where ei, i = 1, 2, 3, denote the bases of C
3. The new coefficient matrix C̄ is then of the

form

C̄ =









1 0 0

0 0 0

0 0 0









,

which correspond to the product state Ψ0 = |00〉 (we denote e1 = |0〉, e2 = |1〉 and

e3 = |2〉 as usual in the following).

In the case dimΠ = 2, we choose ILOS F [1] and F [2] such that

F [1](v1) =
1

σ1
e1, F [1](v2) =

1

σ2
e2, F [2](w1) = e1, F [2](w2) = e2.

The new coefficient matrix will turn to be

C̄ =









1 0 0

0 1 0

0 0 0









,

which correspond to the state Ψ1 = |00〉 + |11〉.

3



For the case dimΠ = 3, we choose ILOS F [1] and F [2] such that

F [1](v1) =
1

σ1
e1, F [1](v2) =

1

σ2
e2, F [1](v3) =

1

σ3
e3,

F [2](w1) = e1, F [2](w2) = e2, F [2](w3) = e3.

Then C̄ turns out to be a 3 × 3 identity matrix, and the corresponding state is Ψ2 =

|00〉 + |11〉 + |22〉.
Therefore for biqutrit case, states can be entangled in two inequivalent ways (Ψ1 and

Ψ2) under SLOCC. While in [3] biqutrit entangled states are classified into three types:

|I〉 =
1√
2
(|11〉 + |00〉), |II〉 =

1√
3
(|11〉 + |00〉 + | − 1 − 1〉),

|III〉 =
1√
6
(|11〉 + | − 1 − 1〉 + |10〉 + |01〉 + |0 − 1〉 + | − 10〉).

We find that the type |II〉 is in fact equivalent to the type |III〉 under SLOCC: |III〉 can

written as

|III〉 =
1√
3
[|1〉 ⊗ 1√

2
(|1〉 + |0〉) + |0〉 ⊗ 1√

2
(|1〉 + | − 1〉) + | − 1〉 ⊗ 1√

2
(| − 1〉 + |0〉)],

by choosing the ILOS

F [1] =









1 0 0

0 1 0

0 0 1









, F [2] =
1√
2









1 1 −1

1 −1 1

−1 1 1









,

we get F [1] ⊗ F [2]|III〉 = |II〉. This result can be also obtained by using the method of

Schmidt decomposition provided in [8].

3 Classification of triqutrit entanglement

An arbitrary triqutrit pure state Ψ ∈ C
3 ⊗ C

3 ⊗ C
3 has the form

Ψ =
3

∑

i,j,k=1

cijk ei ⊗ ej ⊗ ek. (4)

If we view the system in a bipartite decomposition: the first system and the rest systems,

the coefficient matrix of Ψ has the form

C = C1|23 =









C111 C112 C113 C121 C122 C123 C131 C132 C133

C211 C212 C213 C221 C222 C223 C231 C232 C233

C311 C312 C313 C321 C322 C323 C331 C332 C333









.
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There are also two other ways to write the coefficient matrix of Ψ: C2|13 and C3|12. Without

loss of generality, we use C1|23 in the following.

The classification of triqutrit pure states is to choose the ILOS F [1], F [2] and F [3] such

that the final coefficient matrix reduces to a canonical one. In order to do so, we have to

find all possible structures of the space Π.

Let Ψ, Ψ̄ ∈ C
m⊗C

n⊗C
l denote two tri-partite states that are equivalent under SLOCC,

i.e.

Ψ̄ = F [1]T ⊗ (F [2] ⊗ F [3])†(Ψ), (5)

where F [1], F [2] and F [3] are non-singular operators upon C
m, C

n and C
l, respectively.

Similarly we can prove that the coefficient matrices C and C̄ in an arbitrary product

basis are related through

C̄ = (F [1]V )Σ(F [2] ⊗ F [3]W )†. (6)

Concerning the dimensions of the right singular subspace Π, for triqutrit there are

again three possibilities: dimΠ = 1, dimΠ = 2 and dimΠ = 3.

3.1 The case of dim Π = 1

1. Π = span{Ψ0}, where Ψ0 is the product state defined in the last section. In this case,

w1 is of the form, w1 = φ⊗ ψ. We can choose ILOS F [1], F [2] and F [3] such that

F [1](v1) =
1

σ1
e1, F [2](φ) = e1, F [3](ψ) = e1.

Then the new coefficient matrix is of the form

C̄ =









1
σ1

. .

0 . .

0 . .

















σ1 0 0

0 0 0

0 0 0

















1 0 0 0 0 0 0 0 0

. . . . . . . . .

. . . . . . . . .









=









1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0









,

which corresponds to the state e1⊗e1⊗e1 ≡ |000〉. The irrelevant characters in the above

matrix entries have been omitted.

2. Π = span{Ψ1}. In this case, the vector w1 = φ1 ⊗ ψ1 + φ2 ⊗ ψ2. Using the same

strategy above, we obtain the state e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2, which corresponds to the

canonical vector: |000〉 + |011〉.
3. Π = span{Ψ2} = span{φ1⊗ψ1 +φ2⊗ψ2 +φ3⊗ψ3}. We obtain the state e1⊗e1 ⊗e1 +

e1⊗e2⊗e2 +e1⊗e3⊗e3, which corresponds to the canonical vector: |000〉+ |011〉+ |022〉.
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3.2 The case of dim Π = 2

We first consider Π = span{Ψ0,Ψ0}. One of the three possible cases in this class is Π =

span{φ⊗ψ1, φ⊗ψ2}. In this case, w1 = u11φ⊗ψ1+u12φ⊗ψ2 and w2 = u21φ⊗ψ1+u22φ⊗ψ2,

where the matrix with entries uij has rank two. Since w1 and w2 are linearly independent,

we choose the ILOS F [1], F [2] and F [3] such that

F
[1]
1 (v1) =

1

σ1
e1, F

[1]
1 (v2) =

1

σ2
e2, F

[1]
2 =















u∗11 u∗12
u∗21 u∗22





−1

0

0 1











,

F [1] = F
[1]
2 F

[1]
1 , F [2](φ) = e1, F [3](ψ1) = e1, F [3](ψ2) = e2.

The new coefficient matrix will be

C̄ = F
[1]
2









1
σ1

0 .

0 1
σ2

.

0 0 .

















σ1 0 0

0 σ2 0

0 0 0

















u∗11 u∗12 0 0 0 0 0 0 0

u∗21 u∗22 0 0 0 0 0 0 0

. . . . . . . . .









=









1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0









,

which corresponds to the state |000〉 + |101〉.
The other two cases can be dealt with similarly. Here one needs not to consider the

case Π = span{φ1 ⊗ψ1 +φ2 ⊗ψ2, φ1 ⊗ψ2 +φ2 ⊗ψ1}, because (φ1 ⊗ψ1 +φ2 ⊗ψ2) + (φ1 ⊗
ψ2 + φ2 ⊗ ψ1) = (φ1 + φ2) ⊗ (ψ1 + ψ2) is a product state.

Using the same strategy, all together we obtain the following classifications:

Class Canonical vector

span{Ψ0,Ψ0}
|000〉 + |101〉
|000〉 + |110〉
|000〉 + |111〉

span{Ψ1,Ψ1}
|000〉 + |011〉 + |101〉 + |112〉 |000〉 + |011〉 + |112〉 + |120〉
|000〉 + |011〉 + |120〉 + |101〉 |000〉 + |011〉 + |120〉 + |102〉

span{Ψ0,Ψ1}
|000〉 + |011〉 + |101〉 |000〉 + |011〉 + |112〉
|000〉 + |011〉 + |120〉 |000〉 + |011〉 + |122〉

span{Ψ0,Ψ2} |000〉 + |011〉 + |022〉 + |101〉

span{Ψ1,Ψ2}
|000〉 + |011〉+ |022〉 + |101〉 + |112〉
|000〉 + |011〉+ |022〉 + |112〉 + |120〉
|000〉 + |011〉+ |022〉 + |120〉 + |101〉
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We did not consider the case Π = span{Ψ2,Ψ2}. This is due to that any two-

dimensional subspace in C
3 ⊗C

3 contains at least one product vector Ψ0 or one entangled

vector Ψ1 with coefficient matrix rank two. This can be seen in this way: Let V be a

two-dimensional subspace of C
3 ⊗ C

3. Without loss of generality two rank-3 entangled

vectors can be chosen as generators of V with coefficient matrices given by C1 = I and

C2 being an arbitrary rank-3 matrix in the product canonical basis. Then it is always

possible to find non-null complex numbers α and β such that αI + βC2 has rank one or

two: because −β/α must be chosen to be an eigenvalues of C2, and if two eigenvalue of

C2 is the same, αI + βC2 will have rank one.

3.3 The case of dim Π = 3

We first consider Π = span{Ψ0,Ψ0,Ψ0}. One of the subcases is Π = span{φ ⊗ ψ1, φ ⊗
ψ2, φ ⊗ ψ3}. In this case, w1 = u11φ ⊗ ψ1 + u12φ ⊗ ψ2 + u13φ ⊗ ψ3, w2 = u21φ ⊗ ψ1 +

u22φ ⊗ ψ2 + u23φ ⊗ ψ3 and w3 = u31φ⊗ ψ1 + u32φ⊗ ψ2 + u33φ⊗ ψ3, with the matrix of

entries uij rank three. Since w1, w2 and w3 are linearly independent, we choose the ILOS

F [1], F [2] and F [3] such that

F
[1]
1 (v1) =

1

σ1
e1, F

[1]
1 (v2) =

1

σ2
e2, F

[1]
1 (v3) =

1

σ3
e3, F

[1]
2 =









u∗11 u∗12 u∗13
u∗21 u∗22 u∗23
u∗31 u∗32 u∗33









−1

,

F [1] = F
[1]
2 F

[1]
1 , F [2](φ) = e1, F [3](ψ1) = e1, F [3](ψ2) = e2, F [3](ψ2) = e2.

Then the new coefficient matrix is then

C̄ = F
[1]
2









1
σ1

0 0

0 1
σ2

0

0 0 1
σ3

















σ1 0 0

0 σ2 0

0 0 σ3

















u∗11 u∗12 u∗13 0 0 0 0 0 0

u∗21 u∗22 u∗23 0 0 0 0 0 0

u∗31 u∗32 u∗33 0 0 0 0 0 0









=









1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0









which corresponds to the state |000〉 + |101〉 + |202〉.
By investigating the rest cases similarly, all together we have the following canonical

states under SLOCC in this class:
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Class Canonical vector

span{Ψ0,Ψ0,Ψ0}

|000〉 + |101〉+ |202〉
|000〉 + |110〉+ |220〉
|000〉 + |111〉+ |202〉
|000〉 + |111〉+ |220〉
|000〉 + |111〉+ |201〉
|000〉 + |111〉+ |222〉

span{Ψ0,Ψ0,Ψ1} |000〉 + |011〉 + |1φϕ〉 + |2χψ〉

span{Ψ0,Ψ0,Ψ2}
|000〉 + |011〉 + |022〉+ |101〉 + |202〉
|000〉 + |011〉 + |022〉+ |110〉 + |220〉
|000〉 + |011〉 + |022〉+ |101〉 + |212〉

span{Ψ1,Ψ1,Ψ0}
|000〉 + |011〉+ |101〉+ |112〉 + |2φϕ〉
|000〉 + |011〉+ |112〉+ |120〉 + |2φϕ〉
|000〉 + |011〉+ |120〉+ |101〉 + |2φϕ〉

span{Ψ1,Ψ1,Ψ1}

|000〉 + |011〉 + |101〉 + |112〉 + |202〉 + |221〉
|000〉 + |011〉 + |101〉 + |112〉 + |210〉 + |202〉
|000〉 + |011〉 + |101〉 + |112〉 + |221〉 + |210〉
|000〉 + |011〉 + |112〉 + |120〉 + |202〉 + |221〉
|000〉 + |011〉 + |112〉 + |120〉 + |221〉 + |210〉
|000〉 + |011〉 + |120〉 + |101〉 + |221〉 + |210〉

span{Ψ1,Ψ1,Ψ2}
|000〉 + |011〉 + |022〉 + |101〉+ |112〉 + |202〉 + |221〉
|000〉 + |011〉 + |022〉 + |101〉+ |112〉 + |210〉 + |202〉
|000〉 + |011〉 + |022〉 + |101〉+ |112〉 + |221〉 + |210〉

span{Ψ2,Ψ1,Ψ0}
|000〉 + |011〉 + |022〉 + |101〉 + |112〉 + |202〉
|000〉 + |011〉 + |022〉 + |101〉 + |112〉 + |220〉
|000〉 + |011〉 + |022〉 + |101〉 + |112〉 + |221〉

where φ, ϕ, χ, ψ are pure states in C
3.

According to structures of the space Π, we have got that three qutrits can be entangled

in twelve inequivalent ways under SLOCC, where the states in the class of dim Π = 1,

the first two states in span{Ψ0,Ψ0} and span{Ψ0,Ψ0,Ψ0} are either fully or bi-separable.

4 Conclusion and Remarks

We have shown that two and three-qutrit entangled states can be classified into two

and twelve inequivalent types respectively under stochastic local operations and classical
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communication, based upon the analysis of the structure of the right singular subspace

of the coefficient matrix of the states in an arbitrary conical product base.

The range criterion [9] to judge whether two pure states are inequivalent under SLOCC,

classifies multipartite entanglement by analyzing the structure of the ranges of the states.

In fact to study the range of a state is equivalent to study the right singular subspace of

the state. As the ways of entanglement are concerned, the result of theorem 2 in [9] is

included in our result (in section 3.2).

The way of classifying pure states under SLOCC can be generalized to high-dimensional

case by investigating the structures of the space Π. It is easily seen that there are n types

of pure states in the space C
n⊗C

n under SLOCC. For the pure stats in C
n⊗C

n⊗C
n, one can

also deal with their classification according to the dimensions of right singular subspace:

If the dimensions of the subspace is 2, there will be C2
n+(n−1) families of entanglement; If

the dimension of the subspace is 3, then C3
n +2(C2

n−1)+(n−1) families; ...; If the dimen-

sion of the subspace is n−1, then Cn−1
n +(n−2)(Cn−2

n −1)+...+2(C2
n−1)+(n−1) families.

All together the number of the classification is (n−1)2+
∑n

i=2[(1+ i(n−i))Cn−i
n −i(n−i)],

where Cn−i
n = n!/i!(n− i)!. For instance for n = 2, we have that, a result of [8], two qubits

can be entangled in two inequivalent ways.
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