Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

On Stokes Operators with Variable Viscosity in
Bounded and Unbounded Domains

(revised version: October 2008)

by
Helmut Abels, and Yutaka Terasawa

Preprint no.: 25 2008







On Stokes Operators with Variable Viscosity in
Bounded and Unbounded Domains

Helmut Abels, Yutaka Terasawa*

October 17, 2008

Abstract

We consider a generalization of the Stokes resolvent equation, where the
constant viscosity is replaced by a general given positive function. Such a
system arises in many situations as linearized system, when the viscosity of
an incompressible, viscous fluid depends on some other quantities. We prove
that an associated Stokes-like operator generates an analytic semi-group and
admits a bounded H-calculus, which implies the maximal L%-regularity of the
corresponding parabolic evolution equaition. The analysis is done for a large
class of unbounded domains with Wf_;—boundary for some r > d with r > q.
In particular, the existence of an L9-Helmholtz projection is assumed.

Key words: Stokes operator, Stokes equation, unbounded domains, bounded imag-

inary powers, H,-calculus
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1 Introduction and Assumptions

We consider the following Stokes-like resolvent system

M —div(2v(z)Dv) + Vp = f in Q,
divv =g in Q,

vlp, =0 on I'y,

A~ N N N
—_ = =
= W N =
~— N e S

n-T(v,p)lr, =a on Iy,
where v: Q — R? is the velocity of the fluid, p: Q — R is the pressure,

T(v,p) = 2v(x)Dv — pl

*Research was supported by a research fellowships of the Japan Society for the Promotion of
Science for young scientists.



2 1 INTRODUCTION AND ASSUMPTIONS

is the stress tensor, Dv = (Vv + VuT), v: Q@ — (0,00) is a variable viscosity
coefficient, and 0 C R?, d > 2, is a suitable domain with boundary 092 = I'; U T,
consisting of two closed, disjoint (possibly empty) components I';, j = 1,2. Moreover,
we denote S(v) = 2vDuw.

In the case that v(z) = 1y € (0,00) is independent of = the latter system was
extensively studied in many kinds of different domains relevant for mathematical fluid
mechanics. The system arises as linear system of the non-stationary Navier-Stokes
equations for incompressible fluids after Laplace transformation, which replaces the
derivative in time by a spectral parameter A. But in many situations the viscosity v
of an incompressible fluid depends on some quantities as e.g. the shear rate |Dv| in
the case of some non-Newtonian fluids, cf. e.g. Malek et al. [40], or a concentration
¢ as in the case of diffuse interface models for free boundary value problems, cf.
e.g. Abels [4].

First results on general non-stationary Stokes systems, including the latter case
of variable viscosity, were obtained by Solonnikov [50, 49| in L%-Sobolev spaces and
weighted Holder spaces and Bothe and Priifs [20] in L9-Sobolev spaces, where ap-
plications to non-Newtonian fluids are treated as well. Some results on the Stokes
system with variable viscosity in L2-Sobolev spaces can also be found in [4, 13], where
applications to a diffuse interface models are also treated. Finally, we note that La-
dyzenskaja and Solonnikov [42] and later Danchin [22] obtained results for a similar
non-stationary Stokes system with variable density instead of variable viscosity.

The purpose of the present contribution is to study the (generalized) Stokes re-
solvent equation (1.1)-(1.4) and an associated Stokes operator in L?-Sobolev spaces,
1 < g < 00, in a class of general bounded and unbounded domain, which is similar
to the class in [8] and which covers most cases studied so far in the case of constant
viscosity. More precisely, we will show that the associated Stokes operator —A,, de-
fined below, generates an analytic semi-group e~*4¢, ¢ > 0, on L(Q)% We will even
show that A, admits a bounded H.-calculus in the sense of MclIntosh [44]. This has
several strong implication as will be explained below.

In the case of constant viscosity the boundedness and analyticity of the Stokes
semi-group was proved by Giga [32] for the case of bounded domains, Borchers and
Sohr [18] and Borchers and Varnhorn [19] for the case of an exterior domain, and
Farwig and Sohr [31] in the case of an aperture domain. We refer to Farwig and
Sohr [30] for a general approach to unbounded and bounded domains. The case
of infinite layers and layer-like domains were discussed by Abe and Shibata [2, 3|,
Abe [1], Abels and Wiegner [14], and Abels [12, 10]. The case of an infinite cylinder
was treated by Farwig and Ri |28, 29|. For the proof of bounded imaginary powers or a
bounded H*-calculus in the latter domains we refer to Giga |33, Giga and Sohr [34],
Noll and Saal [46|, Farwig and Ri [28], and Abels |5, 7, 8, 11]. Finally, we refer to
Farwig, Kozono, and Sohr [27] for results on the Stokes system in general unbounded
domains with uniform C%boundary in Sobolev spaces based on L?(Q) N L?(Q) if
2<g<ooand LY(Q)+ L*(Q)if l < g <2

Before we present our main results we state the assumptions on the domain and



related function spaces:

Assumption 1.1 Let 1 < g < oo, let d < 11,79 < 00 such that q,q" < min(ry,rs),
and let v(x) = voo + 1/ (x) such that V'(x) € W (Q) and v(z) > vy > 0 for all z € Q.
Moreover, let Q CR%, d > 2, be a domain and 0Q = I'y UTy with T'1, Ty closed and
disjoint satisfying the following conditions:

(A1)

(A3)

There is a finite covering of Q with relatively open sets Uj, 7 =1,...,m,
such that U; coincides (after rotation) with a relatively open set of ]Riiyj, where

91
R‘vlj = {(2',2q) € R : 2g > ()}, 75 € VV12 "2(RIY). Moreover, suppose
that there are cut-off functions pj,1¢; € C°(Q), j = 1,...,m, such that p;,
Jj =1,....m, is a partition of unity, ¥, = 1 on suppy,, and suppy; C Uj,

j=1...,m.

For every f € L*()4, s = q,q, there is a unique decomposition f = fo + Vp
with fo € Jo(Q) and p € W]p, () where
L (Q)
J(Q) = {f € CR(QUT,): div f = o} ,
Win(©@) = {peWl@):plr, =0}

For every p € WS{FQ(Q), s = q,q, there is a decomposition p = p1 + p2
such that py € WHQ) with pi|r, = 0, py € L{ _(Q) with Vpy, € WXQ) and
[P Vo) lwiey < ClIVPs.

Remarks 1.2 1. Tt is easy to see that (A1) is fulfilled for all kinds of domains

1

with Wri "?-boundary mentioned above. The assumption (A2) guarantees the
existence of a Helmholtz-projection adapted to the boundary conditions (1.3)-
(1.4). We refer to [10, 30, 31, 45, 26, 48] for the validity of the Helmholtz
decomposition for these types of domains for the case I'y = (). Moreover,
(A3) is a technical condition needed in the Section 6 below. It is used to
overcome the difficulty that multiplication with not compactly supported cut-
off functions is not continuous on W;F(Q) in general. The condition is satisfied
if the following extension property is valid: For every p € qu(Q) there is an
extension p € W}(R?) such that plg = p and || Vp||, < C||Vpl|l,. This is the
case for every (e, 00)-domain, cf. |21], in particular, for exterior domains. This
extension property does not hold for layer-like domains, cf. [10, Section 2.4].
Nevertheless (A3) is also valid in layer-like domains, cf. [10, Lemma 2.4].

Let us comment on the regularity assumptions on v and 0€2. First of all,
v e W} (Q) with r; > d implies that multiplication with v defines a continuous
mapping on W;(Q) for every 1 < ¢ < rq, cf. Lemma 2.1 below. In particular,
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this implies that div(2vDv) € LY(Q)? for every v € W2(Q2)? and 1 < ¢ < 7y,
Since we will partly argue by duality, we also require ¢’ < r;. Moreover, since
r>d, W (Q) — Cl_%l(ﬁ). Therefore div(2vDv) = v(Av 4+ Vdive) + Vv -
Do, where Vv - Dv is of lower order and the principal part v(Av + V div o)
has Holder continuous coefficients. The latter property is essential to apply
pseudodifferential operator methods with symbol that are Holder continuous
with respect to the space variable z. Concerning the boundary regularity, we

1
note that every v € Wi_ "2 (R%') can be extended to some I' € W2 (R% ), which
is then used to build suitable coordinate transformations. After transforming
the (reduced) Stokes system on Ri to Ri, the principal part of transformed
differential operators will have coefficients depending on VI' € W\ (R ), which
embeds again to a space of Holder continuous functions since ro > d. Hence
multiplication by VI plays a similar role as multiplication by v and that is
where the conditions related to 71,7y in the assumptions come from. Finally,

1
let us note that, if 9Q is compact, C11(9Q) — Wf,_r'((?Q) — WTQ_%((?Q)
for all 1 < r < r’ < oco. Therefore the local regularity decreases if 7,7
are chosen smaller and the case r; = ry = oo corresponds to the strongest
regularity assumptions. On the other hand, the smaller ry,ry are chosen, the

more restrictive the condition ¢,¢ < min(ry,79) gets.

In some parts of the paper we will assume additionally that the following assumption
holds:

(A4) There is some R > 0 such that for every A € X5 with |A|] > R there is no
non-trivial solution g € W}(Q) with g|r, = 0 of

Mg, 9)o+ (¥Vg,Ve)a =0  forall ¢ € W, (). (1.5)

Here W, 1, (Q) = {¢ € W, () : ¢lr, = 0}. We will show later that (A4) is a
consequence of Assumption 1.1, c¢f. Lemma 6.1 below.
The reduced Stokes operator A, on L4(Q)? is defined as

Ap = —div(yVo) + VPv — Vv Vol (1.6)
D(A,) = {veWXQ)*:v|r, =0,T{v|r, =0},
where Tjv is defined by
() = (0 S@)rlrys (Tlo)y = vdivulr,. (1.7)

Here f,, f, denotes the tangential, normal component, resp., of vector field f at the
1

boundary 92. Moreover, Pv = p; € qu(Q) with pi|r, € W;_E(Fz) is defined as the
solution of

(Vp1,Vpla = V(A= Vdiv)v, V) + (Dv,2Vr @ V), (1.8)
p1|F2 = 2Vanvn



for all p € WC},7F2(Q) = {gp € qu,(Q) t o, = O}. Note that the righthand-side

of (1.8) defines a bounded linear functional on W(}IQ(Q). The existence of a so-
lution of (1.8)-(1.9) that is unique (upto a constant if I'y = (}) follows from the
existence of a unique Helmholtz decomposition, i.e., (A2), c¢f. Lemma 2.2 below.

Then P: W2(Q)* — {p € W;(Q) :plr, € qu_"(FQ)} is a bounded linear operator.

The connection to the original system is discussed in Section 3 below. We note
that the definition of A,, in particular the lower order term v” Vo, is chosen such
that for all u € D(A,) with divu =0 and v € W;(Q) with v|p,—o,dive =0

(Agu,v)q = (—div(2vDu),v)q + (VPu,v)q
= (2vDu,Dv)g — (n-S(u) - n,v,)r, + (200,Up, V)1, = (2vDu, Dv)o(1.10)

holds.
The main result is the following:

THEOREM 1.3 Let Q C RY d > 2, 6 € (0,7), and q,71,79 be as in Assump-
tion 1.1. Then there is some R > 0 such that (A + A,)~! exists and

Cos
A A Moy < —2 1.11
(A + q) HE(L Q) = 1+ Al ( )
for all X € ¥ with |\| > R. Moreover,
|[ renosagra] <l (112
Tr L(LA(Q))

for every h € Hy(0), where 'r =T'\ Bg(0) and Hy(0) denotes the Banach algebra
of all bounded holomorphic functions h: ¥,_5 — C. In particular, for every ¢ € R
and 0 < &' <0 such that c+ X5 C p(—A,) the shifted reduced Stokes operator c+ A,
admits a bounded H .. -calculus with respect to ¢', i.e.,

he+Ay) = — [ B(=A) A+ c+ A,) 1 d) (1.13)

T omi Jp
s a bounded operator satisfying
1A e+ Al ecza) < CosllhllLee, s (1.14)

for all h € Hy ().

We note that in order to prove (1.14) for all h € H.(9) it is sufficient to show the
estimate for h € H(J), which consists of all h € H,, () such that
[21°

|h(Z)’ S CTWS for all z € 271—_5
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for some s > 0, cf. Denk, Hieber, and Priiss [24, Section 2.4].
We note that (A2) is always true in the case of a bounded domain because of [48]

and since VVT2 g (R41) — CYR1Y) if ry > d. Moreover, (A1) is trivially true and
(A3) is valid too by Poincaré’s inequality. In this case we obtain:

THEOREM 1.4 Let Q C RY d > 2, § € (0,7), and q,71,72 be as in Assump-
tion 1.1. Moreover, assume that Q is bounded and that Ty # (). Then X5 U {0} C
p(=Ay) and

Cys
A A -1 q < q,
1A+ q) ||£(L Q) = L+ [

for all A € 5 U{0}. Moreover, A, admits a bounded H-calculus with respect to §.

Finally, note that, if ¢ + A, admits a bounded H.,-calculus with respect to 0 <
d < 7, then, choosing h(\) = A%, y € R, above, one obtains that ¢ + A, has bounded
imaginary powers (c+ A,)™, which satisfy

(e + A" | £(raqyey < Cellm=), (1.15)

where we note that supyey, [A%| = el/("=9)_ This has two important consequences,
which we summarize in the following. The first one concerns so-called maximal
regularity of the reduced Stokes operator A, and follows from the well-known result
due to Dore and Venni [25, Theorem 3.2] and its extension by Giga and Sohr [35,
Theorem 2.1].

Theorem 1.5 Let 1 < p < o0, 0 < T < oo, and let ,q be as in Assump-
tion 1.1. Moreover, let ¢ € R be such that ¢ + A, s invertible and admits a
bounded H,,-calculus. Then for every f € LP(0,T; L4(Q)?) there is a unique solution
u € Wpl(O,T; Li(Q)) N L*(0,T;D(A,)) of

u'(t)+ (c+ Aput) = f(b), 0<t<T,
uw(0) = 0

Moreover,
[/ || o 0,120y + [ (e 4+ Ag)ullLro,r:z0)y < Ol fl Lo o.1:L9),

where C' does not depend on T.

o1
In particular, in the case of bounded domain with W, -boundary the latter theorem
implies that A, has mazimal regularity on L4(Q)? for all 1 < ¢ < oo with ¢,¢' <
min(ry,72), where d < ry,7, < 0o and v € W ().

As a second application we note that the boundedness of (¢ + A,)" and (1.15)
can be used to characterize the domain of the fractional powers (c+ A4,)*, 0 < o < 1,
as

Dl(e+A,)") = (LU DA



where (.,.)[q) denotes the complex interpolation functor, cf. [34, Proposition 6.1].
Here again ¢ € R is such that c+ A, is invertible and admits a bounded H*°-calculus.

The proof of Theorem 1.3 is based on a similar result for a bent half-space ]Ri‘i, cf.
Theorem 5.1 below, which is obtained by constructing a suitable approximation of
the resolvent (A\+A,)~!. The latter construction uses the technique developed in [11],
combined with newer results on the general calculus of pseudodifferential boundary
value problems studied in [9], adapted to the case of variable viscosity.

The structure of the article is as follows: In Section 2 we summarize some pre-
liminaries and some notation. In Section 3 we discuss how the pressure p and the
divergence equation can be eliminated from (1.1)-(1.4). This uses the ideas of Grubb
and Solonnikov, cf. e.g. [39]. The reduced system contains the non-local operator
Pv, which can be approximated naturally in the class of pseudodifferential bound-
ary value problems going back to Boutet de Monvel |23]| and developed further by
Grubb [37] to parameter-dependent operators and by the first author to the case
of non-smooth symbols [6, 9, 11]. Section 4 is devoted to some needed results on
coordinate transformation and the change of operators under coordinate transfor-
mation. The main step is done in Section 5, where a suitable result for a bent
half-space is proved using the previously mentioned techniques. Using the latter re-
sult, Theorem 1.3 is proved in Section 6. Finally, the result for bounded domains,
i.e., Theorem 1.4, is proved in Section 7.

Acknowledgments: The authors are grateful to Gerd Grubb and one anonymous
referee for several helpful comments to improve the presentation in this contribution.

2 Preliminaries

First of all, N will denote the set of natural numbers (without 0) and Ny := NU{0}.
Moreover, we denote R = {z € R? : 24 > 0}, a ® b = (a;b;)¢,_, for a,b € R, ¢;
denotes the j-th canonical unit vector, and [A, B] = AB— BA the commutator of two
operators A, B. We frequently use the decomposition z = (2/,24) of x € R, where
7' € R denote the first (d — 1)-components of 2. Moreover, we identify R~ with
ORY =R x {0} and 2/ € R*! with (2/,0) in the following. For completeness, we
note that, if v: @ — R? is a suitable vector field, then Vo = (9;u1)%,_,. Moreover,
if A: Q) — R4 ig suitable, then div A = (Z;l:l dja i)y, where A = (a;)f,_,.
If X is a Banach space and X’ is its dual, then

<fag>5<f>g>X/,X:f(g)7 fGX/,QEX,

denotes the duality product.

Let M C RY d > 2. Then CF(M), k € Ny, denotes the set of all k-times
continuously differentiable functions f: M — C such that f and all its derivatives are
bounded. Moreover, C2°(M) = NpenCi(M) and Cioy(M) is the set of all f € C>(M)
with supp f € M compact, and, if Q C R? is a domain, then C5°(2) = CE"&)(Q). The
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usual Lebesgue-space with respect to the Lebesgue measure on 2 and the (d — 1)-
dimensional surface measure on 92 will be denoted by L?(Q2), L(0N2), resp., 1 <
q < 00. Moreover, we use the abbreviations |[|.||; = ||.||e@) and ||.||g.00 = [|-||e@0)-
Furthermore, L{ (Q), 1 < ¢ < oo, is defined as the space of all f: Q — C such that
f € LYBNQ) for all balls B with BNQ # 0. The usual scalar product on L?(M) is
denoted by (.,.)p for M = Q 09Q. Finally, if w: Q — (0, 00), then LP(€;w) denotes
the LP-space with respect to the measure w(x) dz.

In the following the usual Sobolev-Slobodeckij spaces based on L(Q2), 1 < ¢ <
oo, are denoted by W7 (Q2) and W7 (M), s > 0, with norms |||, and |].|[s 460
respectively, cf. e.g. [15], where M C R% is a (d — 1)-dimensional sufficiently smooth
manifold. We note that, if 0 < s < 1, then it is sufficient to assume that M is
C'-manifold to define W7(M) in the usual way. Moreover, W7 (Q2), m € N, denotes
the closure of Cg°(€2) in W;*(€2) and

W (€)== (W), W™ () :== (Wg (), W(09) == (W5 (09))
for m € N and s > 0, Whereé—i-&:l.

Finally, the homogeneous Sobolev space of order 1 is defined as

W (Q) == {pe LL.(Q): Vpe L ()}
normed by ||V - ||,, where functions, which differ by a constant, are identified.
Additionally, F and F~! denote the Fourier and inverse Fourier transformation,

FIE) = (&) = /

Rd

@) ds, Ff) = @) = [ e

R
defined for a suitable function f: R? — C, where d¢ := (27)"¢d¢. Note that in the
following all integrals with respect to a phase & will be scaled by (27)~% as above.
Moreover, we will use partial Fourier transformation

Fome[f1(E€ q) = f(E,2q) = /Rd 1 e (! xg) da’
and the conjugate Fourier transformation F[f](&) = F[f](—¢).

Let (€) = (14 |¢]?)2, € € RY, and let (D,)* = OP((£)*) = F (&) F[]], s € R.
Moreover, S(R?) denotes the space of rapidly decreasing smooth functions f: R — C
and S'(R?) denotes the space of tempered distributions. Recall that the Bessel
potential space H;;(Rd), 1 < g < oo, s€R, is defined as the space of all f € §'(R?)
for which (D,)*f € LY(R?), with norm || f|lgs = [[{Ds)*f|Ls. Moreover, S(R% X)
and H; (R%, X) denote the vector-valued variants, where X is a Banach space. As in
36, 38], the space Hi(RY) = rTH;(R?) is defined as the space of all distributions of
H(R?) restricted to R equipped with the quotient norm. Here and in the following
rf denotes the restriction of f € S'(R?) to RL. We refer to [17, Chapter 6] for
the definition of the usual B;.(R%), s € R, 1 < ¢,r < oo and their interpolation




properties. Moreover, we note that Bj (RY) = W;(R?) for all s > 0,s ¢ N, and
1<qg< o0

Finally, C*(R%) = B2 __(RY), s > 0, denotes the Zygmund space and C*(R%; X) =
B (R4 X) its vector-valued variant for a Banach space X. Note that C*(R%; X) =
C5(R%G X) if s > 0 and s € Ny, cf. e.g. [16, Equation (5.8)]. Here C*(R% X) is
the space of all [s]-times continuously differentiable f: R? — X such that f and all
its derivatives are bounded and 0% f, |a| = [s], is (uniformly) Holder continuous of
degree s — [s]. Here [s| denotes the largest integer not larger than s. The space is
normed by

/]

0% f(x) — 0%
Cs(R%GX) = Z HgngLOO(Rd;X)-F Z sup 19 £ () xf(y)”X,

_ ols=1s]
ll<[s] jal=ls] “*Y [z =yl

In the following, let €2 be a domain as in the Assumption 1.1. First of all, using
the partition of unity assumed in (A2), it is easy to reduce many of the fundamental
statements on the Sobolev spaces W(€2), m < 2, to a bent half space Rz, v E

1
WTQQ_E(Rdfl). Using a suitable coordinate transformation, cf. e.g. Proposition 4.2
below, the statements for the bent half-space can be proved using the corresponding
statement for Ri. In particular, we note that the usual Sobolev embedding theorem
for qu (©) can be proved that way. As a consequence, it is easy to prove the following
lemma:

Lemma 2.1 Let 1 < ¢ < o0 and d < r < oo such that ¢ < r and let Q) be a
domain as in the Assumption 1.1 with ro = r. Then w(f,g)(x) ;= f(z)g(z) defines
a continuous, bilinear mapping 7: W, (Q) x WHQ) — W (Q).

Similarly, the interpolation inequality

1 1
[ fllwp o) < CquHf,q(Q)HfHéV;(Q)

forall1 < g <ooand f € WqQ(Q) can be proved. Furthermore, there is a bounded
extension operator

1 1
E: qu “(0Q) — W, () such that Ealsg = a for all a € qu 7(092).

This extension operator can be easily constructed using the corresponding extension
operator for Ri, the partition of unity due to (A1) and suitable coordinate transfor-

1
mations. Note that the corresponding statement for qu(Q) and W;’E(aQ) are not
true for general unbounded domains; e.g. the statement is not true for an infinite
layer, cf. |10, Remark 2.6.1].

Finally, we note that, if Q and ¢ are as in Assumption 1.1, then (A2) implies that
for every f € L(Q)4, there is a unique p € W;}FQ(Q) (upto a constant if Ty = ()
depending continuously on f such that

(Vp,Vo)a = (f, Vo)  forall p € W)L (). (2.1)

q'\I'a
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Here p is the unique p € W;7F2(Q) such that f = fo + Vp with fy € J,(£2), where we
note that ‘
(fo,Vp)a=0 for all ¢ € W;FQ(Q)

since it holds for all fo € CF (2 UT,) and the latter space is dense in J,(£2) by
definition. For the following we define

Wik, () = (V) 1, (@) (22)

q,l'2

Then for every F' € Wq}12 there is some f € L(Q)% such that || f[| e < C’||F||W7% @
) 9,12

and
(Fohp i, = (F,V9)a  forallpe Wy, ().

q,I'2>" " ¢
This follows from the Hahn-Banach theorem by identifying WQ}TQ(Q) with a closed

subspace of L7 (2)? via the mapping ¢ — V.
We summarize these facts in the following lemma.

Lemma 2.2 Let €, q be as in Assumption 1.1. Then for every F € qulé(Q) and
_1 .
a€ qu 1(0Q) there is a p € Wl (Q) such that

q,I'2

(VD Vo)o = (Fophya v, forall g € Wy r, (9), (2.3)

q'I'2
plr, =a on I's. (2.4)

If Ty #£ 0, p is uniquely determined. If Ty = (), then p is uniquely determined upto a
constant. Moreover, there is some constant C, independent of F' such that

I9Plza@ye < Co (1F s o + IV Alloy)

Proof: First of all, one can easily reduce to the case a = 0 by extending a to some
A€ qu(Q) and considering p— A instead of p and replacing F' by F'—(V A, -)q. There-
fore we can assume that a = 0. Then, as explained above, we find some f € L(Q)¢
such that (F, @) = (f, V) for all ¢ € qu’,Fz(Q) and || fllrae) < C[[F|lyi-1(q)- Now

pE W(II’FQ(Q) solves (2.3), (2.1), resp., if and only if f = fy + Vp, where fy € J,(2),
i.e., p is determined by the Helmholtz decomposition due to (A2). |

3 Reduction of the Stokes System

The aim of this section is to reduce the Stokes system (1.1)-(1.4) for (v, p) to a system
only in terms of the velocity v and to eliminate the divergence equation dive = g.
The idea goes back to Grubb and Solonnikov, cf. e.g. [39].! By this reduction the

In the latter work only the case divv = 0 is considered. A corresponding reduction in the
general case divv = g was first presented in [11].
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pressure can be treated efficiently even in the case of the boundary condition (1.4)
when the pressure enters the boundary condition and therefore cannot be eliminated
from the system by applying a Helmholtz projection.

Now we will present the corresponding redluction for the case of general viscosity.

Let v € W2(Q)%, p € qu(Q) with plr, € W;_E(Fg) be a S?llltion of (1.1)-(1.4), where
we assume that f € LY(Q)?, g € W/ (Q) with g|p, € quj(l“z) and g € WqTEQ(Q), cf.

1
(2.2),a € W;_E(Fg), A € Y, and let 1 < ¢ < oo with ¢,¢ < min(rq,79), where rq, ry
and () are as in Assumption 1.1.
Now we reduce the Stokes system to a system for v by expressing the pressure
p in dependence of v and the data (f,g,a). To this end we multiply (1.1) by an
arbitrary Vo with ¢ € qu,IQ(Q). Then

(vpu v‘P)Q = <f7 v‘P)Q + /\<97 @)Wq}% Wl + (diV(2VDU>, v‘P)Q:

where
(div(2vDv),Ve)q = (v(Av + Vdivoe), Ve)g + (Dv,2Vr @ Vo)gq
= (WA —=Vdiv)v,Vp)a+ (2vVg,V)a + (Dv,2Vr @ Ve)q.

Hence

(Vp,Vpla = ([, Ve)a+ g, 90>W(;132,Wq1/ (©) + (2vVg, Vo)a
+(v(A = Vdiv)v, V)g + (Dv,2Vr @ V)g

for all p € W) 1, (). Now, if Pv € W}(Q) with Pulr, € Wplig(Fg) is the solution of
(1.8)-(1.9), then p = Pv + p, where p is determined by

(VB,Vela = (f,Veda+ Mg ez i, FQ(Q)+(2qu,Vg0)Q, (3.1)
ﬁ|F2 = —an (32)

for all p € qu,h(Q). Hence p depends only on the data (f, g,a). Here we note that
p is uniquely determined by (3.1) (upto a constant if 'y = () due to Lemma 2.2.
This shows that v € W2(Q)? solves

M — div(vVo) + VPv — VIVl = f, in Q,
vlp, =0 on I'y,

(n-S))rlr, = ar on I'y,

N N N N

. . N .
N N

vdivu|r, = vg|r, on Iy,

where

fr=[f—-VD+1vVg. (3.7)
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Here we have used that
div(2vDv) = div(vVov) + V! Vol + vV div.

We call (3.3)-(3.6) the reduced Stokes system. We note that by the definition of
the reduced Stokes operator Ay, cf. (1.6), v € W2(€Q2)¢ solves (1.1)-(1.4) for some
right-hand side f. € LY(Q)? and a, = 0,vg|r, = 0 if and only if v € D(A,) and
A+ Ayv = f.

To summarize we have shown:

. 1
Lemma 3.1 Let f € LI(Q)%, g € WHQ) N WL (Q) with glr, € W, “(T3), a €
1 : 1
qu “(Ty) be given. Then any v € WZ(Q)4, p € W(Q) with p|r, € qu “(Ty)
solving (1.1)-(1.4) is a solution of (3.3)-(3.6) if f, is defined by (3.7) and if p solves
(5.1)-(3.2).
Note that in the reduced Stokes system (3.3)-(3.6) the divergence equation divv =
g does not appear. Hence, if we want to obtain a solution of the original Stokes system
(1.1)-(1.4) by solving the reduced system, it is crucial to prove that dive = g if the

right-hand side is chosen as above. To this end we note that, if f,. is defined by (3.7),
where p solves (3.1)-(3.2), then g can be derived back from f, because of

—(fr: Vo) = Mg, bt i+ (V9, Vo (3:8)

.2’ " ¢q

for all ¢ € W(},m(Q)- On the other hand, if v € WZ(€2)? solves (3.3)-(3.6), then

—(fr, V)o = M(div, 90>W{;§2,W(11,T2 + (vVdivo, Ve)g (3.9)

for all ¢ € qu,FQ

(Q) because of (3.3) multiplied with —V and

(div(vVv), Vo) — (VPu, Ve)a + (VI VeT, V)
= (VAv,Vp)o — (VPv, V) + (Dv,2Vr ® Vy)q = (vV dive, Vy)q

for all p € Wl () due to (1.8).
In order to conclude divv = g we need the following assumption.

(A4%) Let A € C\ (—00,0) be such that there is no non-trivial u € W, () with

Au, p)a + (VVu, Vo) =0 forall ¢ € Wy, 1, (Q).
Note the assumption (A4) is just (A4’) for all A € X5 with [A\| > R and some R > 0.
As mentioned above it will be shown later that (A1)-(A3) imply (A4) and therefore
(A4’) for large A.
Altogether we obtain:
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: _1

Lemma 3.2 Let f € LY(Q)%, g € W) (Q) N W, (Q) with g|r, € qu "(Ty), a €
1

qu "(T'y) be given and let f, be defined as in (3.7) where p solves (3.1)-(3.2). More-

over, assume that (A4’) holds. Then any solution v € W2(Q)* of (8.3)-(3.6) solves

(1.1)-(1.4) where p = Pv+p € qu(Q) and plr, € qu_g<1—‘2). Finally, (3.3)-(3.6)
has no non-trivial solution v € WCIQ(Q)d with right-hand side (f.,a-,vg|r,) = 0 if

and only if (1.1)-(1.4) has no non-trivial solution v € W2(Q)?, p € W;(Q) with
_1
Plr, € qu “(T's) and right-hand side (f,g,a) = 0.

Proof: If v solves (3.3)-(3.6) with f. as in (3.7) and p solving (3.1)-(3.2), then
(3.8)-(3.9) imply

Mg = divv, @)1 gy Lt (vV(g—dive),p) =0  forall p € W, (Q).

On the other hand, (3.6) implies (g — divv)|p, = 0. Therefore g — dive € W, (Q)
and g —dive = 0 by (A4’). Thus v solves (1.2). Concerning the boundary condition,

using (1.4) it can be easily shown that

p‘r2 - (n ’ S(U))H|F2 — Qn,

where (n - S(v))n|r, is equal to 2v0,v,. Hence (1.4) follows. Altogether we obtain
that (v, p) solve (1.1)-(1.4) with p as above.
Finally, assume that (3.3)-(3.6) has no non-trivial solution v € W7(Q) with

right-hand side (f;,a,,vglr,) = 0. Moreover, let v € W2(Q)4, p € WL(Q) with

plr, € W, (I'3) be a solution of (1.1)-(1.4) with (f,g,a) = 0. Then f, = 0 and
therefore v € W2(€2)¢ solves (3.3)-(3.6) with zero right-hand side due to Lemma 3.1.
Hence v = 0 by the assumption and therefore the solutions of (1.1)-(1.4) are unique.

Conversely, let v € W2(Q)? be a solution of (3.3)-(3.6) with right-hand side zero
and assume that (1.1)-(1.4) has no non-trivial solution for zero data. Then (f,,p) =0
if p satisfies (3.1)-(3.2) and if f, satisfies (3.7) for (f,g,a) = 0. Hence (v,p) with
p = Pv solve (1.1)-(1.4) with (f,g,a) = 0 by the first part of the lemma. Conse-
quently v = 0, which proves the converse implication. [ |

4 Coordinate Transformation

. . . 2-1
We start with a simple results on extensions of v € W, ™ (R1).

Lemma 4.1 Lety € WT%;(Rd*l), 1 <r < oo withr>d, and lete > 0. Then there
is some T' € W2(R?) such that T'(z',0) = v(z'), 0,,['(2/,0) = 0 and |0,, T (2, 24)| < e
for all x € R™.
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1
=

Proof: Let I' € W2(R?) be an extension of v € W, (R?1) with 0,,T'(/,0) = 0.

Then Ty = T'(2/, Az4) € W2(R?) is also an extension of v with 9,,T'\(z’,0) = 0 and
102, DAl e 2ty = (A0, Tl ooty =20 0

since W2(R%) — CL(R?Y) due to r > d. Now we can choose A > 0 so small that
I' =T, satisfies the statement of the lemma. [ |

The following proposition states the existence of a suitable coordinate transfor-
mation, which will lead to a nice structure of the boundary symbol operators of the
transformed Stokes system on the half-space. It generalizes a result due to Schu-
macher [47] and is proved similarly.

1
Proposition 4.2 Lety € W, " (RY) withr > d. Then there is some F' € W2(R%)d
such that F: RY — R? is a C'-diffeomorphism, F(R]) = R, F(2/,0) = (2/,~(2")),
and —8,,F(x)|,—0 = n(a’,v(x")), where n denotes the exterior unit normal of ORY.

Proof: The case r = oo was proved in [47]. Hence it only remains to consider the
case d < r < co. Let T € W2(R?) be as in Lemma 4.1 with e = 2. Then we define

Fz) = <xd +$/F(a:)) — wakp(D.)i = F(2) — zakp(Dy)7

where kp(D,)a = ]—"g,,ix, [e= (el 4 (¢")] and

(') = n(@,y(2")) + (0., (2',0) + 1)eq
L (me ) e

VIt V@2 W+ V)P -1

Hence —0,,F(2',0) = n(2/,v(2)) since kp(D;)n|zy—0 = n. Furthermore, F' €
W2(RY)? — CHRY)? is diffeomorphism on R? since F(2',74) is a strictly increas-
ing function in x4 for every fixed 2/ € R% . Moreover, F maps Ri onto Rﬁ

and |[VE Y| < 2 since |[VF — I|~ < . We note that z4kp(D,) is a Pois-
son operator of order —1 in the sense of Definition 5.10 below. Hence fi :=

Takp(Dy )| € W2(R%) because of Theorem 5.15 below. Since J+lore = f-lora =0

and 0y, f+|ops = Op,f-|ope = 7, we conclude that zakp(D,)i € W7 (R?). Further-
more,

|zakp (D)0l o1 ray < Cllzakp(De)ni|lwzmey < CIHVIVHW;*%(W_U

by Theorem 5.15 again. Hence there is some € > 0 such that ||z4kp(Dq)7||c1gay <

L < 1| VF1| 32 provided that ”W”wﬁ%(w—n < e. But then

VF(z) = I+ VI ® eg — Vagkp(Dy)i
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is invertible and

-1
IVE oo <4  provided that |[V'7|| S

Moreover, F': RY — R is globally invertible since y = F(x) is equivalent to z =
FY(y+zakp(D,)n) = Hy(x) and H,: R? — R%is a contraction since |V, H,(z)| < 1.
For the general case we consider v, (z') = y(Az’), A > 0. Then

1 1—-1
[Vl -1 R < C’HV%\HET(Rd_l)HV’y,\HW!(Rd_l) —x—0 0

W, dl)

since > d. Hence we can apply the first part and obtain a C!-diffeomorphism
Fy: R? — RY with respect to v,. But then

F =dy\-10F\ 00, where (0)f)(x) = f(Ax)
is a C'-diffeomorphism with the desired properties. [ |

In the following we denote (F*u)(z) := u(F(x)) for u: R? — Rand (F* 'v)(z) :=
v(F~*(x)) for v: R — R, where F is as in the latter proposition.

_1
Corollary 4.3 Let v € W, " (R4Y) with r > d. Then

F*: W) (RY) — W)(RYL), F*: Wl(Rd) — Wl(Rd) for all 1 < g < oo,
F*: W2(RY) — WZ2(RY) foralll1<g<r

continuously. Moreover, the corresponding statements are true for F*~1. Finally,
if (Fia)(@') = a(@’,1(«')) for a € CHORY) and (Fy~a)(x) = a (F*(x)lna ) for
a € CHRI™Y), then

Fy: WE(OR?) — WP(R)

. . . . . -1
is a bounded mapping for all 1 < q < 0o, 0 < s < 1, with continuous inverse Fy’

Proof: The first statements easily follow from the chain and product rule, where we
note that

V(F*u) = VF(x)(Vu)(F(z))

where VF € W!(R%) and (Vu)(F(z)) € W, (R]) if u € W2(Q). Therefore VFF*(Vu) €
W;(Ri) for all 1 < ¢ <r due to Lemma 2.1.
For the last statement we note that W7 (9R?) is normed by

Ja(z) — ay)]?
lal oo = Nl o + / / do(z) do(y),
2 (OR4) La(dRY) Lo(ord) J La(oR) ‘l’ _ ‘d 1+sq
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where do denotes integration with respect to the surface measure on 8R§ Since
Fy = Flga-1: R — 0RY is a C'-diffeomorphism, ||Fgal|La@e—1) < CllalLo(ora) and

/]Rd I/Rd 1 _|5<ﬁ)s(q o dz' dy
_a(FO( /)>|q / / ’og
<cf, / TR R @I b
) |a Sl )
N C/aued /6Rd |Fyt Fy(y) a1+ dolz) doty) = Cllall

where J(z') = det(VFy(2')VEy(z'))2. Hence Fy: Wi (ORY) — W#(R™") is continu-
ous. The statement for Fj" " is proved in the same way. ]

B, (9R4)

Corollary 4.4 Let d < ry < 00, 1 < ¢ < o0, and let Q C RY, d > 2, be a
domain satzsfqu the assumption (AZ) Then there are linear bounded operators
Ey: Wq (0 — W(Q) and E;: Wq (89) X Wq (89) —W2Q)ifl<qg<r
such that

YoFEoa = a and (%> Eb=1b

g
for alla € W, "(9Q),be Wy 1(9Q) x W, *(5Q).

91
Proof: First let Q = Riﬁ with v € W,, "*(R41). Using Proposition 4.2 and Corol-
lary 4.3, the statement is easily reduced to the corresponding statements for a half-
space R%, where we note that —0;,F™*v|ga-1 = Fg@nvbm = Fyyvforallv € C(lo) (_d

R.).

If Q is a general domain satisfying the assumption (A1), then the statement gor
Ey is easily reduced to the case of finitely many bent half-spaces Rif]. using the par-
tition of unity assumed in (Al). The extension operator E;b can be constructed as
follows: Let v € WZ(Q) be such that v|sq = by, where b = (by,by). Moreover, let

w; € W(IQ(R%) be such that wjlors = 0 and Jpwjlore = ¥jbs — ¥;0,v[ora . Then
J J J
w = Z;VZI p;w; satisfies w|pg = 0 and 0,w|sq = by — 0,v|aq. Therefore E1b:=v+w

has the desired properties. Obviously, the extension operators can be constructed to
become bounded operators. [ |

In the following we will denote the variables and operators corresponding to the
original problem in Rgl by x,&,V,... and of the transformed problem in Ri by
z,§,V,.... Similarly, a(z’,§) will indicate the symbols of the transformed problem
and a(£) the symbols of the model operator (the corresponding operator on R%).

In the following, let U = U(z’) be an orthonormal matrix which maps the exterior

normal vector .
) V(2!
ﬂ(£> - / 1\ 2 ( z(l >)
1+ [V'y(z)]
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on OR? at the point (2/,7(z')) to —eg, Which is the exterior normal on R.
Using this notation,

VE*ly = F* U () A(2) Vv = F* 1 OP(U” (') A(z)i€)v,

where A(z)§ = U(z)(VoF(z))'§ and v € Cl(ﬁi). Then (Al,,—0)" " has the struc-

T (ot 8)-(797 1)

due to Proposition 4.2, where A'(2’,0) depends smoothly on V'y(z’). Hence Al,,—¢
has the same structure with A’(z’,0)~7 replaced by A’(z/,0).

Remark 4.5 Note that relation (4.1) is of much simpler structure as the corre-
sponding relation in the previous work [11, Equation (5.15)]. This leads to some
simplifications in the present proofs. The more complicated structure in [11| was due

/
x . .
), which was used in

xq + y(2)
order to deal with a boundary of regularity C*!. The coordinate transformation due
to Proposition 4.2 admits to work C''-boundary again (if 7, = 0o). But it has the
same structural properties as the coordinate transformation used in [32, 33|, i.e., that
normal directions are preserved at the boundary, which leads to (4.1). Note that, if
one would apply directly the coordinate transformation used in [32, 33|, one would
need higher regularity assumptions on 9 e.g. C*! instead of C11.

to the simple coordinate transformation F(z) = (

In the following we will for simplicity write A(z’) instead of A((z’,0)). Moreover,
we denote yju = (—8xd)ju|8Ri and v,v = n - yv. More generally, the transformed
differential and trace operators needed in the following are considered in the next
lemma.

?mea 4.6 Let v € C’&%(Rﬁ); u € C’&;’)(@i)d, and let F' be as in Proposition 4.2.
en

F*Vv=VFv F‘divu=divF*u, F'Au=AF"u+ RiF*u,
Foynu = v u, Fomv=mFv, FTiu=t(z,D,)F"u,

where

1. V = OP(UT(z')A(2)i€), divu = OP((A(2)if)"U(z"))u, A = — OP(|A(z)¢]),
Tn = —€q - YWU(z'), and M= ﬁz = —%004-

2. Ry is a differential operator of order 1 with L™-coefficients, ro > d.

- I/ A/ N !
9. 1(&, Dou = —oU" ()P (( wChien %f) U
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If additionally vou = 0, then
Fiyn(A = Vdiv)u = ty(2', D) F*u
where to(z2', D;) = OP'((A'(2')ig")" (U ("))

Proof: The proof is done in the same way as in [11, Lemma 5.6] except for the last
statement. In order to prove the last statement, we use the identity

n- (A= Vdiv)ulprs = div; Opulspe if you = 0.

Here div, w = Tr(P,VIW)|gpe for all w € C'(OR])? where W € CY(R%)? is an
arbitrary extension of w and P, = P,(x) denotes the orthogonal projection onto the
tangent space of 8R§ at r € 8]1%1. It is easy to check that

Fy(P)(a') = UM (@) (I — eq ® ea)U ().
Hence
Fy(div,w) = Tr (U (@) (I = eq ® ea)U(z)U" (2) (@) VF*0) [4,=0
= Tr(UT(2)I — eq @ eq) A(2')VF*w) |md:0
= FL [T (UT @) = eq @ ea)A(2)i€ @ ()] |
= Folw [(A2)i€) (U)o(¢,0))]

where v = F"w. From this identity the statement follows because of F§(0,ulgrs) =
y1Eju. [

zq=0

Lemma 4.7 Let d <71y < 00,1 <q¢<7ry, j=0,1, \€C, and let Q CR?, d > 2,
be a domain satisfying the assumption (A1). Then there is a continuous extension

i
operator E;: qu Q) — W2(Q) such that

_i_ 1
Byl + Vgl < © (0" Flallsony + ol oy ) (642
q

for 7 =0,1 and T{Eya = a as well as Eyalsq = a, where T| is defined as in (1.7).

1

Proof: First let j = 0 and let ) = ]Ri, v E WfQ_E(Rd”). Using the coordinate
transformation due Proposition 4.2, the statement is easily reduced to case of a half-
space R‘i In the latter case the statement can be reduced to the case A = 1 by the
same scaling argument as in [38, Section 1.1]. If j = 0 and Q) is a general domain
satisfying the assumption (A1), then one can prove the statement easily with the aid
of the partition of unity and the statement for a bent half space.

Next let 5 = 1. Then we choose Eia € qu(Q) such that Ejalq = 0 and
OnE1alsq = v~'a. By the same arguments as in the case j = 0 one can choose
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Eja such that (4.2) holds. (Again one reduces to the case of a half-space and uses a
simple scaling argument). Then

(I1Eva);, = v((0nEia), + V. Eia,)|y0 = ar +0
(T{Eia), = v(div(I —n®n)Ea)+ (OnEr1a)n)] g0 =0+ an

since Fjalgo = 0. Hence T{Eja = a. [

5 Construction of the Approximative Resolvent

The proof of Theorem 1.3 is based on the following result.

_1
THEOREM 5.1 Let Ri, d>2,ve€ VVTQ2 "2(RI7Y), be a bent half-space, let v, q,r, 19, T
be as in Assumption 1.1, j = 0,1, and let 6 € (0,7). Then there are bounded opera-
tors Rjx: LY(RI)? — W2(R9)?, Gjn: LYRI)Y — W, (RE)? such that

A= divwV ) Rjnf + VGinf = f+ Sjaf inRE, (5.1)
Roflora = 0 on ORS if j =0, (5.2)
TIRiAf =0 on ORS if j =1, (5.3)

Jor every f € LYRI) and X € C\ (—o00,0] as well as
(VG T, V@)Rg = WA = Vdiv)R;\f, V@)Rg + <S},,\f, 90>W;g,wa, (5.4)
Jor all o € W, (RY) with ¢lora =0 if j =1 and
Gipflora = 20(0p R f)nlora + SXf  on OR? (5.5)

where

IN

Cos(L+ A5, (5.6)
< Cus(1+|A])°F (5.7)

187 ll £(zamay) + ||56,A||L(Lq(mg),w ()

Q

1—

! 1
HSLAHg(Lq(Rg),Wq—l(Rg)) + HSA”‘C(M(M)’WLZ

Q=

(ORS))

~

uniformly in X € Xs for some € > 0. Moreover,

A+ AR Al czamay + IV Riallcpamay < Coss (5.8)
1
(L 4+ A2NGialleo@ay + IVGiallerameyy < Cos, (5.9)
| renma i < Clbler (510
I'r L(L1(RZ))

uniformly in X € X5 and h € H(0).
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Remark 5.2 Here the operator G, ) represents the principal part of PR; y, cf. (1.8)-
(1.9) and note that the term V7 Dv is of lower order compared to v(A — V div)wv.
Lower order terms in general will give rise to a contribution to the remainder terms

! "
Sixs Si, and SY.

The theorem will be proved with aid of the calculus of pseudodifferential boundary
value problems with non-smooth coefficient as developed in [9, 11].

5.1 Pseudodifferential Operators with Non-Smooth Coefficients
In the following we denote D, = %6%. and D, = (D,,,...,D,,).

Definition 5.3 Let X be a Banach space and let 7 > 0. Then the symbol space
CTS%(]RCI x R% X), m € R, is the set of all functions p: R x R? — X that are
smooth with respect to & and are in CT(R?) with respect to x satisfying

||D?p(7 €)||CT(Rd;X) S Ca<€>m_‘a|

for all a € N&. Moreover, we define for k € N the semi-norm

Pl = sup (€)1 DER( €)ller -
|oo|<k,£€RC

Finally, C’TSTO(]R”I x R X)) denotes the corresponding space with CT replaced by C™.
Given p € CTST (R xR%; L(Xo, X1)), where X, X; are two Banach spaces, we define

ple.Dou = OP(p(z,€))u = / e7¢p(z, €)i(€)dE  and

pDeo)u = 0Pl = [ [ . umayds (1)

for u € S(R?; Xy) are the associated pseudodifferential operators in L- and R-form,
respectively; also called z-form and y-form. Here the second integral has to be
understood as iterated integral or oscillatory integral, cf. [41, Theorem 2.2|. If
p € CTSTH(RIH x R L( Xy, X1)), then p(a’, Dyr) = OP'(p(2',€')) and p(Dyr, 2') =
OP'(p(y',€')) denote the corresponding pseudodifferential operators acting on func-
tions defined on R4!,

Concerning boundedness on Bessel potential spaces, we recall

THEOREM 5.4 Let 7> 0,1 < qg < o0, me€R, and let Hy, H, be Hilbert spaces.
If p € C"STY (R x R L(Hy, Hy)) and s € (—,7), then p(x, D,) and p(Dy, x) extend
to bounded linear operators

p(z, Dy): H7™(R% Ho) — H;(RY Hy)  and

p(Dy,x): Hi(RY Ho) — H;™(R Hy).
Moreover, the operators depend continuously on the symbols with respect to the oper-
ator norm and the symbol semi-norms.
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We refer to [11, Theorem 3.2| for references and comments on the proof. The con-
tinuous dependence is not stated explicitely there; but this follows from linearity of
the mapping p — (p(z, D,),p(D,,x)) and the fact that the operator norms can be
bounded in terms of the symbol semi-norms only.

Note that the latter theorem is also true for p € C7ST(R? x R% L(Hy, Hy)) since
C™(R% X) =C™(R% X) for 7 € N and (—7,7) is an open interval. (Hence the result
for 7 € N follows from the result for 7/ ¢ N with |s| < 7/ < 7.)

1

In order to deal with the low regularity of v € W (Q) and v € WTQQ_ (R we

need the following commutator estimate.

Lemma 5.5 Let a € BT, (RY), 7 >0, 1 <r < oo, such that T > C;l. Then
la(x), (D:)]: Hy™"(RY) — LA(R?)

15 a bounded operator for all 0 < s < 7,1 < g < oo withq <r and all0 < 0 <
min(1,7 — 4).
The lemma is a consequence of Marschall [43, Corollary 3.4|, where we note that

[a(x), (Da2)°] = (Da)*a(x) — OP(a(x){€)*)-
Next we define a non-smooth variant of the classes of parameter-dependent pseu-
dodifferential operators studied in |37]. To this end, we denote p(&, 1) = (E){((&, p)) L.

Definition 5.6 Let m,v € R. Then C7S{" (R x Riﬂ) is the space of all functions
p(x, &, 1) smooth w.r.t. (& p) and in CT w.r.t. x such that

IDEDip(, & m)llor@ay < Cay(p(&, )71 4 1) (€, pym 1ol
uniformly in (&, 1) € @iﬂ and for all a € N&, j € Nyg. Moreover, let

™ = sup IDEDI( & )l (p(& )T+ 1) THE, )T
lo,j <k, (&,p) R

be the corresponding increasing sequence of semi-norms.

We note that

(&, if v > 0,

(p(galu)y + 1)<£7ﬂ>m = {<§>y<§,u>m—l/ if v <O.

Remark 5.7 If p € OS¢ and m' > m, then p € CTS%’” with |p|,(€m,’”) <
()™= [p|e™) for all k € Ny. Moreover, if m < 0, » > 0 and if we look at p

(m,v)

as a parameter-independent symbol with fixed p > 0, then ]p(.,u)];m) < Clply
uniformly in p € R,.

In order to deal with the symbols after coordinate transformation, we use the
following simple lemma.
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Lemma 5.8 Let p(&, 1) € Sy (R? x @iﬂ), m,v € R, and A € CT(R)¥™> 7 >0,
with A=t € CT(RY)>, Then q(x, &, ) := p(A(x )f ,u) € CTSmV(Rd X @iﬂ), and for
every k € Ny there is some k' € Ny such that |q] ) < C\p[ , where C' depends
only on [ Allcr, 1A~ |- k,m, v, and d.

Proof: The proof is a simple variant of the proof of [11, Lemma 5.4]. |

5.2 Pseudodifferential Boundary Value Problems with Non-
Smooth Coefficients
We recall a non-smooth version of parameter-dependent Green operators developed

in [37] as defined in [11] with the only difference that C%!'-regularity w.r.t. =z is
replaced by C7-regularity for some 7 > 0. We use the notation of [37] except that

viu=(—1)% 8]u|8Rd Recall that R++ =R, xR,.
We start with the definition of the symbol-kernels of non-smooth Poisson, trace,
and singular Green operators.

Definition 5.9 The space C'TSm”(]RNXR ,S(R,)), m,v €R, d, N € N, consists of
all functions f(x,§ , s Ya), which are smooth in (£, 1, yq) € @i xR, are in CT(RYN)
with respect to x, and satisfy
Hydagl//daiD?'f(- £, Ma-)HCT RN;L2 (Ry))
< Cagar(p(€,p) I 1)yt (5.12)
for all € N371 511" € N.
Similarly, the space C’TST(;"(RN X @i, S(K?H)), m,v € R, d,N € N, is the space

of all j:(x,ﬁ’,yd, zq), which are smooth in (£, 1, ya, 24) € Ei X ﬁir and which are in
CT™(RYN) with respect to x such that
”ydak aidaiD f( )HCT RN;L2 . (R%,))

< Cognaoa(p BT 1)y (5.13)

for all o € NI 5,k K 11" € Ny, where p = p(€, i1). Finally, m is called the degree
of the symbols | € CTSI" (RN x RY, K), K = S(R.), S(R,)).

Now the Poisson operators with non-smooth coefficients are defined in almost the
same way as in the smooth case:

Definition 5.10 Let k = k(z,¢,y,) € C7S7 M (R? x K‘j,S(R)), m,v € R. Then
we define the Poisson operator of order m by

k(x, 1, Dy)a = Fol oy | k(x, & pxg)a(€) |, ae SR,



5.2 Pseudodifferential Boundary Value Problems with Non-Smooth Coefficients 23

Finally, we note that the boundary symbol operator k(x,&', u, Dg): C — S(R) is
defined as a one-dimensional operator with symbol-kernel l;:(x,f’,u,yd) for fixed
(/,€', i), which is simply defined by k(x, &, 1, Dg)a = k(x, &, p, x4)a for all a € C.
As usually, Poisson operators can be considered as operator-valued pseudodifferen-
tial operators with values in £(C; H), where H is a suitable space of functions on
Ry, eg. H™R,) or L*(Ry,z%), m,s > 0. Having this in mind, k(D,,2',pu) =
OP'(k(y', &, u, Dq)) denotes the corresponding pseudodifferential operator in y-form
as defined in (5.11).
The trace and singular Green operators are defined as follows:

Definition 5.11 Let m,v € R and let r € Ny.

1. Ifty € CTS{’}(;”(Rd—lei,S(R)), s; € CTST 7 (RTIXREY), j=0,...,r—1,
then the associated trace operator of order m and class r is defined as

—

r—

t(I,,,u, Dx)f = sj(xlauan’)’ij+t0($/>M7Dz)f

J

tO(Ijnuv Dw)f - ‘7::5_’»1—>z’ |:/ EO(x/7§/7M7yd).f(€/’yd) d?/d P
0

Il
o

where f(g’, xq) = Foe[ (L, 2a)].

~ m—1,v =d 2 7 rom—j—1v =d ™
2. If Go € CTSTy (R x Ry, S(R,)), kj € CTST7 (R x R, S(RY)) for
7 =0,...,7r =1, then the associated singular Green operator of order m and
class r is defined as

ﬁ
|
—

g(I,,U/,DI)f - kj(xnuan)rij+90<x7M7D$)f7

<
Il
o

gO('qua Dx)f - fgf}l_)x/ |:/ §0($>§/7N7$d7yd)f(f/ayd) dyd )
0
where Ji is as above and k;i(x, i, D) denotes the Poisson operator with symbol-
kernel k;(x,&, pu,ya) (in z-form).

Finally, the boundary symbol operators t(a', &', u, Dy), g(x,&, 1, Dg) and the corre-
sponding operators in R-form t(D,,z’), g(D,,z) are defined in the same way as for
the Poisson operator. Note that, if ¢/(z/, u, D,) is a trace operator of class 0, then

(t(.ﬁl?,, 22 Dx)@v ¢)Rd—1 = (QD, k(D:w :E,> M)w)]Rj_a (514)

where ]%($/7 5,7 Hs yd) = g(l”, Sla K yd) and (S S(Ri% w € S(Rd_l)‘ Hence trace
operators can be considered as adjoints of Poisson operators plus a sum of usual trace
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operators s;(2, 1, Dy ), cf. e.g. [37, Proposition 2.4.2]. Moreover, if k(x, i, D,) is
a Poisson operator, then

(k(ﬂf,,u, Dx)%SO)Ri = (¢at(Dxaxvﬂ)¢)Rd—1a (515)

where (z, &, yq) = k(z,&,yq) and ¢ € S(Ri), Y € S(RTY).  Similarly, if
go(2', pu, D) is a singular Green operator of class 0 in z-form, then

(g()(.T/, 23 D:t)@? w)Ri = (907 9 (Dxa xla M)¢)Ri (516)

for all p,9 € S(Ei), where §1(x, &, 1, Y4, 2a) = Go(x, &, 1, 2q,yq). We note that
most of the time the symbol kernels l;:(a:,ﬁ’,yd),fo(a:,fﬂyd),go(x,f’,yd,zd) will be
independent of x4, which is denoted by 2z’ instead of x in the symbol-kernel.

We refer to [37] and |9, Definition 5.2| for the definition of the (global) transmis-
sion condition for a pseudodifferential symbol p € S7%(R? x R?) and a variant for
p € CTSTH (R x RY). We will not use this property directly since we will mainly deal
with differential operators or with the mapping property p(D,, x),: LY(Q2) — WqZ(Q)
for p € CTSig(Rd x R?), which holds without the transmission condition. For com-
pleteness we recall the general definition of a Green operator with non-smooth coef-
ficients as in [9].

Definition 5.12 A Green operator (in L-form) of order m € Z, class r € Ny, and
reqularity v € R with coefficients in C” is defined as

_ p(l’, 1, Dx)—i— + g($/7 2 Dac) ]{(I/“u, Dx)
a(z, p, Dy) = ( t(z', 1, Dy) s(@',pt, Do) )

where k(x',pu, D), t(o',p, Dy), and g(z',u, D) are Poisson, trace, and singular
Green operators of order m, reqularity v, and classr, p(x', pu, D)+ = rTp(2’, u, D,)e™,

—d . . . . .
pE CTS%”(RCZ xR, ), is a truncated pseudodifferential operator satisfying the trans-

mission condition in the sense of [9, Definition 5.2] and s € C’T,ST?O_I’”(]Rd*1 X Ri).

In the following we will often restrict ourselves to parameter-independent symbols
and operators. The corresponding symbol classes C7S{ (R x R*™1 K), K =
SR,),S (@i . ), are defined as above with the restriction that the symbols are inde-
pendent of  and the symbol estimates hold for u = 0, cf. |9] for details.

Moreover, if f is a Poisson, trace, or singular Green symbol-kernel, then \f|,(€m’y),
k € N, are the semi-norms (monotonically increasing in k) associated to (5.12), (5.13),
resp., in the usual way, cf. Definitions 5.3 and 5.6. The semi-norms of parameter-
independent symbols will be denoted by |f |,(€m)

Remarks 5.13 1. As in Remark 5.7, | f|"""") < (1u)=¢| f|"™) for all € > 0.
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1
. 2’
regularity v > 0, then f(., ), u > 0 fixed, is a parameter-independent symbol-
kernel of the same degree with |f(., u)];m) < \f]]gmy) uniformly in p > 0. The
same is true for parameter-dependent singular Green symbol-kernels of degree
m < —1.

2. If f is a parameter-dependent Poisson or trace symbol-kernel of degree m < —

Remark 5.14 Let a;(x,&', Dy), j = 1,2, be the boundary symbol operator of a
Poisson, trace, singular Green operator, or a pseudodifferential operators with the
transmission condition of order m; (and class r;) with coefficients in C™7. As observed
in |9, Remark 4.5], the composition ay(z,&’, Dg)as(z’, &', Dy) = a(z,£’, Dg) of the
boundary symbol operators is again a boundary symbol operator if the composition
is well-defined and the coefficients of a, are independent of z;. The boundary symbol
operator of the composition is also denoted by (a; o4 a2)(x, &', Dy).

The following theorem summarizes some mapping properties of trace and singular
Green operators in R-form, which will be used in the following.

THEOREM 5.15 Let 1 < g < oc.

1. Let t € CTSTH (R x R S(Ry)), m € R, be a trace operator of order d and
class 0. Then t(D,,z’) extend to a bounded operator

H(Dy,2'): LYRY) — By *(R1).
2

2. Let g € C"S1 'R xR SR, )), m € R, be a singular Green operator of
order —m and class 0. Then g(D,,z’) extends to a bounded operator

9(Da, ') LYRY) — W' (RY).

All operators depend continuously on the symbols with respect to the operator norm
and the symbol semi-norms.

Proof: The theorem follows directly from |9, Theorem 4.8] and duality using (5.15)-
(5.16). n

The following lemma summarizes the results concerning composition of non-
smooth pseudodifferential operators which we need in Section 5.6.

Lemma 5.16 Letl < ¢ < oo andd < r < oo such that g < r and let dy € Ny. More-
over, let p1(x, D,) = Elalich ao(x) DY be a differential operator of order dy with coef-
ficients a, € WHR?), r > d, for all |a| < dy and let t(2', D,) = > lal<ds—1 D@ )0 Dg
be a differential trace operator of order di — 1, class dy, and with coefficients b, €

1
-5

W (REY).
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1. Let g € CTS g (R x R S(R?.)). Then

)
pl(vaﬂﬁ)g(Dmm) (p1|$d Oodg)

Ha', D,)g(Dy,2) — (t 04 9)(Dy2'): LYRL) — Byy * (R,
)

)-
(Dx,a'): LYRY) — L(RY),
(
(

di—1 _
VOg(D:cyaj) (70 %q g Dx,l’) (Ri) - Bq; q(Rd 1)

with operator norms bounded by C’(pl)\g|,(;d171+€), C(t)|g|§gd171+5), resp., for
some ,C' >0, k € N. Moreover,

t(z', Dy)g(Dy, 2") — (t0q 9)(Dg, ') : LYR

d
+
Y09(Dz, ') — (Y0 0q 9) (D, ') LIY(RL

) = LR

1*%+6)

J R S _
with operator norm bounded by C’(t)|g|,(i Tt , C!g[,ﬁ , resp., for some

e,C>0,keN.
2. Let py € C7S15 (R x RY). Then

(@', Da)p2(D, w)4 = (p1 - p2)(Day )40 LI(RY) — LI(RY)

with operator-norms bounded by C(p1)|p2|§€_d1+5) for some ¢,C > 0, k € Ny.
Moreover, if pe satisfies the (global) transmission condition, cf. [9, Defini-
tion 5.2/, and dy > 1, then
1—1
t(z', Dy)p2(Da, )4 — (t 0a Paley=0)(Da, ') : LYRE) — By “(R)
di—1 _
YoP2( Dz, )+ — (70 0 P2leg=0) (Da, ') : Lq<Ri) — By q(Rd D)

with operator norms bounded by C’(t)|p2|§€_d1+6) for some ,C(t) > 0, k € N.
Finally,

t(a', Dy)p2(Da, 1)1 — (t 0 p2lsy=0) (D, ') : LI(RY) — LYR)
Yop2(Da, )+ — (Y0 0d P2l wg=0) (D, ') 1 LYRL) — LI(RI)

(—z+9)

d1+ 7 4-¢€)
s Clpa|y @7, resp.

with operator norms bounded by C(t )\pg\k

Proof: First we consider the compositions with p;(z, D). Since pi(z,D,) =
Z\a|§d1 aa(z)Dg and Dgps(Dy, x) = OP(£%pa(y, €)) as well as

DgQ(-Dwa lj) = OP/(OPd(§a> © g(y,7 5,7 Dd))7
it suffices to consider the case d; = 0 and p;(z, D,) = a(z). But, using the relations

(@(2)g(De, 2)p, V)rt = (¢, 91(x, Da)a(2)y)r
(@(@)p2(Da, )10, V)re = (¢, P2(x, Do)y 0(2)Y)z
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for all p,¢ € S(@i), cf. (5.16), where Dy(x,&) = po(x,€) and §1(2', & xaq,ya) =
(2’ & yq, xq), the corresponding statements 1.-2. follow from [9, Theorem 3.6, The-
orem 5.9| with the choice 0 < § < min(1,1— %), where g, p; are considers as symbols
of order —d; +efor 0 < e <4.

Concerning the compositions with ¢(z’, D,), one can reduce to the case t(2', D,) =
a(x’)y and dy = 1 similarly as before. Therefore

t(xlv Dm)g(D$7 ZE,) = a(l‘/)fYU.g(D:Ev J]),
t<$l7 Dm)p2<Dw7 $I>+ = a(wl)%}b(Dm $)+a

where vog(D,, ) and yopo(D,,z)s are trace operators of class 0, cf. Remark 5.14.
Let #(D,,z) denote one of them and let s = 1 — % ifg>2and s e (1-— %, 1— %) if
q < 2. Then

(Dar)*a(a")t(Dz,2') = a(2') (Do) (D, @) + [(Do)*, a(a’) (D, 2'),

where (D, )*t(D,,x') is a trace operator of order —% if ¢ > 2 and order s —1if ¢ < 2.
Hence we can apply [9, Theorem 4.13] to the first term (again using (5.14)) and
Lemma 5.5 together with Theorem 5.15 to the second term to prove the statements

of the lemma with B;;E(Rd_l) replaced by H:(R?™') 4+ B: (R*1). If ¢ > 2, then
_1 1
H(R*™) = H; (R — B;q T(R4Y), of. e.g. |51, Section 2.3.3, Remark 4|.

If1 < g <2 then s >1— 2 and we use that H;(R™") — B;;E(Rd_l), cf. [51,
Section 2.3.3, Remark 4| again. This finishes the proof. [ |

Lemma 5.17 Let ty € CT ST (R* x R4 S(R,)) for some >0, m € R. Then

OP,(£0(y7 5/7 Dd) - tNO(y/v Oa 5/7 Dd)) : Lq(Ri) - B‘;Im_g(Rd_l)
with operator norm bounded by C’|t0|§€m_€) for some € > 0.

Proof: Using (5.15) the result directly follows from |9, Theorem 4.11]. [

Finally, we need the following simple lemma when dealing with coordinate trans-
formations.

Lemma 5.18 Let f(£', i, xq) € CTS1 (R! xﬁi,S(EQ), m,v € R, 7 > 0. More-
over, let A(z') € CT(RTH VXD 7 > 0, such that A='(2') € C™(R4-1)(@=1x(d=1),
¢ e CT(RIY x RIY), o) 2 co > 0. Then (o', €' o 2a) = JAW)E e’} €
O (R x Ri,S(@JF)) (m;d Jor every k € Ny there is some /{: € Ny such that
]Q!fcm’y) < C(|A|ler, HA_IHCT)\th’V). The same statement is true if f € CTS7" (R

@i,S(EiJF)) is independent of ' and if we set

g(xlv fla W, T4, yd) = f(A(:LJ)glv 22 C(fL’/)ZL‘d, C<m/)yd)'
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Proof: The proof of the lemma is the same as the proof of [11, Lemma 5.5] just
replacing C%!'-norms by C"-norms. |

. T amwimda] L Bl o . e mde] L Sl o2
Finally, if k,¢ € S7" (R x RJF,S(RJQ) and g € CTST (R x Ry, S(R.,)),
then we define for ¢ > 0 and a € C, f € S(R})

k(2 € pyeDa)a = k(a',& p ¢ wa)a,
t(x' & pu,cDy)f = c_l/ t(2', €, e Yya) £ (ya) dya,
0

g(a', &, eDy)f = ¢ /Ooofl(x’,é’, py ¢ wa, ¢ ya) £ (Ya) dya-
These definitions are motivated by the relations
k(.,¢Da) = 6c-1k(., Dg), t(.,cDa) =t(., Da)oc, g(.,cDg) = dc-19(., Da)dc,
where 0, f(z4) = f(rzy) for r > 0, where we note that

0e-1p(Dz,)de = OPqy(p(céa))

for every suitable function p: R — R. Because of the latter relation, the scaling Dy —
cDy is consistent with composition of operators in the sense that a; (., cDg)as(.,cDy) =
(a1 o4 az)(.,cDy) for any Poisson, trace, and singular Green operators a;, j = 1,2,
such that the composition is well-defined. Finally, we note that the choice of the
scaling above differs slightly from the one used in |11, Section 5.2|.

5.3 The Model Operators of the Reduced Stokes Equations
in R‘i with unit viscosity

In this section we summarize some results on the boundary symbol operator of the
reduced Stokes equation in R? with unit viscosity as discussed in [11, Section 5|.

In the following we use the relation A = €2 for > 0,0 € (—4,0) respectively
A € 35 for some § € (0,7) arbitrary but fixed. Most of the time we will write all
symbol-kernels and boundary symbol operators in dependence of A € X5 instead of i
having in mind that in the estimates for the symbol-kernel classes the latter relation
for p and A is used.

First of all, let

2 if N2 4 D24 k(e DAE D
= (4T K )
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j=0,1,60 € (—m,m), be the model operator of the reduced Stokes equations, where

H(€', DaJa = s ( G ) o K€ Da=c e (o
(&', Dg)u = i€ 9qu' (0), t7(&', Dy)u = 204u4(0),

/ ! / ! 13 a !

t(€ Da)u = u(0), i o= (i o))

for a € C¢ and u € S(R, ).

We note that these model operators are obtained by considering the reduced
Stokes system (3.3)-(3.6) with unit viscosity v(z) = 1 in @ = R% and applying
Fourier transformation in tangential direction 2’ € R?!. In that case either only
the Dirichlet boundary condition (3.5) is considered, which corresponds to the case
jJ = 0 above and the choice I'y = 0R‘i and I'y; = (), or only the Neumann type
boundary condition (3.6) is present, which is denoted by 7 = 1 above and is obtained
by choosing I'y = (), T’y = OR%. Here P is replaced by K3(E', Da)t; (€', Da) since (1.8)-
(1.9) is in the case v = 1 the weak formulation of the Laplace equation Ap; = 0
together with either Neumann (5 = 0) or Dirichlet boundary condition (j = 1).
Calculating the solution of (1.8)-(1.9) explicitely in this case @ = R%, v = 1 after
(partial) Fourier transformation, one obtains k7 (&', Dy)t;(&', Dg)u for given u.

Note that the definition of t}(¢’, Dy) and k{ (&', D,) differs from the definitions in
[11], but the product k{ (&', Da)th (&', Dyg) stays the same.  The present decomposition
is more suitable for the following. Here [.] denotes a smooth function with [¢'] = |¢/|
if |¢] > 1and [¢] > L if [¢'] < 1.

The following theorem summarizes the essential properties of the model operator
shown in [11].

THEOREM 5.19 Let 0 < 6 < 7w and let 0 € [=0,6]. Then there is some ¢y > 0
such that

a;)\(g’,,u,pd) = ag(fl,,u,Dd): HZ(R,)* — L*(R,)4 x C?

is bijective for all |(&',u)| > ¢o. Moreover, a;f(é”,p,Dd)_l is a boundary symbol
operator of order —2, class 0, and reqularity % Finally,

(€D (1) = (€ Da)f + a5al€DF = (€ DS
Jor [ e S(RL), where X = €12, pi(€§) = A+ [E*)" and g5 (€', Da) satisfies

< Cograr (€)Ml (5.17)
X

/ W(—\)DE g (€. Da) dA
I'r

for X = L(LA(Ry;2,%), HY (Ry)) and X = L(Hy° (Ry), L2(Ry; 2%)) uniformly in
¢ eR forallh € HG),0< 8 <1 o/ e Ng™'. Here 'r =T\ Bg and I = 9%
for some R > Rg := c2.
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Proof: The first part is the content of [11, Lemma 5.1]. The validity of (5.17) follows
from [11, Theorem 5.13]. More precisely, from [11, Theorem 5.13] we obtain that

for X = L(L2(R; |z4|™"), HJ (R)) and X = L(H;° (R), L*(R; |z4|")) uniformly in
geR forallh € H(),0<d <1, o € NJ ', where

< G50 (€)M

[ HENDEG D
I'r X

G A€ D) f = / G A€ 20 ya) F () dya

for f € L*(R;|zq|~") U H{‘s/(R) and g7, (&', 24, ya) is extended by zero for x4 < 0
or yg < 0. Since g7,(¢',Da) = r+g5,(& Da)es and e : Hy" (R.) — Hy®(R) is
continues for 0 < ¢’ < 1, (5.17) follows. |

Furthermore, we note that
OPy(A + [¢[1) g5, (€'s Da) f = —kj (&, Da)t; (€', Da)rf (€', Da) (5.18)
since OPg(\ + [£]*)pa(&, Dy) f = f.

5.4 The Model Operators of the Reduced Stokes Equations
in R‘i with general viscosity

First of all, we note that, if (v,p) is a solution of the Stokes equation resolvent
equation in R? for v = const. > 0, then (w(z),q(z)) = (v(vzz), v 2p(vaz)) is a
solution of the Stokes equation with unit viscosity. This scaling is also valid on
the level of the boundary symbol operators for the reduced Stokes system as follows:
After partial Fourier transformation the reduced Stokes equation on ]Ri with constant
viscosity v becomes

()\ + l/|§,|2 + VD?l)fL(Id) + k;(gl, Dd)l/t;(f/, Dd)ﬂ($d> = f(l’d), Tgq > 0,
V(' Do)t = a

provided that |£'| > 1 where kj, 13, t;- are as in the previous section. Now we use that

1 1 ryo 1 1
k§(£,7 Dd)yt§(§,7 Dd) == k;(y2€/, VQDd)tj(l/le, V2 _Dd)7
VA€, Da) = (3¢, w3 Dy)
Altogether we see that the boundary symbol operator of the reduced Stokes equation

in RY with viscosity v > 0 is

1 0_
0 v

ab:l’(é/’ D)= ( > a;)\(yéfl,y%l)d),



5.5 Symbols of the Reduced Stokes Equations in ]Rgl 31

where a}, (¢, Dg) = aj(&', p, Dg) is the boundary symbol operator of the reduced

Stokes equation with unit viscosity as defined above and the factor v2 only acts on
the boundary data.

91 —
Finally, we note that there is some g, € CTSLOQ’2 (RY x Rd+1) (independent of x)
such that

&' 1 1 1 1 1 1 1 1 1
(gi) vagj\(v2€,v2D,) = k;(uﬁfl,yﬁDd)tg(uié/, VﬁDd)r;A(Vﬁg’WiDd)
= —OP4(\ + v[€?) g5, (vE€, 13 Dy) (5.19)

because of (5.18). In particular, this implies

<_ad>17j7/%gj,>\(V%£/7VéDd) = V%tg(uéé’,V%Dd)r;-’/\(uég’,y%Dd)
xq=0 ’
= wli(&, Dg)r} (V2 v Dy) (5.20)
and ) 1
(€' = 90)gja(w2€,v2Da) =0 in (0,00). (5.21)

5.5 Symbols of the Reduced Stokes Equations in Rg

As we have seen in Section 4 coordinate transformation acts on the principal symbol
as

a(§) ~ a(a', §) = a(A(z)§)
with an additional factor U (z) on the left if the range of the operator consists of
vector fields and additional factor U(x) on the right if the domain of the operator

consists of vector fields. Therefore we define the principal boundary symbol operator
for the reduced Stokes equation R? by

a5\, €, Dg) = UT(2') diag(I, v(x')2)a’ \ (v(2') 2 A'(2')¢', v(a') 2 DU (2'),
where v = F*v and v(z') = v(2/,0). Hence
Q;:)_\l(x/a 5/’ Dd)
= UT(2")a}y (u(a!)2 A'(2)€, v(a') Dy) diag(1, v(a')~

.

W), (5.22)

This is the essential formula for the construction of the parametrix.
Moreover, we set

(2,0, Dy) f = g§j;1(:c’,§’, Dy) (5) : feSERy).

Then
E;,)\(x/7 07 6,7 Dd)f = Z_j)\([ﬁ,’ Oa 5/’ Dd)-i—f + 2;)\(55/7 fla Dd)f
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where p, (z,6) = (A + p(z)|A(x)&[*) !
g \(@, &, Da) f = U() g\ (v2 () A' ()€, v2 (') Da)U (2)) . (5.23)
Finally, we set for = = (2/, x4) with 24 > 0
iA@' Da)f = p, (,€', Da)+ f + g}, (2", Da) f

and we define the parametrix of the reduced Stokes system on the transformed R;l
as

riA(Da, ) = p,(Da, 1)+ + g (Do 2) (5.24)

For the general construction of a parametrix in the case of non-smooth coefficients
we refer to [9, Section 6].

Remark 5.20 We note that p)(§) = (A+[|*) ! satisfies the transmission condition
because of [37, Theorem 2.2.13] and since every polynomial in £ satisfies the trans-
mission condition. Therefore p, (x,&) satisfies the global transmission condition in
the sense of |9, Definition 5.2] Because of [9, Remark 5.3].

We have to estimate the semi-norms of the transformed symbols. Because of
1—L
(4.1) and V'y € Wy, 2 (R*!) — C(R) with 7, = 1 — £ > 0, we have A'(2),
1—L
AN o), e(z') € C2(RYY). Moreover, v(x)|,—0 € Wy, ™ (RT1) — 7 (R1) with

n=1- % > (. Hence we can apply Lemma 5.8 and Lemma 5.18 to obtain:

Corollary 5.21 Let a},(z',¢', Da), j = 0,1, be the transformed boundary symbol
operators of the reduced Stokes equations defined above. Then a’(z',¢', pu, Dg) =
ai\(2',&, Dy) and [g’_l(x,g/,,u, Dy) are Green symbols of order 2, —2, respectively,
reqularity %7 and CT-smoothness in x' for 7 = min(1 — £,1 — i), Moreover, the
semi-norms of the symbols are uniformly bounded in 0 € [ (5 J] for any 6 € (0,m).

THEOREM 5.22 Let § € (0,7), Ry = ¢2 > 0 be the constant in Theorem 5.19,
and g;/\(a:’,f',Dd) be defined as in (5.23) with j = 0,1. Then

L(La(R4))

/ B(=N)g" (De, ) dA
g =7,

for every h € H(S) and R > max{Ry, 1}.
Proof: By (5.23) and (5.17), we obtain

< G500 (€)1
CT(X)

| NDE G 6 D)y
I'r ’



5.5 Symbols of the Reduced Stokes Equations in ]Rg 33

for X = L(LA(Ry;27%), HY (Ry)) and X = z( 5V (R, L2(Ry; %)) uniformly in
& eRforall h e H(é) 0<¥§<3,de Nd-t, Hence Theorem 5.4 implies

/ B(=N)g! (D a') dA
FR ’

L(L2(R4—1;Hy),Le(R4~1;Hy))

where (Ho, H) = (L’(Ry;2;”), H (Ry)) or (Ho, Hi) = (Hy* (Ry), L*(Ry; ).

Now, if 1 < ¢ < 2, then one uses the interpolation inclusions
(LP(Ry,ap), LA(Ry,29))oq © LYRy), (Hy” (Ry), Hy(Ry))o 2 LURy),
where 0 < ¢’ < % -5 <6<z, 0= ( —3—=08)/(0 -0, cf. eg. [11, Lemma 2.1],

and (.,.)p, denotes the real mterpolatlon functor. This implies the statement in this
case. If 2 < ¢ < oo, then one uses instead

(LR 2, ), 2R ")) 2 LURY), (HY (Ry), HY(R))o, C LU(Ry),

where 0 < ¢ < %—% <d<i,andf=(3— % —0")/(0 =10, cf. e.g. [11, Lemma 2.1]
again. This finishes the proof. [

For the pseudodifferential operator part 1_7,\(95’ D,) we can apply:

Lemma 5.23 Let 1 < ¢ < o0, R > 0, and 6 € (0,7). Then p,(2,§) = (A +
v(2)|A(2)E]P)7L, 2 e RY, € € R, with A, At € CT(RY)¥4, v, vt € CT(RY) satisfies

S C&,R,a|lh||oo<€>_|al
C‘r

/F (=N Dgp, (., €) dA

uniformly in & € R, for all o € N¢ and h € H(9).

Proof: The proof is literally the same as in [11, Lemma 5.14] just replacing C%!-
norms by C"-norms. [

Now we are in the position to prove the following main step in the proof of
Theorem 5.1:

THEOREM 5.24 Let 1 < q < 00, a € CT(RY) with 7 > 0,0 < § < 7w, A\ €
Y5, and let 17 \(Dy, ) be as above. Then 1%, (D,, ) extends to a bounded operator
17 (Dava): LIRL)! — W2RL)! and

(A = 2A)5 (Do, 2) f +Ng, (Do ') f = f+ Sjaf i R, (5.25)
ti (@ ,Dx)_j,k( o @) f =S5\ f on OR: (5.26)
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for every f € Lq(Rz)d where gj)\(Dz,x’) is a singular Green operator of order —1,

class 0, and reqularity % Moreover,
(ZQM(DJ;, ) f, aZs@) -
= (Z(é - M)E;,,\(Dmx)f; GZ‘P)M + <S§:)\f7 90>W{;017qu, (5-27)

for all p € W(}(R‘i) with ple,—0 =0 if j =1,

9,7 (Do, &) flogs = 6(2', Do)ri \(Day ) f + SYf o ORY, (5.28)
and

HSj,AfHLq(Ri) + |‘SJ/¥/\fHW;*J'*%(Rd_1) < Oq,5<)‘>_EHfHLfI(Ri)> (5-29)
HSQ‘CAfHijg(Ri)) + HS/AHfHW;*%(Rd_I) < CosN) NSl zagey, (5.30)
NI D)8 Fllzagaty < CoslN) 1l age) (5.31)

uniformly in X\ € X5, [ € Lq(Ri)d for some € > 0. Finally,
<>‘>H£§,)\(Dﬂ?7x)”ﬁ(L‘?(Ri)) + ||v2f;,/\(Dr7x)”L(Lq(Ri)) < Cys: (5.32)
<)‘>%||g;7/\(Dx7x/)”L(Lq(Ri)) +IVg, (D, ) zaey < Coo (5.33)

uniformly in X\ € 35, |A| > Ry, where Ry is as in Theorem 5.19.

Proof: First of all, because of Corollary 5.21, Theorem 5.4, Theorem 5.15.2, and
Remarks 5.7 and 5.13,

25 (D, @)1 LARY)T — WI(RE)

with operator norm uniformly bounded in A\ € X5, |[A\| > Ry, 0 € (0,7). Con-
sidering p (z,¢), g;A(x’,f’, Tpn,Yn) as symbol(-kernels) of order 0 with symbol semi-

norms bounded byng(l + |A])7!, cf. Remark 5.7 and Remark 5.13.1, we conclude
IRjalloipageey < Cs(1+[A[)~". Hence (5.32) holds.
In order to show (5.25), we calculate

(A= VAT (D, 2)f = (A= 2A)p, (D7) f + (A= 2A)g , (Dy, ') f
= OP(g,(4,9)p,(y,€)) + OP(OPu(q, (¥, 0,6))+97 (v, €', Da)) + Sjnf
= [+ 0P (q,(4,0.€ Da)1g (4, Da)) f + 5]
where g, (z,€) = A + v(2)|A(2)¢[* and

~ (—2+¢) (=349 . (—2,0) _|(=30)
HSj’AHE(M(Ri)) =C ’B/\‘k * ‘gﬂ?\‘k SO ‘]—)/\‘k + ’gﬁ\‘k
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uniformly in A € 35, |A\| > Ry, for some ¢ > 0 and k£ € N because of Lemma 5.16
with d; = 2, Remark 5.7, and Remark 5.13.1. Next

/ !/ T / ! / Al ! ! / !
0,0 €002, 0,600 = v/ (YY) g, 000
where . ) )
9,20 Da) = v2(y)gin (2 (V) A'(Y)E 12 (v ) Da)U(Y) (5.34)
and g; (&', Dq) is as in (5.19). Hence

OP/ (Q,\(?/,:fl> Dd)+g;’)\<y/7£/a Dd)) f v (Dxa z )f + )\f

where ||S inllc@aeeyy < C{A)7° uniformly in A € X, [A| = Ry for some ¢ > 0
because of Lemma 5 16 and Remark 5.13 as before. Thus (5.25) holds true with
Six = SjaA+ 55,

Since g; (DI, x') is a parameter-dependent singular Green operator of order —1,

class 0, and regularity 1, we obtain (5.33) by the same arguments as for (5.32). In
order to prove (5.27), we derive for all ¢ € W, (R%) with ¢|,,—o = 0 if j =1 that

(¥, ,(Desa') f.a¥ )y = (aATAOP(igg,, (.9/)f. Vi) |

+

= (OP’(a(y’)A(y’)TA(y’) OP4(i)g, (&', Da)) f, Vs&) o T (Sinf: V)ra

+

= — (OP'(a(y)ug, (€' ¥/ Da)) Fluscos Flraco)
~ (div OP'(a(y) A) " Aly) OP(i€)g, (€4 D)) -0, + (Syaf. Vo)as

+

where ng,AfHLq(Ri < C<)\>_6Hf”Lq(Ri) for some € > 0 because of Lemma 5.16 with
d; = 0. Moreover,

— div OP'(a(y)A(y)" A(y') OPa(i€)g, , (€', Da)) f
= OP'(a(y)(|4'(y)E - d)_jjx(f .y, Da)) =0
due to (5.21) and (5.34). Furthermore, if j = 0, then
OP'(a(y')ug, (€' 4/ Do) flages
= OP'(a(y)t5A(€ ¢ Da)ro A&y, Da)) f
= ca- % OP(a(y)(|AW)E|* — (AW (AWE) )p, (U W))+f + Sonf
+ea 7% OP'(a(y’) OPa(|A(y)E* — (A(y)E) (AW )U (Y )gy (€Y', Da)) f
due to (5.20) and (5.34), where

OP'(t(y,€', Da))f = ea- 7 OP(a(y)(|AW)EP* — (A AW)E) p, (&, 9)U(Y))+f
= OP'(t(y',0,&, Da)) f + S\ f-
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Here OP'(t(y, &', Dq)) is a trace operator of order 0 and class 0 since eg - (|A(y)&]* —

(A(y){)A(y)ﬁ)T)]_o)\(g,y) ((§d>* ) w.r.t. &g, cf. [37, Proposition 2.2.2]. Therefore

Lemma 5.17 implies || /\f|| ) < CN) N fll Lageey for some & > 0. Finally,

<ed % OP(a(y)(|A(y)§|2 - (A(y)é)(A(y)S)TU(y))JQA(S’, )+ f, wlmd:o> o
= - (OP(a(y)(IA(y)§|2 — (AWE(AWE U W), (€ v))+ 1, Vso>Rd

= — (a(a ~ Vdiv)p, (D2, 2)/. V) |+ (S1af. Vo)as

(e 70 OP'(a(y) OPa(AW)EP — (AW )AL TG, (€4 D) lasmo)

= - (OP'(a(y') OP4(JA(y)El> — (AW (AW)E) U Y ))gm(é Y, Da)) [, Vs&)

_ ((A Vdiv)g", (Ds. ') . w) +(§;’,Af,W)Ri

Rd-1

d
R+

since

div OP (a(y) (| A(y)E* — (AW)E (AW U (y)p, (€ v))
= OP(a(y)i€ - (|AW)EI* = (AWE(AWE U (y)p, (€', y)) =0 and
div OP'(a(y") OP4(|A(y)é1* — (A(Y)E(AW)O)U ()G’
= OP'(a(y') OP(i€ - (JA(Y)EI* — (AW)E) (AW )UY))g] (¥’ Da)) = 0.
Here ||S],'/,)\f||L‘I(Ri) < C</\>_E”f||Lq(Rd+) because of Lemma 5.16 and Remark 5.13

again. Furthermore, if j =1,

QQ’A(D:M x/)‘deO = OP/ (flq(yla 5/’ Dd)flx(!//; 5/7 Dd))

= OP' (&5(y/,€, Da)p, (v, 0,€, D)) + OP' (£(4/,€, Da)g, (€', D))
= (¢, D,) (pA(Danx)—&- +9{,>\(Dac7x )) + Sy
due to (5.20), where S}’ satisfies (5.30) because of Lemma 5.16 and Remark 5.13

again.
Finally,

’YOKG,A<Dxa r) = OP/(%T; ,\(y/ £, Dyg)) + Sé,\ = (/),,\
8 (@', Do)ri \(Deyz) = OP'(8(y, &', Da)ri \(v', €', Da)) + S\ = Si.,

where S} | satisfies the estimate in (5.29) because of Lemma 5.16 and Remark 5.13
once more. Using the LI(R?!)-estimates stated in Lemma 5.16, one derives (5.31),
where we note that
(73»0)
+ 19" ) :
ilk

(mi=g+e) | ((Flmi—gte)
‘ + ng J

Mk

C(L+ A2+ (\z\iw

2
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This finishes the proof. [ |

5.6 Proof of Theorem 5.1

Let, Rily be a bent half-space as in the assumptions of Theorem 5.1. Then we define
Rjx:= R}, — E;T|R},, where R, := F*"'OP'(¢) \(y,£, Dg)) F*

as parametrix for the reduced Stokes equations in ]Ri, where 17, is defined in (5.24)
(extended for || < Ry suitably) and Ej is the extension operator due to Lemma 4.7.
Then (5.2)-(5.3) hold. Because of (5.32) and Corollary 4.3, R} : LY(R%)* — W2(R%)?
with operator norm uniformly bounded in A € X5 U {0} for every § € (0,7) and
IR\l czagrayy < Cs(1+|Al)71, A € X5, Therefore Lemma 4.7, (5.26), (5.29), (5.30),
and Lemma 4.6 imply

ESTR A fllzagea) + IV ES TR 3 f | pagray < CO) N f lzagea)- (5.35)

Hence (5.8) holds. Moreover, because of Theorem 5.22 and Lemma 5.23 together
with Theorem 5.4, (5.10) holds, where we note that

since || BT R fllpagay < CN) 7 5N fll Lo for some € > 0.
Due to Lemma 4.6 and (5.8),

< Csllh|lse  for all h € H(0)

/ W(-\)E,T/R, , dA
g L(L9(R2))

(A —divwV))Rin = F*'q (z,D,) OP'(r,(y,&, Da)) F* + S}

where g, (,€) = A+ v(2)|A(2)&]? and S§ = O((1+[A[)~) in L(LI(RY)). Because of
(5.25) and Lemma 4.6 again, we conclude further that

(A —div(wV )R, = I—F*"'Vg (D,a)F"+ 8,

g;
= [ - VGj)\ + §)\

for some Sy = O((1+|A])~¢) in L(LI(R?)) where G\ = F*v_lgjv/\(Dm,x’))F*. Com-
bining this with (5.35), we obtain (5.1) together with the estimate of S; ).

It remains to show (5.4)-(5.5). Using Lemma 4.6 and (5.27) with a = det VF(z),
we obtain

(VGinf, Vo)re = (Vgja(De, o) F* f, det VF (2) VE")ga
= ((A —Ndiv)r; \(Dy, 2)F* f, aZF*gp)Ri + (S]'-’,)\F*f, F*90>ijg,wa,
= (WA =Vdiv)Rjxf,@)re + @Rz (Da, 0) F" f, aNF @)ga + (S F7f, Fg)

)R
= (V(A - VdiV)Rj,)\f7 SO)R?{ + <S;’,>\f7 90>W(;01,qu/
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for all ¢ € W, (R?) with ¢lora = 0 if j = 0, where Ry is a differential operator of
order 1 with L™-coefficients, r, > d. Hence

(Zlej,)\(Da?ax)F*f7 GZF*SO)]Ri < CHﬁj,,\(Da:»l')F*
< CHEj,/\(DCE?x)F*fHW(?’%HVSDHLQ' <O+ M)

for all f € LU(RY), ¢ € WL (R?), and some £ > 0, where 1 = Pl
Combining this with (5.30), we have shown the estimates of S}, stated in (5.6)
(5.7). The identity (5.5) and the estimate of S} follows easily from (5.28), (5.30),
and Lemma 4.6 again. This finishes the proof of Theorem 5.1.

6 Estimates of the Parametrix

Now we define the parametrix R, on ) by

N
Ryf =) xRy apnf,

k=1

where R,, » denotes the approximate resolvent on ]Rigk according to Theorem 5.1,

where the boundary conditions (j = 0, 1) are chosen to fit to the boundary conditions

on 9QNUy. Moreover, we order R,k =1,..., N, such that U,NI'y # 0 and U,NI'y =

for k=1,...,Nyaswellas U, NIy =0 and U, NIy # 0 for k=N, +1,...,N.
We show that

(A —=div(vV:) + VP)R\f = [ + S)f, (6.1)
Ryflr, =0, )
T\ Rxflr, = 0+ S\, (6.3)

where Pu is defined as solution of (1.8)-(1.9) and

Q=

153 fllzaey +ISAFI - T (A2 2|53 Loy < CogN) Ml (64)

2

uniformly in A\ € X5, f € L9(Q)4. First of all, using Theorem 5.1, it is easy to check
that
()\ — le(l/V))RAf + VGAf = f + S)\f

for some S, satisfying the same estimate as in (6.4) and

N
Gaf = ;G 05t
j=1

Here we note that all perturbation terms due to differentiation of the cut-off functions
1
©;,1; decay of order at least (\)~2 due to (5.8)-(5.9). Moreover, (6.2)-(6.3) together
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with the corresponding estimate in (6.4) are proved in a straight forward manner
using Theorem 5.1 again. As mentioned in Remark 5.2 above, each G, \ represents
the principal of PR, \ on ]R;lj. In the same way G represents the principal part of
PRy on ). More precisely, we will show that

IVPRAf — VG fllraw) < Cos(1+ AN f] Lo

for all f € L9(Q)¢, A € s and some € > 0. This is the most important step in the
proof of Theorem 1.3. By duality, it is enough to show that for any f € L(Q)¢ and
any u € L7 (Q)?, we have

(VPRAf = VG fu)a| < Cos(1+ (AN llgllully- (6.5)

To show this, we use the Helmholtz decomposition for any u € L7 ()% according

to (A2), i.e., u = uy + Vp where uy € J,(2) and p € qu,’FQ(Q). Here p can be
decomposed by the assumption (A3) as p = p; + py where py € W, (Q), p2 €
W) 1,(Q) with Vpy € WL(Q). Thus we have a decomposition of any u € L7 ()
such that u = uy + Vp1 + Vpo where ug, p1, po satisfy the conditions above. We
estimate the left-hand side of (6.5) using this decomposition and estimating each
term separately, which will be called first, second and third part below.

For the first part, we have

N N
(VPO iRy 005 f) = VO 0iGhy 005 f), o)a
=1 =1

N N
= (PO iRy n 0if) = D 1iGrynes fr o)
j=1

j=1

N N
= (2v0,( Z ¢jR7j7A¢jf)n|F2 —2 Z @Djy(aanyijf)nh“z — Sy f, mto)r,
=1

j=N1+1
N
= (2 ) ((0n3) By 285 fnlora, — SXf> o), (6.6)
j=Ni1+1

where

_1
120 (R, 205 Pl 1 < CosN 72 fllg and

Wy (org,)
[(SXfswuo)rs| < Cus(N) " fllgllully

because of Theorem 5.1. Hence the absolute value of (6.6) is estimated from above
by Cys(1 4 |A])7|| fllqllwlly for some e > 0.

For the second part, we split it further into the Dirichlet and Neumann parts.
Here Dirichlet part means that the boundary condition (3.5) is present on that part
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of the boundary and Neumann part refers to (3.6). For the Dirichlet part, we have

Ny Ny
(VP(Z ViR 2o f) — V(Z UGy a5 f), Vpi)e
P =1

N1 Nl
= (WA =Vdiv)O ¥Ry a0if), Voo — > (Gryaeif. Vi - Vi)ga
j=1 Jj=1
N1 N1
_Z VGWJ )\ijf V(¢]p1 ]Rd + Z VGWJ )\ijf V(¢j)p1)
7j=1
= ((A-V diV)(Z ViR apif), Vi)
j=1
Ny
Z (A =V div) Ry, x0; f, V(%‘pl))ﬂ% - Z<S</J,,\90jf7 1/’jP1>W(;(},qu,
j=1
N1 Nl
=D (Coyapi .V - Vpwe + ) (VG apif, (Vi)pr)rs (6.7)
j=1 j=1
For the first term of (6.7), we use
N1
Z(V(A — Vdiv)y; R, 205 f, Vi)
j=1
N1 Nl
= Z(V%'(A — Vdiv)R,, x5 f, Vpi)rg, + Z(V[A — Vdiv, ¢;] R, a5 f, VPI)R%
j=1 j=1
Ny
= ) (WA= Vdiv)R, \¢;f, V(¥p1))re,
j=1
N1 Nl
=Y (WA =V div)e Ry s ], (Vbs)p1)mg + > (S Ry apif Vpi)rs  (6.8)
j=1 J=1

where S; = v[A — V div, ¢;]. If we put (6.8) into (6.7), the first term of (6.8) cancels
with the second term of (6.7).
For the estimate of the second term of (6.8), one uses the following estimate,

[v(A - VdiV)Rv,j,ASDijW;E(Q) < Oq,d||Rvj,k¢jf||wg*€(mj)
< Cos(l+ P\D_%H%f\\m(mj) < Cos(1+ )72 fllzo(@)

where 0 < e < 1, together with the embedding W (€2) < W/(Q) for 0 < e < 1 and
the fact that the dual of W (Q) is W *(Q2) for all s € (- l)

/7q
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Since the commutator S; = [A — V div, ;] is the differential operator of order 1,
we have for the third term in (6.8) [|S; R, xp; fIILY(RY)) < Cys(1+ D2 £l

The remaining terms, which contain the operator G, \, can be estimated using
similar arguments. Hence the absolute value of (6.7) is estimated from above by
Cas(L+ X2 [flllull for some = > 0.

For the Neumann part, we have

VP Z % Vi, /\90] Z ¢J Vi )\¢J vPl)Q
j=N1+1 Jj=Ni+1
N N
= WA=VAV)( Y Ry a0if), Voo — > (Gyapif, Vi - Vpi)pa
j=N1+1 j=N1+1
N N
— Y (VG /i, V@p))re + D (VGayapif, (VU;)p1)pe
j=N1+1 ’ J=N1+1
N
= (v(A = Vdiv)( Z ViR aeif). Vo) — Y (Goyagif. Vb - Vpi)ga
j=N1+1 j=Ni1+1
N
— Y WA =VAV)Ry 2o f + S f, V(U1
j=N1+1 !
N
+ Z (VG agif, (V@Dj)pl)R‘}yn (6.9)
j=N1+1 !

The sum of the first and the third term of (6.9) can be treated as in the Dirichlet
case and yields the lower order term. The estimate of the other terms are also as
similar as the Dirichlet case.

Hence the absolute value of (6.9) is estimated from above by C s(14+|A|) 7| fll4 w4
for some € > 0.

For the third part, we can treat the Dirichlet and Neumann parts in the same
way. We have

N N
(VPO iRy 00if) = VO 1iGhy 005 f), Vp2)a (6.10)
j=1 j=1

N
= (WA =Vdiv)) ¥Ry, 20if), Vp2)a — (V ij 05 f)s Vp2)a

J=1

For the estimate of the first term of the right-hand side of (6.10), one uses the
following estimate

(A - Vdiv)¢jRWj,A¢jf||W;5(Q) < Cyollthj Ry, ASOijWQ*E
< CoallRoyn#5if lwz=@a y < CasN) 721195 F e <Cq5< )2 fllzacey
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where 0 < & < 1, together with the embedding W¢ () — W](Q) for 0 < & < 1 and
the fact that the dual of W;(€2) is W *(Q) for all s € (—%/, %) The second term
of the right-hand side of (6.10) can be estimated in the same way as the first term.
Thus, combining the prev10us estimates, we have shown (6.5).

Next let E: W 1(y)* — W2(Q)* be a bounded operator such that Ealp, = 0
and T Fa|r, = a as well as

chEamﬂmy+HV?Emu«Q>s<7(uw|1

1
Wy (T2)

11
O Fldley )
We note that the existence of such an operator follows from Lemma 4.7. Hence
Ryf = Rynf — ES,f

satisfies

(A —div(vV-) + VP)R\f = f + Sif,

as well as Ry f|r, = TIRyf|r, = 0, where S, satisfies the estimate as in (6.4).
Since Sy — 0 in L£(L9(Q)?) as |A| — oo, A € s, there is some R > 0 such that
(I +S,)~! exists for all A € 35 with |A\| > R. Moreover,

(I+S)7 =1+5,  with [Slewie) < CA+A)F  (6.10)

by a standard Neumann series argument. If we substitute f by (I + Sy)~'f in the
equation, we have (A + A )R,\([ + S3)7Lf = f with Ry(I + S\ f|r, = 0 and
T{R\(I + S))"'f|r, = 0. Hence there exists R > 0 such that (A + A,) is surjective
for all A € ¥; with |A\| > R. Hence, if we show that there exists R’ such that
N+ A,) =0for A € X5 with |\| > R', we know that A+ A, is bijective for \ € 5
with |A| > max(R, R"). We need the following lemma.

Lemma 6.1 Let Q CR% d > 2 and 1 < ¢ < oo be as in Assumption 1.1. If \+ Ay is
surjective for a certain range of A € C\ (—o0, 0], then there is no non-trivial solution
of (1.5) for the same range of .

Proof: Let f € L7(Q)? be arbitrary and let u € D(A,) such that (A + A, )u = f.
Then, multiplying f with Vg, we observe that divu € W, (Q), divulr, = 0 solves

—Adivu, g) — (wVdivu,Vg) = (f, Vyg)

for all g € W, p,(€). Hence, if g € W/ 1, (€) solves (1.5), then (f,Vg) = 0 for all

f € LY (Q)? and therefore Vg = 0. Since A # 0, we get from (1.5) that g = 0. |

Proof of Theorem 1.3: From the arguments above we know that A+ A, for s = ¢, ¢’
is surjective for |A\| > R’ with A € 3s for some R’ > 0.

In order to show existence of A+ A, for large A, it remains to prove N (A+A4,) = 0.
Using the above lemma, we can conclude that there is no non-trivial solution of (1.5)
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for the same range of A\ as before. Now let v € N (A + A;) where |\| > R’ and
A € X5. Then we can apply Lemma 3.2 with f = g = a = p = 0 to conclude that u
solves (1.1)-(1.4) with right-hand side zero. In particular, this implies divu = 0. In
order to show u = 0, let f € L7 (Q)? be arbitrary and let |A\| > R with A € ;. Let
v e D(Ay) with (A\+ Ay)v = f. Then

(u, fla = (u, A+ Ay)v)a = AMu, v)q + (2vDu, Dv)g = (A + Ay)u,v)q =0

because of (1.10). Since f € L7(Q)? is arbitrary, we get u = 0. This shows the
existence of (A + A,)~! for |\| > R, A € ¥5. Moreover, because of (6.11),

()\ + Aq)_l =Ry + Sf\/,

where [|SY]|z(ra)) < C(A)717¢ for some € > 0. Therefore (1.11) follows from (5.8)
and (1.12) follows from (5.10).

Finally, the existence of h(c + A,) if ¢ + Xy C p(—A,) and the corresponding
estimate (1.14) follows easily form (1.11) and (1.12) using that (A + A,)~! is uni-
formly bounded on compact subsets of p(—A,) and a simple shift of the contour.
This completes the proof. [ |

7 Proof of Theorem 1.4

Let us assume that 0 C R? is bounded. Then we know that there exists (A + A,)~!
for any A € X5 such that [A\| > R, where R is a sufficiently large number. Let Ay € s
be such that (Ao + A,)~! exists. Then we have

(/\ + Aq)(/\o + Aq>_1f
= {A=20)+ Mo+ A) Ao+ A) =N =X)No+A) f+ f

for any A € C. By Rellich’s compactness theorem, we know that the operator (A —
Ao)(Xo + A,) ! is compact. Hence we know that R(A + A,) has finite co-dimensions
for any A € C. Thus A+ A, is a semi-Fredholm operator for any A € C. We know also
that (A 4+ A,)~" exists for a certain range of A € C as mentioned above. So, using
the local invariance of the index of a family of the semi-Fredholm operators, we have
ind(A+ A,) = 0 for any A € C. To show the existence of the inverse of A + A, for any
A € C\ (—00,0], we only have to show that N'(\+ A,) = {0} for the same range of
A. Moreover, we show that 0 is in the resolvent of A, if I'; # ().

First let ¢ = 2. Then (A4) is satisfied for any A € C\ (—o00,0]. Hence we can apply
Lemma 3.2 with f = g = a = p = 0 to conclude divv = 0 for any v € N (A+ A,) and
A € C\ (—o00,0]. Moreover, if A = 0, then (1.5) for g € W3 () implies g = const.
Therefore divv = const. for all v € N'(Ay). Moreover, if I'y # (), then divo|p, = 0
implies dive = 0. Finally, if I'y = (), then fQ divedr = fm vdo = 0, which implies
divv = 0 again.
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Using dive = 0 for all v € N(A + As), we conclude further
0= (A + Ayv,v)q = A(v,v)q + (2vDv, Dv)g

because of (1.10). If A € C\ (—o0, 0], then one derives v = 0 directly. If A = 0 and
I’y # 0, one also gets v = 0 by Korn’s inequality.

Next we consider the case ¢ > 2. Since WZ(Q) — H?*(Q), it follows that N'(X +
A) CN(A+ Ay) ={0} forall A € C\ (—o0,0] and A = 0 if T’y # 0.

Finally, let 1 < ¢ < 2 and let u € N (A + A,). Then we have

0= (A —div(vVo") + Vv - Vol + VPv, Vg)
= —(Adive,g) — (Vv,Vo ® Vg) — (vAv,Vg) + (v(A — Vdiv)v, Vg)
+(Dv,2Vv ® Vg) — (Vv - Vol [ Vg)
= —(A\divu,g) — (¢vVdive, Vg)

for any g € W5 (), glr, = 0. Because of R(A+ Ay) = LY (Q)4if A € C\ (—o0, 0], we
can apply Lemma 6.1 to derive dive = 0. If A = 0 and T'; # (), then the arguments
in the proof of Lemma 6.1 show V divev = 0. From this one derives dive = 0 in the
same way as in the case ¢ = 2. Now let f € L7 (Q)% and let v := (A+ A,) "1 f, where
A€ C\(—00,0lor A\ =0ifI';y # (. Here we use that the theorem is already proved
for the case ¢ > 2. — Then

(u, fla = (u, (A + Ay)v)a = Mu,v)q + (2vDu, Dv)g = (A + Ayu,v)g =0

due to (1.10). Since f € LY(Q)¢ is arbitrary, we get u = 0 if A\ € C\ (—o0,0] or if
A =0 and I'y # (. This completes the proof.
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