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1. Introduction

The subject of this paper is a homogenization result for a linearly elastic material presenting
soft inclusions arranged in a periodic structure. We assume that cracks can appear only in the
inclusions of brittle material and we impose a non-interpenetration constraint between the lips of
the fracture.

We denote by Ω ⊂ Rn, with n ≥ 2, the region of the space occupied by the material and by ε > 0
a small parameter. We introduce a periodic structure on Ω, whose cells Qε are the ε-homothetic of
the unit square Q := (0, 1)n, i.e., Qε = (0, ε)n. We assume that the soft inclusion is well contained
in Qε. More precisely, it lies in εQδ, where Qδ ⊂ Q is the concentric cube (δ, 1−δ)n, for 0 < δ < 1

2 .
The starting point of our analysis is the energy associated to a vector valued displacement u of

the material. Since we are taking into account the possibility of creating cracks, the displacements
are allowed to have discontinuities. Therefore, the natural functional setting for the problem is the
space SBD(Ω) of special functions with bounded deformation. Moreover, the admissible functions
u ∈ SBD(Ω) are required to satisfy the infinitesimal non-interpenetration condition [u] · νu ≥ 0
Hn−1-a.e. on the jump set Ju, where [u] is the jump of u and νu is the normal to the jump
set. Physically, this constraint means that the two lips of a fracture cannot interpenetrate. We
consider the case in which a homogeneous Dirichlet boundary condition is imposed on ∂Ω, that is,
tr(u) = 0 on ∂Ω. We denote with SBD0(Ω) the subspace of SBD(Ω) where the boundary datum
is attained.

In order to define the energy associated to the displacement u, we introduce some notations.
Let C = (Cijkl) be the elasticity tensor and let u ∈ SBD2

0(Ω) be a displacement. We denote by
σ(u) ∈ Mn×n

sym the tensor CEu, where Eu denotes the absolutely continuous part of the symmetric
gradient of u. The energy corresponding to u is given by the functional Fε defined as

Fε(u) :=

∫

Ω

σ(u) : Eu dx+

∫

Ju

gαε

(x
ε
, [u], νu

)
dHn−1(x), (1.1)

where gαε
: Rn × Rn × Sn−1 → [0,+∞] is a Q-periodic function in the first variable, defined for

y ∈ Q, z ∈ Rn, ν ∈ Sn−1 by

gαε
(y, z, ν) :=

{
αε if y ∈ Qδ and z · ν ≥ 0,

+∞ otherwise,
(1.2)

and αε is a positive parameter depending on ε. The volume term in the expression of Fε represents
the elastic energy, while the surface integral describes the energy needed to open a crack. More
precisely, the density gαε

forces the deformation u to have a jump set contained in the fragile part
of the material and the lips of the fracture to avoid interpenetration.
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2 LINEARIZED ELASTICITY UNDER NON-INTERPENETRATION

The overall properties of the composite material described by the functional Fε can be expressed
in terms of a homogenized simpler integral, which is given by the Γ-limit of Fε, as ε goes to zero.
In our case we assume that αε → 0 as ε → 0, and we show that the limit model depends on the
behaviour of the ratio αε

ε as ε goes to zero.
A similar analysis has been developed in a previous work [17], under the assumption of anti-

planar shear. We notice that in that case the non-interpenetration constraint is automatically
satisfied. As in [17], it turns out that also in the present paper the different limiting models
describe an unbreakable material. This means that, even if at scale ε the material has periodically
distributed microscopic cracks, when ε goes to zero no macroscopic crack appears. This is due to
the fact that in the periodicity cell Qε the brittle region is well separated from the boundary ∂Qε

and this prevents small cracks to glue together into a macroscopic fracture.
In this paper we show that three different limit models can arise, corresponding to the limit αε

ε
being zero (subcritical case), finite (critical case) or +∞ (supercritical case).

In the subcritical case αε << ε, the limit functional is given by

F0(u) =





∫

Ω

f0(Eu)dx in H1
0 (Ω; Rn),

+∞ otherwise in L2(Ω; Rn).
(1.3)

The density f0 is given by the cell formula

f0(ξ) := inf

{∫

Q

σ(ξx+ w) : (ξs + Ew)dx : w ∈ SBD2
#(Q), Jw ⊂ Qδ, [w] · νw ≥ 0 a.e. on Jw

}
,

(1.4)
where SBD2

#(Q) denotes the space of SBD2(Q) functions with periodic boundary conditions on
∂Q and ξs denotes the simmetric part of ξ.

An interesting remark is that in general f0 is not a quadratic form. Indeed, if we assume C to
be isotropic, that is,

C = 2µ I + λ Id⊗ Id,

where λ, µ > 0, (I)ijkl = δikδjl, and (Id⊗ Id)ijkl = δijδkl, then it turns out that f0(Id) 6= f0(−Id)
(see Lemma 5.3).

This is in contrast with the situation in which the non-interpenetration constraint in not as-

sumed. Indeed, in that case, proceeding as in [17], one can prove that the density function f̂0 is
defined as

f̂0(ξ) := inf

{∫

Q

σ(ξ x+ w) : (ξs + Ew)dx : w ∈ SBD2
#(Q), Jw ⊂ Qδ

}
, (1.5)

and is a quadratic form for every choice of the tensor C.
A possible interpretation of this result is the following. For ξ = Id the body is subject to

a boundary deformation of pure extension in all directions. In this case, the solutions to (1.4)
present discontinuities, since the non-interpenetration constraint is compatible with the boundary
conditions and it is energetically convenient to have a nonempty jump set.

On the contrary, when ξ = −Id, i.e., in a regime of pure compression, it turns out that the
optimal w in (1.4) is w = 0. This happens because the minimizers of the problem (1.5) correspond-
ing to ξ = −Id are not admissible for (1.4), since they do not satisfy the non-interpenetration
constraint.

Another important remark is that the limit energy density describes a material undergoing a
damage process. Indeed for a large class of matrices ξ ∈ Mn×n it turns out that f0(ξ) � Cξ : ξ, and
this means that the elastic properties of the material are reduced by homogenization. Therefore
the possible presence of microfractures at scale ε translates into a damage of the material at a
macroscopic scale.

In the critical regime, corresponding to αε = ε, the limit functional is

Fhom(u) =





∫

Ω

fhom(Eu)dx in H1
0 (Ω; Rn),

+∞ otherwise in L2(Ω; Rn),
(1.6)
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where the density fhom is given by the asymptotic cell problem

fhom(ξ) := lim
t→+∞

1

tn
inf

{∫

(0,t)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw) : w ∈ SBD2
0

(
(0, t)n

)
,

Jw ⊂ Iδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

and the set Iδ is defined as

Iδ := (0, t)n ∩
⋃

h∈Zn

(Qδ + h). (1.7)

Since in this case the coefficient αε and the size ε of the microstructure are of the same order,
there is a competition between the bulk energy and the surface term which gives an intermediate
model with respect to the subcritical and the supercritical regimes. Moreover, the limit functional
describes a damaged material, as shown in Lemma 6.4.

In the supercritical regime αε >> ε, the limit model is given by the functional

F∞(u) =





∫

Ω

σ(u) : Eu dx in H1
0 (Ω; Rn),

+∞ otherwise in L2(Ω; Rn).
(1.8)

Therefore, the (possible) presence of cracks in the approximating problems has no effect on the
limit. Indeed, as one may expect, in this case the energy penalizes the jumps of the deformations,
so that the limit material has the same elastic properties as the original one and no damage occurs.

We want to underline that in this regime the Γ-limit is the same as if the non-interpenetration
constraint were not imposed. The feature which makes this case mathematically different from
the corresponding one in [17] is the lack of a lower semicontinuity result in SBD when no a priori
bound for the L∞ norm of the deformations is given. Hence, in order to prove the Γ-convergence
result for this scaling, we need a modified version of the proof of lower semicontinuity in SBD
given in [6], where the assumption of the equiboundedness of the L∞ norm of the displacements
is replaced by the fact that the measure of their jump sets goes to zero (see Lemma 7.2).

The plan of the paper is the following. In Sections 2 and 3 we define the mathematical setting of
the problem and we introduce the energy functional, respectively. Section 4 is aimed to show that
the limit functional obtained via Γ-convergence admits an integral representation, while Sections 5-
7 are devoted to the description of the limit functionals in the subcritical, critical and supercritical
cases.

2. Preliminaries

In this section we collect some definitions and results that will be widely used throughout the
paper. In order to make precise the mathematical setting, we recall some properties of rectifiable
sets and we include a brief presentation of the spaces SBV and SBD. We refer the reader to [3]
and to [18] for further details.

A set Γ ⊂ Rn is rectifiable if there exists N0 ⊂ Γ with Hn−1(N0) = 0, and a sequence (Mi)i∈N

of C1-submanifolds of Rn such that

Γ \N0 ⊂
⋃

i∈N

Mi.

For every x ∈ Γ \ N0 we define the normal to Γ at x as νMi
(x). It turns out that the normal is

well defined (up to the sign) for Hn−1-a.e. x ∈ Γ.

SBV functions. Let U ⊂ Rn be an open bounded set with Lipschitz boundary. We define
SBV (U) as the set of functions u ∈ L1(U) such that the distributional derivative Du is a Radon
measure which, for every open set A ⊂ U , can be represented as

Du(A) = Dau(A) +Dju(A) =

∫

A

∇u dx+

∫

A∩Su

[u](x) νu(x) dHn−1(x),

where ∇u is the approximate differential of u, Su is the set of jump of u (which is a rectifiable
set), νu(x) is the normal to Su at x, and [u](x) is the jump of u at x.
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For every p ∈]1,+∞[ we set

SBV p(U) =
{
u ∈ SBV (U) : ∇u ∈ Lp(U ; Rn),Hn−1(Su) < +∞

}
.

If u ∈ SBV (U) and Γ ⊂ U is rectifiable and oriented by a normal vector field ν, then we can
define the traces u+ and u− of u on Γ, which are characterized by the relations

lim
r→0

1

rn

∫

Ω∩B±
r (x)

|u(y) − u±(x)| dy = 0 for Hn−1 − a.e. x ∈ Γ,

where B±
r (x) := {y ∈ Br(x) : (y− x) · ν ≷ 0} and Br(x) is the open ball centered in x with radius

r.

BD functions. Let U ⊂ Rn be an open bounded set with Lipschitz boundary. We define BD(U)
as the set of functions u ∈ L1(U ; Rn) such that the symmetric part of the distributional derivative
Du is a bounded Radon measure.

We denote with Eu the symmetric part of Du, that is,

Eu := {(Eu)ij}, (Eu)ij :=
1

2
(Diuj +Djui).

We can split the symmetric gradient into its absolutely continuous, jump and Cantor parts, as

Eu = Eau+ Eju+ Ecu = Eu dx+ Eju+ Ecu.

Sections of BD functions. Let u ∈ BD(U), let ξ ∈ Sn−1 and let y ∈ Rn. We denote by πξ the
hyperplane orthogonal to ξ passing through the origin and by Uξ the orthogonal projection of U
on πξ. Moreover the section of U corresponding to y is denoted by Uξ

y , that is, Uξ
y := {t ∈ R :

y + t ξ ∈ U}.
We can define the section uξ

y : Uξ
y → R as uξ

y(t) := u(y + t ξ) · ξ, for every t ∈ Uξ
y . Then, the

following properties are satisfied:

(i) for Hn−1-a.e. y ∈ Uξ the function uξ
y belongs to BV (Uξ

y );

(ii) (Eu(y + t ξ)ξ, ξ) = ∇uξ
y(t);

(iii) (Euξ, ξ) =

∫

Uξ

∇uξ
ydHn−1(y), |(Euξ, ξ)| =

∫

Uξ

|∇uξ
y| dHn−1(y);

(iv) (Ejuξ, ξ) =

∫

Uξ

Djuξ
ydHn−1(y), |(Ejuξ, ξ)| =

∫

Uξ

|Djuξ
y| dHn−1(y);

(v) (Ecuξ, ξ) =

∫

Uξ

Dcuξ
ydHn−1(y), |(Ecuξ, ξ)| =

∫

Uξ

|Dcuξ
y| dHn−1(y).

SBD(U) functions. We define SBD(U) as the set of functions u ∈ L1(U ; Rn) such that the
symmetric part of their distributional derivative Du, that is Eu, is a Radon measure which, for
every open set A ⊂ U , can be represented as

Eu(A) = Eau(A) + Eju(A) =

∫

A

Eu dx+

∫

A∩Ju

[u](x) ⊙ νu(x)dHn−1(x),

where Ju is the set of jump of u (which is a rectifiable set), νu(x) is the normal to Ju at x, and
[u](x) is the jump of u at x. For every p ∈]1,+∞[ we set

SBDp(U) =
{
u ∈ SBD(U) : Eu ∈ Lp(U ; Mn×n

sym ),Hn−1(Ju) < +∞
}
.

We have that if u ∈ SBD(U), then its sections are in SBV (Uξ
y ) for every ξ 6= 0 and for Hn−1-a.e.

y ∈ Uξ.

3. Formulation of the problem

Let n ≥ 2 and let Ω ⊂ Rn be a bounded open set. We assume for simplicity that ∂Ω is C2,
although this condition may be weakened. In the following we will denote by Q the unit cube
(0, 1)n and with Q̺ the inner cube (̺, 1 − ̺)n, for some 0 < ̺ < 1

2 .
For every ε > 0, let us consider the periodic structure in Rn generated by an ε-homothetic of the
basic cell Q. For notational brevity we will use the superscript ε to denote the ε-homothetic of
any domain. In particular, Qε := εQ and Qε

δ := εQδ, for 0 < δ < 1
2 .
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We define the set Iε
δ of brittle inclusions as

Iε
δ := Ω ∩

⋃

h∈Zn

ε(Qδ + h), (3.1)

and the unbreakable part of the material as

Ωε := Ω \ Iε
δ . (3.2)

Notice that we can split ∂Ωε = Γε ∪ Sε, where

Γε := ∂Ω ∩ Ωε and Sε := ∂Ωε ∩ Ω. (3.3)

Let C = (Cijkl) be the elasticity tensor, considered as a symmetric positive definite linear
operator from Mn×n

sym into itself. It turns out that there exists two constants 0 < ϑm ≤ ϑM such

that for any ξ ∈ Mn×n
sym , it holds

ϑm |ξ|2 ≤ Cξ : ξ ≤ ϑM |ξ|2, (3.4)

where ξ : η = trace(ξηT ) = ξijηij and |ξ|2 = ξ : ξ is the standard Euclidean norm. Clearly, the
tensor C is symmetric with respect to any interchange of indices, that is,

Cijkl = Cklij = Cjikl. (3.5)

To every function u ∈ SBD2
0(Ω) we associate the energy

Fε(u) =

∫

Ω

σ(u) : Eu dx+

∫

Ju

gα

(x
ε
, [u], νu

)
dHn−1(x), (3.6)

where σ(u) = CEu, gα : Rn × Rn × Sn−1 → [0,+∞] is a Q-periodic function defined in Q as

gα(y, z, ν) =

{
α if y ∈ Qδ and z · ν ≥ 0,

+∞ otherwise in Q,
(3.7)

and α is a positive parameter. Being gα Q-periodic, the function

x 7→ gα

(x
ε
, z, ν

)
(3.8)

turns out to be Qε-periodic.
As in [17] we are interested in the case in which δ is fixed and independent of ε, while α = αε

depends on ε and goes to zero as ε→ 0. We will study three different cases, i.e.,

1. Subcritical regime
αε

ε
→ 0 as ε→ 0,

2. Supercritical regime
αε

ε
→ +∞ as ε→ 0,

3. Critical regime
αε

ε
→ c ∈ (0,+∞) as ε→ 0.

(3.9)

Before starting the analysis of the different cases we have just described, let us state an extension
result that will be often used in the following. For the proof we refer to [16].

Definition 3.1. Let ω be an unbounded domain of Rn with a Q-periodic structure, where Q :=
(0, 1)n. Assume that the cell of periodicity ω ∩Q is a domain with a Lipschitz boundary. Given
a bounded open set Ω ⊂ Rn and a positive parameter ε > 0, we set Ωε := Ω ∩ ε ω. Moreover, we
set Γε := ∂Ω ∩ ε ω. We define the space H1(Ωε,Γε; Rn) as

H1(Ωε,Γε; Rn) := {v ∈ H1(Ωε; Rn) : v = 0 a.e. on Γε}. (3.10)

Theorem 3.2. Let Ω0 be a bounded domain such that Ωε ⊂ Ω0 and dist (∂Ω0,Ω) > 1. Then for ev-
ery sufficiently small ε there exists a linear extension operator T ε : H1(Ωε,Γε; Rn) → H1

0 (Ω0; Rn)
and three constants k0, k1, k2 > 0 such that

||T εu||(H1(Ω0))n ≤ k1||u||(H1(Ωε))n ,

||D(T εu)||(L2(Ω0))n×n ≤ k2||Du||(L2(Ωε))n×n ,

||E(T εu)||(L2(Ω0))n×n ≤ k3||Eu||(L2(Ωε))n×n ,



6 LINEARIZED ELASTICITY UNDER NON-INTERPENETRATION

for any u ∈ H1(Ωε,Γε; Rn), where the constants k0, k1, k2 do not depend on ε.
Moreover, (T εu)|A = 0 for any open set A such that Ā ⊂ Ω0 \ Ω, if ε is sufficiently small.

4. Integral representation

The purpose of this section is to show that, independently of the convergence rate of αε to zero,
the sequence (Fε) always admits a Γ-convergent subsequence. Moreover, we will prove that the
limit functional can be written in an integral form. This will be done in an abstract setting. The
characterization of the limit energy density for the different regimes will be studied in Sections
5-7.

First, we introduce some definitions and results that will be used in the following. For further
references see [11].

Definition 4.1. Let (Gε) : L2(Ω; Rn) → R be a sequence of functionals, where the space L2(Ω; Rn)
is endowed with the distance induced by the norm. Define the functionals G′ and G′′ as follows:

G′ := Γ − lim inf
ε→0

Gε and G′′ := Γ − lim sup
ε→0

Gε. (4.1)

Definition 4.2. Let A(Ω) denote the family of the open subsets of Ω. We say that a functional
G : L2(Ω; Rn)×A(Ω) → [0,+∞] is increasing (on A(Ω)) if for every u ∈ L2(Ω; Rn) the set function
G(u, ·) is increasing on A(Ω).

Definition 4.3. Given a functional G : L2(Ω; Rn)×A(Ω) → [0,+∞], we define its inner regular-
ization as

G−(u,A) := sup
{
G(u,B) : B ∈ A(Ω), B ⊂⊂ A

}
. (4.2)

Observe that if G is increasing, then also G− is increasing.

Definition 4.4. We say that a sequence (Gε) is Γ-convergent to a functional G whenever

G = (G′)− = (G′′)−.

We have the following compactness theorem.

Theorem 4.5. Every sequence of increasing functionals has a Γ-convergent subsequence.

In order to prove the Γ-convergence of a subsequence of (Fε), a crucial step is to show that the
functionals Fε satisfy the so-called fundamental estimate, independently of the rate of convergence
of αε.

As a first step, we localize the sequence (Fε), introducing an explicit dependence on the set of
integration. That is, for every u ∈ L2(Ω; Rn) and for every open set A ∈ A(Ω) we define

Fε(u,A) :=





∫

A

σ(u) : Eu dx+ αε Hn−1(Ju ∩A) if u ∈ SBD2(A), Ju ⊂ Iε
δ ∩A,

[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω; Rn).

For a fixed u ∈ L2(Ω; Rn) we can extend (Fε)(u, ·) to a measure (Fε)∗(u, ·) on the class of Borel
sets B(Ω) in the usual way:

(Fε)∗(u,B) := inf
{
Fε(u,A) : A ∈ A(Ω), B ⊆ A

}
. (4.3)

Next theorem provides an extension of the fundamental estimate to the space SBD2. The proof
is obtained by modifying [8, Proposition 3.1], valid for SBV functions.

Theorem 4.6 (Fundamental estimate in SBD2). For every η > 0 and for every A′, A′′ and B
∈ A(Ω), with A′ ⊂⊂ A′′, there exists a constant M > 0 with the following property: for every
ε > 0 and for every u ∈ SBD2(A′′) such that Ju ⊂ Iε

δ ∩ A′′ and [u] · νu ≥ 0 Hn−1-a.e. on Ju,
and for every v ∈ SBD2(B) such that Jv ⊂ Iε

δ ∩B and [v] · νv ≥ 0 Hn−1-a.e. on Jv, there exists
a function ϕ ∈ C∞

0 (Ω) with ϕ = 1 in a neighborhood of Ā′, spt ϕ ⊂ A′′ and 0 ≤ ϕ ≤ 1 such that

Fε(ϕu+ (1 − ϕ) v,A′ ∪B) ≤ (1 + η)Fε(u,A′′) + (1 + η)Fε(v,B) +M

∫

T

|u− v|2dx, (4.4)

where T := (A′′ \A′) ∩B.
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Proof. Let η > 0, A′, A′′ and B be as in the statement. Let A1, . . . , Ak+1 be open subsets of Rn

such that A′ ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ · · · ⊂⊂ Ak+1 ⊂⊂ A′′. For i = 1, . . . , k, set Ti := (Ai+1 \ Āi) ∩B.
For every i = 1, . . . , k, let ϕi be a function in C∞

0 (Ω) with ϕi = 1 on a neighborhood of Āi and
sptϕ ⊂ Ai+1.

Now, let u and v be as in the statement and define the function wi on A′ ∪ B as wi :=
ϕiu+(1− ϕi) v (where u and v are arbitrarily extended outsideA′′ andB, respectively). We need to
verify that wi belongs to the domain of Fε(·, A′∪B). By definition we have that wi ∈ SBD2(A′∪B)
and that Jwi

⊂ Iε
δ ∩ (A′ ∪ B). Hence it remains to check that [wi] · νwi

≥ 0 Hn−1-a.e. on Jwi
.

Clearly, for x ∈ Jwi
\ Ti the condition is satisfied since it holds true for u and v. Hence we can

restrict our attention to the case x ∈ Ti ∩ (Ju ∩Jw). If Ju and Jw intersect tangentially at x, then
νwi

= νu = νv and the non-interpenetration condition is fulfilled, otherwise the normal νwi
is not

defined at x.
Now we can write, for fixed ε > 0,

Fε(wi, A
′ ∪B) =

∫

A′∪B

σ(wi) : Ewi dx+ αεHn−1
(
Jwi

∩ (A′ ∪B)
)

=
(
Fε
)∗

(u, (A′ ∪B) ∩ Āi) +
(
Fε
)∗

(v,B \Ai+1) + Fε(wi, Ti)

≤ Fε(u,A′′) + Fε(v,B) + Fε(wi, Ti). (4.5)

Let us define Mk := max1≤i≤k ||∇ϕi||2L∞ . Using (3.4), we can estimate the last term in (4.5) as

Fε(wi, Ti) ≤ϑM

∫

Ti

|E(ϕiu+ (1 − ϕi) v)|2dx+ αε Hn−1
(
Jwi

∩ Ti

)

≤ c

∫

Ti

|Eu|2dx+ c

∫

Ti

|Ev|2dx+ cMk

∫

Ti

|u− v|2dx

+ αε Hn−1
(
Ju ∩ Ti

)
+ αε Hn−1

(
Jv ∩ Ti

)

≤ cFε(u, Ti) + cFε(v, Ti) + cMk

∫

Ti

|u− v|2dx =: Lε(Ti). (4.6)

Now, let i0 ∈ {1, . . . , k} be such that Ti0 realizes min1≤i≤k L
ε(Ti). Then, being Lε a measure, we

have

Lε(Ti0) ≤
1

k

k∑

i=1

Lε(Ti) ≤
1

k
Lε(T ). (4.7)

Notice that i0 = i0(ε), it depends on ε.
Combining together (4.5)-(4.7), we get

Fε(wi0 , A
′ ∪B) ≤ Fε(u,A′′) + Fε(v,B) +

1

k
Lε(T )

=Fε(u,A′′) + Fε(v,B) +
c

k
Fε(u, T ) +

c

k
Fε(v, T ) +

c

k
Mk

∫

T

|u− v|2dx

≤Fε(u,A′′) + Fε(v,B) +
c

k
Fε(u,A′′) +

c

k
Fε(v,B) +

c

k
Mk

∫

T

|u− v|2dx. (4.8)

Now, since the choice of the number k of the stripes between A′ and A′′ is completely free, we can
assume that k is such that c

k < η. Hence k = k(η). Let us define Mη := c
kMk; then in (4.8) we

have

Fε(wi0 , A
′ ∪B) ≤ (1 + η)Fε(u,A′′) + (1 + η)Fε(v,B) +Mη

∫

T

|u− v|2dx, (4.9)

which is exactly the claim. �

Next theorem shows that the functional F ′ := Γ − lim infε Fε is finite only on H1
0 (Ω; Rn).

Theorem 4.7. Let G : L2(Ω; Rn) → [0,+∞] be the functional defined as

G(u) =





∫

Ω

A0Eu : Eu dx in H1
0 (Ω; Rn),

+∞ otherwise in L2(Ω; Rn),
(4.10)
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where A0 = (Aijkh) is the fourth order tensor with constant coefficients given by the solution of
the cell problem

A0ξ : ξ = min

{∫

Q\Qδ

σ(w) : Ew dy : w − ξ y ∈ H1
#(Q; Rn)

}
, (4.11)

for ξ ∈ Mn×n
sym . Then,

F ′(u) ≥ ϑm G(u) for every u ∈ L2(Ω; Rn), (4.12)

where F ′ is defined as in (4.1), with Gε replaced by Fε and ϑm is the constant in (3.4).

Proof. Let u ∈ L2(Ω; Rn) and let (uε) be a sequence converging to u strongly in L2 and such that
Fε(uε) ≤ c < +∞.

Let us define the auxiliary functional Gε : L2(Ω; Rn) → [0,+∞] as

Gε(v) =





∫

Ω

a
(x
ε

)
|Ev|2dx if v ∈ H1(Ω,Γε; Rn),

+∞ otherwise in L2(Ω; Rn),
(4.13)

where a is a Q-periodic function given by

a(y) =

{
0 for y ∈ Qδ,

1 for y ∈ Q \Qδ.
(4.14)

It is well known that the sequence (Gε) Γ-converges (with respect to the strong topology of L2)
to the functional G defined in (4.10). For further details we refer to [10] and [16].

We would like to compare Fε(uε) with the value of Gε on a suitable extension of uε. As
Fε(uε) ≤ +∞ we have in particular that the sequence (Euε) is equibounded in L2(Ωε; Rn),
where Ωε is defined as in (3.2). Hence, by Korn inequality we deduce that uε is equibounded
in H1(Ωε; Rn).

Let Ω0 ⊃ Ω with dist(Ω, ∂Ω0) > 1 and let us denote with ũε ∈ H1
0 (Ω0; Rn) the extension of uε,

whose existence is guaranteed by Theorem 3.2. It turns out that ũε converges to ũ weakly in H1,
where ũ is obtained extending u as zero in Ω0 \Ω. Hence ũ ∈ H1(Ω0; Rn). Since, by the properties
of the extension, for small enough ε uε ∈ H1

0 (Ω′; Rn) for every Ω ⊂ Ω′ ⊂ Ω0, then u ∈ H1
0 (Ω; Rn).

Moreover, from (3.4) we have

Fε(uε) ≥ ϑm Gε(ũε), (4.15)

from which we deduce the bound (4.12). �

Notice that the estimate (4.12) holds true independently of the rate at which αε converges to
zero and implies that the Γ − lim inf of Fε is finite only in H1

0 (Ω; Rn).
We can finally state our Γ-convergence result for a subsequence of (Fε).

Theorem 4.8. Let ε be a sequence converging to zero. Then there exists a subsequence (σ(ε))
and a functional Fσ : L2(Ω; Rn) ×A(Ω) → [0,+∞] such that, for every A ∈ A(Ω),

Fσ(·, A) = Γ − lim
ε→0

Fσ(ε)(·, A) (4.16)

in the strong L2-topology. Moreover, for every u ∈ L2(Ω; Rn), the set function Fσ(u, ·) is the
restriction to A(Ω) of a Borel measure on Ω.

Proof. Since for every ε > 0 the functional Fε is increasing, we deduce by Theorem 4.5 that
there exists a subsequence (σ(ε)) and a functional Fσ : L2(Ω; Rn) × A(Ω) → [0,+∞] such that
Fσ = Γ(L2)− limε→0 Fσ(ε). We put a superscipt σ in order to underline that the limit functional
may depend on the subsequence. Now define the nonnegative increasing functionalK : L2(Ω; Rn)×
A(Ω) → [0,+∞] as

K(u,A) :=





∫

A

|Eu|2dx if u|A ∈ H1(A; Rn),

+∞ otherwise.
(4.17)
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Clearly, K is a measure with respect to A. Moreover, by (3.4) we have that 0 ≤ Fσ(ε) ≤ ϑM K for
every ε > 0 and by Theorem 4.6 the fundamental estimate holds uniformly for the subsequence(
Fσ(ε)

)
. Therefore, we can proceed as in [11, Proposition 18.6] and we obtain that

Fσ(u,A) = (Fσ)′(u,A) = (Fσ)′′(u,A) (4.18)

for every u ∈ L2(Ω; Rn) and for every A ∈ A(Ω) such that K(u,A) < +∞.
Fix A ∈ A(Ω). We observe that from Theorem 4.7 we have the bound F ′(·, A) ≥ ϑmG(·, A),

where we have localized the functional G defined in (4.10) as in (4.3). Notice that, by definition,

Fσ(·, A) = (Fσ)′(·, A) ≥ F ′(·, A). (4.19)

Hence we deduce that Fσ(·, A) ≥ ϑmG(·, A). This entails in particular that the Γ-limit of
Fσ(ε)(·, A) is finite only on H1(A; Rn), which is the same domain where K(·, A) is finite, and
is given by Fσ(·, A). This proves the stated convergence of a subsequence

(
Fσ(ε)

)
.

Finally, Fε(u, ·) is the restriction to A(Ω) of a Borel measure on Ω. Then, by Theorem 4.6 and
[11, Theorem 18.5] we have that for every u ∈ L2(Ω; Rn) the set function Fσ(u, ·) is the restriction
to A(Ω) of a Borel measure on Ω. �

We now show general properties for the Γ-limit of Fε, even if, so far, we have only proved
the convergence of a subsequence. The fact that the whole sequence (Fε) converges will follow
from the characterization of the Γ-limit, which will depend only on the symmetric gradient of
the deformation and not on the subsequence σ(ε). This will be done separately for the different
regimes in Theorems 5.1, 6.2, 7.5, respectively.

In the remaining part of this section we therefore assume that the whole sequence (Fε) converges
to a functional that we call F , and we omit the superscript σ.

Lemma 4.9. The restriction of the functional F : L2(Ω; Rn) ×A(Ω) → [0,+∞] to H1
0 (Ω; Rn) ×

A(Ω) satisfies the following properties: for every u, v ∈ H1
0 (Ω; Rn) and for every A ∈ A(Ω)

(a) F is local, i.e., F(u,A) = F(v,A) whenever u|A = v|A;

(b) the set function F(u, ·) is the restriction to A(Ω) of a Borel measure on Ω;

(c) F(·, A) is sequentially weakly lower semicontinuous on H1
0 (Ω; Rn);

(d) for every a ∈ Rn we have F(u,A) = F(u+ a,A);

(e) F satisfies the bound

0 ≤ F(u,A) ≤ ϑM

∫

A

|Eu|2dx. (4.20)

Proof. Properties (a) and (c) follow from the fact that F(·, A) is the Γ-limit of the sequence
Fε(·, A), while (b) comes from Theorem 4.8. For property (d) we can proceed as follows. Let
u ∈ H1

0 (Ω; Rn), A ∈ A(Ω) and consider a recovery sequence (uε) ⊂ L2(Ω; Rn)∩SBD2(A) satisfying
the usual constraints for the jump set, converging to u strongly in L2(Ω; Rn) and such that(
Fε(uε, A)

)
converges to F(u,A). Then (uε + a) converges to u+ a in L2(Ω; Rn) and

F(u+ a,A) ≤ lim inf
ε→0

Fε(uε + a,A) = lim inf
ε→0

Fε(uε, A) = F(u,A). (4.21)

On the other hand, F(u,A) = F((u + a) + (−a), A) ≤ F(u + a,A), hence (d) is proved. For
property (e), we just recall that the Γ-limit of the sequence

(
Fε
)

is bounded from above by the

functional ϑM

∫
A
|Eu|2dx, by assumption (3.4). �

Next theorem shows that the functional F admits an integral representation.

Theorem 4.10. There exists a unique quasi-convex function f : Mn×n → [0,+∞[ with the
following properties:

(i) 0 ≤ f(ξ) ≤ ϑM |ξ|2 for every ξ ∈ Mn×n;

(ii) F(u,A) =

∫

A

f(∇u)dx for every A ∈ A(Ω) and for every u ∈ H1(A; Rn).
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Proof. Notice that the functional F satisfies all the assumptions of [11, Theorem 20.1], so thanks
to Lemma 4.9 the Carathéodory function f : Ω × Mn×n → R defined as

f(y, ξ) := lim sup
̺→0

F(ξ x,B̺(y))

Ln(B̺(y))
(4.22)

provides the integral representation

F(u,A) =

∫

A

f(x,∇u)dx (4.23)

for every A ∈ A(Ω) and for every u ∈ L2(Ω; Rn) such that u|A ∈ H1(A; Rn). Moreover the same

theorem ensures that for a.e. x ∈ Ω the function f(x, ·) is quasi-convex on Mn×n and that

0 ≤ f(x, ξ) ≤ ϑM |ξ|2 for a.e. x ∈ Rn and for every ξ ∈ Mn×n. (4.24)

It remains to show that f is independent of the first variable and this can be done in the usual
way (see for instance [17, Theorem 5.9]). �

In order to distinguish the different regimes, in the next sections we will use a different notation
for the limit functional F . It will be denoted by F0 in the subcritical case, by Fhom in the critical
regime, and by F∞ in the supercritical case.

5. Subcritical regime: very brittle inclusions

In this section we shall analyze the subcritical case, where the fragility coefficient of the brittle
inclusions in the material is much smaller than the size ε of the periodic structure. The energy of
the material is thus given by

Fε(u) =





∫

Ω

σ(u) : Eu dx+ αε Hn−1(Ju) if u ∈ SBD2
0(Ω), Ju ⊂ Iε

δ ,

[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω; Rn),

(5.1)

with αε

ε → 0. It is convenient to localize the sequence (Fε) by defining, for every u ∈ L2(Ω; Rn)
and for every open set A ∈ A(Ω)

Fε(u,A) :=





∫

A

σ(u) : Eu dx+ αε Hn−1(Ju ∩A) if u ∈ SBD2(A), Ju ⊂ Iε
δ ∩A,

[u] · νu ≥ 0 Hn−1-a.e. on Ju ∩A,
+∞ otherwise in L2(Ω; Rn).

(5.2)

5.1. Cell formula. We have already shown that the Γ-limit exists on a subsequence and it admits
an integral representation. It remains to characterize the limit density. We shall prove that it is
given by a cell problem.

Let ξ ∈ Mn×n; we will denote with ξs its symmetric part, that is,

ξs :=
ξ + ξT

2
∈ Mn×n

sym . (5.3)

Define the function f0 : Mn×n → [0,+∞) as

f0(ξ) := inf

{∫

Q

σ(ξ x+ w) : (ξs + Ew)dx : w ∈ SBD2
#(Q), Jw ⊂ Qδ, [w] · νw ≥ 0 a.e. on Jw

}
.

(5.4)
Next theorem shows that the Γ-limit of the sequence

(
Fε
)

can be expressed in terms of the cell
formula (5.4).

Theorem 5.1. The density f of the limit functional F (see Theorem 4.10) coincides with the
function f0 defined by the cell formula (5.4), i.e., for every ξ ∈ Mn×n

f(ξ) = f0(ξ). (5.5)
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Proof. First step: f ≥ f0. Let ξ ∈ Mn×n and define uξ(x) := ξ x for every x ∈ Rn. By definition
of Γ-convergence, there exists a recovery sequence uε ⊂ SBD2(Q) with Juε ⊂ Iε

δ and [uε] · νuε ≥ 0
Hn−1-a.e. on Juε , such that uε → uξ strongly in L2(Q; Rn) and

lim
ε→0

Fε(uε, Q) = F0(uξ, Q) = f(ξ).

Let us write uε =: uξ + vε, where vε ∈ SBD2(Q), Jvε ⊂ Iε
δ , [vε] · νvε ≥ 0 Hn−1-a.e. on Jvε and

vε → 0 strongly in L2(Q; Rn). Without loss of generality we can assume vε ∈ SBD2
0(Q). Hence

f(ξ) = lim
ε→0

Fε(uξ + vε, Q) = lim
ε→0

{∫

Q

σ(ξ x+ vε) : (ξs + Evε)dx+ αεHn−1(Jvε)

}
. (5.6)

Now, let us define the function wε ∈ SBD2
0(Q/ε) as

vε(x) =: εwε
(x
ε

)
.

Remark that Jwε ⊂ Iδ, where Iδ is defined as

Iδ :=

(
0,

1

ε

)n

∩
⋃

h∈Zn

(Qδ + h). (5.7)

Then, rewriting (5.6) in terms of wε we obtain

f(ξ) = lim
ε→0

εn

{∫

Q/ε

σ(ξ x+ wε) : (ξs + Ewε)dx+ αε

ε Hn−1(Jwε)

}

≥ lim
ε→0

εn inf

{∫

(0, 1
ε
)n

σ(ξ x+ w) : (ξs + Ew)dx : w ∈ SBD2
0

((
0, 1/ε

)n)
, Jw ⊂ Iδ

[w] · νw ≥ 0 Hn−1-a.e. on Jw

}

= f0(ξ),

where the last equality follows by convexity (see [7, Theorem 14.7]). Indeed, the non-interpenetration
condition is preserved under convex combinations.

Second step: f ≤ f0. Let ξ ∈ Mn×n and l ∈ N; consider a function w ∈ SBD2
0((0, l)

n), with
Jw ⊂ Iδ and [w] · νw ≥ 0 Hn−1-a.e. on Jw, such that
∫

(0,l)n

σ(ξ x+ w) : (ξs + Ew)dx

≤ inf

{∫

(0,l)n

σ(ξ x+ v) : (ξs + Ev)dx : v ∈ SBD2
0((0, l)

n), Jv ⊂ Iδ, [v] · νv ≥ 0 a.e. on Jv

}
+ 1.

(5.8)

Let us define the sequence uε : Q→ Rn as

uε(x) := ξ x+ ε w̃
(x
ε

)
,

where w̃ denotes the function defined in the whole Rn, obtained through a periodic extension of
w. We have that Fε(uε, Q) < +∞, being Juε ⊂ Iε

δ and [uε] · νuε ≥ 0 Hn−1-a.e. on Juε . Moreover
uε converges to ξ x strongly in L2(Q; Rn). We can write

Fε(uε, Q) =

∫

Q

σ(uε) : Euε dx+ αεHn−1(Juε) (5.9)

= εn

{∫

Q/ε

σ(ξ x+ w̃) : (ξs + Ew̃)dx+ αε

ε Hn−1(J ew)

}
. (5.10)

Now, in order to use the periodicity of w̃, we can write the domain Q/ε as union of (suitably
translated) periodicity cells (0, l)n. Assume for simplicity that Q/ε is covered exactly by an
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integer number of these cells, that is by 1/(l ε)n cells. Indeed, in the general case the integral over
the remaining part of Q/ε is negligible. Then (5.9) reads as

Fε(uε, Q) =
1

ln

{∫

(0,l)n

σ(ξ x+ w) : (ξs + Ew)dx+ αε

ε Hn−1(Jw)

}
.

Passing to the lim sup as ε→ 0 and using the fact that we are in the subcritical regime, (5.1) gives

lim sup
ε→0

Fε(uε, Q) =
1

ln

∫

(0,l)n

σ(ξ x+ w) : (ξs + Ew)dx. (5.11)

Then, using (5.8) and (5.11) we get

lim sup
ε→0

Fε(uε, Q) ≤ 1

ln
inf

{∫

(0,l)n

σ(ξ x+ v) : (ξs + Ev)dx : v ∈ SBD2
0((0, l)

n),

Jw ⊂ Iδ, [v] · νv ≥ 0 Hn−1-a.e. on Jv

}
+

1

ln
.

Letting l → +∞ in the previous expression and using again convexity, we obtain

lim sup
ε→0

Fε(uε, Q) ≤ f0(ξ),

hence the claim is proved. �

Remark 5.2. The previous theorem implies in particular that in the subcritical regime the whole
sequence (Fε) Γ-converges, since the formula for the limit energy density does not depend on the
subsequence.

Moreover, from the cell formula we deduce that f(ξ) = f(ξs), that is, the limit density function
depends only on the symmetric part of its argument.

When the elasticity tensor C is isotropic, we can give a more explicit description of the density
f0, as shown in the following lemma.

Lemma 5.3. Let C be of the special form C = 2µ I + λ Id ⊗ Id, µ, λ > 0, and let f0 be the
corresponding limit density defined as in (5.4). Then it turns out that f0(Id) 6= f0(−Id).

Proof. By the assumption on C we have that, for every w ∈ SBD2(Q)

σ(w) = 2µ Ew + λ(Ew : Id) Id = 2µ Ew + λ(divw) Id ∈ Mn×n
sym . (5.12)

First step: f0(Id) � 2µn+ λn2.
First of all, we can notice that f0 can be rewritten as

f0(ξ) := inf

{∫

Q

σ(w) : Ew dx : w − ξ x ∈ SBD2
#(Q), Jw ⊂ Qδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

(5.13)
for every ξ ∈ Mn×n

sym .

For i = 1, . . . , n, let us denote with {∂Qi
+δ, ∂Q

i
−δ} the opposite hyperfaces of ∂Qδ which are

orthogonal to the vector ei. More precisely,

∂Qi
±δ :=

{
x ∈ ∂Qδ : x · ei ≷ 0

}
.

Let ξ ∈ Mn×n
sym and assume that there exists a constant cξ = (c1, . . . , cn) ∈ Rn with the property

max
x∈∂Qi

−δ

(
(ξ x) · ei

)
< ci < min

x∈∂Qi
+δ

(
(ξ x) · ei

)
for every i = 1, . . . , n. (5.14)

Then, it turns out that the function wξ defined as

wξ(x) =

{
ξ x if x ∈ Q \Qδ,

cξ if x ∈ Qδ,
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is a competitor in (5.13). Indeed, wξ − ξ x ∈ SBD2
0(Q) ⊂ SBD2

#(Q) and Jwξ
⊂ ∂Qδ. It remains

to check the non-interpenetration condition for every x ∈ Jwξ
. Notice that if x̂ ∈ ∂Qi

+δ for some
i, then

[wξ](x̂) · νwξ
(x̂) = (ξ x̂− cξ) · ei ≥ min

x∈∂Qi
+δ

(
(ξ x) · ei

)
− ci > 0,

by (5.14). On the other hand, if x̂ ∈ ∂Qi
−δ for some i, then

[wξ](x̂) · νwξ
(x̂) = (ξ x̂− cξ) · (−ei) ≥ ci − max

x∈∂Qi
−δ

(
(ξ x) · ei

)
> 0,

again by (5.14). Since wξ is a competitor in (5.13), we obtain by comparison that

f0(ξ) ≤
∫

Q

σ(wξ) : Ewξ dx = Ln(Q \Qδ)
(
2µ |ξ|2 + λ(trξ)2

)
�
(
2µ |ξ|2 + λ(trξ)2

)
. (5.15)

In particular, since for ξ = Id the property (5.14) is clearly satisfied (it is enough to take ci = 0
for every i), we have by (5.15) that

f0(Id) � 2µn+ λn2.

Second step: f0(−Id) = 2µn+ λn2.
In order to prove this relation it is more convenient to use the characterization of the density

f0 in the form (5.4). Let us fix ξ ∈ Mn×n
sym . Since σ(ξ x) = Cξ ∈ Mn×n

sym , we can assume without
loss of generality that σ(ξ x) is a diagonal matrix. Let us denote with (λ1, . . . , λn) its eigenvalues.
We will derive a necessary and sufficient condition to have w = 0 as a minimizer of (5.4).

Let v ∈ SBD2
#(Q) such that Jv ⊂ Qδ and [v] · νv ≥ 0 Hn−1- a.e. on Jv, and let η ≥ 0. We

define

I(η) :=
1

2

∫

Q

σ(ξ x+ η v) : (ξ + η Ev)dx

and we impose that
(
d

dη
I(η)

)

|η=0

=
1

2

(
d

dη

∫

Q

σ(ξ x+ η v) : (ξ + η Ev)dx
)

|η=0

≥ 0 (5.16)

for every admissible v.
Since the functional in (5.4) is convex, we have indeed that (5.16) is a necessary and sufficient

condition for the minimality of w = 0. We notice that condition (5.16) is equivalent to

∫

Q

σ(ξ x) : Ev dx ≥ 0 (5.17)

for every admissible v. Integrating by parts and using the fact that (σ(ξ x))ij = λiδij , the left
hand side in the previous expression becomes

∫

Q

σ(ξ x) : Ev dx = −
n∑

i,j=1

∫

Jv

(σ(ξ x))ij [vj ] νvi
dHn−1 = −

n∑

i=1

∫

Jv

λi [vi] νvi
dHn−1.

Therefore, (5.17) reduces to

−
n∑

i=1

∫

Jv

λi [vi] νvi
dHn−1 ≥ 0 (5.18)

for every admissible v. As v satisfies the non-interpenetration condition
n∑

i=1

[vi](x) νvi
(x) ≥ 0 for Hn−1-a.e. x ∈ Jv, (5.19)

and is arbitrary, we conclude that the eigenvalues λi of σ(ξ x) are forced to be equal and negative,
that is λi = −ν for every i = 1, . . . , n and ν > 0. In practice this implies that

1

2

(
d

dη

∫

Q

σ(ξ x+ η v) : (ξ + η Ev)dx
)

|η=0

≥ 0 for every admissible v ⇐⇒ σ(ξ x) = −ν Id,

(5.20)
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therefore w = 0 is minimal in (5.4) if and only if σ(ξ x) = −ν Id, with ν > 0. By (5.12) this
condition is fulfilled if and only if

2µ ξ + λ(tr ξ) Id = −ν Id, (5.21)

i.e., when ξ is a negative multiple of the identity. As ξ = − Id clearly satisfies (5.21), we have

f0(−Id) =

∫

Q

(2µ |Id|2 + λ (trId)2) dx = 2µn+ λn2.

�

Remark 5.4. As immediate corollary from the previous lemma we can deduce that, in general,
the limit density f0 is not a quadratic form.

Remark 5.5. Another important consequence of Lemma 5.3 is that the limit functional F0

describes a material where damage occurs. Indeed it is easy to verify that there exists ξ ∈ Mn×n

such that f0(ξ) � Cξ : ξ. We still restrict our attention to the isotropic case.
Let ξ ∈ Mn×n be matrix satisfying the property (5.14) and let wξ be the function defined in

Lemma 5.3. Since wξ is a competitor in (5.13), we obtain by comparison that

f0(ξ) ≤
∫

Q

σ(wξ) : Ewξ dx = Ln(Q \Qδ)Cξ : ξ � Cξ : ξ.

We notice that the property (5.14) is satisfied by a large class of matrices. In order to prove this,
let us restrict to symmetric matrices (with no loss of generality) and let us write them in terms of
their eigenvalues (λ1, . . . , λn) ∈ Rn, so that

Mn×n
sym ∋ ξ =

n∑

i=1

λiei ⊗ ei.

It is immediate to verify that if λi > 0 for every i then ξ satisfies (5.14). In particular ξ = κId,
with κ > 0, is a possible choice.

6. Critical regime: intermediate case

In this section we shall analyze the critical case where the fragility coefficient of the inclusions
in the material αε is of the same order of the size ε of the periodic structure. We can assume,
without loss of generality, that αε = ε. The energy of the material is thus given by

Fε(u) =





∫

Ω

σ(u) : Eu dx+ εHn−1(Ju) if u ∈ SBD2
0(Ω), Ju ⊂ Iε

δ ,

[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω; Rn).

(6.1)

We localize the sequence (Fε) by defining, for every u ∈ L2(Ω; Rn) and for every open set A ∈ A(Ω)

Fε(u,A) :=





∫

A

σ(u) : Eu dx+ εHn−1(Ju ∩A) if u ∈ SBD2(A), Ju ⊂ Iε
δ ∩A,

[u] · νu ≥ 0 Hn−1-a.e. on Ju ∩A,
+∞ otherwise in L2(Ω; Rn).

(6.2)

6.1. Homogenization formula. We have already shown in Theorem 4.10 that the Γ-limit exists
on a subsequence and it admits an integral representation. It remains to characterize the limit
density. We shall prove that it is given by an asymptotic cell problem.

Define the function fhom : Mn×n → [0,+∞) as

fhom(ξ) := lim
t→+∞

1

tn
inf

{∫

(0,t)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw) : w ∈ SBD2
0

(
(0, t)n

)
,

Jw ⊂ Iδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

(6.3)
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where, according to the notation used so far, we have set

Iδ := (0, t)n ∩
⋃

h∈Zn

(Qδ + h),

Theorem 6.1. The function fhom in (6.3) is well defined, that is the function

g(t) :=
1

tn
inf

{∫

(0,t)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw) : w ∈ SBD2
0

(
(0, t)n

)
,

Jw ⊂ Iδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

} (6.4)

admits a limit as t→ +∞.

Proof. For the proof we refer to [17]. �

Next theorem shows that the Γ-limit of the sequence (Fε) can be expressed in terms of the
homogenization formula (6.3).

Theorem 6.2. The density f of the limit functional F (see Theorem 4.10) coincides with the
function fhom defined by the cell formula (6.3), i.e., for every ξ ∈ Mn×n

f(ξ) = fhom(ξ). (6.5)

Proof. First step: f ≥ fhom. Let ξ ∈ Mn×n and define uξ(x) := ξ x for every x ∈ Rn. By definition
of Γ-convergence, there exists a recovery sequence uε ⊂ SBD2(Q) with Juε ⊂ Iε

δ and [uε] · νuε ≥ 0
Hn−1-a.e. on Juε , such that uε → uξ strongly in L2(Q; Rn) and

lim
ε→0

Fε(uε, Q) = F0(uξ, Q) = f(ξ).

Let us write uε =: uξ + vε, where vε ∈ SBD2(Q), Jvε ⊂ Iε
δ , [vε] · νvε ≥ 0 Hn−1-a.e. on Jvε and

vε → 0 strongly in L2(Q; Rn). Without loss of generality we can assume vε ∈ SBD2
0(Q). Hence

f(ξ) = lim
ε→0

Fε(uξ + vε, Q) = lim
ε→0

{∫

Q

σ(ξ x+ vε) : (ξs + Evε)dx+ εHn−1(Jvε)

}
. (6.6)

Now, let us define the function wε ∈ SBD2
0(Q/ε) as

vε(x) =: εwε
(x
ε

)
.

Remark that Jwε ⊂ Iδ. Then, rewriting (6.6) in terms of wε we obtain

f(ξ) = lim
ε→0

εn

{∫

Q/ε

σ(ξ x+ wε) : (ξs + Ewε)dx+ Hn−1(Jwε)

}

≥ lim
ε→0

εn inf

{∫

(0, 1
ε
)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw) : w ∈ SBD2
0

((
0, 1/ε

)n)
,

Jw ⊂ Iδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}

= fhom(ξ).

Second step: f ≤ fhom. Let ξ ∈ Mn×n and l ∈ N; then, consider a function w ∈ SBD2
0((0, l)

n),
with Jw ⊂ Iδ and [w] · νw ≥ 0 Hn−1-a.e. on Jw, such that
∫

(0,l)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw) ≤ inf

{∫

(0,l)n

σ(ξ x+ v) : (ξs + Ev)dx+ Hn−1(Jv)

: v ∈ SBD2
0((0, l)

n), Jv ⊂ Iδ, [v] · νv ≥ 0 a.e. on Jv

}
+ 1.

(6.7)

Let us define the sequence uε : Q→ Rn as

uε(x) := ξ x+ ε w̃
(x
ε

)
,
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where w̃ denotes the function defined in the whole Rn, obtained through a periodic extension of
w. We have that Fε(uε, Q) < +∞, being Juε ⊂ Iε

δ and [uε] · νuε ≥ 0 Hn−1-a.e. on Juε . Moreover
uε converges to ξ x strongly in L2(Q; Rn). We can write

Fε(uε, Q) =

∫

Q

σ(uε) : Euεdx+ εHn−1(Juε) = εn

{∫

Q/ε

σ(ξ x+ w̃) : (ξs + Ew̃)dx+ Hn−1(J ew)

}
.

(6.8)
Now, in order to use the periodicity of w̃, we can write the domain Q/ε as union of (suitably
translated) periodicity cells (0, l)n. Assume for simplicity that Q/ε is covered exactly by an
integer number of these cells, that is by 1/(l ε)n cells. Indeed, in the general case the integral over
the remaining part of Q/ε is a negligible term. Then, using (6.7), we get from (6.8)

Fε(uε, Q) =
1

ln

{∫

(0,l)n

σ(ξ x+ w) : (ξs + Ew)dx+ Hn−1(Jw)

}

≤ 1

ln
inf

{∫

(0,l)n

σ(ξ x+ v) : (ξs + Ev)dx+ Hn−1(Jv) : v ∈ SBD2
0((0, l)

n),

Jw ⊂ Iδ, [v] · νv ≥ 0 Hn−1-a.e. on Jv

}
+

1

ln
.

Passing to the lim sup as ε→ 0 and then letting l → +∞ we obtain

lim sup
ε→0

Fε(uε, Q) ≤ fhom(ξ),

hence the claim is proved. �

Remark 6.3. Notice that from this theorem we deduce that also in the critical case the whole
sequence (Fε) Γ-converges, since the formula for the limit energy density does not depend on the
subsequence. Moreover, we deduce that fhom(ξ) = fhom(ξs), that is the limit density function
depends only on the symmetric part of its argument.

Next lemma shows that the limit functional in the critical regime describes a damaged material.
We restrict our attention to the isotropic case, i.e., C = 2µ I + λ Id⊗ Id with µ, λ > 0.

Lemma 6.4. There exists ξ ∈ Mn×n such that fhom(ξ) � Cξ : ξ.

Proof. Let us rewrite the limit energy density in the following way:

fhom(ξ) := lim
t→+∞

1

tn
inf

{∫

(0,t)n

CEw : Ewdx+ Hn−1(Jw) : w − ξx ∈ SBD2
#

(
(0, t)n

)
,

Jw ⊂ Iδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

(6.9)

for every ξ ∈ Mn×n
sym . Let ξ ∈ Mn×n

sym and assume that there exists a constant cξ = (c1, . . . , cn) ∈ Rn

with the property

max
x∈∂Qi

−δ

(
(ξ x) · ei

)
< ci < min

x∈∂Qi
+δ

(
(ξ x) · ei

)
for every i = 1, . . . , n, (6.10)

as in Lemma 5.3. Let us restrict our attention to the case when in (6.9) t ∈ N. The general case
can be deduced in the same way.

Then, it turns out that the function wξ defined as

wξ(x) =

{
ξ x if x ∈ Q \Qδ,

cξ if x ∈ Qδ,

and extended by periodicity in (0, t)n is a competitor in (6.9). Indeed, wξ −ξ x ∈ SBD2
0((0, t)

n) ⊂
SBD2

#((0, t)n) and Jwξ
⊂ ∂Iδ. Moreover, following the proof of Lemma 5.3 one can prove that

also the non-interpenetration constraint is satisfied. Therefore, for the class of matrices ξ defined
by the condition (6.10) we have

fhom(ξ) ≤ lim
t→+∞

1

tn

{∫

(0,t)n

CEwξ : Ewξdx+ Hn−1(Jwξ
)

}
≤ Ln(Qδ)Cξ : ξ + P (Qδ, Q). (6.11)
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Then, in order to prove the theorem it’s sufficient to choose a matrix ξ ∈ Mn×n satisfying the
property (5.14) and such that

Ln(Qδ)Cξ : ξ + P (Qδ, Q) � Cξ : ξ.

In particular ξ = κId with κ > 0 and κ >> 1 provides a possible choice. �

7. Supercritical regime: stiffer inclusions

In this section we shall analyze the supercritical case, where the fragility coefficient αε of the
inclusions in the material is bigger than the size ε of the periodic structure.

Before studying this case, we state a technical lemma which will be used in the following. For
the proof we refer to [17].

Lemma 7.1. Let ak : Ω → R+ be a sequence of measurable functions such that

ak → a in measure. (7.1)

Then, for every v ∈ L2(Ω; Rm) and for every sequence (vk) ⊂ L2(Ω; Rm) such that

vk ⇀ v weakly in L2(Ω; Rm),

it turns out that ∫

Ω

a|v|2dx ≤ lim inf
k→+∞

∫

Ω

ak|vk|2dx. (7.2)

In the sequel we present a proper modification of the argument used in [2] and in [6] to prove
compactness and lower semicontinuity in SBD.

Lemma 7.2. Let w ∈ L2(U ; Rn) and let (wh) be a sequence converging strongly to w in L2, where
U ⊂ Rn is an open set. Assume that ||Ewh||L2(U) ≤ c and that Hn−1(Jwh

) → 0 as h → 0. Then

w ∈ H1(U ; Rn) and
Ewh ⇀ Ew weakly in L2(U ; Mn×n).

Proof. First of all, up to subsequences, we can assume that

Hn−1(Jwh
) ≤ 1

h2
.

First step: w ∈ H1(U ; Rn).
Let ξ ∈ Sn−1, y ∈ Πξ and let us define for every h ∈ N the section (wh)ξ

y(t) := wh(y + t ξ) · ξ. It

is well known that for Hn−1-a.e. y ∈ Πξ the section (wh)ξ
y ∈ SBV 2

(
Uξ

y

)
. Moreover, from the fact

that wh → w strongly in L2, it follows that, up to subsequences,

(wh)ξ
y → wξ

y strongly in L2
(
Uξ

y

)
for Hn−1 − a.e. y ∈ Πξ.

Let us denote with N1 the set such that for every y ∈ Πξ \N1 we have (wh)ξ
y ∈ SBV 2

(
Uξ

y

)
and

(wh)ξ
y → wξ

y strongly in L2. As we have already noticed, Hn−1(N1) = 0.

Let us define the set Eh as

Eh :=
⋃

j≥h

Jwj
.

From the inequality Hn−1(Jwh
) ≤ 1

h2 , it turns out that Hn−1(Eh) → 0 as h → +∞. Hence for

every ϑ > 0 there exists h(ϑ) such that Hn−1(Eh(ϑ)) < ϑ. Clearly, Jwh
⊂ Eh(ϑ) for every h ≥ h(ϑ).

Let us denote with (Eh(ϑ))
ξ the projection of the set Eh(ϑ) on Πξ. By definition, for every

y ∈ (Πξ \ (Eh(ϑ))
ξ) \N1 and for h ≥ h(ϑ), the section (wh)ξ

y ∈ H1
(
Uξ

y

)
. Moreover, the H1 norm

of (wh)ξ
y is equibounded.

Indeed, using Fubini we can write
∫

U

|Ewhξ · ξ|2dx =

∫

U

|∇whξ · ξ|2dx =

∫

Πξ

[ ∫

Uξ
y

|∇(wh)ξ
y|2 dt

]
dHn−1(y). (7.3)

From the fact that ξ ∈ Sn−1, we have∫

U

|Ewhξ · ξ|2dx ≤
∫

U

|Ewh|2dx, (7.4)
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and the right-hand side of (7.4) is equibounded by assumption. Hence from (7.3) we obtain
∫

Πξ

[ ∫

Uξ
y

|∇(wh)ξ
y|2 dt

]
dHn−1(y) ≤ c. (7.5)

Now, let wk(y) be a subsequence (depending on y) of wh such that

lim inf
h→+∞

∫

Uξ
y

|∇(wh)ξ
y|2 dt = lim

k(y)→+∞

∫

Uξ
y

|∇(wk(y))
ξ
y|2 dt. (7.6)

The bound (7.5) guarantees that there exists a function v such that, up to extracting a further
subsequence wj(y) ⊂ wk(y), we have

(wj(y))
ξ
y ⇀ v weakly in H1

(
Uξ

y

)
, (7.7)

for Hn−1-a.e. y ∈ Πξ \ (Eh(ϑ))
ξ. Since for Hn−1-a.e. y ∈ Πξ the whole sequence (wh)ξ

y converges

to wξ
y strongly in L2, (7.7) implies that

(wj(y))
ξ
y ⇀ wξ

y weakly in H1
(
Uξ

y

)
. (7.8)

By the lower semicontinuity in H1 and (7.6) we obtain the inequality
∫

Uξ
y

|∇(wξ
y)|2 dt ≤ lim inf

j(y)→+∞

∫

Uξ
y

|∇(wj(y))
ξ
y|2 dt = lim inf

h→+∞

∫

Uξ
y

|∇(wh)ξ
y|2 dt, (7.9)

which holds true for Hn−1-a.e. y ∈ (Πξ \ (Eh(ϑ))
ξ).

Integrating (7.9) with respect to y and using Fatou Lemma we get
∫

Πξ\(Eh(ϑ))ξ

[ ∫

Uξ
y

|∇(wξ
y)|2 dt

]
dHn−1(y) ≤ lim inf

h→+∞

∫

Πξ\(Eh(ϑ))ξ

[ ∫

Uξ
y

|∇(wh)ξ
y|2 dt

]
dHn−1(y).

(7.10)
Hence, by (7.5) we obtain

∫

Πξ\(Eh(ϑ))ξ

[ ∫

Uξ
y

|∇(wξ
y)|2 dt

]
dHn−1(y) ≤ c, (7.11)

where the constant c is independent of ϑ.
The estimate (7.11), together with the fact that w ∈ L2(U ; Rn) and that for Hn−1-a.e. y ∈

Πξ \ (Eh(ϑ))
ξ the section wξ

y ∈ H1
(
Uξ

y

)
, allow us to conclude that w ∈ H1(U ; Rn).

Indeed, let us define the sets E∞ and E0 as

E∞ := ∩hEh and E0 := lim
h
Eh,

where the convergence in the definition of E0 is intended to be almost everywhere with respect to
the Hausdorff measure.

From Hn−1(Eh) ≤ 1
h2 and Eh+1 ⊂ Eh, it turns out that

Hn−1(E∞) = 0 = Hn−1(E0).

Now, since Πξ \ (E∞)ξ is contained in Πξ \ (Eh)ξ for h large enough, we have that for Hn−1-a.e.
y ∈ Πξ \ (E∞)ξ the section wξ

y ∈ H1
(
Uξ

y

)
. Hence, being Hn−1(E∞) = 0, we conclude that Hn−1-

a.e. y ∈ Πξ the section wξ
y ∈ H1

(
Uξ

y

)
. On the other hand, using the monotone convergence in

(7.11), we have

lim
h(ϑ)→∞

∫

Πξ\(Eh(ϑ))ξ

[ ∫

Uξ
y

|∇(wξ
y)|2 dt

]
dHn−1(y) =

∫

Πξ\(E0)ξ

[ ∫

Uξ
y

|∇(wξ
y)|2 dt

]
dHn−1(y) ≤ c.

(7.12)
Again, the fact that Hn−1(E0) = 0 implies that

∫

Πξ

[ ∫

Uξ
y

|∇(wξ
y)|2 dt

]
dHn−1(y) ≤ c. (7.13)

At this point we can apply [3, Proposition 3.105] to conclude that

∇(wξ
y) = Dt[w(y + tξ) · ξ] ∈ L2(U),
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that is, Dwξ · ξ = Ewξ · ξ ∈ L2(U), and this is true for every ξ. Using the identity

Ewξ · η =
1

2
[Ew(ξ + η) · (ξ + η) − Ewξ · ξ − Ewη · η] ∀ ξ, η,

we conclude that Ew ∈ L2(U ; Mn×n). Therefore, being w ∈ L2(U ; Rn), Korn inequality ensures
that w ∈ H1(U ; Rn).

Second step: convergence of the symmetric gradient. Let us define, for a given scalar function
v ∈ L2(U), the functional

Lξ
y(wh, v) :=

∫

Uξ
y

|∇(wh)ξ
y − v(t, y)|2 dt.

Using (7.4) and the fact that v ∈ L2(U), we obtain the bound
∫

Πξ

Lξ
y(wh, v)dHn−1(y) ≤

∫

U

|Ewhξ · ξ − v|2dx ≤ c.

Now, let wk(y) be a subsequence (depending on y) of wh such that

lim inf
h→+∞

Lξ
y(wh, v) = lim

k(y)→+∞
Lξ

y(wk(y), v). (7.14)

The bound (7.5) guarantees that, up to extracting a further subsequence wj(y) ⊂ wk(y), we have

(wj(y))
ξ
y ⇀ wξ

y weakly in H1
(
Uξ

y

)
,

for Hn−1-a.e. y ∈ Πξ \ (Eh(ϑ))
ξ, and in particular

∇(wj(y))
ξ
y − v ⇀ ∇wξ

y − v weakly in L2
(
Uξ

y

)
.

Hence, by the lower semicontinuity of the functional Lξ
y and by (7.14), we obtain

Lξ
y(w, v) ≤ lim inf

j(y)→+∞
Lξ

y(wj(y), v) = lim inf
h→+∞

Lξ
y(wh, v).

Integrating the previous expression with respect to y leads to
∫

Πξ\(Eh(ϑ))ξ

Lξ
y(w, v) dHn−1(y) ≤ lim inf

h→+∞

∫

Πξ\(Eh(ϑ))ξ

Lξ
y(wh, v)dHn−1(y).

Being w ∈ H1(U ; Rn) we can pass to the limit as ϑ→ 0 in the previous expression and we get
∫

U

|Ewξ · ξ − v|2dx ≤ lim inf
h→+∞

∫

U

|Ewhξ · ξ − v|2dx. (7.15)

The fact that (7.15) holds true for every v ∈ L2(U) implies that, for every ξ ∈ Sn−1

Ewhξ · ξ ⇀ Ewξ · ξ weakly in L2(U). (7.16)

Now we consider a basis {ξ1, . . . , ξn} of Rn such that ξi +ξj ∈ Sn−1 for every i 6= j, and we specify
ξ = ξi + ξj in (7.16). Then we have

Ewh ⇀ Ew weakly in L2(U ; Mn×n),

and this concludes the proof. �

In next lemma we give a Γ-convergence result for an auxiliary functional which will be used in
the proof of the main result of this section.

Lemma 7.3. Let us fix 0 < δ̄ < δ < 1
2 so that Qδ ⊂⊂ Qδ̄. For every h ∈ N, let Gh : L2(Qδ̄; R

n) →
[0,+∞] be the functional defined as

Gh(w) :=





∫

Qδ̄

σ(w) : Ew dx+ Hn−1(Jw) if w ∈ SBD2(Qδ̄), Jw ⊂ Qδ,Hn−1(Jw) ≤ 1
h2 ,

[w] · νw ≥ 0 Hn−1 a.e. on Jw,

+∞ otherwise in L2(Qδ̄; R
n).
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Then the sequence (Gh) Γ-converges with respect to the strong topology of L2 to the functional
G : L2(Qδ̄; R

n) → [0,+∞] given by

G(w) :=





∫

Qδ̄

σ(w) : Ew dx if w ∈ H1(Qδ̄; R
n),

+∞ otherwise in L2(Qδ̄; R
n).

Proof. Let w ∈ L2(Qδ̄; R
n) and let (wh) be a sequence converging to w strongly in L2 and having

equibounded energy Gh. Using the bounds (3.4) we can apply the previous lemma with U = Qδ̄

to obtain that w ∈ H1(Qδ̄; R
n) and that

Ewh ⇀ Ew weakly in L2(Qδ̄; M
n×n). (7.17)

Hence, by lower semicontinuity we obtain the inequality

G(w) =

∫

Qδ̄

σ(w) : Ew dx ≤ lim inf
h→+∞

∫

Qδ̄

σ(wh) : Ewh dx,

that implies in particular that
G(w) ≤ lim inf

h→+∞
Gh(wh).

Finally, the existence of a recovery sequence for a function w ∈ H1(Qδ̄; R
n) follows immediately

by taking wh = w for every h ∈ N. �

Next lemma contains a Γ-convergence result for the same functionals as in Lemma 7.3, but
taking into account Dirichlet boundary conditions.

Lemma 7.4. Let (ϕh), ϕ ∈ H1/2(∂Qδ̄; R
n) be such that ϕh → ϕ strongly in H1/2(∂Qδ̄). For every

h ∈ N, let Gh
ϕh

: L2(Qδ̄; R
n) → [0,+∞] be the functionals defined by

Gh
ϕh

(w) :=





∫

Qδ̄

σ(w) : Ew dx+ Hn−1(Jw) if w ∈ SBD2(Qδ̄), Jw ⊂ Qδ,Hn−1(Jw) ≤ 1
h2 ,

[w] · νw ≥ 0 Hn−1-a.e. on Jw, w = ϕh on ∂Qδ̄,

+∞ otherwise in L2(Qδ̄; R
n).

(7.18)
Then the sequence (Gh

ϕh
) Γ-converges with respect to the strong topology of L2 to the functional

Gϕ : L2(Qδ̄; R
n) → [0,+∞] given by

Gϕ(w) :=





∫

Qδ̄

σ(w) : Ew dx if w ∈ H1(Qδ̄; R
n), w = ϕ on ∂Qδ̄,

+∞ otherwise in L2(Qδ̄; R
n).

Proof. First step: proof of compactness and liminf. Let (wh), w ∈ L2(Qδ̄; R
n) be such that wh → w

strongly in L2 and Gh
ϕh

(wh) ≤ c < +∞. From the equality Gh
ϕh

(wh) = Gh(wh) and the previous

lemma we get that w ∈ H1(Qδ̄; R
n); moreover

lim inf
h→+∞

Gh
ϕh

(wh) = lim inf
h→+∞

Gh(wh) ≥ G(w).

It remains to show that w|∂Qδ̄
= ϕ.

From Gh
ϕh

(wh) ≤ c, we obtain the equiboundedness of wh in H1(Qδ̄ \ Qδ; Rn), and hence the
convergence

wh ⇀ w weakly in H1(Qδ̄ \Qδ; R
n).

The compactness of the trace operator gives

ϕh = (wh)|∂Qδ̄
→ w|∂Qδ̄

strongly in L2(∂Qδ̄; R
n).

On the other hand, by assumption, ϕh → ϕ strongly in H1/2(∂Qδ̄; R
n). Therefore, w|∂Qδ̄

= ϕ.
Second step: limsup.
Let w ∈ H1(Qδ̄; R

n) be such that w|∂Qδ̄
= ϕ. Let us consider the sequence (vh) ⊂ H1(Qδ̄; R

n)

such that (vh)|∂Qδ̄
= ϕh−ϕ; it turns out that vh → 0 strongly in H1. We claim that wh := vh +w

is a recovery sequence. Indeed, (wh)|∂Qδ̄
= ϕh and wh → w strongly in H1, hence Ewh → Ew
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strongly in L2. Since the functional Gh
ϕh

gives a norm equivalent to the standard L2-norm, we
have the desired convergence. �

Finally we are ready to state and prove the convergence result for the functional Fε, in the
supercritical regime.

Define the functional F∞ : L2(Ω; Rn) → [0,+∞] as

F∞(u) =





∫

Ω

σ(u) : Eu dx in H1
0 (Ω; Rn),

+∞ otherwise in L2(Ω; Rn).
(7.19)

Next theorem shows that F∞ is the Γ-limit of the sequence (Fε) in the case αε

ε → +∞.

Theorem 7.5 (Γ-convergence). (i) Let u ∈ L2(Ω; Rn) and let (uε) be a sequence converging to u
strongly in L2 and having equibounded energy Fε. Then u ∈ H1

0 (Ω; Rn) and

lim inf
ε→0

Fε(uε) ≥ F∞(u). (7.20)

(ii) For every u ∈ H1
0 (Ω; Rn) there exists a sequence (uε) such that

• uε → u strongly in L2(Ω; Rn), (7.21)

• lim
ε→0

Fε(uε) = F∞(u). (7.22)

Proof. (i) Let us write the domain Ω as union of cubes of side ε:

Ω =

( ⋃

h∈Zε

ε(Q+ h)

)
∪R(ε),

where Zε := {h ∈ Zn : ε(Q + h) ⊂ Ω}, and R(ε) is the remaining part of Ω. Notice that the set
R(ε) is defined as

R(ε) =
⋃

r∈Rε

ε(Q+ r) ∩ Ω, (7.23)

where Rε := {r ∈ Zn : ε(Q+ r) ∩ ∂Ω 6= ∅}. Let N(ε) be the cardinality of the set Zε; notice that
N(ε) is of order 1/εn. Notice that the cardinality NR(ε) of the set Rε is of order 1/εn−1.

We denote by {Qε
k}k=1,...,N(ε) an enumeration of the family of cubes (Q + h)ε covering Ω, so

that we can rewrite Ω as

Ω =

(
N(ε)⋃

k=1

Qε
k

)
∪R(ε). (7.24)

In the same way we can define the sets {Qε
δ,k}k=1,...,N(ε).

We now classify the cubes Qε
k, with k = 1, . . . , N(ε), according to the measure of the jump set

that they contain. More precisely, let us introduce a parameter β > 0 that will be chosen later
in a suitable way. We say that a cube Qε

k is good whenever Hn−1
(
Juε ∩ Qε

k

)
≤ β εn−1, and bad

otherwise, and we denote with Ng(ε) and Nb(ε) the number of good and bad cubes, respectively.
We can notice that, since the sequence (uε) has equibounded energy, there exists a constant c > 0
such that αεHn−1(Juε) ≤ c. From this we deduce an important bound for the number of bad

cubes, that is Nb(ε) ≤
c

αεεn−1
. We can write (7.24) in the form

Ω =

(
Ng(ε)⋃

k=1

Qε
k

)
∪
(

Nb(ε)⋃

k=1

Qε
k

)
∪R(ε) =: (Qε)g ∪ (Qε)b ∪R(ε). (7.25)

First step: energy estimate on good cubes. Let Qε
k be a good cube and consider

Fε
(
uε, Qε

k

)
=

∫

Qε
k

σ(uε) : Euεdx+ αεHn−1
(
Juε ∩Qε

k

)
. (7.26)
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Define the function vε in the unit cube Qk as uε(ε y) =:
√
αεε v

ε(y). In terms of vε, the energy
(7.26) can be written as

Fε
(
uε, Qε

k

)
= αεε

n−1

{∫

Qk

σ(vε) : Evεdx+ Hn−1(Jvε ∩Qk)

}
, (7.27)

with Hn−1(Jvε ∩ Qk) ≤ β. Therefore, by means of a change of variables we have reduced the
problem to the study of a Mumford-Shah like functional over a fixed domain, with some constraints

on the jump set. From now on we will omit the subscript k. Let δ̄, δ̂ be such that Qδ ⊂⊂ Qδ̄ ⊂⊂
Qδ̂ ⊂⊂ Q.

Let us consider the problem of finding local minimizers for the Mumford-Shah like functional
under the required conditions, that is

(LMin) locmin

{∫

Q
δ̂

σ(w) : Ew dx+ Hn−1(Jw) : w ∈ SBD2(Qδ̂), Jw ⊂ Qδ,Hn−1(Jw) ≤ β,

[w] · νw ≥ 0 Hn−1-a.e. on Jw

}
.

According to the definition given in [12], we recall that a local minimizer is a function which
minimizes the given functional with respect to all perturbations with compact support. Let us
denote by Mβ the class of solutions of (LMin). For a given v̂ ∈ Mβ , let us consider the function
ṽ solving

(Eul)

{
divσ(ṽ) = 0 in Qδ̄,

ṽ = v̂ in Qδ̂ \Qδ̄.

We want to prove that for every η > 0 there exists β > 0 such that for every v̂ ∈ Mβ and for the
corresponding ṽ we have

∫

Q
δ̂

σ(ṽ) : E ṽ dx ≤ (1 + η)

∫

Q
δ̂

σ(v̂) : E v̂ dx. (7.28)

Hence we will take such a β in the definition of good and bad cubes.
Let us prove it by contradiction. Suppose (7.28) is false. Then there exists η > 0 such that for

every β > 0 we can find v̂ ∈ Mβ and a corresponding ṽ for which
∫

Q
δ̂

σ(ṽ) : E ṽ dx > (1 + η)

∫

Q
δ̂

σ(v̂) : E v̂ dx. (7.29)

In particular (7.29) implies that for every h > 0 there exists v̂h ∈ M 1
h2

and ṽh solution of (Eul)

for which ∫

Q
δ̂

σ(ṽh) : E ṽhdx > (1 + η)

∫

Q
δ̂

σ(v̂h) : E v̂hdx. (7.30)

Since Qδ̂ =
(
Qδ̂ \Qδ̄

)
∪Qδ̄, we can split the previous integrals and, using the fact that ṽh = v̂h in

Qδ̂ \Qδ̄, we obtain from (7.30)
∫

Qδ̄

σ(ṽh) : E ṽhdx > (1 + η)

∫

Qδ̄

σ(v̂h) : E v̂hdx+ η

∫

Q
δ̂
\Qδ̄

σ(v̂h) : E v̂hdx. (7.31)

Since the problem defining ṽh is linear, we can normalize the left-hand side of (7.31), so that we
have

1 =

∫

Qδ̄

σ(ṽh) : E ṽhdx > (1 + η)

∫

Qδ̄

σ(v̂h) : E v̂hdx+ η

∫

Q
δ̂
\Qδ̄

σ(v̂h) : E v̂hdx. (7.32)

This means that, in particular, ∫

Q
δ̂

|E v̂h|2dx ≤ 1

η
< +∞. (7.33)

Without loss of generality we can assume that
∫

Q
δ̂
\Qδ

v̂hdx = 0; therefore, since Jv̂h
⊂ Qδ,

(7.33) and Korn inequality imply that ||v̂h||H1(Q
δ̂
\Qδ)n ≤ c.
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From this bound we deduce that there exists some v̂ ∈ H1(Qδ̂ \ Qδ; Rn) such that v̂h ⇀ v̂
weakly in H1 and, in particular, strongly in L2. The local minimality of v̂h implies that

∫

Q
δ̂
\Qδ

σ(v̂h) : Eφdx = 0 for every φ ∈ H1
0 (Qδ̂ \Qδ; R

n). (7.34)

Now, if we write (7.34) for a test function φ = ψ (v̂h − v̂), with ψ ∈ C1
0 (Qδ̂ \Qδ), we obtain

∫

Q
δ̂
\Qδ

ψ σ(v̂h) : E v̂hdx =

∫

Q
δ̂
\Qδ

ψ σ(v̂h) : E v̂ dx−
∫

Q
δ̂
\Qδ

σ(v̂h) :
(
(v̂h − v̂)∇ψ

)
dx.

Since v̂h ⇀ v̂ weakly in H1(Qδ̂ \Qδ; Rn), if we let h→ +∞ in the previous equation we get

lim
h→+∞

∫

Q
δ̂
\Qδ

ψ σ(v̂h) : E v̂hdx =

∫

Q
δ̂
\Qδ

ψ σ(v̂) : E v̂ dx. (7.35)

This means in particular that for every B ⊂⊂ Qδ̂ \Qδ

E v̂h → E v̂ strongly in L2(B; Mn×n
sym ). (7.36)

Indeed, (7.35) together with the weak convergence of the sequence v̂h in H1(Qδ̂ \Qδ) imply that
E v̂h converges strongly to E v̂ with respect to the norm induced on L2 by the tensor C introduced
in (3.4) and (3.5). The equivalence of this norm to the standard L2 norm gives (7.36). Hence, by
the strong convergence of v̂h to v̂ in L2, (7.36) and Korn inequality, we deduce

v̂h → v̂ strongly in H1(B; Rn).

This entails the convergence of the traces of v̂h on ∂Qδ̄, that is,

ϕh := (v̂h)|∂Qδ̄
→ ϕ := (v̂)|∂Qδ̄

strongly in H1/2(∂Qδ̄; R
n). (7.37)

At this point, let us consider the following problems:

(Eul)ϕh

{
divσ(w) = 0 in Qδ̄

w = ϕh on ∂Qδ̄,
(Eul)ϕ

{
divσ(w) = 0 in Qδ̄

w = ϕ on ∂Qδ̄.

Clearly, ṽh is the solution to (Eul)ϕh
for every h. Let us call ṽ the solution to (Eul)ϕ. From (7.37)

it turns out that ṽh → ṽ strongly in H1(Qδ̄; R
n), hence,

1 =

∫

Qδ̄

σ(ṽh) : E ṽhdx→
∫

Qδ̄

σ(ṽ) : E ṽ dx = 1. (7.38)

Notice that since the functions v̂h are local minimizers for the functional in (LMin), they turn out
to be absolute minimizers of the same functional once we fix the boundary data ϕh. Therefore by
definition they are absolute minimizers for the functional Gh

ϕh
defined in (7.18). The Γ-convergence

result proved in Lemma 7.4 ensures the L2 convergence of the sequence v̂h to the only minimizer
of the functional Gϕ, that is exactly ṽ, and the convergence of the energies.

Now, if we let h→ +∞ in (7.32) we obtain

1 =

∫

Qδ̄

σ(ṽ) : E ṽ dx ≥ (1 + η)

∫

Qδ̄

σ(ṽ) : E ṽ dx,

which gives the contradiction, therefore (7.28) is proved.
Let η > 0 be fixed; we choose β > 0 such that the property (7.28) is satisfied and for every

ε > 0 we consider the problem

(Min) min

{∫

Q
δ̂,k

σ(w) : Ew dx+ Hn−1(Jw) : w ∈ SBD2(Qδ̂,k), Jw ⊂ Qδ,k,Hn−1(Jw) ≤ β,

[w] · νw ≥ 0 Hn−1-a.e. on Jw, w = vε on ∂Qδ̂,k

}
.
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For a minimizer v̂ε in (Min), let us consider the corresponding ṽε defined by (Eul), with v̂ replaced
by v̂ε. We have that, as before,

∫

Q
δ̂,k

σ(ṽε) : E ṽεdx ≤ (1 + η)

∫

Q
δ̂,k

σ(v̂ε) : E v̂εdx. (7.39)

Hence, in particular,
∫

Q
δ̂,k

σ(vε) : Evεdx+ Hn−1(Jvε ∩Qδ̂,k) ≥
∫

Q
δ̂,k

σ(v̂ε) : E v̂εdx+ Hn−1(Jv̂ε ∩Qδ̂,k) (7.40)

≥
(

1 − η

1 + η

)∫

Q
δ̂,k

σ(ṽε) : E ṽεdx, (7.41)

where vε is the function in (7.27).
Now we define ũε as ũε(ε y) :=

√
αεε ṽ

ε(y). By (7.27) and (7.40) we obtain
∫

Qε

δ̂,k

σ(uε) : Euεdx+ αεHn−1
(
Juε ∩Qε

δ̂,k

)
≥
(

1 − η

1 + η

)∫

Qε

δ̂,k

σ(ũε) : E ũεdx. (7.42)

Second step: energy estimate on bad cubes. Let Qε
k be a bad cube. The idea is to use the trivial

inequality ∫

Qε
k

σ(uε) : Euεdx+ αεHn−1
(
Juε ∩Qε

k

)
≥
∫

Qε
k

χε
δ σ(ûε) : E ûεdx,

where χε
δ is the characteristic function of the set Qε

k \Qε
δ,k and the function ûε coincides with uε

in Qε
k \ Qε

δ,k and is extended to Qε
δ,k in a way that keeps its H1 norm bounded. We recall also

that we have a control on the number of bad cubes, that is, Nb(ε) ≤
c

αεεn−1
.

Third step: estimate on boundary cubes. Let Ω0 ⊃ Ω be such that dist(Ω, ∂Ω0) > 1. We still
denote with uε the extension of uε to Ω0, obtained simply setting uε = 0 in Ω0 \ Ω and with u
its L2- limit. Notice that, since tr(uε) = 0 on ∂Ω by assumption, we have that for every r ∈ Rε

uε
|((Q\Qδ)+r)ε ∈ H1(((Q \Qδ) + r)ε; Rn).

Let ǔε be the function in (Ω0 \ Ω) ∪ R(ε) obtained extending uε in (Qδ + r)ε for every r ∈ Rε

in a way that keeps its H1 norm bounded.
Then we have

Fε(uε, R(ε)) = Fε(uε, (Ω0 \ Ω) ∪R(ε)) ≥
∫

(Ω0\Ω)∪R(ε)

χε
Rσ(ǔε) : E ǔεdx, (7.43)

where χε
R is zero in (Qδ + r)ε for every r ∈ Rε and 1 otherwise in (Ω0 \ Ω) ∪R(ε).

Fourth step: final estimate. Let us define the new sequence wε ∈ SBD2
0(Ω0) as

wε :=





ũε in
(
Qε

δ̂

)g
,

uε in (Qε)g \
(
Qε

δ̂

)g
,

ûε in (Qε)b,

ǔε in (Ω0 \ Ω) ∪R(ε),

where (Qε)g, (Qε)b and R(ε) are given in (7.25) and (7.23), and
(
Qε

δ̂

)g
denotes the set

(
Qε

δ̂

)g
:=

Ng(ε)⋃

k=1

Qε
δ̂,k
. (7.44)

Notice that wε ∈ H1
0 (Ω0; Rn) and that wε ∈ H1

0 (Ω′; Rn) for every Ω ⊂ Ω′ ⊂ Ω0.
Define also the function aε : Ω0 → R as

aε(x) :=





0 in (Qε
δ)

b ∪
(⋃

r∈Rε
(Qδ + r)ε

)
,

1 otherwise in Ω0,
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where in analogy with (7.44) we defined
(
Qε

δ

)b
as

(
Qε

δ

)b
:=

Nb(ε)⋃

k=1

Qε
δ,k.

From what we proved in the previous steps we can write

Fε(uε,Ω) = Fε(uε,Ω0) ≥
(

1 − η

1 + η

)∫

Ω0

aε(x)σ(wε) : Ewεdx. (7.45)

It remains to apply Lemma 7.1 to (7.45). First of all we show the convergence of aε. We have
∫

Ω

|aε − 1| dx = Ln

(
(Qε

δ)
b ∪
( ⋃

r∈Rε

(Qδ + r)ε

))
= (Nb(ε) +NR(ε))εnLn(Qδ) ≤ c

ε

αε
,

hence aε → 1 strongly in L1(Ω0). Once we prove that wε ⇀ u weakly in H1(Ω0; Rn) and that
u|Ω ∈ H1

0 (Ω; Rn), as u = 0 in Ω0 \ Ω, it turns out that

lim inf
ε→0

Fε(uε) ≥
(

1 − η

1 + η

)∫

Ω0

σ(u) : Eu dx =

(
1 − η

1 + η

)∫

Ω

σ(u) : Eu dx,

and the thesis follows letting η converge to zero.

Fifth step: convergence of wε. First of all it is clear that ||Ewε||(L2(Ω0))n×n ≤ c. Then, the fact
that wε and uε coincide in a set with positive measure ensures the convergence. Moreover, since
wε ∈ H1

0 (Ω′; Rn) for every Ω ⊂ Ω′ ⊂ Ω0, then u ∈ H1
0 (Ω; Rn).

(ii) The claim follows trivially by choosing uε = u for every ε > 0. �
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