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Conepts of Data-Sparse Tensor-Produt Approximationin Many-Partile ModellingHeinz-J�urgen Flady, Wolfgang Hakbush�, Boris N. Khoromskij�,and Reinhold Shneidery� Max-Plank-Institute for Mathematis in the SienesInselstr. 22-26, D-04103 Leipzig, Germanyfwh; bokhg�mis.mpg.dey Institut f�ur Mathematik, Tehnishe Universit�at BerlinStra�e des 17. Juni 137, D-10623 Berlin, Germanyfflad; shneidrg�math.tu-berlin.deAbstratWe present onepts of data-sparse tensor approximations to the funtions and operatorsarising in many-partile models of quantum hemistry. Our approah is based on thesystemati use of strutured tensor-produt representations where the low-dimensionalomponents are represented in hierarhial or wavelet based matrix formats. The modernmethods of tensor-produt approximation in higher dimensions are disussed with thefous on analytially based approahes. We give numerial illustrations whih on�rmthe eÆieny of tensor deomposition tehniques in eletroni struture alulations.AMS Subjet Classi�ation: 65F30, 65F50, 65N35, 65F10Key words: Shr�odinger equation, Hartree-Fok method, density funtional theory, tensor-produt approximation1 IntrodutionAmong the most hallenging problems of sienti� omputing nowadays are those of high di-mensions, for instane, multi-partile interations, integral or di�erential equations on [0; 1℄dand the related numerial operator alulus for d � 3. Many standard approahes have aomputational omplexity that grows exponentially in the dimension d and thus fail beauseof the well known \urse of dimensionality". To get rid of this exponential growth in theomplexity one an use the idea of tensor-produt onstrutions (f. [86℄) on all stages ofthe solution proess. Hereby we approximate the quantity of interest in tensor-produt for-mats and use other approximation methods for the remaining low-dimensional omponents.Depending on the spei� properties of the problem, these low-dimensional omponents arealready in a data-sparse format, like band strutured matries, or an be approximated viahierarhial (low-rank) matrix and wavelet formats, respetively. In order to obtain low-rank1



tensor-produt approximations it is onvenient to start already with a separable approxima-tion of possibly large separation rank. This is the ase e.g. for hyperboli ross approximationsin tensor-produt wavelet bases or for Gaussian-type and plane wave basis sets whih are fre-quently used in quantum hemistry and solid state physis. With suh a representation athand it is possible to apply algebrai reompression methods to generate the desired low-rankapproximations. We want to stress, however, that these reompression methods in multi-linear algebra lead to severe omputational problems sine they are, in fat, equivalent tosome kind of nonlinear approximation in d � 3. Despite these omputational diÆulties, suhkind of proedure is espeially favourable for smooth funtions with few singularities whihare atually typial for our envisaged appliations to be disussed below.A large lass of translation invariant kernels of integral operators an be represented viaintegral transformations of a separable funtion, e.g. Gaussian funtion. Using exponentiallyonvergent quadrature rules for the parametri integrals it is possible to derive low-ranktensor-produt approximations for these integral operators. In a similar manner it is possibleto derive suh representations for matrix-valued funtions in the tensor-produt format.It is the purpose of the present paper to disuss possible appliations of the afore outlinedapproah to eletroni struture alulations with appliations in quantum hemistry andsolid state physis. It will be shown in the following how to ombine the di�erent tehniques,whih omplement eah other niely, to provide a feasible numerial operator alulus for somestandard many-partile models in quantum hemistry. Within the present work, we fous onthe Hartree-Fok method and the Kohn-Sham equations of density funtional theory (DFT).We present a brief survey on existing approximation methods, and give some numerial resultson�rming their eÆieny. Our approah aims towards a numerial solution of the Hartree-Fok and Kohn-Sham equations with omputational omplexity that sales almost linearly inthe number of partiles (atoms). In partiular, large moleular systems suh as biomoleules,and nanostrutures, reveal severe limitations of the standard numerial algorithms and tensor-produt approximations might help to overome at least some of them.The rest of the paper is organised as follows. Setion 2 gives a brief outline of eletronistruture alulations and of the Hartree-Fok method in partiular. This is followed by adisussion of best N -term approximation and its generalization to tensor produt waveletbases. We present an appliation of this approah to the Hartree-Fok method. In Setion4, we �rst introdue various tensor produt formats for the approximation of funtions andmatries in higher dimensions. Thereafter we onsider a variety of methods to obtain separableapproximations of multivariate funtions. These methods enter around the Sin interpolationand onvenient integral representations for these funtions. Setion 5 provides an overviewon di�erent data sparse formats for the univariate omponents of tensor produts. Finally,we disuss in Setion 6 possible appliations of these tensor-produt tehniques in order toobtain linear saling methods for Hartree-Fok and Kohn-Sham equations.2 Basi priniples of eletroni struture alulationsThe physis of stationary states, i.e. time harmoni, quantum mehanial systems of N par-tiles, is ompletely desribed by a single wave funtion(r1; s1; :::; rN ; sN) 7! 	(r1; s1; :::; rN ; sN) 2 C ; ri 2 R3 ; si 2 S ;2



whih is a funtion depending on the spatial oordinates ri 2 R3 of the partiles i = 1; : : : ; Ntogether with their spin degrees of freedom si. Sine idential quantum mehanial partiles,e.g. eletrons, annot be distinguished, the wave funtion must admit a ertain symmetrywith respet to the interhange of partiles. The Pauli exlusion priniple states that foreletrons, the spin variables an take only two values si 2 S = f�12g, and the wave funtionhas to be antisymmetri with respet to the permutation of partiles	(r1; s1; : : : ; ri; si; : : : rj; sj; : : : ; rN ; sN) = �	(r1; s1; : : : ; rj; sj; : : : ri; si; : : : ; rN ; sN) :The Born Oppenheimer approximation onsiders a quantum mehanial ensemble of N ele-trons moving in an exterior eletrial �eld generated by the nulei of K atoms. Therein thewave funtion is supposed to be a solution of the stationary eletroni Shr�odinger equationH	 = E	 ;with the many-partile Shr�odinger operator (non-relativisti Hamiltonian) H given byH := �12 NXi=1 �i � KXa=1 NXi=1 Zajri �Raj + Xi<j�N 1jri � rjj + Xa<b�K ZaZbjRa �Rbj ; (2.1)where Za;Ra are harges and positions of the nulei, respetively.The basi problem in wave funtion methods is to alulate (approximately) the wavefuntions 	(r1; s1; :::; rN ; sN), ri 2 R3 , si = �12 as an eigenfuntion of the non-relativistiHamiltonian H. The wave funtion an be assumed to be real valued, whih we will pursuein the sequel, for sake of simpliity. Perhaps in ase of translation symmetry, e.g. for bulkrystals, a omplex setting might be helpful. One is mostly interested in the ground energy.Due to the Ritz or Courant-Fisher min-max priniple [76℄ this problem an be asted in avariational formulationE = minfhH�;�i : h�;�i = 1g ; 	 = argminfhH�;�i : h�;�i = 1g : (2.2)The wave funtions an be approximated by antisymmetri tensor produts 	 =P k	kwhere eah 	k denotes a Slater determinant	k(r1; s1; : : : ; rN ; sN) = 1pN ! det('ki(rkj ; skj))Ni;j=1 : (2.3)Here the funtions '� : R3 � f�12g ! R are supposed to be pairwise orthogonalh'�; '�i =Xs ZR3 '�(r; s)'�(r; s)d3r = Æ�;� :An approximation by a single Slater determinant (2.3)	 � 	SL := 1pN ! det('i(rj; sj))Ni;j=1 ;whih is a kind of rank one approximation by an antisymmetri tensor-produt gives theHartree-Fok energy funtionalEHF ('1; : : : ; 'N) := hH	SL;	SLi :3



Whih inserted into (2.2) yields the following onstraint minimization problemEHF = minfEHF ('1; : : : ; 'N) = hH�SL;�SLi : h'i; 'ji = Æi;j ; i; j = 1; : : : ; Ngwith N2 onstraint onditions h'i; 'ji = Æi;j ; i; j = 1; : : : ; N .An additional simpli�ation an be made for even number of eletrons, restriting pairs oforbitals with opposite spin to the same spatial behaviour 'i(r; 12) = 'N=2+i(r;�12) =: �i(r),i = 1; : : : N=2. This gives the so alled restrited Hartree-Fok model for lose shell systems.The orresponding Hartree-Fok energy funtional an be alulated expliitlyEHF (�1; : : : ; �N=2) = 2 N=2Xi=1 ZR3 �12 jr�i(r)j2 + V(r)j�i(r)j2� d3r (2.4)+ 2 N=2Xi=1 N=2Xj=1 ZR3 ZR3 ��i(r)�i(r)�j(r0)�j(r0)jr� r0j � �i(r)�i(r0)�j(r)�j(r0)2jr� r0j � d3r0d3r;where V denotes the Coulomb potential due to the nulei. Variational alulus applied to therestrited Hartree-Fok energy funtionalEHF = minh�i;�ji=Æi;j EHF (�1; : : : ; �N=2)yields the Hartree-Fok equations F�i(r) = "i �i(r); (2.5)with the Fok operator F , as a neessary ondition, that for a minimizer there exist pairwiseorthogonal orbitals �i, i = 1; : : : ; N=2. De�ning the redued one-eletron spin density matrix,or simply \density matrix" in the following, as the kernel funtion�(r; r0) := N=2Xi=1 ��i (r)�i(r0) (2.6)of the orresponding spetral projetion operator P�, and introduing the total eletron densityn(r) := 2�(r; r); (2.7)the Fok operator is given byF�(r) = �12��(r) + V(r)�(r) + VH�(r) + (K�) (r); (2.8)with Hartree potential VH(r) := ZR3 n(r0)jr� r0jd3r0; (2.9)and exhange operator (K�) (r) := � ZR3 �(r; r0)jr� r0j �(r0)d3r0: (2.10)4



This is a oupled nonlinear eigenvalue problem, sine the Fok operator depends on the densitymatrix (2.6), where �i, i = 1; : : : ; N=2 are the eigenfuntions orresponding to the N=2 lowesteigenvalues �1 � : : : �N=2 < �N=2+1 � : : :.A rank one approximation as in the Hartree-Fok model seems to be a rather poor approx-imation to the wave funtion. One way to pursue is to use more than one Slater determinantto approximate the wave funtion. This results in methods like on�guration interation (CI),multi on�guration self-onsistent-�eld (MCSCF), oupled luster (CC) methods and other.All these methods have in ommon that they require a muh larger omputational e�ort. Asa general referene for these methods, we refer to the monograph [63℄.In ontrast to these wave funtion methods, DFT [75℄ tries to replae the linear, buthigh-dimensional Shr�odinger operator by nonlinear but low dimensional partial di�erentialequations with the same ground state energy and whih look formally like the Hartree-Fokequations. The major di�erene is that in the Kohn-Sham equations, the nonloal exhangeterm K is replaed by a loal exhange-orrelation potential Vx depending only on the eletrondensity n. However the funtional dependene turns out to be very ompliated and is notknown expliitly. The most simple form is alled the loal density approximation (LDA) [75℄where the exhange orrelation potential is a nonlinear funtion of the densityVx(r) = � 1� (3�2n(r)) 13 + orretion terms :Eletron orrelation an be inorporated into the orretion term, whih is usually takenfrom quantum Monte Carlo alulations for a homogeneous eletron gas. The orrespondingEuler-Lagrange equations take the form (2.5) with Fok operatorF�(r) := �12��(r) + �V(r) + VH(r) + Vx[n℄(r)��(r):Sine there are no nonloal terms, apparently the omputation of these density funtionalmodels beomes more simpler and eÆient as Hartree-Fok omputations. Nevertheless, theexat funtional is still unknown and all known approximate funtionals have ertain de�-ienies. Therefore a model error is still intrinsial in all of these methods. It should bementioned, that atually so-alled hybride models, i.e. onvex ombinations of Kohn-Shamand Hartree-Fok models, have shown the best performane in benhmark alulations formoleules.Usually the orbitals �i are approximated either by atomi entered basis funtions e.g.Gaussian-type orbitals (GTO) or even harmoni polynomials (plane waves). A new alternativeapproah is based on multi-sale wavelet bases, f. [2, 34, 43, 62℄ and referenes therein.Due to the Coulomb singularity of the nulear potential, the orbitals are only smooth awayfrom the nulei. To get rid of these eletron nulear usps the ore eletrons are added tosmooth the nulear potential. The Coulomb potential is thereby replaed by a pseudopotentialand only the valene eletrons are onsidered expliitly in an external �eld generated by thepseudopotentials [30℄.2.1 Density matrix formulation of Hartree-Fok and DFT modelsSolving the spetral problem orresponding to the Hartree-Fok equations (2.5) leads toO(N3)omplexity at least. In order to ahieve algorithms whih sale linear in the number ofeletrons N it therefore turns out to be neessary to irumvent the omputation of the5



eigenvalue problem. Instead it is possible to reformulate the Hartree-Fok method in terms ofthe density matrix (2.6). It has been already mentioned before that the nonlinear part of theFok operator (2.8) an be expressed in terms of the density matrix. Furthermore it is not hardto see that the Hartree-Fok energy funtional (2.4) an be rewritten as a funtional of thedensity matrix EHF (�) where the orthogonality onstraints of the orbitals have to be replaedby the idempoteny ondition of the density matrix onsidered as a spetral projetor, i.e.,ZR3 �(r; r00)�(r00; r0) d3r00 � �(r; r0) = 0:The density matrix plays the key role in order to ahieve linear saling in Hartree-Fok andDFT methods. For instane it is well known that the density matrix exhibits exponentialdeay �(r; r0) � exp(��jr � r0j) for nonmetalli systems. This so-alled shortsightedness ofthe density matrix [68℄ enables e.g. an eÆient treatment of the nonloal exhange term (2.10)in the Fok operator. Various omputational shemes, entirely based on the density matrix,exist to perform Hartree-Fok or DFT alulations, f. [4, 7, 70, 71, 73℄ and referenes therein.In Setion 6, we disuss an approah using the sign funtion of an operator whih seems tobe espeially suitable for our purposes.3 Hyperboli ross approximation in wavelet basesThe idea of sparse grids or hyperboli ross approximation is based on the following observation.Let us onsider a omplete orthonormal basis in L2(R), f l;k : l 2 N [ f�1; 0g, k 2 Ilg with℄Il � 2l, whih obeys the following approximation propertyku� L�1Xl=�1Xk ul;k l;kk � CR2�Lskuks with ul;k = h l;k; ui;with respet to the Sobolev spaes Hs(R), s > 0. Typial bases are e.g. wavelet bases ortrigonometri polynomials  l;k(x) = e2�i(2l+k)x, l � 0. The orthogonality an be relaxed toa biorthogonal setting, whih also inludes hierarhial nodal basis funtions as originallyproposed by Zenger. We refer to [49, 81℄ and referenes therein for the detailed exposition ofthis approah.Setting Wl := span f l;k : k 2 Ilg, the tensor-produts 	l;k(x) =  l1;k1(x1) � � � ld;kd(xd),li � �1, ki 2 Ili , i = 1; : : : ; d; form an orthogonal basis in L2(Rd). Taking the spaesZL =Pl1+���+ld�LWl1 
 � � � 
Wld, we then get dimZL = Ld2L andku� uZlk . 2�Lskuks;:::;s:This means that one obtains the onvergene rate 2�Ls with Ld2L degrees of freedom,instead of the usual omplexity 2Ld. The prie to pay is that one has to require a slightlyhigher regularity in terms of the mixed or tensor-produt Sobolev norms k:ks;:::;s in Hs;:::;s =Ndi=1Hs(R). Therefore, for funtions satisfying this regularity requirement we an get rid ofthe urse of dimensions. Up to a logarithmi term, we an ahieve asymptotially the sameomplexity as in one dimension. It has been proven by Yserentant [88℄ that eigenfuntionsof the many-partile Shr�odinger operator (2.1) belong to Sobolev spaes of mixed partial6



derivatives. This result enables the onstrution of sparse grid approximations for the entirewavefuntion [47, 48, 89℄.Pratially the sparse grid approah is limited beause the Riesz onstant CR of the ba-sis enters by CdR. Usually this beomes rather large with inreasing d. Reent experienesdemonstrate that hyperboli ross approximations or sparse grid approximations an be ap-plied suessfully for a moderate number of dimensions d � 10; :::; 30. In the appliation wehave in mind, namely the numerial solution of the Hartree-Fok or Kohn-Sham equation, theorbitals are funtions in R3 and the operators have kernels in R6 . This makes the sparse gridapproah highly attrative for the present problem.Hyperboli ross approximations an be used also in an adaptive setting. Results for gradedmeshes have been obtained by Griebel et al. (.f. [47℄). Shwab and Nitshe (f. [72℄) haveonsidered point singularities, and demonstrated that an adaptive sparse grid approximationworks well. In fat, wavelet bases are highly advantageous for loal adaptive approximation.This an be explained best in the framework of a best N-term approximation [16, 17, 20, 28℄.For � � 2, the spae lw� (J ) is the olletion of sequenes, respetively in�nite vetors, u 2l2(J ), satisfying ℄ f� 2 J : ju�j > �g . ���for all � > 0. The quantitykuklw� (J ) := kukl2(J ) + jujlw� (J ) with jujlw� (J ) := sup�>0( � [℄ f� 2 J : ju�j > �g℄1=� )de�nes a quasi-norm in lw� . Rearranging u 2 l2(J ) by a non-inreasing sequene u� = (u�k)k2N,i.e. ju�kj � ju�k�1j, we have an alternative representation of this quasi-norm viajujlw� (J ) = supk>0 (k1=� ju�kj)and, if � < 2, kuk = kukl2(J ) � kuklw� (J ):The quantity �N (u) := inf℄ suppv�N ku� vk = (Xk>N ju�kj2)1=2denotes the error of the best N-term approximation of u. An approximation v satisfyingku� vk . �N (u) is given by v� where v�k = u�k if k = 1; : : : ; N and v�k = 0, for k > N .Proposition 3.1 [16, 21℄1. For u 2 l2(J ) and s > 0 the estimate �N(u) . N�s holds if and only if u 2 lw� (J ) with1� = s+ 12 and �N (u) . N�skuklw� (J ):2. For 0 < � < � 0 � 2 there holds l� (J ) � lw� (J ) � l� 0(J ):3. The wavelet expansion of a funtion u =Pl;k ul;k l;k belongs to the Besov spae Bs�;� (R)if and only if (ul;k) 2 l� (J ) where 1� = s+ 12 .7



In a reent paper, Nitshe [72℄ has shown that the quasi Banah spaes l� (Zd), 0 < � < 1,are also tensor-produt spaes.Theorem 3.2 [72℄ For 0 < � � 2 there holds l� (Zd) =Ndi=1 l� (Z):In the ase of a tensor-produt wavelet expansion of a funtion v =P v� � in the Besovspae Ndi=1Bs��;� (R) we therefore obtain the following rate for the best N-term approximationinf℄ suppvN�N kv � vNk . N�skvkNdi=1 Bs��;� (R)for all 0 � s < s�. Note that due to s < s� no logarithmi term is present in the aboveestimate. A similar but more ompliated result is true for the energy spae H1(R3). Letus note that this means that asymptotially the number of degrees of freedoms required toobtain an auray � behaves (almost) like the orresponding number for a one-dimensionalproblem.In order to apply Nitshe's theorem to solutions of Hartree-Fok and Kohn-Sham equationsit beomes neessary to establish an asymptoti smoothness property for the behaviour of thesolutions at the atomi nulei. This has been ahieved in the Hartree-Fok ase by applyingthe alulus of pseudodi�erential operators on manifolds with onial singularities. Our resultsan be summarized in the following theorem:Theorem 3.3 [35, 37℄ The self-onsistent-�eld solutions �i of the Hartree-Fok equations,obtained via the level-shifting algorithm, satisfy the asymptoti smoothness propertyj��x�i(x)j � C�jx�Aj1�j�j for x 6= A and j�j � 1in a bounded neighbourhood 
 � R3 of a nuleus at A. This is suÆient to ensure �i 2N3i=1Bs��;� (
) for eah s� > 0 and 1� = s� + 12 .Here we have used the standard short-hand notation for mixed partial derivatives�� := ��1�x�11 ��2�x�22 ��3�x�33 ;with the absolute value of the multi-index j�j := �1 + �2 + �3. The iterative solutions ofthe Hartree-Fok equations to whih the theorem applies refer to the so-alled level-shiftingalgorithm with an appropriate initial guess. This algorithm orresponds to a �xed pointiteration sheme for whih onvergene has been proven by Can�es and Le Bris [13℄. It shouldbe mentioned however that so far no proof exists that every solution of the Hartree-Fokequations an be obtained via the level-shifting algorithm. In view of (2.6), this theorem anbe immediately extended to the density matrix.Corollary 3.4 The one-eletron redued density matrix �(x;y) belongs to N6i=1Bs��;� (
) foreah s� > 0 and 1� = s� + 12 .For further appliations of the best N -term approximation to post Hartree-Fok methods, werefer to [36℄.Sine the univariate basis funtions and therefore the tensor-produts are �xed from thebeginning, a sparse grid approximation will be by far not an optimal tensor-produt approx-imation with respet to the separation rank. In general we expet that the separation rank8



of an \optimal" tensor-produt approximation 1 is muh smaller than for a sparse grid ap-proximation of omparable auray. For example, let f; g 2 Hs(R), and kf � fLk . 2�Ls, kg � gLk . 2�Ls. Then F (x; y) = f(x)g(y) has separation rank ropt = 1. The sparse gridapproximation FZL has the same approximation rate 2�Ls and O(L22L) degrees of freedom,but a relatively large separation rank L2L >> 1. We will see in a moment that the sparsegrid approximation is not too bad. Beause, to store both funtions fL and gL with respetto the given basis requires 2 � 2L oeÆients, whereas the sparse grid approximation requiresO(L22L) nonzero oeÆients in ontrast to O(2dL) for the full produt. Keeping in mind thata really optimal tensor-produt approximation for d > 2 is still an unsolved problem, andin general it might be quite expensive, the sparse grids approximation is simple and heapfrom the algorithmi point of view. It ahieves also an almost optimal omplexity for storagerequirements. It is a trivial task to onvert an \optimal" tensor-produt representation intoa sparse grid approximation. The opposite diretion is a highly nontrivial task and requiresfairly sophistiated ompression algorithms.It is worthwhile to mention that previous wavelet matrix ompression approahes are basedon some Calder�on-Zygmund type estimates for the kernels. The sparse grid approximation isintimately related to wavelet matrix ompression of integral operators with globally smoothkernels. The kernel funtions of Calder�on-Zygmund operators are not globally smooth. Never-theless, it an be shown that they an be approximated within linear or almost linear omplex-ity by means of wavelet Galerkin methods see e.g. [8, 17, 18, 19, 77℄, sine they are smooth inthe far �eld region. This result is proved, provided that the Shwartz kernel K(x;y) in Rd�Rdis approximated by tensor-produt bases 	
	, where 	 is an isotropi wavelet basis in Rd .Reently developed fast methods like wavelet matrix ompression and hierarhial matriesare working well for isotropi basis funtions or isotropi lusters. Corresponding results forsparse grid approximations withN2di=1	i have not been derived so far. Tensor-produt basesin the framework of sparse grids do not have this geometri isotropy, whih might spoil theeÆieny of these methods. This is not the ase for more general tensor-produt approxima-tions of these operators disussed in Setions 4.2.2 and 4.2.3 below. Therefore tensor-produtapproximations will provide an appropriate and eÆient tool handling nonloal operators at-ing on funtions whih are represented by means of tensor-produt (sparse grid) bases. Thedevelopment of suh a tool will play a fundamental role for dealing with operators in highdimensions.4 Toolkit for tensor-produt approximationsThe numerial treatment of operators in higher dimensions arising in traditional �nite elementmethods (FEM) and boundary element methods (BEM) as well as in quantum hemistry,material sienes and �nanial mathematis all have in ommon the fundamental diÆultythat the omputational ost of traditional methods usually has an exponential growth in deven for algorithms with linear omplexity O(N) in the problem size N (indeed, N salesexponentially in d as N = nd, where n is the \one dimensional" problem size).There are several approahes to remove the dimension parameter d from the exponent (f.[5, 41, 49, 53, 58℄). For the approximation of funtions, suh methods are usually based on1It should be mentioned that in our appliations at best almost optimal tensor-produt approximationsan be ahieved. This is not of partiular signi�ane sine we are aiming at a ertain auray and smallvariations of the separation rank, required in order to ahieve this auray, do not ause muh harm.9



di�erent forms of the separation of variables. Spei�ally, a multivariate funtion F : Rd ! Ran be approximated in the formFr(x1; :::; xd) = rXk=1 sk�(1)k (x1) � � ��d(k)(xd) � F;where the set of funtions f�(`)k (x`)g an be �xed, like the best N -term approximation dis-ussed in Setion 3, or hosen adaptively. The latter approah tries to optimize the funtionsf�(`)k (x`)g in order to ahieve for a ertain separation rank r at least the almost optimalapproximation property. By inreasing r, the approximation an be made as aurate asdesired. In the ase of globally analyti funtions there holds r = O(j log "jd�1), while foranalyti funtions with point singularities one an prove r = O(j log "j2(d�1)) (f. [53℄).In the following we want to give a short overview of various approahes to generate sepa-rable approximations with low separation rank. We �rst introdue in Setion 4.1 two di�erenttensor-produt formats whih have been used in the following. Setion 4.2 provides a su-int disussion of low rank tensor-produt approximations of speial funtions, inluding theCoulomb and Yukawa potential, for whih a ertain type of \seperable" integral represen-tation exists. This integral representation an be used to obtain separable approximationseither by applying the Sin approximation (Setion 4.2.1) or diretly through a best N -termapproximation of exponential sums (Setion 4.2.2).4.1 Tensor-produt representations in higher dimensionLet a d-th order tensor A = [ai1:::id℄ 2 C I be given, de�ned on the produt index set I =I1 � ::: � Id. It an be approximated via the anonial deomposition (CANDECOMP) orparallel fators (PARAFAC) model (shortly, anonial model) in the following mannerA � A(r) = rXk=1 bkV (1)k 
 :::::
 V (d)k ; bk 2 C ; (4.1)where the Kroneker fators V (`)k 2 C I` are unit-norm vetors whih are hosen suh that fora ertain approximation only a minimal number r of omponents in the representation (4.1)are required. The minimal number r is alled the Kroneker rank of a given tensor A(r). Hereand in the following we use the notation 
 to represent the anonial tensorU � [ui℄i2I = b U (1) 
 :::
 U (d) 2 C I ;de�ned by ui1:::id = b �u(1)i1 � � �u(d)id with U (`) � [u(`)i` ℄i`2I` 2 C I` . We make use of the multi-indexnotation i := (i1; :::; id) 2 I.The Tuker model deals with the approximationA � A(r) = r1Xk1=1 ::: rdXkd=1 bk1:::kdV (1)k1 
 :::
 V (d)kd ; (4.2)where the Kroneker fators V (`)k` 2 C I` (k` = 1; :::; r`, ` = 1; :::; d) are omplex vetors of therespetive size n` = jI`j, r = (r1; :::; rd) (the Tuker rank) and bk1:::kd 2 C . Without loss ofgenerality, we assume that the vetors fV (`)k` g are orthonormal, i.e.,DV (`)k` ; V (`)m` E = Æk`;m`; k`; m` = 1; :::; r`; ` = 1; :::; d;10



where Æk`;m` is Kroneker's delta.On the level of operators (matries) we distinguish the following tensor-produt strutures.Given a matrix A 2 C N�N with N = nd, we approximate it with the anonial model by amatrix A(r) of the form A � A(r) = rXk=1 V (1)k 
 � � � 
 V (d)k ; (4.3)where the V (`)k are hierarhially strutured matries of order n � n. Again the importantparameter r is denoted as the Kroneker rank.We also introdue the following rank-(r1; :::; rd) Tuker-type tensor-produt matrix formatA = r1Xk1=1 ::: rdXkd=1 bk1:::kdV (1)k1 
 :::
 V (d)kd 2 RI21�:::�I2d ; (4.4)where the Kroneker fators V (`)k` 2 RI`�I`, k` = 1; :::; r`, ` = 1; :::; d, are matries of a ertainstruture (say, H-matrix, wavelet based format, Toeplitz/irulant, low-rank, banded, et.).The matrix representation in the form (4.4) is a model redution whih is a generalisationof the low-rank approximation of matries, orresponding to the ase d = 2. For a lassof matrix-valued funtions (f. [53, 58℄ and Setion 6.1 below) it is possible to show thatr = O(j log "j2(d�1)). Further results on the tensor-produt approximation to ertain matrix-valued funtions an be found in [41, 54℄.Note that algebrai reompression methods based on the singular value deomposition(SVD) annot be diretly generalised to d � 3. We refer to [5, 6, 25, 26, 27, 33, 58, 59,64, 66, 67, 74, 90℄ and referenes therein for detailed desription of the methods of numerialmulti-linear algebra. In the following, we stress the signi�ane of analytial methods forthe separable approximation of multivariate funtions and related funtion-generated matri-es/tensors.4.2 Separable approximation of funtionsSeparable approximation of funtions plays an important role in the design of e�etive tensor-produt deomposition methods. For a large lass of funtions (f. [84, 85℄) it is possibleto show that tensor-produt approximations with low separation rank exist. In this setion,we overview the most ommonly used methods to onstrut separable approximations ofmultivariate funtions.4.2.1 Sin interpolation methodsSin-approximation methods provide the eÆient tools for interpolating C1 funtions on Rhaving exponential deay as jxj ! 1 (f. [80℄). LetSk;h(x) = sin [�(x� kh)=h℄�(x� kh)=h (k 2 Z; h > 0; x 2 R)be the k-th Sin funtion with step size h, evaluated at x. Given f in the Hardy spae H1(DÆ)with respet to the strip DÆ := fz 2 C : j=zj � Æg for a Æ < �2 . Let h > 0 and M 2 N0 , the11



orresponding Sin-interpolant (ardinal series representation) and quadrature read asCM(f; h) = MXk=�M f(kh)Sk;h; TM (f; h) = h MXk=�M f(kh);where the latter approximates the integralI(f) = ZR f(x)dx:For the interpolation error, the hoie h =p�Æ=bM implies the exponential onvergene ratekf � CM(f; h)k1 � CM1=2e�p�ÆbM :Similarly, for the quadrature error, the hoie h =p2�Æ=bM yieldsjI(f)� TM(f; h)j � Ce�p2�ÆbM :If f has a double-exponential deay as jxj ! 1, i.e.,jf(�)j � C exp(�beaj�j) for all � 2 R with a; b; C > 0;the onvergene rate of both Sin-interpolation and Sin-quadrature an be improved up toO(e�M= logM).For example, let d = 2. Given a funtion F (�; �) de�ned in the produt domain 
 :=[0; 1℄ � [a; b℄, a; b 2 R, we assume that for eah �xed � 2 [a; b℄, the univariate funtionF (�; �) belongs to C1(0; 1℄ and allows a ertain holomorphi extension (with respet to �)to the omplex plane C (f. [53℄ for more details). Moreover, the funtion F (�; �) restritedonto [0; 1℄ is allowed to have a singularity with respet to � at the end-point � = 0 of [0; 1℄.Spei�ally, it is assumed that there is a funtion � : R ! (0; 1℄ suh that for any � 2 [a; b℄the omposition f(x) = F (�(x); �) belongs to the lass H1(DÆ). For this lass of funtions aseparable approximation is based on the transformed Sin-interpolation [41, 80℄ leading toFM(�; �) = MXk=�M F (�(kh); �)Sk;h(��1(�)) � F (�; �):The following error bound sup�2[a;b℄ jF (�; �)� FM(�; �)j � Ce�sM= logM (4.5)holds with ��1(�) = arsinh(arosh(��1)). In the ase of a multivariate funtion in [0; 1℄d�1 �[a; b℄, one an adapt the orresponding tensor-produt approximation by suessive appliationof the one-dimensional interpolation (f. [53℄). In the numerial example shown in Fig. 1), weapproximate the Eulidean distane jx�yj in R3 on the domain jxi�yij � 1 (i = 1; 2; 3), by theSin-interpolation. To that end, the approximation (4.5) applies to the funtion F (�; �; �) =p�2 + �2 + �2 in 
 := [0; 1℄3. 12
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Figure 1: Convergene of the Sin-approximation of F (�; �; �) = p�2 + �2 + �2 on the slie� = � = 0 (left), and the pointwise error for M = 32 on (�; 0; 0), � 2 [�1; 1℄ (right).4.2.2 Integral representation methodsIntegral representation methods are based on the quadrature approximation of integral Laplae-type transforms representing spherially symmetri funtions. In partiular, some funtionsof the Eulidean distane in Rd , say,1=jx� yj; jx� yj�; e�jx�yj; e��jx�yj=jx� yj; x; y 2 Rd ;an be approximated by Sin-quadratures of the orresponding Gaussian integral on the semi-axis [41, 53, 54, 65℄.For example, in the range 0 < a � jx� yj � A, one an use the integral representation1jx� yj = 1p� ZR exp(�jx� yj2t2)dt = ZR F (%; t)dt; x; y 2 Rd (4.6)of the Coulomb potential withF (%; t) = 1p�e�%2t2 ; % = jx� yj; d = 3:After the substitution t = log(1 + eu) and u = sinh(w) in the integral (4.6), we apply thequadrature to obtainTM (F; h) := h MXk=�M osh(kh)G(%; sinh(kh)) � ZR F (%; t)dt = 1% (4.7)with G(%; u) = 2p� e�%2 log2(1+eu)1+eu and with h = C0 logM=M . The quadrature (4.7) is proven toonverge exponentially in M ,EM := ����1% � TM (F; h)���� � Ce�sM= logM ;13
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Figure 2: Error of the quadrature formula (4.7) for the Coulomb potential on the interval[1; 5000℄ for M = 64.where C; s do not depend on M (but depend on %), see [53℄. With the proper saling ofthe Coulomb potential, one an apply this quadrature in the referene interval % 2 [1; R℄. Anumerial example for this quadrature with values % 2 [1; R℄, R � 5000, is presented in Fig. 2.We observe almost linear error growth in %.In eletroni struture alulations, the Galerkin disretisation of the Coulomb potentialin tensor-produt wavelet bases is of spei� interest. For simpliity, we onsider an isotropi3d-wavelet basis (s)j;a(x) :=  (s1)j;a1 (x1) (s2)j;a2 (x2) (s3)j;a3 (x3);where the funtions  (0)j;a (x) := 2j=2 (0)(2jx � a),  (1)j;a (x) := 2j=2 (1)(2jx � a), with j; a 2Z, orrespond to univariate saling funtions and wavelets, respetively. The nonstandardrepresentation of the Coulomb potential (f. [8, 34℄) requires integrals of the formZR3 ZR3 (p)j;a (x) 1j x� y j (q)j;b (y) d3xd3y = 2�2j+1p� 1Z0 I(p;q)(t; a� b)dt;with I(p;q)(t; a) = G(p1;q1)(a1; t)G(p2;q2)(a2; t)G(p3;q3)(a3; t);and G(p;q)(a; t) = ZR ZR  (p)(x� a) e�(x�y)2t2  (q)(y) dxdy:In order to bene�t from the tensor-produt struture, it is important to have a uniform errorbound with respet to the spatial separation ja� bj of the wavelets. Reently, the followingtheorem was proven by Shwinger [79℄Theorem 4.1 Given a univariate wavelet basis  (p)j;a whih satis�es����Z  (p)(x� y) (q)(y) dy���� . e�jxj for  > 0:14
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Figure 3: Relative error of Coulomb integrals (4.8) for the ase of pure saling funtions,i.e., p = q = (0; 0; 0), for di�erent number of quadrature points M . The isotropi 3d-salingfuntions were generated from the univariate Deslauriers Dubu interpolating saling funtion[29℄ whih is exat up to 5'th order.Then for any Æ < �4 , the integration error of the exponential quadrature rule (f. [80℄) withh =q�ÆM (h =q2�ÆM pure saling funtions, i.e., p = q = (0; 0; 0)) satis�es������ 1Z0 I(p;q)(t; a)dt� h MXm=�M emhI(p;q)(emh; a)������ � Ce��pM (4.8)for � = 2p�Æ (� = p2�Æ pure saling funtions) with onstant C independent of the transla-tion parameter a.We illustrate the theorem for the ase of pure saling funtions in Fig. 4.2.2. Similar resultsfor wavelets are presented in [14℄.4.2.3 On the best approximation by exponential sumsUsing integral representation methods, the Sin-quadrature an be applied, for example, tothe integrals 1% = Z 10 e�%�d�; and 1% = 1p� Z 1�1 e�%2t2dtto obtain an exponentially onvergent sum of exponentials approximating the inverse funtion1% . Instead, one an diretly determine the best approximation of a funtion with respet to aertain norm by exponential sums nP�=1!�e�t�x or nP�=1!�e�t�x2 ; where !�; t� 2 R are to be hosenoptimally. For some appliations in quantum hemistry of approximation by exponential sumswe refer e.g. to [1, 60, 62℄.We reall some fats from the approximation theory by exponential sums (f. [10℄ and thedisussion in [53℄). The existene result is based on the fundamental Big Bernstein Theorem:15



If f is ompletely monotone for x � 0, i.e.,(�1)nf (n)(x) � 0 for all n � 0; x � 0;then it is the restrition of the Laplae transform of a measure to the half-axis:f(z) = ZR+ e�tzd�(t):For n � 1, onsider the set E0n of exponential sums and the extended set En:E0n := (u = nX�=1 !�e�t�x : !�; t� 2 R) ;En := (u = X̀�=1 p�(x)e�t�x : t� 2 R; p� polynomials with X̀�=1(1 + degree(p�)) � n) :Now one an address the problem of �nding the best approximation to f over the set Enharaterised by the best N -term approximation errord1(f; En) := infv2En kf � vk1:We reall the omplete ellipti integral of the �rst kind with modulus �,K(�) = Z 10 dtp(1� t2)(1� �2t2) (0 < � < 1)(f. [12℄), and de�ne K0(�) := K(�0) by �2 + (�0)2 = 1.Theorem 4.2 2 ([10℄) Assume that f is ompletely monotone and analyti for <e z > 0, andlet 0 < a < b. Then for the uniform approximation on the interval [a; b℄,limn!1d1(f; En)1=n � 1!2 ; where ! = exp �K(�)K0(�) with � = ab :In the ase disussed below, we have � = 1=R for possibly large R. Applying the asymp-totis K(�0) = ln 4� + C1�+ ::: for �0 ! 1;K(�) = �2f1 + 14�2 + C1�4 + :::g for �! 0;of the omplete ellipti integrals (f. [44℄), we obtain1!2 = exp��2�K(�)K(�0) � � exp�� �2ln(4R)� � 1� �2ln(4R) :The latter expression indiates that the number n of di�erent terms to ahieve a tolerane "is asymptotially n � j log "jj log!�2j � j log "j ln (4R)�2 :2The same result holds for E0n, but the best approximation may belong to the losure En of E0n:16



This result shows the same asymptotial onvergene in n as the orresponding bound in theSin-approximation theory.Optimisation with respet to the maximum norm leads to the nonlinear minimisation prob-lem infv2E0n kf�vkL1[1;R℄ involving 2n parameters f!�; t�gn�=1. The numerial implementationis based on the Remez algorithm (f. [12℄). For the partiular appliation with f(x) = x�1 , wehave the same asymptotial dependene n = n("; R) as in the Sin-approximation above, how-ever, the numerial results 3 indiate a notieable improvement ompared with the quadraturemethod, at least for n � 15.The best approximation to 1=%� in the interval [1; R℄ with respet to a W -weighted L2-norm an be redued to the minimisation of an expliitly given di�erentiable funtionald2(f; En) := infv2En kf � vkL2W :Given R > 1, � > 0, n � 1, �nd the 2n real parameters t1; !1; :::; tn; !n 2 R, suh thatF�(R; t1; !1; :::; tn; !n) := Z R1 W (x)� 1x� � nXi=1 !ie�tix�2dx = min : (4.9)In the partiular ase of � = 1 and W (x) = 1, the integral (4.9) an be alulated in a losedform4: F1(R; t1; !1; :::; tn; !n) = 1� 1R � 2 nXi=1 !i [Ei(�ti)� Ei(�tiR)℄+ 12 nXi=1 !2iti �e�2ti � e�2tiR�+ 2 X1�i<j�n !i!jti + tj �e�(ti+tj) � e�(ti+tj)R�with the integral exponential funtion Ei(x) = �R x�1 ett dt (f. [12℄). In the speial ase R =1,the expression for F1(1; : : :) even simpli�es. Gradient or Newton type methods with a properhoie of the initial guess an be used to obtain the minimiser of F1 (f. [56℄).5 Data sparse formats for univariate omponents5.1 Hierarhial matrix tehniquesThe hierarhial matrix (H-matrix) tehnique [46, 50, 51, 55℄ (see also the mosai-skeletonmethod [83℄) allows an eÆient treatment of dense matries arising, e.g., from BEM, evaluationof volume integrals and multi-partile interations, ertain matrix-valued funtions, et. Inpartiular, it provides matrix formats whih enable the omputation and storage of inverseFEM sti�ness matries orresponding to ellipti problems as well as of BEM matries.The hierarhial matries are represented by means of a ertain blok partitioning. Fig. 4shows typial admissible blok strutures. Eah blok is �lled by a submatrix of a rank notexeeding k: Then, for the mentioned lass of matries, it an be shown that the exat densematrix A and the approximating hierarhial matrix AH di�er by kA� AHk � O(�k) for a3Numerial results for the best approximation of x�1 by sums of exponentials an be found in [10℄ and[11℄; a full list of numerial data is presented in www.mis.mpg.de/siomp/EXP SUM/1 x/tabelle.4In the general ase, the integral (4.9) may be approximated by ertain quadratures.17



Figure 4: Hierarhial partitioning by the standard and weak admissibility onditionsertain number � < 1: This exponential derease allows to obtain an error " by the hoiek = O (log(1=")) : It is shown (f. [50, 51, 52℄) that the H-matrix arithmeti exhibits almostlinear omplexity in N :� Data ompression. The storage of N � N H-matries as well as the matrix-by-vetormultipliation and matrix-matrix addition have a ost O (kN logN), where the loalrank k is the parameter determining the approximation error.� Matrix-by-matrix and matrix-inverse omplexity. The approximate matrix-matrix mul-tipliation and the approximate inversion both take O �k2N log2N� operations.� The Hadamard (entry-wise) matrix produt. The exat Hadamard produt of two rank-kH-matries leads to an H-matrix of the blok-rank k2 (see Setion 5.2 below).5.2 Hierarhial Kroneker tensor-produt approximationsSine n is muh smaller than N , one an apply the hierarhial (or low-rank) matrix strutureto represent the Kroneker fators Vk̀ in (4.3) with the omplexity O(n logq n) or even O(n)that �nally leads to O(rn) = O(rN1=d) data to represent the ompressed matrix Ar. Weall by HKT(r; s) the lass of Kroneker rank-r matries, where the Kroneker fators Vk̀ arerepresented by the blok-rank s H-matries (shortly, HKT-matries). It was shown in [58℄that the advantages of replaing A with Ar (f. (4.3)), where all the Kroneker fators possessthe struture of general H-matries, are the following:� Data ompression. The storage for the Vk̀ matries of (4.3) is only O(rn) = O(rN1=d)while that for the original (dense) matrix A is O(N2), where r = O(log�N) for some� > 0. Consequently, we enjoy a linear-logarithmi omplexity of O(n log� n) in theunivariate problem size n.� Matrix-by-vetor omplexity. Instead of O(N2) operations to ompute Ax, x 2 C N , wenow need only O(rknd logn) = O(rkN logn) operations. If the vetor an be repre-sented in a tensor-produt form (say, x = x1
 : : :
xd, xi 2 C n) the orresponding ostis redued to O(rkn logn) = O(rkN1=d logn) operations.18



� Matrix-by-matrix omplexity. Instead of O(N3) operations to ompute AB, we nowneed only O(r2n3) = O(r2N3=d) operations for rather general struture of the Kronekerfators. Remarkably, this result is muh better than the orresponding matrix-by-vetoromplexity for a general vetor x.� Hadamard produt. The Hadamard (entry-wise) produt of two HKT-matries A � Bis presented in the same format: (U1 � V1) � (U2 � V2) = (U1 � U2) � (V1 � V2). Inturn, the exat Hadamard produt U1 � U2 (same for V1 � V2) of two rank-k H-matriesresults in an H-matrix of the blok-rank k2 and with the orresponding \skeleton"vetors de�ned by the Hadamard produts of those in the initial fators (sine thereholds (a
 b) � (a1 
 b1) = (a � a1)
 (b � b1)).Therefore, basi linear algebra operations an be performed in the tensor-produt representa-tion using one-dimensional operations, thus avoiding an exponential saling in the dimensiond. The exat produt of two HKT-matries an be represented in the same format, but withsquared Kroneker rank and properly modi�ed blok-rank [58℄. If A;B 2 HKT(r; s), where sorresponds to the blok-rank of the H-matries involved, then in general AB =2 HKT(r; s).However, A = rXk=1 UAk 
 V Ak ; B = rXl=1 UBl 
 V Bl ; UAk ; V Ak ; UBl ; V Bl 2 C n�n ; (5.1)leads to AB = rXk=1 rXl=1 (UAk UBl )
 (V Ak V Bl ):It an be proven that the UAk UAl and V Ak V Bl matries possess the same hierarhial partitioningas the initial fators in (5.1) with bloks of possibly larger (than s) rank bounded, nevertheless,by sAB = O(s logN): Thus, AB 2 HKT(r2; sAB) with sAB = O(s logN).5.3 Wavelet Kroneker tensor-produt approximationsWavelet matrix ompression was introdued in [8℄. This tehniques has been onsidered by oneof the authors during the past deade in a series of publiations (f. [77℄). The ompressionof the Kroneker fators Vi 2 Rn�n is not so obvious, sine it is not lear to what extendthey satisfy a Calder�on-Zygmund ondition. It is more likely that they obey more or lessa hyperboli ross struture. An underlying trunation riterion based on the size of theoeÆients will provide an automati way to �nd the optimal struture independent of ana priori assumption. A basi thresholding or a posteriori riterion has been formulated byHarbreht [61℄ and in [22℄. With this riterion at hand, we expet linear saling with respetto the size of the matries.� Data ompression. The matries in (4.3) Vk̀ an be ompressed requiring total storagesize about O(rn) = O(rN1=d), where r = O(log�N) is as above. The data vetorrequires at most O(n logd n) nonzero oeÆients.
19



� Matrix-by-vetor omplexity. Instead of O(N2) operations to ompute Ax, x 2 C N , wenow need only O(rnd) = O(rN) operations. If the vetor is represented in a tensor-produt form (say, x = x1 
 :::
 xd, xi 2 C n) or in sparse grid representation, then theorresponding ost is redued to O(rn), resp. O(rn logd n) operations .� Matrix-by-matrix omplexity. Using the ompression of the Lemari�e algebra [82℄, insteadof O(N3) operations to ompute AB, we need only O(r2n logq n) = O(r2N1=d logqN),or even O(r2n) operations.Adaptive wavelet shemes for nonlinear operators have been developed in [3, 24℄ and fornonloal operators in [23℄. Corresponding shemes for hyperboli ross approximations havenot been worked out up to now. Perhaps basi ideas an be transfered immediately to thetensor-produt ase.6 Linear saling methods for Hartree-Fok and Kohn-Sham equationsOperator-valued funtions G(L) of ellipti operators L play a prominent role in quantummany-partile theory. A possible representation of the operator G(L) is given by the Dunford-Cauhy integral (f. [38, 39, 40, 41℄)G(L) = 12�i Z� G(z)(zI � L)�1dz;where � envelopes the spetrum spe(L) of the operator L in the omplex plane. This kindof representation is espeially suitable for tensor-produt approximation using Sin or Gauss-Lobatto quadratures for the ontour integral to get an approximate operator of the formG(L) �X kG(zk)(zkI � L)�1: (6.1)An important example for an operator valued funtion is the sign funtion of the shiftedFok operator whih an be diretly related to the spetral projetor P� assoiated with thedensity matrix �. This relationP� = 12 [I � sign(F � �I)℄ = � 12�i Z�(F � zI)�1dz;where �\spe(F) = ; enloses the N=2 lowest eigenvalues of the Fok operator, has been �rstnotied by Beylkin, Coult and Mohlenkamp [7℄. In order to be appliable, the method requiresa �nite gap between the highest oupied "N=2 and lowest unoupied "N=2+1 eigenvalue toadjust the parameter "N=2 < � < "N=2+1. This onstraint, in partiular, exludes metallisystems.In general, the approximability of inverse matries, required in (6.1), within the HKTformat is still an open problem. First results on fast approximate algorithms to omputeinverse matries in the HKT format for the ase d � 2 an be found in [41℄. In Fig. 6,we onsider the HKT representation to the disrete Laplaian inverse (��h)�1 (homogeneousDirihlet boundary onditions) in Rd , whih an be obtained withO(dn logq n) ost. Numerialexamples for still higher dimensions d � 1024 are presented in [45℄. For omparison, the20
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Figure 5: Error for anonial tensor produt approximations of (��h)�1 in [0; 1℄d with d = 2; 3and 4. Here M denotes the number of Sin-quadrature points so that the separation rank isgiven by r = 2M + 1, f. [41℄ for further details.following numerial example manifests the optimal Kroneker rank of the disrete elliptiinverse in d = 2. Let��h now orrespond to a �ve-point stenil disretization of the Laplaianon a uniform mesh in the unit retangle in R2 (Dirihlet boundary onditions). It is easy to seethat the Kroneker rank of ��h is 2. The Kroneker ranks of (��h)�1 for di�erent relativeapproximation auraies (in the Frobenius norm) are given in Table 6. Our results indiatea logarithmi bound O(log "�1) for the approximate Kroneker rank r.6.1 Matrix-valued funtions approah for density matriesLet F 2 RM�M be the Fok matrix that represents the Fok operator F (f. (2.8)) in anorthogonal basis f'igMi=1, M � N=2. There exist two di�erent approahes to ompute theGalerkin disretization D 2 RM�M of the density matrix (2.6) via the matrix sign of theshifted Fok matrix D = 12[I� sign(F � �I)℄; with � 2 ("N=2; "N=2+1):The �rst approah uses an exponentially onvergent quadrature for the integral to obtain anexpansion into resolvents (6.1) whereas the seond approah is based on a Newton-Shultziteration sheme. Conerning the tensor-produt approximation of resolvents in the HKTTable 1: Canonial tensor produt approximation with optimal separation rank of the inverseLaplaian (��h)�1 on a uniform retangular grid in [0; 1℄2. Here n = 64 and, hene, ��h 2RN�N with N = 4096.Kroneker rank for (��h)�1 6 8 9 11 12 14Relative Frobenius error 10�3 10�4 10�5 10�6 10�7 10�821



format we refer to our disussion in Setion 5.2. For the Newton-Shultz iteration shemeproposed in [7℄S(n+1) = S(n) + 12 �I � (S(n))2�S(n) ; S(0) = (F � �I)=jjF � �Ijj2; (6.2)the sequene S(n) onverges to sign(F � �I). First appliations in quantum hemistry byN�emeth and Suseria [71℄ demonstrate the pratiability of this approah. Iterations shemesof the form (6.2) seem to be espeially favourable for tensor-produt formats. Starting froman initial approximation of the Fok matrix F, with low separation rank one has to performmatrix-matrix multipliations whih an be handled in an eÆient manner in the tensor-produt format, f. our disussion in Setion 5.2. After eah iteration step a reompression ofthe tensor-produt deomposition of S(n+1) beomes neessary. For the reompression one anapply the simple alternating least squares (ALS) method [5, 87, 90℄ or Newton-type and relatedalgebrai iterative methods [33℄. The ALS algorithm starts with an initial deompositionof S(n+1) with separation rank r and obtains the best approximation with separation rank~r � r by iteratively solving an optimisation problem for eah oordinate separately. Assumethat r is atually muh larger than neessary, i.e., ~r << r, then the ALS algorithm ostsO(d ~r(~r2 + rn2)). We refer to [78℄ for the disussion of wavelet methods for density matrixomputation in eletroni struture alulation.6.2 Computation of Hartree potentials in tensor-produt formatsA ommon bottlenek for the numerial solution of Hartree-Fok and Kohn-Sham equations isthe omputation of the Hartree-potential (2.9). Traditionally, highly adapted GTO basis setsare used for the approximation of eletron densities whih enable an analyti evaluation of thesubsequent onvolution with the Coulomb potential. This kind of approah beame widelyknown as density-�tting or resolution of the identity method (f. [31, 32, 69℄) and turned outto be an essential ingredient for omputational eÆieny. We want to disuss two alternativeapproahes based on anonial (4.1) and Tuker (4.2) tensor-produt deompositions whihhave been presented in [14℄ and [15℄, respetively. Both approahes have to be onsideredas a generalization of the density-�tting method with respet to the fat that they providetensor-produt approximations for both, the eletron density and the Hartree potential. Thelatter beomes possible via separable approximations of the Coulomb potential obtained viaSin interpolation or best approximation by exponential sums disussed in Setions 4.2.2 and4.2.3, respetively.The anonial tensor-produt approah is based on approximations for the eletron density(2.7) in the formatn(x) = KXk=1 n(1)k (x1)n(2)k (x2)n(3)k (x3) � �Xk=1 �(1)k (x1) �(2)k (x2) �(3)k (x3);whih an be obtained from separable approximations with large separation rank K, e.g. ex-pansions in terms of GTO basis sets, via algebrai ompression methods [33℄. Using a separableapproximation of the Coulomb potential with separation rank 2M + 1, f. (4.7), we obtainfrom an intermediate tensor-produt representation with separation rank �(2M + 1), after afurther ompression step, the Hartree potential in the anonial format with low separation22



rank VH(x) = ZR3 1j x� y j n(y)d3y � �0Xk=1 v(1)k (x1) v(2)k (x2) v(3)k (x3):With suh an approximation at hand, it is straightforward to assemble the Galerkin matrixwith respet to an arbitrary tensor-produt basis fG�(x) := g�1(x1)g�2(x2)g�3(x3)g, � :=(�1; �2; �3) 2 I, in an eÆient manner by utilising the tensor-produt deomposition of theonstituents ZR3 ZR3 G�VH(x)G
d3xd3y = �Xk=1hg�1v(1)k ; g!1ihg�2v(2)k ; g!2ihg�3v(3)k ; g!3i:This approah is therefore espeially suitable in ombination with onventional GTO or tensor-produt wavelet bases. It turned out that signi�ant improvements beyond standard GTObases an be ahieved, however the unonstraint optimization of univariate omponents re-quired for the ompression steps represents a generially ill-posed problem and rather sophis-tiated optimization tehniques are neessary in order to ahieve the required high auraies.The seond approah uses the Tuker format (4.2) to obtain data sparse representationsof eletron densities. In ontrast to the anonial approah, the Tuker approximation is typ-ially a well posed problem. We have studied Tuker approximations of eletron densities andHartree potentials represented on regular artesian grids. This kind of representation under-lies the reently developed BigDFT ode [9℄ for DFT based large sale eletroni struturealulations. The presently most eÆient approah to ompute the Hartree potential on aartesian grid uses the Fast Fourier Transform (FFT) to perform the onvolution with theCoulomb potential [42℄. Conerning the omputational omplexity FFT sales O(n3 logn) ona ubi grid, where n is the number of grid points in eah diretion. Within tensor-produtformats it is possible to perform this step with sublinear, i.e., O(n�), 1 � � < 3 omplexity.The Tuker format is not as onvenient for the onvolution as the anonial format. Thereforeit is favourable to simply rearange the Tuker tensor with Tuker rank r into a anonial ten-sor with separation rank r2 and perform the onvolution in the anonial format as desribedabove. In a subsequent step it is possible to ompress the resulting Hartree potential of rankr2(2M + 1) again within the Tuker format.We have studied anonial and Tuker type tensor-produt approximations of eletrondensities and Hartree potentials for a series of small moleules. We refer to [14, 15℄ for adetailed disussion of the anonial and Tuker approah inluding benhmark alulationsfor some small moleules. As an illustrative example we present in Fig. 6.2 results for theC2H6 moleule. The relative errors of the tensor-produt approximations refer to the L2(R3)and disrete Frobenius norm for the anonial and Tuker format, respetively. It an beseen from Fig. 6.2 that the error in the anonial format dereases approximately like e�p�whereas the Tuker format shows an exponential onvergene with respet to the Tuker rank.As already notied in the previous paragraph it is always possible to rearange the Tuker intothe anonial format where the Tuker rank r orresponds to a anonial separation rank� = r2. Here we observe a similar behaviour for eletron densities and Hartree potentials.
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Figure 6: Errors for tensor produt approximations of the eletron density n and Hartreepotential VH of C2H6. a) Kroneker rank of the anonial format versus error in the L2 norm.b) Tuker rank of the Tuker format versus error in the Frobenius norm.7 ConlusionsThe importane of tensor-produt approximations for eletroni struture alulations in quan-tum hemistry and solid state physis an be hardly overestimated. Their sope of applia-tions ranges from basi issues related to the problem to �nd a onvenient ansatz for themany-partile wavefuntion in terms of Slater determinants up to more tehnial issues on-erning the eÆient omputation of integrals involving the Coulomb potential. Within thepresent work we reviewed some reent developments in numerial analysis omprising bestN -term approximation in tensor-produt wavelet bases as well as more general anonial andTuker type tensor-produt formats, whih an be ombined with data sparse representationsfor the low dimensional omponents using H matries or wavelets. Furthermore, separableapproximations of ertain kernel funtions, like the Coulomb or Yukawa potential, enablefast onvolutions in tensor-produt formats. For large sale Hartree-Fok and DFT eletronistruture alulations, based on GTO bases or artesian grids, the omputation of the non-linear Hartree potential beomes a dominant step. Tensor-produt formats provide possibleimprovements with respet to onventional approahes based on density-�tting shemes andFFT for GTO and grid based methods, respetively. An essential prerequisite, however, is theavailability of aurate and fast ompression algorithms, whih have to be suessively appliedin order to avoid a disproportionate inrease of the separation rank e.g. within tensor-produtonvolutions. Suh kind of algorithms are presently under development [33, 74℄.8 AknowledgmentsThe authors gratefully aknowledge S. R. Chinnamsetty, M. Espig, Dr. L. Grasedyk, V.Khoromskaia and S. Shwinger (Leipzig) for useful disussions. This work was supported bythe Deutshe Forshungsgemeinshaft (SPP 1145).
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