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QUANTIZATION FOR A NONLINEAR DIRAC EQUATION

MIAOMIAO ZHU

Abstract. We study solutions of certain nonlinear Dirac-type equations on Riemann spin sur-
faces. We first improve an energy identity theorem for a sequence of such solutions with uni-
formly bounded energy in the case of a fixed domain. Then, we prove the corresponding energy
identity in the case that the equations have constant coefficients and the domains possibly de-
generate to a spin surface with only Neveu-Schwarz type nodes.

1. Introduction

Let M be a closed Riemann surface with a fixed spin structure. Let ΣM be the spinor bundle
over M with a hermitian metric 〈·, ·〉ΣM and a compatible spin connection ∇. Let /∂ be the Dirac
operator defined on Γ(ΣM), i.e., /∂ := e1 · ∇e1 + e2 · ∇e2 for a local orthonormal frame {e1, e2} of
T M.

We consider the following nonlinear Dirac-type equation on M:

/∂ψ = H jkl〈ψ j, ψk〉ψl, (1.1)

where ψ = (ψ1, ψ2, ..., ψd), ψi ∈ Γ(ΣM) and H jkl = (H1
jkl,H

2
jkl, ...,H

d
jkl) ∈ C∞(M,Cd).

Nonlinear Dirac equations of the form (1.1) appear naturally in geometry and physics.
Firstly, consider the Dirac-harmonic map (φ, ψ) with curvature term introduced by Chen-Jost-
Wang [7, 8], which was derived from the nonlinear supersymmetric σ-model of quantum field
theory, then the nonlinear Dirac equation for the spinor filed ψ reduces to (1.1) with H being
real valued, when φ is a constant map. Secondly, the generalized Weierstrass representation
indicates that solutions to some Dirac equations of the form (1.1) can be used to express sur-
faces immersed in R3, R4 and some three-dimensional Lie groups: S U(2),Nil,Sol, S̃ L2 (see
e.g. [16]). Thirdly, Ammann-Humbert considered a similar Dirac equation to study the first
conformal Dirac eigenvalue [3].

In order to discuss some analytic aspects of the equation (1.1), we recall that the energy of
ψ ∈ Γ(ΣM) on a domain Ω ⊂ M is defined by

E(ψ,Ω) =
∫
Ω

|ψ|4dvol, (1.2)

where |ψ| := 〈ψ, ψ〉 1
2 . Note that (1.1) and (1.2) are conformally invariant.

Chen-Jost-Wang [8] developed the basic geometric analysis tools for blow-up analysis of
the solutions of (1.1) and proved an energy identity for a sequence of smooth solutions on a
fixed domain with small uniform energy bound. For the energy identities of two dimensional
harmonic maps, Pseudo-holomorphic curves, we refer to [10, 14, 15, 18, 9]. For the regularity
issue of (1.1), we refer to Wang [17], where any weak solution to (1.1) was shown to be smooth.

In this article, we will prove the energy identity without assuming the small uniform energy
bound. More precisely, we have the following:
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Theorem 1.1. Let M be a closed Riemann surface with a fixed spin structure, and suppose
that ψn is a sequence of smooth solutions of (1.1) on M with uniformly bounded energy
E(ψn) =

∫
M |ψn|4 ≤ Λ < ∞. Then there exist finitely many blow-up points {x1, x2, ..., xI},

a solution ψ on M to (1.1) and finitely many solutions ξi,l on S 2 of (1.1) with H ≡ H(xi),
i = 1, 2, ..., I; l = 1, 2, ..., Li, such that, after selection of a subsequence, ψn converges in C∞loc to
ψ on M \ {x1, x2, ..., xI} and the following holds:

lim
n→∞

E(ψn) = E(ψ) +
I∑

i=1

Li∑
l=1

E(ξi,l). (1.3)

Furthermore, we prove that the corresponding energy identity holds in the case that the
domain converge to a possibly noncompact Riemann spin surface with all punctures (if there
are any) of Neveu-Schwarz type.

Theorem 1.2. Let (Mn, cn,Sn) be a sequence of closed Riemann spin surfaces of genus g > 1
with complex structures cn and spin structures Sn. Assume that (Mn, cn,Sn) converges to a
possibly noncompact Riemann spin surface (M, c,S) with only Neveu-Schwarz type punctures
(if there are any). Let ψn be a sequence of smooth solutions of (1.1) on Mn with H ≡ const
and with uniformly bounded energy E(ψn,Mn) ≤ Λ < ∞. Then there exist a solution ψ of (1.1)
on (M, c,S), where (M, c,S) is the normalization of (M, c,S) and finitely many solutions ξk of
(1.1) on S 2, k = 1, 2, ...,K, such that, after selection of a subsequence, the following holds:

lim
n→∞

E(ψn) = E(ψ) +
K∑

k=1

E(ξk). (1.4)

We remark that, in the simple case of d = 1 and H ≡ 1, the equation (1.1) becomes

/∂ψ = |ψ|2ψ. (1.5)

It is well known that any solution to (1.5) represents a branched conformal immersion in R3

with constant mean curvature H ≡ 1 (see c.f. [16, 1]) and hence the concentrated energy in
(1.3) and (1.4) can be explicitly quantized, i.e., in multiples of 4π.

2. Preliminaries

We collect some basic analytic properties for solutions of (1.1) proved in [8].

Theorem 2.1. Let D be the unit disk. There exists a constant ε0 > 0 such that

(1) (ε-regularity) Let ψ be a smooth solution of (1.1) satisfying

E(ψ,D) =
∫

D
|ψ|4 < ε0.

Then, we have
‖ψ‖D̃,k,p ≤ C‖ψ‖D,0,4,

∀D̃ ⊂⊂ D, p > 1 and k ∈ Z+, where C = C(D̃, k, p) > 0 is a constant.
(2) (Singularity removability) Let ψ be a smooth solution of (1.1) defined on D \ {0} with

the nontrivial spin structure. If

E(ψ,D) =
∫

D
|ψ|4 < ∞,

then ψ extends to a smooth solution of (1.1) on the whole D.
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(3) For any nontrivial solution ψ of (1.1) on S 2, we have

E(ψ) =
∫

S 2
|ψ|4 ≥ ε0.

Remark 2.1. Theorem 2.1 was proved in [8] for equation (1.1) with real valued H as well as
certain complex valued H ( Section 5. in [8]). It is easy to check that the results hold true also
in the case of general complex valued H.

For the notion of the nontriviality of a spin structure on an annulus or a cylinder, we refer to
[2, 3, 4]. Following the terminology introduced by Jarvis-Kimura-Vaintrob [11], the puncture
{0} in (2) of Theorem 2.1 is said to be of Neveu-Schwarz type. If D \ {0} is equipped with the
trivial spin structure, then the puncture {0} is said to be of Ramond type. See [21] for similar
discussions.

Applying the analytic properties in Theorem 2.1, Chen-Jost-Wang [8] proved the following:

Theorem 2.2. Let M be a closed Riemann surface with a fixed spin structure, and suppose
that ψn is a sequence of smooth solutions of (1.1) on M with real valued H and with uniformly
bounded energy E(ψn) =

∫
M |ψn|4 ≤ Λ < ∞, and assume that ψn weakly converges to some ψ

in L4(ΣM). Then the blow-up set

S :=
⋂
r>0

{
x ∈ M| lim inf

n→∞

∫
D(x,r)
|ψn|4 ≥ ε0

}
is a finite set of points {x1, x2, ..., xI}, where ε0 is as in Theorem 2.1. Furthermore, there exists
a constant c0 > 0 depending only on M such that if

sup
M,i, j,k,l

|Hi
jkl|
√
Λ < c0, (2.1)

then there are finitely many solutions of (1.1) on S 2: ξi,l, i = 1, 2, ..., I; l = 1, 2, ..., Li, after
selection of a subsequence, ψn converges in C∞loc to ψ on M \ {x1, x2, ..., xI} and the following
holds:

lim
n→∞

E(ψn) = E(ψ) +
I∑

i=1

Li∑
l=1

E(ξi,l). (2.2)

3. Energy identity

In this section, we will prove Theorem 1.1 and Theorem 1.2.
First, we recall the following lemma proved in [6] (see [8] for a different proof):

Lemma 3.1. Let ψ be a solution of
/∂ψ = f

on the unit disk D, with ψ|∂D = ϕ, and f ∈ Lp(D), ϕ ∈ W1,p(∂D) for some p > 1, then

‖ψ‖D,1,p ≤ C(‖ f ‖D,0,p + ‖ϕ‖∂D,1,p),

where C = C(p) > 0 is a constant.

Next, inspired by the proof of Theorem 4.2 in [8], we give the following lemma:

Lemma 3.2. Let ψ be a smooth solution of (1.1) on the annulus Ar1,r2 := {x ∈ R2|r1 ≤ |x| ≤ r2},
where 0 < r1 < 2r1 < r2/2 < r2 < 1 and assume that

sup
Ar1 ,r2 ,i, j,k,l

|Hi
jkl| ≤ h0 < ∞.
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Then we have

(
∫

A2r1 ,r2/2

|ψ|4)
1
4 ≤ C0(

∫
Ar1 ,r2

|ψ|4)
1
2 (
∫

Ar1 ,r2

|ψ|4)
1
4

+C(
∫

Ar1 ,2r1

|ψ|4)
1
4 +C(

∫
Ar2/2,r2

|ψ|4)
1
4 , (3.1)

(
∫

A2r1 ,r2/2

|∇ψ| 43 )
3
4 ≤ C0(

∫
Ar1 ,r2

|ψ|4)
1
2 (
∫

Ar1 ,r2

|ψ|4)
1
4

+C(
∫

Ar1 ,2r1

|ψ|4)
1
4 +C(

∫
Ar2/2,r2

|ψ|4)
1
4 , (3.2)

where C0,C are positive constants that do not depend on r1, r2 and C0 = C0(h0) depends on
h0.

Proof. We will prove this lemma using some arguments from [8]. Let D be the unit disk.
Choose a cut-off function η ∈ [0, 1] on D satisfying

η ∈ C∞0 (Ar1,r2 ) ; η ≡ 1 in A2r1,r2/2 (3.3)
|∇η| ≤ 4/r1 in Ar1,2r1 ; |∇η| ≤ 4/r2 in Ar2/2,r2 . (3.4)

Then by the equation (1.1) and Lemma 3.1, we have

‖ηψ‖D,1,4/3 ≤ C‖/∂(ηψ)‖D,0,4/3
≤ C‖η/∂ψ‖D,0,4/3 +C‖|∇η|ψ‖D,0,4/3
≤ Ch0‖ψ‖2Ar1 ,r2 ,0,4

‖ηψ‖D,0,4 +C‖|∇η|ψ‖D,0,4/3. (3.5)

It follows from (3.4) and Cauchy inequality that

‖|∇η|ψ‖D,0,4/3 ≤ ‖|∇η|ψ‖Ar1 ,2r1 ,0,4/3 + ‖|∇η|ψ‖Ar2/2,r2 ,0,4/3

≤ C‖ψ‖Ar1 ,2r1 ,0,4 +C‖ψ‖Ar2/2,r2 ,0,4. (3.6)

In view of (3.3), we conclude from the Sobolev embedding theorem that

‖ψ‖A2r1 ,r2/2,0,4 + ‖ψ‖A2r1 ,r2/2,1,4/3 ≤ ‖ηψ‖D,0,4 + ‖ηψ‖D,1,4/3 ≤ 2‖ηψ‖D,1,4/3. (3.7)

Combining (3.5), (3.6) and (3.7) gives (3.1) and (3.2). �

Now, let us recall the conformal transformation between an annulus and a cylinder (c.f.
[21]). Let (r, θ) be the polar coordinates of R2 centered at 0 and heucl = dr2 + r2dθ2 be the
Euclidean metric on R2. Equip the cylinder R1 × S 1 with the metric ds2 = dt2 + dθ2, where
S 1 = R/2πZ. Then the following map f : R1 × S 1 → R2

r = e−t, θ = θ, (t, θ) ∈ R1 × S 1. (3.8)

is a conformal transformation. One can verify that

f ∗heucl = e−2tds2.

Given r1 > r2, then, the annulus Ar1,r2 := {reiθ |r2 ≤ r ≤ r1} is mapped to the cylinder Pt1,t2 :=
[t1, t2] × S 1, where ti = − log ri, i = 1, 2.

Let ψ be a solution of (1.1) defined on the annulus Ar1,r2 ⊂ R2. Set

Ψ := e−
t
2 f ∗ψ.

Then by the conformal invariance of (1.1), Ψ is a solution of (1.1) defined on the cylinder
Pt1,t2 ⊂ R1 × S 1.
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Denote by PT1,T2 = [T1,T2] × S 1 a cylinder with metric ds2 = dt2 + dθ2 and with the spin
structure being nontrivial along the boundary curves. Then we have the following cylindrical
version of Lemma 3.2:

Lemma 3.3. Let Ψ be a smooth solution of (1.1) on PT1,T2 , where T2−1 > T1+1 > 1. Assume
that

sup
PT1 ,T2 ,i, j,k,l

|Hi
jkl| ≤ h0 < ∞.

Then we have

(
∫

PT1+1,T2−1

|Ψ|4)
1
4 ≤ C0(

∫
PT1 ,T2

|Ψ|4)
1
2 (
∫

PT1 ,T2

|Ψ|4)
1
4

+C(
∫

PT2−1,T2

|Ψ|4)
1
4 +C(

∫
PT1 ,T1+1

|Ψ|4)
1
4 , (3.9)

(
∫

PT1+1,T2−1

|∇Ψ| 43 )
3
4 ≤ C0(

∫
PT1 ,T2

|Ψ|4)
1
2 (
∫

PT1 ,T2

|Ψ|4)
1
4

+C(
∫

PT2−1,T2

|Ψ|4)
1
4 +C(

∫
PT1 ,T1+1

|Ψ|4)
1
4 , (3.10)

where C0,C are positive constants that do not depend on T1, T2 and C0 = C0(h0) depends on
h0.

Proof. Applying the conformal transformation (3.8) to Lemma 3.2, then, (3.9), (3.10) are direct
consequences of (3.1), (3.2). �

Lemma 3.4. Given a cylinder PT1−1,T2+1 and assume that

sup
PT1−1,T2+1,i, j,k,l

|Hi
jkl| ≤ h0 < ∞.

Then there exists ε1 = ε1(h0) > 0 such that if Ψ is a smooth solution of (1.1) defined on
PT1−1,T2+1 and ∫

PT1−1,T2+1

|Ψ|4 ≤ Λ < ∞, (3.11)

ω := sup
t∈[T1−1,T2]

∫
[t,t+1]×S 1

|Ψ|4 ≤ ε1, (3.12)

then ∫
PT1 ,T2

|Ψ|4 +
∫

PT1 ,T2

|∇Ψ| 43 ≤ C(h0,Λ)ω
1
3 . (3.13)

Here, C(h0,Λ) is a constant depending only on h0 and Λ, but not on T1,T2.

Proof. Let ε1 = min{ 1
8C2

0
, 1}, where C0 > 0 is the constant in Lemma 3.3. Then by assumption

(3.12), we have

sup
t∈[T1−1,T2]

∫
[t,t+1]×S 1

|Ψ|4 ≤ ε1 ≤
1

8C2
0

. (3.14)

Note that µ(t) :=
∫

[T1,t]×S 1 |Ψ|4 is a continuous and nondecreasing function defined on [T1,T2]
and the energy of Ψ over PT1−1,T2+1 is bounded by Λ. With similar arguments as in [19]
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(Theorem 3.5, p. 134), we can separate PT1,T2 into finitely many parts as follows (c.f. [21],
Lemma 3.3)

PT1,T2 =

N0⋃
n=1

Pn, Pn := [T n−1,T n] × S 1,T 0 = T1,T N0 = T2

such that N0 is an integer no larger than [8C2
0Λ] + 1, and the following hold:

E(Ψ; Pn) ≤ 1
4C2

0

, n = 1, 2, ...,N0. (3.15)

Applying Lemma 3.3 to each part Pn gives

(
∫
Pn

|Ψ|4)
1
4 ≤ C0(

∫
[T n−1−1,T n+1]×S 1

|Ψ|4)
1
2 (

∫
[T n−1−1,T n+1]×S 1

|Ψ|4)
1
4

+C(
∫

[T n−1−1,T n−1]×S 1

|Ψ|4)
1
4 +C(

∫
[T n,T n+1]×S 1

|Ψ|4)
1
4 (3.16)

It follows from the definition of ω (see (3.12)) that

(
∫
Pn

|Ψ|4)
1
4 ≤ C0((

∫
Pn

|Ψ|4)
1
2 + ω

1
2 + ω

1
2 )((
∫
Pn

|Ψ|4)
1
4 + ω

1
4 + ω

1
4 ) + ω

1
4 + ω

1
4 . (3.17)

By the energy bound (3.11), we have

(
∫
Pn

|Ψ|4)
1
4 ≤ C0(

∫
Pn

|Ψ|4)
1
2 (
∫
Pn

|Ψ|4)
1
4 +C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ). (3.18)

Here C(h0,Λ) depends on h0 and Λ. From (3.15), we can rewrite (3.18) as follows:

(
∫
Pn

|Ψ|4)
1
4 ≤ C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ). (3.19)

Since ε1 ≤ 1, by assumption (3.12), we get

ω := sup
t∈[T1−1,T2]

∫
[t,t+1]×S 1

|Ψ|4 ≤ ε1 ≤ 1.

Hence, we conclude from (3.19) that

(
∫
Pn

|Ψ|4)
1
4 ≤ C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ) ≤ C(h0,Λ)ω

1
4 .

With similar arguments, we have (by (3.10) in Lemma 3.3)

(
∫
Pn

|∇Ψ| 43 )
3
4 ≤ C(h0,Λ)ω

1
4 .

Summing up the above estimates on Pn gives∫
PT1 ,T2

|Ψ|4 =
N0∑

n=1

∫
Pn

|Ψ|4 ≤ C(h0,Λ)N0ω ≤ C(h0,Λ)ω
1
3 (3.20)

and ∫
PT1 ,T2

|∇Ψ| 43 =
N0∑

n=1

∫
Pn

|∇Ψ| 43 ≤ C(h0,Λ)N0ω
1
3 ≤ C(h0,Λ)ω

1
3 . (3.21)
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(3.13) follows immediately from combining (3.20) and (3.21). �

Applying Lemma 3.4, we show Theorem 1.1.

Proof of Theorem 1.1: The uniform energy bound E(ψn) =
∫

M |ψn|4 ≤ Λ < ∞ implies that ψn

weakly subconverges to some ψ in L4(ΣM). By a standard covering argument and ε-regularity,
there exist finitely many blow-up points {x1, x2, ..., xI} such that, after passing to subsequences,
ψn converges in C∞loc to ψ on M \ {x1, x2, ..., xI}. It follows from the smoothness of ψn and the
singularity removability that ψ extends to a smooth solution of (1.1) on M.

To prove the energy identity (1.3), we only need to consider the case that I = 1 and L1 = 1,
because the general case can be reduced to the simplest case by induction. Following the
arguments and notations as in the proof of Theorem 4.2 in [8] (see Theorem 3.6 in [5] for
similar arguments), we only need to show that

lim
R→∞

lim
δ→0

lim
n→∞

E(Ψn, PT0,Tn ) = 0, (3.22)

where PT0,Tn = [T0,Tn] × S 1,T0 := | log δ|,Tn := | log λnR|, δ > 0,R > 0. Here, Ψn are induced
from the solutions ψn on anuli near the blow-up point under a conformal transformation (c.f.
Theorem 4.2 in [8]) and hence Ψn are smooth solutions of (1.1) on PT0−1,Tn+1 with correspond-
ing H̃ satisfying

max
n,i, j,k,l

{
|H̃i

jkl|(x) : x ∈ PT0−1,Tn+1

}
≤ max

i, j,k,l

{
|Hi

jkl|(x) : x ∈ M
}
≤ C < +∞.

Moreover, through a standard argument by contradiction, one can prove that

lim
R→∞

lim
δ→0

lim
n→∞

sup
t∈[T0−1,Tn]

∫
[t,t+1]×S 1

|Ψn|4 = 0,

On the other hand, we have ∫
PT0−1,Tn+1

|Ψn|4 ≤ E(ψn,Mn) ≤ Λ < ∞.

Then we can apply Lemma 3.4 to conclude that

lim
R→∞

lim
δ→0

lim
n→∞

(
∫

PT0 ,Tn

|Ψ|4 +
∫

PT0 ,Tn

|∇Ψ| 43 ) = 0. (3.23)

In particular, (3.22) holds. This completes the proof. �

Now, we consider a sequence of smooth solutions of (1.1) on long spin cylinders under
certain assumptions and give the following proposition, which is analogous to the cases of
harmonic maps and Dirac-harmonic maps (c.f. Proposition 3.1 in [20] and Proposition 3.1 in
[21]). The scheme of the proof is similar to the neck analysis for certain approximate harmonic
maps by Ding-Tian [9].

Proposition 3.1. Let Ψn be a sequence of smooth solutions of (1.1) defined on Pn, where
Pn = [T 1

n ,T
2
n ]×S 1 equipped with the nontrivial spin structure. Suppose that there is a constant

C > 0 such that
sup

Pn,i, j,k,l
|Hi

jkl| ≤ C < +∞.

Assume that:
(1)

1 � T 1
n � T 2

n , (3.24)
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(2)
E(Ψn, Pn) ≤ Λ < ∞, (3.25)

(3)
lim
n→∞

ω(Ψn, PT 1
n ,T 1

n+R) = lim
n→∞

ω(Ψn, PT 2
n−R,T 2

n
) = 0, ∀R ≥ 1, (3.26)

where

ω(Ψ, PT1,T2 ) := sup
t∈[T1,T2−1]

∫
[t,t+1]×S 1

|Ψ|4.

Then there are finitely many solutions of (1.1) on S 2: ζ j,l, l = 1, 2, ..., L j; j = 1, 2, ...,K, such
that after selection of a subsequence of (Ψn, Pn), the following holds:

lim
n→∞

E(Ψn, Pn) =
K∑

j=1

L j∑
l=1

E(ζ j,l). (3.27)

Proof. In view of Theorem 1.1 and Theorem 2.1, with similar arguments as in [20] (Propo-
sition 3.1), we can decompose Pn into neck domains ∪K

i=0Ii
n and bubble domains ∪K

j=1J j
n (take

subsequences if necessary):
Pn = ∪K

i=0Ii
n ∪K

j=1 J j
n, (3.28)

where K is independent of n. Furthermore, we have
(1) For each i, lim

n→∞
ω(Ψn, Ii

n) = 0.

(2) For each j, there are finitely many solutions of (1.1) on S 2: ζ j,l, l = 1, 2, ..., L j, such
that:

lim
n→∞

E(Ψn, J
j
n) =

L j∑
l=1

E(ζ j,l). (3.29)

Note that, here, some bubbles (solutions of (1.1) on R × S 1) corresponding to collapsing ho-
motopically nontrivial simple closed curves on Pn can possibly appear. Therefore, in order
to apply the singularity removability result - Theorem 2.1 (2), the nontriviality of the spin
structures along Pn should be required (see Proposition 3.1 in [21] for similar discussions).

We need to verify that, in the limit, the necks Ψn : Ii
n → N, i = 0, 1, ...,K contain no energy.

It is not difficult to verify that, after passing to subsequences, the local energy of Ψn over
a small neighborhood of the two boundary components of Ii

n can be arbitrary small. Then,
applying Lemma 3.4 gives

K∑
i=0

E(Ψn, Ii
n) ≤ C(Λ)

K∑
i=0

(ω(Ψn, Ii
n))

1
3 → 0, n→ ∞. (3.30)

(3.27) follows from combining (3.29) and (3.30). �

Now, we shall use Proposition 3.1 to prove Theorem 1.2.

Proof of Theorem 1.2: Recall that any closed surface of genus g > 1 is of general type (c.f.
[20]). For each n, let hn be the hyperbolic metric on Mn compatible with the complex structure
cn. As discussed in [20, 21], we can assume that (Mn, hn, cn) converges to a hyperbolic Riemann
surface (M, h, c) by collapsing a possibly empty collection of finitely many pairwise disjoint
simple closed geodesics {γ j

n, j ∈ J} on Mn. Note that 0 ≤ |J| ≤ 3g−3. For each j, the geodesics
γ

j
n degenerate into a pair of punctures (E j,1,E j,2) and l j

n := length(γ j
n) → 0 as n → ∞. Let P j

n

be the standard cylindrical collar about γ j
n (c.f. [20]), namely

P j
n =

2π
l j
n

arctan(sinh(
l j
n

2
)),

2π

l j
n

(π − arctan(sinh(
l j
n

2
)))
 × S 1
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with metric ds2 = ( l j
n

2π sin l j
n t
2π

)2(dt2 + dθ2). Let τn : M → Mn \ ∪ j∈Jγ
j
n be the corresponding

diffeomorphisms realizing the convergence (c.f. [20]). Let (M, c) be the normalization of
(M, c).

Moreover, by taking subsequences, we can assume that τn is compatible with the spin struc-
tures Sn, namely, the pull-back spin structure on the limit surface M is fixed. We denote it
by S. In particular, for each j, S is nontrivial or trivial along the pair of punctures (E j,1,E j,2)
if and only if Sn is nontrivial or trivial along the geodesic γ j

n for all n. By assumption, all
punctures of the limit spin surface (M,S) are of Neveu-Schwarz type. It is equivalent to say
that the spin structure S on M is nontrivial around all punctures of M. Thus, S extends to
some spin structure S on M (c.f. [2, 4, 21]).

As in [21] (see [13] for a more detailed explanation), by pulling back the geometric data
via the diffeomorphisms τn, we can fix the spinor bundle ΣM and think of the hyperbolic
metrics and the compatible complex structures (hn, cn) as all living on the limit surface M
and converging in C∞loc to (h, c). Let ∇n be the connection on ΣM coming from hn and ∇ the
connection on ΣM coming from h. Then, we can consider ψn as a sequence of solutions of
(1.1) defined on (M, hn, cn,S) with respect to (cn,∇n).

Note that all estimates in Theorem 2.1 and Theorem 1.1 are uniform for the metrics hn and
the complex structures cn. With similar arguments as in [20] (Theorem 1.1) and [21] (Theorem
1.1, Theorem 1.2), we can apply Theorem 1.1 and Theorem 2.1 to prove that there exist finitely
many blow-up points {x1, x2, ..., xI} which are away from the punctures {(E j,1,E j,2), j ∈ J} and
finitely many smooth solutions of (1.1) on S 2: ξi,l, l = 1, 2, ..., Li, near the i-th blow-up point
xi; a smooth solution ψ of (1.1) on (M, c,S), such that, after selection of a subsequence, the
following holds:

lim
n→∞

E(ψn) = E(ψ) +
I∑

i=1

Li∑
l=1

E(ξi,l) +
∑
j∈J

lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ), (3.31)

where P j,δ
n is the δ-subcollars of P j

n, for δ ∈
[

l j
n
2 , arcsinh(1)

]
(see the proof of Theorem 1.1 in

[20]), namely,

P j,δ
n := [T 1, j,δ

n ,T 2, j,δ
n ] × S 1 ⊆ P j

n,

where

T 1, j,δ
n =

2π

l j
n

arcsin(
sinh( l j

n
2 )

sinh δ
), T 2, j,δ

n =
2π2

l j
n

− 2π

l j
n

arcsin(
sinh( l j

n
2 )

sinh δ
).

In fact, for each fixed n and each fixed δ ∈
[

l j
n
2 , arcsinh(1)

]
, P j,δ

n is exactly the j-th component
of the δ-thin part of the hyperbolic surface (Mn, hn).

To capture the concentrated energy at the punctures, i.e.,∑
j∈J

lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ),

we shall apply Proposition 3.1. By conformal invariance of the equation (1.1) and the energy
functional (1.2), we equip P j

n with the Euclidean metric. Then applying similar arguments as
in [20] (Theorem 1.1) and [21] (Theorem 1.2), we can use Proposition 3.1 to show that there
exist finitely many smooth solutions of (1.1) on S 2: ζ j,k, k = 1, 2, ...,K j, j ∈ J, such that, after
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selection of a subsequence of (ψn,Mn), we have

lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ) =

K j∑
k=1

E(ζ j,k), j ∈ J. (3.32)

Finally, combining (3.31) and (3.32) gives the energy identity (1.4). Thus, we have finished
the proof. �
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