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Abstract

We prove that a weakly Dirac-harmonic map from a Riemann spin surface to a compact
hypersurface N € R4 is smooth.
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1. Introduction

As critical points of an action functional, which is motivated by the supersymmet-
ric nonlinear sigma model from quantum field theory [3], Dirac-harmonic maps are
defined as solutions of a system of nonlinear elliptic equations which couples harmonic-
type equations and Dirac-type equations in a natural way [2].

It is observed in [2] that the conformal invariance of harmonic maps in two di-
mensions and Dirac operators in arbitrary finite dimensions are preserved in the case
of two-dimensional Dirac-harmonic maps. This brings the study of Dirac-harmonic
maps into the framework of two-dimensional conformally invariant variational prob-
lems. As is typical in calculus of variations, the regularity issue for weak solutions is of
particular importance. For the regularity of weakly harmonic maps, see for instance
4], [5].

Chen et al. [1] studied the regularity problem for Dirac-harmonic maps and proved
that any weakly Dirac-harmonic map from a spin surface to the standard sphere S¢
is actually smooth. They [1] observed a Jacobian structure of the Dirac-harmonic
map equation for a spherical target manifold and proved the regularity property
by applying Wente’s lemma [9]. However, when the target is a general compact
Riemannian manifold, the spinor terms in the harmonic-type equations for Dirac-
harmonic maps cannot be written as a Jacobian form and thus Wente’s lemma cannot
be applied to obtain the regularity.
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Recently, Tristan Riviere [8] discovered the existence of a conservation law for
weak solutions of the Euler-Lagrange equations of conformally invariant variational
integrals in two dimensions. He succeeded in writing two-dimensional conformally
invariant nonlinear elliptic PDEs (e.g., harmonic map equations, prescribed mean
curvature equations, etc.) in divergence form, from which one can recover all the
classical regularity results for such weak solutions and obtain new results.

In this paper, we observe that, when the target is a compact hypersurface N C
R the harmonic-type equations for Dirac-harmonic maps can be written in a
special form to which Riviere’s regularity results can be applied. Our result is the
following;:

Theorem 1.1. A weakly Dirac-harmonic map (¢,v) from a Riemann spin surface
M to a compact hypersurface N C R*1 is smooth.
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2. Dirac-harmonic maps

Let (M, h) be an oriented, compact Riemannian surface with a fixed spin structure.
Let XM be the spinor bundle over M with a hermitian metric (-, )y and a compat-
ible spin connection V. For X € I'(T'M ),y € I'(¥M), we denote by X -1 the Clifford
multiplication, which satisfies the following relations:

(X-9,0) ==, X -¢), XYV -9+V X -¢==20X,Y),

for X, Y € T(TM), 1, € T(XM). The Dirac operator @ is defined by @) := eq- Ve, 1
for a local orthonormal frame {ej,es} of TM and ¢ € I'(X¥M). The summation
convention will be used throughout the paper. We refer to [7] for more spin geometric
materials.

Let (N, g) be a compact Riemanian manifold of dimension d > 2, and let its metric
in local coordinates be given by g;;, with Christoffel symbols I‘é»k and Riemannian
curvature tensor RZ‘] Let ¢ be a smooth map from M to N and ¢ 'T'N the pull-
back bundle of TN under ¢. Consider the twisted bundle M ® ¢~ 'TN with the
induced metric (-, -)spr0¢-17n and the induced connection Vi=Vol+leVve TN,
We write the section 1) of XM ® ¢~ !TN locally as follows

b(x) = ' () @ Oy (¢(x)),
where 1)’ is a spinor and {0, } is a local basis on N. Then, V can be expressed by
V) = Vi (2) ® 0, ($(x)) + Tiydd? (2)9" (x) © 8,:(6(x)).

2



The Dirac operator along the map ¢ is defined by

JDQ/) = eq Ve, ¥
= P (2) ® 0, (6(x)) + T Ve ¢ (v)eq - V¥ (2) © Dy (¢(2)).

Set
X(M,N) :={(¢,9)|¢ € C°(M,N),s) e [(EM ® ¢ 'TN)}.

We consider the following functional defined on x (M, N):

Lié o) = / (1l + (b, )

M

0¢' 07 . .
= [ (3555 s D ) facn(g it
M

The corresponding Euler-Lagrange equations are

A"+ TR 003" = LRI()(, Vo' ), (2.1)
@¢Z + F;’k(gb)aa‘ﬁjea : ¢k 0. (2'2)

Here V¢! := 0,dleq = qbflea and “-” denotes the Clifford multiplication. Set

1 A ,
R(¢,9)(x) = 5 Rijs(¢(2) (", V' - 47)Oym (6(x))-
Then, (2.1) and (2.2) can be written in the following global form

(¢) = R(¢¥), (2.3)
Dy = 0, 2.4

where 7(¢) € I'(¢~'TN) is the tension field of the map ¢. Solutions (¢,v) of (2.1),
(2.2) are called Dirac-harmonic maps from M to N.

Note that (2.1) and (2.2) are the intrinsic versions of the Dirac-harmonic map equa-
tions. Now we shall give the extrinsic version of these equations. By the Nash-Moser
embedding theorem, we embed N into some R¥X. Let A be the second fundamental
form of N in RX and P the shape operator. It is not difficult to verify the following
relation:

(P(&X),Y)rn = (A(X,Y), §)rr (2.5)



for any X,Y € T(TN),¢ € I'(T+N), where T+N is the normal bundle to N. Then,
by the Gauss equation (see [6]), we have

R0, Ve - 4) = g™ (A(Oy, 0y0), ADy, 0y)) (¥, V' - )
_<A(ayk7ayj) A(By, 8y (W', V! - 4)
= g"(AOy, 0y)s ABy, D)) (W', V' - )
+ 9" (A, 0y ), AByr, D)) (W, Vg - 7
= 2Re g™ (A0, 0,1), A(Dy1, 0,0)) (W', V' - 47)
= 2Re ¢"M(P(A(9y1,0y3); A(9yi), 9 ) (W' e - U7 )5, (2.6)

where in the last step we used (2.5). Set

A(dd(eq),eq ) = gi)f)ea S ® A(a iy Oy i), (2.7)
P(A(dp(ea), o ¥)iv)) = P(A©D,0y); 0y ) (W' ea ). (28)
Then, equations (2.1) and (2.2) become the following form:
—A¢ = Aldg(ea), do(eq)) +Re P(A(do(eq), €a - 1); 9), (2.9)
dy = A(dg(eq), ea - ). (2.10)

Here, ¢ is a map from M to RX with
o(x) €N (2.11)

for any * € M, and the spinor field ¢ along the map ¢ is a K-tuple of spinors
L2, ..., K) satisfyin
(¥ ying
‘ K
Z vip' =0, for any normal vector v = Z v, E; at ¢(x), (2.12)

i i=1
where {E;,i = 1,2, ..., K} is the standard basis of R¥. Set

X135 (MN) = {(¢,9) € WH x WH3 with (2.11) and (2.12) a.e.}.

Then the functional L(¢,1)) is well-defined for (¢,) € x}’i/g(M N). Critical points

(¢,7) of the functional L(¢,) in X} i/3(M N) are called weakly Dirac-harmonic
]

maps from M to N (see [1]).

Note that A, P in (2.7), (2.8) are defined in terms of a fixed local coordinates of N.
This requires the continuity of the map ¢. For weakly Dirac-harmonic maps, we need
an extrinsic version of the equations, where everything is written down in coordinates
of the ambient space RX. To this end, we fix a canonical coordinates (y', 32, ...,y)
of RE. Let 1,1 = d+1,..., K be an orthonomal frame field for the normal bundle



T+N to N. We still denote by v; the corresponding unit normal vector field along
the map ¢. Then, for X = X’ayi € TyN,Y = Yjﬁyj € TyN,Z = Zlayz € TyN, we
have Vyvyy, = Z V9% and the following holds (c.f. [5], Chapter. 1):

8 79
AW)(X,Y) = (X,Vyn)y = (X,YI 8”l> _xiys (2.13)
Y ) y VY V)V = Dy By .
PAX,Y);Z) = (Vo) XyiZ0 v _ (8” )TX’YJZkayl (2.14)
b ) l 8y] 8y 8y *

where T denotes the projection : RX — T, N. In view of (2.7), (2.8), we can write A,
P as follows, for X = X'9,; € TyN, =18,; € EMQT,N,p = "9 € SMQT,N,

AX, ) = X o aygyl (2.15)
0 ; oVt
PAXD)0) = (53) X (k950 (2.16)

By the symmetry of A(X,Y") with respect to X and Y, we have

.. v Z . out
X @ g = XW'eg (2.17)
ov, ; Ot dv , O
<a—y,i>TX b <8—y,i>Txa<¢k,¢ e (2.18)

Consider a weakly Dirac-harmonic map (¢,v) € Xﬁ /3(M ,N). Let D be a simply
connected domain of M. Choose local isothermal coordinates z = x1 + 29 on D and
let e = 0y, €2 = Oy,. We write

¢=9'dy", =1 @y,
and denote ¢1 := Ve, ¢ = ¢y, P2 := Ve, = ¢g,. Then, we have

81/1

A(¢a; pa) = ¢3¢éa] (2.19)
Moo 1) = dhea- 19 @ 2y (2.20)
PAlbaca 058) = ()T oh (0% ca W) o0 (221)
Note that ¢ € TN and v; € TN, hence,
Povi =0, Va,l. (2.22)



It follows that
m i ;] i 8 i ) i ;o j
A™(9as$a) = $ablg iV — bubhgg i = ulbag " — 00

On the other hand, we have

ov"
oyI

V). (2.23)

A™ (B ca 1) = (dhea-1 @ ‘9”1 )™ ‘9”1 mgen i (2.24)
and
Re P (A(nsca - ¥)i0) = Re gk, eq - )20 ()T
oy Qo 9 o ) ayg ayk
. ) ' 0
= ok (W ea -9 + W ea - 99)) 8; (50"
) ) . 0 0
= G o ) e 0 ) (YT
gk Gk 8’/1 oV T
= G a0 = (0 NG
ik L 81/1" % Tm 81/1 oV T
- ¢a<¢ 7ea ¢]>(ay](ayk) ay (8:[/]) )7

(2.25)

where ()™ denotes the m-th component of a vector of R¥. Thus, we can write (2.9)
and (2.10) in the following extrinsic form in terms of the orthonomal frame field v,
l=d+1,.. K, for T'N.

8Vl 7 81/12' oy 81/1 oy,

G = Glbhg " — Shg ) + o ea WG (50 = k()T
(2.26)
W = 3;5-”;71 hea . (220

3. Regularity for weakly Dirac-harmonic maps

When the target N is the standard sphere S? C R9*! Chen et al. [1] observed a
Jacobian structure for equation (2.9), namely,

Proposition 3.1. Let M be a Riemann surface with a fized spin structure and
(p,0) € X}’i/:g(M, S%) a weakly Dirac-harmonic map from M to S®. Let D be a

simply connected domain of M. Then there exists Q = (Q49) € W2(D, R@+1)x(d+1))
such that

8(2 o9 0009



Moreover, they [1] proved that

Theorem 3.1. Let (¢,v) : (D,0q3) — (N, gij) be a weakly Dirac-harmonic map. If
@ is continuous, then (¢,1) is smooth.

Combining Proposition 3.1, Theorem 3.1 and Wente’s lemma [9], the following
regularity theorem was then proved in [1].

Theorem 3.2. Let M be a Riemann surface with a fized spin structure. Suppose that

(p,0) € X?Z/S(M’ S% is a weakly Dirac-harmonic map from M to ST. Then ¢ € C?,

and hence (¢,1) is smooth.

Before we consider the case of general target manifolds, let us recall Tristan Riviere’s
main result in [8].

Theorem 3.3. Let K € N, and let D be the unit disk of R?>. For every Q =

(Y )i<ij<rc in L*(D,so(K) @ R?) (i.e.,¥ i,j € 1,..,K,Q} € L*(D,R?) and Q} =

—Q7), every u € WL2(D,RE) solving
—Au = Q- Vu, (3.1)

is continuous, where the contracted notation in the above equation stands for ¥V i =
1., K, —Au' = Ele Qz - V! in coordinates.

We observe now that when the target N C R is a compact hypersurface, (2.26)
has a structure similar to (3.1).

Proposition 3.2. Let M be a Riemann surface with a spin structure and N C R*H!
be a compact hypersurface. Let (¢,1)) € Xii/g(M, N) be a weakly Dirac-harmonic map
from M to N. Let D be a small domain of M. Then there exists @ = (") 1<i m<d+1
in L2(D, so(d + 1) ® R?) such that

—A¢=Q-Vo. (3.2)

Proof. Let N € R*™! be a compact hypersurface with normal v, then it follows from
differentiating the equation v - v =1 that Vv € TN, hence

ov ov o™
()" = o)™ = (o) Fm =12+ (33
By (2.25), we get
, Ot Ov ovt v
m . . — % k o PV NTm YV NT,m
Re P (A(¢a> €a 1/))7 ¢) ¢a<1/)  €q - P >(8yj (8yk) 8yk (8yj) )

ovt ov™ vt g™

ik g _ o

). (3.4)



On the other hand, from (2.23), we have

oot Cov™
m — A J mo_ 49 ?
A (¢aa§ba) ¢)a(¢aayjy ¢a ayj v ) (35)
Denote
Q=" pt), im=1,2,...,d+1, (3.6)
where
o (D O O o
)‘i T (8yjy 8yj v )¢1 + (ayj 8yk 8yk 8yj )W se1 -1 >7 (37)
m Ot o™ vt o™ vt ov™ ;
o - (8yjy _8—yjy )¢2+( )W 762'W>- (38)

oyl DYk Byk dyi
Then we can write (2.26) in the following form
—AP™ = Q" . V' (3.9)

Now it remains to show that Q = (Q")1<; m<ar1 € L*(D, so(d + 1) @ R?).

On the one hand, since (¢, ) € X}’i/:s(M, N) is a weakly Dirac-harmonic map, we

must have ¢ € W12 and ¢ € W43 ¢ L* (by the Sobolev embedding theorem). In
view of (3.6), (3.7) and (3.8), we have

Q" e L*(D,R?), V1<im<d+1.

On the other hand, it is easy to see from (3.7) and (3.8) that both A" and p]" are
real valued and are skew-symmetric with respect to the indices ¢ and m. Thus,

Q= (Qr)lgi,mgd-ﬂ S LQ(D, so(d + 1) & RZ).

This completes the proof. O
Proof of Theorem 1.1. The result follows from combining Proposition 3.2, Theorem
3.1 and Theorem 3.3. 0
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