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1. Introduction

As critical points of an action functional, which is motivated by the supersymmet-
ric nonlinear sigma model from quantum field theory [3], Dirac-harmonic maps are
defined as solutions of a system of nonlinear elliptic equations which couples harmonic-
type equations and Dirac-type equations in a natural way [2].

It is observed in [2] that the conformal invariance of harmonic maps in two di-
mensions and Dirac operators in arbitrary finite dimensions are preserved in the case
of two-dimensional Dirac-harmonic maps. This brings the study of Dirac-harmonic
maps into the framework of two-dimensional conformally invariant variational prob-
lems. As is typical in calculus of variations, the regularity issue for weak solutions is of
particular importance. For the regularity of weakly harmonic maps, see for instance
[4], [5].

Chen et al. [1] studied the regularity problem for Dirac-harmonic maps and proved
that any weakly Dirac-harmonic map from a spin surface to the standard sphere S

d

is actually smooth. They [1] observed a Jacobian structure of the Dirac-harmonic
map equation for a spherical target manifold and proved the regularity property
by applying Wente’s lemma [9]. However, when the target is a general compact
Riemannian manifold, the spinor terms in the harmonic-type equations for Dirac-
harmonic maps cannot be written as a Jacobian form and thus Wente’s lemma cannot
be applied to obtain the regularity.
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Recently, Tristan Rivière [8] discovered the existence of a conservation law for
weak solutions of the Euler-Lagrange equations of conformally invariant variational
integrals in two dimensions. He succeeded in writing two-dimensional conformally
invariant nonlinear elliptic PDEs (e.g., harmonic map equations, prescribed mean
curvature equations, etc.) in divergence form, from which one can recover all the
classical regularity results for such weak solutions and obtain new results.

In this paper, we observe that, when the target is a compact hypersurface N ⊂
R

d+1, the harmonic-type equations for Dirac-harmonic maps can be written in a
special form to which Rivière’s regularity results can be applied. Our result is the
following:

Theorem 1.1. A weakly Dirac-harmonic map (φ,ψ) from a Riemann spin surface

M to a compact hypersurface N ⊂ R
d+1 is smooth.

Acknowledgements The author would like to thank his advisor, Prof. Jürgen Jost,
for his continued support and encouragement.

2. Dirac-harmonic maps

Let (M,h) be an oriented, compact Riemannian surface with a fixed spin structure.
Let ΣM be the spinor bundle over M with a hermitian metric 〈·, ·〉ΣM and a compat-
ible spin connection ∇. For X ∈ Γ(TM), ψ ∈ Γ(ΣM), we denote by X ·ψ the Clifford
multiplication, which satisfies the following relations:

〈X · ψ,ϕ〉 = −〈ψ,X · ϕ〉, X · Y · ψ + Y ·X · ψ = −2h(X,Y )ψ,

forX,Y ∈ Γ(TM), ψ, ϕ ∈ Γ(ΣM). The Dirac operator /∂ is defined by /∂ψ := eα ·∇eαψ
for a local orthonormal frame {e1, e2} of TM and ψ ∈ Γ(ΣM). The summation
convention will be used throughout the paper. We refer to [7] for more spin geometric
materials.

Let (N, g) be a compact Riemanian manifold of dimension d ≥ 2, and let its metric
in local coordinates be given by gij , with Christoffel symbols Γi

jk and Riemannian

curvature tensor Rm
lij. Let φ be a smooth map from M to N and φ−1TN the pull-

back bundle of TN under φ. Consider the twisted bundle ΣM ⊗ φ−1TN with the
induced metric 〈·, ·〉ΣM⊗φ−1TN and the induced connection ∇̃ := ∇⊗1+1⊗∇φ−1TN .
We write the section ψ of ΣM ⊗ φ−1TN locally as follows

ψ(x) = ψi(x) ⊗ ∂yi(φ(x)),

where ψi is a spinor and {∂yi} is a local basis on N . Then, ∇̃ can be expressed by

∇̃ψ = ∇ψi(x) ⊗ ∂yi(φ(x)) + Γi
jkdφ

j(x)ψk(x) ⊗ ∂yi(φ(x)).
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The Dirac operator along the map φ is defined by

/Dψ := eα · ∇̃eαψ

= /∂ψi(x) ⊗ ∂yi(φ(x)) + Γi
jk∇eαφ

j(x)eα · ψk(x) ⊗ ∂yi(φ(x)).

Set

χ(M,N) := {(φ,ψ)|φ ∈ C∞(M,N), ψ ∈ Γ(ΣM ⊗ φ−1TN)}.

We consider the following functional defined on χ(M,N):

L(φ,ψ) :=

∫

M

(|dφ|2 + 〈ψ, /Dψ〉)

=

∫

M

(
gij(φ)hαβ ∂φ

i

∂xα

∂φj

∂xβ
+ gij(φ)〈ψi, /Dψj〉ΣM

)√
det(hαβ)dx1dx2.

The corresponding Euler-Lagrange equations are

∆φm + Γm
jk(φ)hαβ∂αφ

j∂βφ
k =

1

2
Rm

lij(φ)〈ψi,∇φl · ψj〉, (2.1)

/∂ψi + Γi
jk(φ)∂αφ

jeα · ψk = 0. (2.2)

Here ∇φl := ∂αφ
leα = φl

αeα and “ · ” denotes the Clifford multiplication. Set

R(φ,ψ)(x) :=
1

2
Rm

lij(φ(x))〈ψi,∇φl · ψj〉∂ym(φ(x)).

Then, (2.1) and (2.2) can be written in the following global form

τ(φ) = R(φ,ψ), (2.3)

/Dψ = 0, (2.4)

where τ(φ) ∈ Γ(φ−1TN) is the tension field of the map φ. Solutions (φ,ψ) of (2.1),
(2.2) are called Dirac-harmonic maps from M to N .

Note that (2.1) and (2.2) are the intrinsic versions of the Dirac-harmonic map equa-
tions. Now we shall give the extrinsic version of these equations. By the Nash-Moser
embedding theorem, we embed N into some R

K . Let A be the second fundamental
form of N in R

K and P the shape operator. It is not difficult to verify the following
relation:

〈P (ξ;X), Y 〉TN = 〈A(X,Y ), ξ〉RK (2.5)
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for any X,Y ∈ Γ(TN), ξ ∈ Γ(T⊥N), where T⊥N is the normal bundle to N . Then,
by the Gauss equation (see [6]), we have

Rm
lij〈ψ

i,∇φl · ψj〉 = gmk〈A(∂yk , ∂yi), A(∂yl , ∂yj )〉〈ψi,∇φl · ψj〉

− 〈A(∂yk , ∂yj ), A(∂yl , ∂yi)〉)〈ψi,∇φl · ψj〉

= gmk〈A(∂yk , ∂yi), A(∂yl , ∂yj )〉〈ψi,∇φl · ψj〉

+ gmk〈A(∂yk , ∂yi), A(∂yl , ∂yj )〉〈ψi,∇φl · ψj〉

= 2Re gmk〈A(∂yk , ∂yi), A(∂yl , ∂yj )〉〈ψi,∇φl · ψj〉

= 2Re gmk〈P (A(∂yl , ∂yj );A(∂yi), ∂yk )〈ψi, eα · ψj〉φl
α, (2.6)

where in the last step we used (2.5). Set

A(dφ(eα), eα · ψ) := φi
αeα · ψj ⊗A(∂yi , ∂yj ), (2.7)

P(A(dφ(eα), eα · ψ);ψ) := P (A(∂yl , ∂yj ); ∂yi)〈ψi, eα · ψj〉φl
α. (2.8)

Then, equations (2.1) and (2.2) become the following form:

−∆φ = A(dφ(eα), dφ(eα)) + Re P(A(dφ(eα), eα · ψ);ψ), (2.9)

/∂ψ = A(dφ(eα), eα · ψ). (2.10)

Here, φ is a map from M to R
K with

φ(x) ∈ N (2.11)

for any x ∈ M , and the spinor field ψ along the map φ is a K-tuple of spinors
(ψ1, ψ2, ..., ψK) satisfying

∑

i

νiψ
i = 0, for any normal vector ν =

K∑

i=1

νiEi at φ(x), (2.12)

where {Ei, i = 1, 2, ...,K} is the standard basis of R
K . Set

χ1,2
1,4/3(M,N) := {(φ,ψ) ∈W 1,2 ×W 1,4/3 with (2.11) and (2.12) a.e.}.

Then the functional L(φ,ψ) is well-defined for (φ,ψ) ∈ χ1,2
1,4/3(M,N). Critical points

(φ,ψ) of the functional L(φ,ψ) in χ1,2
1,4/3

(M,N) are called weakly Dirac-harmonic

maps from M to N (see [1]).
Note that A, P in (2.7), (2.8) are defined in terms of a fixed local coordinates of N .

This requires the continuity of the map φ. For weakly Dirac-harmonic maps, we need
an extrinsic version of the equations, where everything is written down in coordinates
of the ambient space R

K . To this end, we fix a canonical coordinates (y1, y2, ..., yK)
of R

K . Let νl, l = d + 1, ...,K be an orthonomal frame field for the normal bundle
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T⊥N to N . We still denote by νl the corresponding unit normal vector field along
the map φ. Then, for X = Xi∂yi ∈ TyN,Y = Y j∂yj ∈ TyN,Z = Z l∂yl ∈ TyN , we

have ∇Y νk =
∑K

i=1 Y
i ∂νk

∂yi , and the following holds (c.f. [5], Chapter. 1):

A(y)(X,Y ) = 〈X,∇Y νl〉νl = 〈X,Y j ∂νl

∂yj
〉νl = XiY j ∂ν

i
l

∂yj
νl, (2.13)

P (A(X,Y );Z) = (∇Zνl)
⊤XiY j ∂ν

i
l

∂yj
= (

∂νl

∂yk
)⊤XiY jZk ∂ν

i
l

∂yj
, (2.14)

where ⊤ denotes the projection : R
K → TyN . In view of (2.7), (2.8), we can write A,

P as follows, for X = Xi∂yi ∈ TyN,ψ = ψj∂yj ∈ ΣM⊗TyN,ϕ = ϕk∂yk ∈ ΣM⊗TyN ,

A(X,ψ) = Xiψj ⊗
∂νi

l

∂yj
νl (2.15)

P(A(X,ψ);ϕ) = (
∂νl

∂yk
)⊤Xi〈ϕk, ψj〉

∂νi
l

∂yj
. (2.16)

By the symmetry of A(X,Y ) with respect to X and Y , we have

Xiψj ⊗
∂νi

l

∂yj
νl = Xjψi ⊗

∂νi
l

∂yj
νl (2.17)

(
∂νl

∂yk
)⊤Xi〈ϕk, ψj〉

∂νi
l

∂yj
= (

∂νl

∂yk
)⊤Xj〈ϕk, ψi〉

∂νi
l

∂yj
. (2.18)

Consider a weakly Dirac-harmonic map (φ,ψ) ∈ χ1,2
1,4/3(M,N). Let D be a simply

connected domain of M . Choose local isothermal coordinates z = x1 + ix2 on D and
let e1 = ∂x1

, e2 = ∂x2
. We write

φ = φi∂yi, ψ = ψj ⊗ ∂yj,

and denote φ1 := ∇e1
φ = φx1

, φ2 := ∇e2
φ = φx2

. Then, we have

A(φα, φα) = φi
αφ

j
α

∂νi
l

∂yj
νl (2.19)

A(φα, eα · ψ) = φi
αeα · ψj ⊗

∂νi
l

∂yj
νl (2.20)

P(A(φα, eα · ψ);ψ) = (
∂νl

∂yk
)⊤φi

α〈ψ
k, eα · ψj〉

∂νi
l

∂yj
. (2.21)

Note that φα ∈ TN and νl ∈ T⊥N , hence,

φi
αν

i
l = 0, ∀α, l. (2.22)
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It follows that

Am(φα, φα) = φi
αφ

j
α

∂νi
l

∂yj
νm

l − φi
αφ

j
α

∂νm
l

∂yj
νi

l = φi
α(φj

α

∂νi
l

∂yj
νm

l − φj
α

∂νm
l

∂yj
νi

l ). (2.23)

On the other hand, we have

Am(φα, eα · ψ) = (φi
αeα · ψj ⊗

∂νi
l

∂yj
νl)

m =
∂νi

l

∂yj
νm

l φ
i
αeα · ψj (2.24)

and

Re Pm(A(φα, eα · ψ);ψ) = Re φi
α〈ψ

k, eα · ψj〉
∂νi

l

∂yj
(
∂νl

∂yk
)⊤,m

= φi
α

(
〈ψk, eα · ψj〉 + 〈ψk, eα · ψj〉

) ∂νi
l

∂yj
(
∂νl

∂yk
)⊤,m

= φi
α(〈ψk, eα · ψj〉 + 〈eα · ψj , ψk〉)

∂νi
l

∂yj
(
∂νl

∂yk
)⊤,m

= φi
α(〈ψk, eα · ψj〉 − 〈ψj , eα · ψk〉)

∂νi
l

∂yj
(
∂νl

∂yk
)⊤,m

= φi
α〈ψ

k, eα · ψj〉(
∂νi

l

∂yj
(
∂νl

∂yk
)⊤,m −

∂νi
l

∂yk
(
∂νl

∂yj
)⊤,m),

(2.25)

where (·)m denotes the m-th component of a vector of R
K . Thus, we can write (2.9)

and (2.10) in the following extrinsic form in terms of the orthonomal frame field νl,
l = d+ 1, ...,K, for T⊥N .

−∆φm = φi
α(φj

α

∂νi
l

∂yj
νm

l − φj
α

∂νm
l

∂yj
νi

l ) + φi
α〈ψ

k, eα · ψj〉(
∂νi

l

∂yj
(
∂νl

∂yk
)⊤,m −

∂νi
l

∂yk
(
∂νl

∂yj
)⊤,m),

(2.26)

/∂ψm =
∂νi

l

∂yj
νm

l φ
i
αeα · ψj . (2.27)

3. Regularity for weakly Dirac-harmonic maps

When the target N is the standard sphere S
d ⊂ R

d+1, Chen et al. [1] observed a
Jacobian structure for equation (2.9), namely,

Proposition 3.1. Let M be a Riemann surface with a fixed spin structure and

(φ,ψ) ∈ χ1,2
1,4/3(M,Sd) a weakly Dirac-harmonic map from M to S

d. Let D be a

simply connected domain of M . Then there exists Ω = (Ωij) ∈ W 2(D,R(d+1)×(d+1))
such that

−∆φ =
∂Ω

∂x

∂φ

∂y
−
∂Ω

∂y

∂φ

∂x
.
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Moreover, they [1] proved that

Theorem 3.1. Let (φ,ψ) : (D, δαβ) → (N, gij) be a weakly Dirac-harmonic map. If

φ is continuous, then (φ,ψ) is smooth.

Combining Proposition 3.1, Theorem 3.1 and Wente’s lemma [9], the following
regularity theorem was then proved in [1].

Theorem 3.2. Let M be a Riemann surface with a fixed spin structure. Suppose that

(φ,ψ) ∈ χ1,2
1,4/3(M,Sd) is a weakly Dirac-harmonic map from M to S

d. Then φ ∈ C0,

and hence (φ,ψ) is smooth.

Before we consider the case of general target manifolds, let us recall Tristan Rivière’s
main result in [8].

Theorem 3.3. Let K ∈ N, and let D be the unit disk of R
2. For every Ω =

(Ωi
j)1≤i,j≤K in L2(D, so(K) ⊗ R

2) (i.e.,∀ i, j ∈ 1, ...,K,Ωi
j ∈ L2(D,R2) and Ωi

j =

−Ωj
i ), every u ∈W 1,2(D,RK) solving

−∆u = Ω · ∇u, (3.1)

is continuous, where the contracted notation in the above equation stands for ∀ i =
1, ...,K, −∆ui =

∑K
j=1 Ωi

j · ∇u
j in coordinates.

We observe now that when the target N ⊂ R
d+1 is a compact hypersurface, (2.26)

has a structure similar to (3.1).

Proposition 3.2. Let M be a Riemann surface with a spin structure and N ⊂ R
d+1

be a compact hypersurface. Let (φ,ψ) ∈ χ1,2
1,4/3(M,N) be a weakly Dirac-harmonic map

from M to N . Let D be a small domain of M . Then there exists Ω = (Ωm
i )1≤i,m≤d+1

in L2(D, so(d+ 1) ⊗ R
2) such that

−∆φ = Ω · ∇φ. (3.2)

Proof. Let N ⊂ R
d+1 be a compact hypersurface with normal ν, then it follows from

differentiating the equation ν · ν = 1 that ∇ν ∈ TN , hence

(
∂ν

∂yk
)⊤,m = (

∂ν

∂yk
)m = (

∂νm

∂yk
), k,m = 1, 2, ..., d + 1. (3.3)

By (2.25), we get

Re Pm(A(φα, eα · ψ);ψ) = φi
α〈ψ

k, eα · ψj〉(
∂νi

∂yj
(
∂ν

∂yk
)⊤,m −

∂νi

∂yk
(
∂ν

∂yj
)⊤,m)

= φi
α〈ψ

k, eα · ψj〉(
∂νi

∂yj

∂νm

∂yk
−
∂νi

∂yk

∂νm

∂yj
). (3.4)
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On the other hand, from (2.23), we have

Am(φα, φα) = φi
α(φj

α

∂νi

∂yj
νm − φj

α

∂νm

∂yj
νi). (3.5)

Denote

Ωm
i := (λm

i , µ
m
i ), i,m = 1, 2, ..., d + 1, (3.6)

where

λm
i := (

∂νi

∂yj
νm −

∂νm

∂yj
νi)φj

1 + (
∂νi

∂yj

∂νm

∂yk
−
∂νi

∂yk

∂νm

∂yj
)〈ψk, e1 · ψ

j〉, (3.7)

µm
i := (

∂νi

∂yj
νm −

∂νm

∂yj
νi)φj

2 + (
∂νi

∂yj

∂νm

∂yk
−
∂νi

∂yk

∂νm

∂yj
)〈ψk, e2 · ψ

j〉. (3.8)

Then we can write (2.26) in the following form

−∆φm = Ωm
i · ∇φi. (3.9)

Now it remains to show that Ω = (Ωm
i )1≤i,m≤d+1 ∈ L2(D, so(d+ 1) ⊗ R

2).

On the one hand, since (φ,ψ) ∈ χ1,2
1,4/3(M,N) is a weakly Dirac-harmonic map, we

must have φ ∈ W 1,2 and ψ ∈ W 1,4/3 ⊂ L4 (by the Sobolev embedding theorem). In
view of (3.6), (3.7) and (3.8), we have

Ωm
i ∈ L2(D,R2), ∀1 ≤ i,m ≤ d+ 1.

On the other hand, it is easy to see from (3.7) and (3.8) that both λm
i and µm

i are
real valued and are skew-symmetric with respect to the indices i and m. Thus,

Ω = (Ωm
i )1≤i,m≤d+1 ∈ L2(D, so(d+ 1) ⊗ R

2).

This completes the proof. �

Proof of Theorem 1.1. The result follows from combining Proposition 3.2, Theorem
3.1 and Theorem 3.3. �
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