
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Fast and Accurate Tensor Approximation of

Multivariate Convolution with Linear Scaling in

Dimension

(revised version: May 2009)

by

Boris N. Khoromskij

Preprint no.: 36 2008





Fast and Accurate Tensor Approximation of

Multivariate Convolution

with Linear Scaling in Dimension

Boris N. Khoromskij
Max-Planck-Institute for Mathematics in the Sciences,

Inselstr. 22-26, D-04103 Leipzig, Germany.
bokh@mis.mpg.de

Abstract

In the present paper we present the tensor-product approximation of multi-
dimensional convolution transform discretized via collocation-projection scheme on
the uniform or composite refined grids. Examples of convolving kernels are given
by the classical Newton, Slater (exponential) and Yukawa potentials, 1/‖x‖, e−λ‖x‖

and e−λ‖x‖/‖x‖ with x ∈ R
d. For piecewise constant elements on the uniform grid of

size nd, we prove the quadratic convergence O(h2) in the mesh parameter h = 1/n,
and then justify the Richardson extrapolation method on a sequence of grids that
improves the order of approximation up to O(h3). The fast algorithm of complexity
O(dR1R2n log n) is described for tensor-product convolution on the uniform/composite
grids of size nd, where R1, R2 are tensor ranks of convolving functions. We also present
the tensor-product convolution scheme in the two-level Tucker-canonical format and
discuss the consequent rank reduction strategy. Finally, we give numerical illustrations
confirming: (a) the approximation theory for convolution schemes of order O(h2) and
O(h3); (b) linear-logarithmic scaling of 1D discrete convolution on composite grids; (c)
linear-logarithmic scaling in n of our tensor-product convolution method on n× n× n
grid in the range n ≤ 16384.

AMS Subject Classification: 65F30, 65F50, 65N35, 65F10
Key words: Kronecker products, Tucker tensor decomposition, canonical tensors, multi-
dimensional convolution, FFT, collocation-projection method, Richardson extrapolation,
composite grids.

1 Introduction

The multi-dimensional convolution arises in a variety of mathematical models which in-
clude multivariate correlation functions, Green’s functions of an elliptic operator or some
other translation invariant transforms (filtering). As examples in scientific computing, we
mention many-particle modelling based on the Hartree-Fock, Kohn-Sham and Boltzmann
equations as well as the Lippmann-Schwinger formulation of the Schrödinger equation. Fur-
ther applications appear in the image/signal processing, population modelling and financial
mathematics.
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Our particular motivation is concerned with efficient solution methods in electronic and
molecular structure calculations. As the basic example, let us consider the Hartree-Fock
equation for pairwise orthogonal electronic orbitals φi : R

3 → R, which reads as

FΦφi(x) = λi φi(x),

∫

R3

φiφj = δij , i, j = 1, ..., N (1.1)

with FΦ being the nonlinear Fock operator

FΦ := −1

2
∆ − Vc + VH −K.

Here we use the definitions

τ(x, y) :=
N∑

i=1

φ∗
i (x)φi(y), ρ(x) := τ(x, x), VH :=

(
ρ ⋆

1

‖ · ‖

)
=

∫

R3

ρ(y)

‖ · −y‖dy,

(Kφ) (x) := −1

2

N∑

i=1

(
φφi ⋆

1

‖ · ‖

)
φ∗

i (x) = −1

2

∫

R3

τ(x, y)

‖x− y‖ φ(y)dy.

with the density matrix τ(x, y), electron density ρ(x), the atomic potential Vc(x) =∑M
ν=1

Zν

|x−aν | , the Hartree potential VH(x) and the nonlocal exchange operator K. The
most computationally expensive part in numerical solution of that equation includes the
convolution products with the Newton potential in R

3,

ρ ∗ 1

‖ · ‖ and φφi ∗
1

‖ · ‖ (i = 1, ..., N),

which should be computed on large spatial grids and many times in the course of iterations on
nonlinearity. Recall that the so-called Green iteration for solving the electronic Schrödinger
and the Hartree-Fock/Kohn-Sham equations includes the Yukawa convolving kernel e−λ‖·‖

‖·‖ in

R
d, d ≥ 3 (see [11, 2, 13] for more detailes).

In the present paper, we describe an efficient approximation method for multi-dimensional
convolution in R

d discretised via a collocation scheme over nd spatial grid points. In the
traditional FFT-based methods on equidistant tensor-product grids one arrives at severe
computational problems of linear complexity in the volume, O(nd log n). Using adaptive grids
in higher dimensions seems to be technically troublesome and may run into implementational
difficulties in the real-life applications. Notice that the calculation of the 3D FFT on n×n×n
grids is practically limited by the problem size n . 512, while our current implementation
of the fast tensor convolution transform (FTCT) allows much larger 3D grids of size n ≤
1.6 ·104 (MATLAB 7.3). The next table shows the advantage of the proposed FTCT method
compared with those based on 3D FFT. We present the CPU time for a high accuracy
computation of the Hartree potential for the H2O molecule [16]. The CPU time for FFT-
based scheme with n ≥ 1024 is obtained by extrapolation.

n3 643 1283 2563 5123 10243 20483 40963 81923

3D FFT (sec) 0.41 4.3 55.4 582.8 ∼ 6000 – – ∼ 70 days
ConvCC (sec) 1.9 1.7 6.1 6.1 35.0 35.0 246.0 769.0
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In the recent years the idea of tensor-structured approximation has been recognised as the
promising approach to relax the curse of dimensionality for representation of multivariate
operators and functions, cf. [1, 2, 10, 8, 12, 9, 15, 18, 13]. Following this concept, we
propose to combine the model reduction techniques by low tensor-rank approximation of the
convolving d-th order tensors with the fast 1D discrete convolution applied to uniform or
composite refined grids (cf. §3.2-3.4 below). This approach reduces the volume integration
to a few independent univariate linear operations with linear scaling in d, and leading to the
FTCT of complexity

O(dR1R2n log n) ≪ nd,

where R1, R2 ∈ N are the so-called separation (tensor) ranks of the convolving functions (see
§2.3). Accomplished with the efficient multi-linear algebra (MLA) operations via the “rank
truncation” (cf. [3, 4, 12, 15, 16, 6, 17, 18, 20, 22]), this method can be applied for solving
high dimensional equations which include multi-dimensional operator calculus. Recall that
for a class of applications involving discretized analytic functions we take for granted the
theoretical separation-rank estimate R = O(log 1/ε logn), see [9] - [13]. For Green’s kernels
we make use of the sinc-approximation accomplished with the algebraic rank recompression
(see §4.2).

In the case of unstructured tensor-product grids, the 1D convolution can be calculated di-
rectly in O(n2) operations. Since unstructured grids normally have moderate grid-size n, the
direct O(n2)-calculation leads to the acceptable total cost in multi-dimensional perspective,
O(dR1R2n

2). In some cases one can apply the fast O(n logq n)-convolution for a class of 1D
hierarchical grids presented in [7] (corresponds to the Galerkin approximation). Algorithms
and numerical aspects of the discrete tensor-product convolution on general non-uniform
grids in R

d were briefly discussed in [15]. The computational efficiency of the tensor product
convolution in electronic structure calculations is demonstrated in [14, 13, 16, 6].

We only consider piecewise constant approximations to minimise the technicalities, ex-
tension to higher order elements is straightforward. For these simple basis functions, our
tensor-product collocation scheme defined on nd grid-points is proven to provide the accuracy
of order O(h2) with the grid parameter h = O(1/n). Simple improvement via the Richard-
son extrapolation leads to an O(h3)-approximation. It is worth to note that the physically
relevant functionals applied to the convolution transform (say, scalar products, the Coulomb
integrals, the Rayleigh quotients) are approximated with the same error O(h3).

The main results of the paper can be summarised as follows:

• In Section 2 we prove the O(h2) error bound (superconvergence) for the collocation
convolution scheme by piecewise constant elements (see Thm. 2.2) and justify the
Richardson extrapolation on a sequence of grids, which effectively reduces the error to
O(h3) (see Thm. 2.3).

• In Section 3 the efficient tensor-product convolution method is presented and analysed
for different rank-structured tensor formats (Algorithms 1, 2, 1′, Lemmata 3.4 and
3.5). This method applied on the uniform/composite grids of size nd scales linear-
logarithmically in n.

• We present the O(n logn) convolution method O(n logn) in the case of 1D composite
grids and give related numerical illustrations (Algorithm 3, Lemma 3.6).
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• In §4.2 the heuristic rank reduction scheme for the sinc-quadrature approximations
of the convolving kernels is described in Algorithm 4 and supported by numerical
examples.

• Numerical illustrations for the 3D convolution of the Newton potential with quantum
chemistry data confirm the approximation theory and complexity bounds (see §4.3).

2 Discretisation of the convolution transform

The multi-dimensional convolution in L2(Rd) is defined by the integral transform

w(x) := (f ⋆ g)(x) :=

∫

Rd

f(y)g(x− y)dy f, g ∈ L2(Rd), x ∈ R
d. (2.1)

We are interested in approximate computation of f ⋆ g in some fixed box Ω = [−A,A]d,
assuming that the convolving function f has a support in Ω′ := [−B,B]d ⊂ Ω (B < A), i.e.,
supp f ⊂ Ω′. In electronic structure calculations the convolving function f may represent
electron orbitals or electron densities which normally have an exponential decay.

The common example of the convolving kernel g is given by the restriction of the funda-
mental solution of an elliptic operator in R

d. For example, in the case of the Laplacian in
R

d, d ≥ 3, we have

g(x) = c(d)/‖x‖d−2, x = (x1, ..., xd) ∈ R
d, ‖x‖ =

√
x2

1 + ... + x2
d,

where c(d) = −2
d

4−d/Γ(d/2 − 1). This example will be considered in more details.

2.1 Approximating translation invariant integral operators

There are three commonly used discretisation methods for the integral operators: the so-
called Nyström, collocation and Galerkin type schemes. For the sake of simplicity, first, we
consider the case of uniform grids.

Introduce the equi-distant tensor-product lattice ωd := ω1 × ...× ωd of size h = 2A/n by
setting ωℓ := {−A + (k − 1)h : k = 1, ..., n + 1}, where for the sake of convenience n = 2p,
p ∈ N, and define the tensor-product index set I := {1, ..., n}d. Hence Ω = ∪i∈IΩi becomes

the union of closed boxes Ωi =
d⊗

ℓ=1

Ωiℓ with intervals

Ωiℓ := {xℓ : xℓ ∈ [−A + (iℓ − 1)h,−A + iℓh]} ⊂ R, (ℓ = 1, ..., d). (2.2)

The Nyström type scheme leads to simple discretisation

(f ⋆ g)(xj) ≈ hd
∑

i∈I
f(yi)g(xj − yi), j ∈ I,

where, for the ease of presentation, the evaluation points xj, and the collocation points yi,
i, j ∈ I, are assumed to be located on the same cell-centred tensor-product grid corresponding
to ωd. The Nyström type scheme applies to the continuous functions f, g which leads to
certain limitations in the case of singular kernels g.
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The collocation-projection discretisation can be applied to a much more general class of
integral operators than the Nyström methods including Green’s kernels with the diagonal
singularity, say to the Newton potential g(x) = 1/‖x‖. We consider the case of tensor-
product piecewise constant basis functions {φi} associated with ωd, so that φi = χΩi

is the
characteristic function of Ωi,

φi(x) =

d∏

ℓ=1

φiℓ(xℓ), where φiℓ = χΩiℓ
. (2.3)

Let xm ∈ ωd be the set of collocation points with m ∈ Mn := {1, ..., n+ 1}d (we use the
notation Mn = M if there is no confusion), and let fi be the representation coefficients of
f in {φi},

f(y) ≈ f̃(y) :=
∑

i∈I
fiφi(y).

In the following we specify the coefficients as fi = f(yi), where yi is the midpoint of Ωi,
i ∈ I. We consider the following discrete collocation-projection scheme

f ⋆ g ≈ {wm}, wm :=
∑

i∈I
fi

∫

Rd

φi(y)g(xm − y)dy, xm ∈ ωd, m ∈ M. (2.4)

Pointwise evaluation of this scheme requires O(n2d) operations. In the case of equidistant
grids the computational complexity can be reduced to O(nd log n) by applying the multi-
dimensional FFT.

To transform the collocation scheme (2.4) to the discrete convolution, we precompute
the collocation coefficients

gi =

∫

Rd

φi(y)g(−y)dy, i ∈ I, (2.5)

define the d-th order tensors F = {fi},G = {gi} ∈ R
I , and introduce the d-dimensional

discrete convolution

F ⋆ G := {zj}, zj :=
∑

i

figj−i+1, j ∈ J := {1, ..., 2n− 1}d, (2.6)

where the sum is over all i ∈ I which lead to legal subscripts for gj−i+1, j − i + 1 ∈ I.
Specifically, for jℓ = 1, ..., 2n− 1,

iℓ ∈ [max(1, jℓ + 1 − n), min(jℓ, n)], ℓ = 1, ..., d.

The discrete convolution can be gainfully applied to fast calculation of {wm}m∈M in the
collocation scheme (2.4) as shown in the following statement.

Proposition 2.1 The discrete collocation scheme {wm}, m ∈ M, is obtained by copying
the corresponding portion of {zj} from (2.6), centred at j = n = n⊗d,

{wm} = {zj}|j=j0+m, m ∈ M, j0 = n/2.
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Proof. In the 1D case we have

z(1) = f(1) · g(1), z(2) = f(1) · g(2) + f(2) · g(1), ...,

z(n) = f(1) · g(n) + f(2) · g(n− 1) + ...+ f(n) · g(1), ..., z(2n− 1) = f(n) · g(n).

Then we find that elements {wm} coincide with {zj}|j=j0+m, m ∈ M, j0 = n/2. The general
case d ≥ 1 can be justified by applying the above argument to each spatial variable.

The Galerkin method of discretisation reads as follows

f ⋆ g ≈
∑

i, j−i+1∈I, j∈j0+M
figj−i+1 with gj−i+1 :=

∫

Rd

φj(x)φi(y)g(x− y)dxdy

and with the choice fi = 〈f, φi〉L2. The Galerkin scheme is known as the most conve-
nient for theoretical error analysis. However, compared with the collocation method, it has
higher implementational cost because of the presence of double integration. Hence classical
discretisation methods mentioned above may differ from each other by construction of the
tensor-product decompositions. To keep a reasonable compromise between the numerical
complexity of the scheme and its generality, in the following we focus on the collocation
method by simple low order finite elements.

2.2 O(h2)- and O(h3)-error bounds

In the case of piecewise constant basis functions we prove the error bound O(h2) for the col-
location scheme and then present a more refined error analysis which justifies the Richardson
extrapolation method on a sequence of grids providing the better approximation error O(h3).
Such an extrapolation, when available, allows a substantial reduction of the approximation
error without extra cost. It is worth to note that the Richardson extrapolation can also be
applied to some functionals of the convolution product, say to eigenvalues of the operator
that includes the discrete convolution.

We use the multivariate Taylor expansion to find a local polynomial approximation of
order m for a function with certain smoothness. Let us suppose that f ∈ Cm(Rd). The
Taylor polynomial of order m evaluated at y is given by

Tm
y f(x) :=

∑

|α|<m

1

α!
Dαf(y)(x− y)α, x, y ∈ R

d,

where α = (α1, ..., αd) is an d-tuple of nonnegative integers, xα =
∏d

ℓ=1 x
αℓ

ℓ , α! =
∏d

ℓ=1 αℓ!

and |α| =
∑d

ℓ=1 αℓ. We restrict to the case of m-times continuously differentiable functions.
For a given hypercube B ∈ R

d of size H , let f ∈ Cm(B). We apply the Taylor expansion at
the point y ∈ B in the form

f(x) = Tm
y f(x) +R(m)

y (x), x ∈ B (2.7)

with

R(m)
y (x) := m

∑

|α|=m

(x− y)α

∫ 1

0

1

α!
sm−1Dαf(x+ s(y − x))ds.

In the following we need the standard error estimate

‖f(x) − Tm
y f(x)‖L∞(B) ≤ Cm,dH

m‖f‖Cm(B). (2.8)
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We recall that continuous Fourier transform in R
d is given by

F(f)(κ) :=

∫

Rd

f(x)e−i〈κ,x〉dx, κ ∈ R
d.

Theorem 2.2 Let f ∈ C2(Ω) and let g ∈ L1(Ω). Furthermore, we assume that there exist
µ ≥ 1 and β > 0, such that

|F(g)(κ)| ≤ C/‖κ‖µ as ‖κ‖ → ∞, κ ∈ R
d (2.9)

and
|∇yg(x− y)| ≤ C/‖x− y‖β for x, y ∈ Ω, x 6= y. (2.10)

Then there is a constant C > 0 independent of h such that for w defined in (2.1), and for
wm defined in (2.4), we have

|w(xm) − wm| ≤ Ch2, m ∈ M. (2.11)

Proof. Introduce the ”local” interpolation error by

δi(y) = (f(y) − f(yi))φi(y), y ∈ Ω with supp(δi) = Ωi.

Define the error function as

E(x) := w(x) − f̃ ⋆ g(x) =
∑

i∈I
δi ⋆ g(x) with f̃ =

∑

i∈I
f(yi)φi.

For any fixed i ∈ I, we will estimate the individual term of the total error, Ei(x) = δi ⋆ g(x).
To that end let us apply the Taylor expansion (2.7) on B = Ωi with m = 2 to obtain

δi(y) = 〈∇f(yi), y − yi〉 +R(2)
yi

(y), y ∈ B.

Step 1. It is easy to see that (2.8) implies

‖R(2)
yi

(·)‖L∞(B) ≤ Ch2,

hence the condition g ∈ L1(Ω) leads to
∥∥∥∥∥
∑

i∈I
R(2)

yi
⋆ g

∥∥∥∥∥
L∞(Ω)

≤ Ch2‖g‖L1(Ω) = O(h2). (2.12)

Next we analyse the rest part of E(x) at some fixed collocation point xm, m ∈ M.
Step 2. Let us consider the contribution to the error from the individual terms 〈∇f(yi), ·−

yi〉 ⋆ g(·) for all
i ∈ Σm := {j ∈ I : xm ∈ Ωj}.

To that end we estimate the Fourier transform of such terms,

F (〈∇f(yi), · − yi〉 ⋆ g(·)) = F (〈∇f(yi), · − yi〉) · F(g), (2.13)

where F(g) is understood as a temporary distribution. Since g ∈ L1(Ω), we have

‖F(g)‖L∞(Rd) ≤ C‖g‖L1.
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Furthermore, we will need a “directional” estimate on |F(g)|. At this point we apply the
classical inequality of the harmonic and geometric mean: let a1, ..., ad be the positive real
numbers, then

d
1
a1

+ ...+ 1
ad

≤ d
√
a1a2...ad.

Let us set ak = 1/x2
k for x ∈ R

d, which leads to

1

‖x‖ =
1√

x2
1 + ...+ x2

d

≤ 1√
d

d∏

ℓ=1

1
d
√

|xℓ|
.

Hence, the assumption on the decay property (2.9) implies the desired “directional” bound

|F(g)(κ)| ≤ C

‖κ‖µ
≤ C√

dµ

d∏

ℓ=1

1

|κℓ|µ/d
. (2.14)

Furthermore, for the first factor in the right-hand side of (2.13) we are able to prove

|F (〈∇f(yi), · − yi〉) | ≤ Chd+2Pi, Pi > 0 (2.15)

with the uniformly bounded sum
∑
i∈I

Pi ≤ C. In fact, due to separability of F in R
d with

respect to the 1-dimensional Fourier transforms Fk in variable yk (k = 1, ..., d), one can
represent

F (〈∇f(yi), y − yi〉) = 〈∇f(yi), Ui〉, Ui ∈ (L∞(R))d

with

(Ui)k(κ) = Fk(χΩik
(· − yi,k))(κk)

d∏

ℓ=1, ℓ 6=k

Fℓ(χΩiℓ
)(κℓ).

For each fixed k = 1, ..., d, consider the individual term

Fk(χΩik
(t− yi,k))(τ) = e−iyi,kτF(χ[−h/2,h/2]t)(τ)

with F being the Fourier transform in R, and derive

eh(τ) := F(χ[−h/2,h/2]t)(τ) =

[
sin(τy)

τ 2
− y cos(τy)

τ

]h/2

−h/2

=
2 sin(τh/2)

τ 2
− h cos(τh/2)

τ
.

Hence we have the asymptotic expansions

eh(τ) =
τh3

12
+O(h5) as |τh| ≤ O(1)

and

|eh(τ)| ≤ C(
h

τ
+

1

τ 2
) as |τ | → ∞.

We apply (2.14) with µ > 0, take the directional factor

g1(τ) = min{1, 1/τµ/d},
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and then consider the parametric function

ph(τ) := g1(τ)

(
2 sin(τh/2)

τ 2
− h cos(τh/2)

τ

)
.

We can prove by the scaling argument that

|ph(τ)| = Ch2+µ/dP (u), with C = C(µ, d),

where, with u = τh/2,

P (u) = [
sin u

u2
− cos u

u
] min{h−µ/d, u−µ/d} ∈ L1(R).

The standard scaling argument leads to the relation

‖ph(τ)‖L1 ≤ Ch1+µ/d‖P (u)‖L1. (2.16)

Likewise, we have

F(χ[−h/2,h/2])(τ) =

[
sin(τy)

τ

]h/2

−h/2

=
2 sin(τh/2)

τ
,

qh(τ) := g1(τ)F(χ[−h/2,h/2])(τ) = Ch1+µ/dsinc(u) min{h−µ/d, u−µ/d}, (2.17)

which implies
‖qh(τ)‖L1 ≤ Chµ/d‖sinc(u) min{h−µ/d, u−µ/d}‖L1.

With fixed index i ∈ Σm, we apply the inverse Fourier transform F−1 to (2.13), then
make use of the bounds (2.14), (2.16) and (2.17) to obtain

|〈∇f(yi), · − yi〉 ⋆ g(·)| ≤ ‖F(〈∇f(yi), · − yi〉) · F(g)‖L1 (2.18)

≤ ‖ |F(〈∇f(yi), · − yi〉)| · |F(g)|‖L1

≤ Cd‖ph(τ)‖L1

∏

ℓ=2,...,d

‖qh(τℓ)‖L1

≤ Cdh1+µ/d
∏

ℓ=2,...,d

hµ/d = Cdh1+µ.

Summing over i ∈ Σm leads to the desired ”local” estimate of order Cd 2d h1+µ.
Step 3. In the final step, we estimate the contribution from “nondiagonal” terms corre-

sponding to i ∈ I \ Σm. For such terms we just apply the Taylor expansion around yi with
m = 2 to the convolving kernel g(xm − y), y ∈ B = Ωi, and take into account (2.10), which
leads to the bound (with n = 1/h, n = n⊗d and β 6= d)

∣∣∣∣∣∣

∑

i∈I\Σm

(〈∇f(yi), · − yi〉 ⋆ g) (xm)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i∈I\Σm

∫

Ωi

〈∇f(yi), y − yi〉g(xm − y)dy

∣∣∣∣∣∣
=

|
∑

i∈I\Σm

∫

Ωi

〈∇f(yi), y − yi〉
(
〈∇yg(xm − yi), y − yi〉 +R(2)

yi
(y)
)
dy| ≤
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∑

i∈I\Σm

∫

Ωi

|〈∇f(yi), y − yi〉| · |y − yi|/‖xm − yi‖βdy +O(h3) =

Cd

n∑

k=1

hd+2

|kh|β = C
h2+d

hβ

n∑

k=1

1

|k|β ≤

C
h2+d

hβ
· hβ−d = Ch2.

Combining this result with (2.12) completes the proof.
Theorem 2.2 indicates the ”superconvergence property” for low order elements in the case

of smooth enough convolving functions. To illustrate the applicability of above Theorem we
notice that the fundamental solution of the Laplace operator in R

d is given by g(x) =
c(d)/‖x‖d−2 with the Fourier transform F(g) = C/‖κ‖2. Hence Theorem 2.2 applies with
β = d− 1, µ = 2. It also applies to the Yukawa potential g(x) = e−λ‖x‖/‖x‖ for x ∈ R

3 with
any µ ≥ 1 and with β = 2.

The approximation error O(h2) can be improved up to O(h3) using the Richardson ex-
trapolation scheme on a sequence of grids. We show that the linear combination of solutions
w

(n)
m , m ∈ Mn, and w

(2n)
m , m ∈ M2n, corresponding to the grid-size n and 2n, respectively,

ensures the expected high order approximation.

Theorem 2.3 Let f ∈ C3(Ω), and assume that the conditions of Theorem 2.2 are satisfied
with µ ≥ 2 and β 6= d (technical condition). Moreover, suppose that

|∇2
yg(x− y)| ≤ C/‖x− y‖γ with γ > 0. (2.19)

Then for m ∈ Mn, there is a constant C > 0 independent of h such that

(4w(2n)
m − w(n)

m )/3 = w(xm) + ηm,n, ηm,n ∈ R with |ηm,n| ≤ Ch3. (2.20)

Proof. Using the notations from the previous proof, we rewrite relation (2.20) in terms of
the error function

(4E(2n)(xm) − E(n)(xm))/3 = ηm,n, m ∈ Mn.

We start from arguments which are similar to those in the proof of Theorem 2.2. To represent
the local error, we apply the Taylor expansion (2.7) with m = 3 on B = Ωi for i ∈ Mn to
obtain

δ
(n)
i (y) = 〈∇f(yi), y − yi〉 + 2

∑

|α|=2

1

α!
(y − yi)

αDαf(yi) +R(3)
yi

(y), y ∈ B. (2.21)

Step 1. It is easy to see that (2.8) implies

‖R(3)
yi

(·)‖L∞(B) ≤ Ch3,

hence the condition g ∈ L1(Ω) again leads to

∥∥∥∥∥
∑

i∈I
R(3)

yi
⋆ g

∥∥∥∥∥
L∞(Ω)

≤ C‖g‖L1(Ω)h
3 = O(h3). (2.22)
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Next we analyse the remaining couple of terms in E(n)(x) (resp. E(2n)(x)) at some fixed
collocation point xm, m ∈ Mn.

Step 2(a). The contribution to the error from the individual terms 〈∇f(yi), · − yi〉 ⋆ g(·)
for all i ∈ Σm := {j ∈ I : xm ∈ Ωj} can be estimated by similar argument as in the proof of
Theorem 2.2 (see Step 2). At the final estimate in (2.18), we take into account that µ ≥ 2,
which leads to the total bound O(h3) for the ”local” terms.

Step 2(b). Now we analyse the contribution from “nondiagonal” terms (corresponding to
i ∈ I \ Σm) in the linear part of the Taylor expansion. For such terms we further apply the
Taylor expansion to the convolving kernel g(xm − y), y ∈ B = Ωi, around yi with m = 2,
and take into account (2.10), which leads to the equation (with technical assumption β 6= d)

∣∣∣∣∣∣

∑

i∈I\Σm

(〈∇f(yi), · − yi〉 ⋆ g) (xm)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

i∈I\Σm

∫

Ωi

〈∇f(yi), y − yi〉〈∇yg(xm − yi), y − yi〉dy

∣∣∣∣∣∣
+O(h3).

For given xm, let us fix some box Ω
(n)
i , i ∈ I \ Σm, and consider the contribution from this

box corresponding to the diadically refined grid, so that Ω
(n)
i =

8⋃
k=1

Ω
(2n)
ik

. Simple calculations

show that

4

8∑

k=1

∫

Ω
(2n)
ik

〈∇f(yik), y − yik〉〈∇yg(xm − yik), y − yik〉dy−
∫

Ω
(n)
i

〈∇f(yi), y − yi〉〈∇yg(xm − yi), y − yi〉dy = O(h3),

where we apply the Taylor expansion with m = 1 at point yi to both gradients ∇f(y) and
∇yg(xm − y). Summing up the above equation over i ∈ I \ Σm we complete the proof for
the first order terms in the Taylor expansion.

Step 3. To analyse the contribution from second order terms in (2.21) we apply the
Taylor expansion of order m = 2 to the gradient ∇yg(xm − yik) around the cell centre yi,

∇yg(xm − yik) = ∇yg(xm − yi) + 〈∇2
yg(xm − yi), yik − yi〉 +O(h2).

This leads to the bound

4
8∑

k=1

∫

Ω
(2n)
ik

∑

|α|=2

1

α!
(y − ik)

αDαf(yik)〈∇yg(xm − yik), y − yik〉dy−
∫

Ω
(n)
i

∑

|α|=2

1

α!
(y − yi)

αDαf(yi)〈∇yg(xm − yi), y − yi〉dy = O(h3).

Now summation of the above equation over i ∈ I \ Σm completes our proof.

Remark 2.4 The Newton potential in 3D, g(x) = 1/‖x‖, x ∈ R
3, satisfies the conditions

of Theorem 2.3 with µ = 2 and β = 2.

Notice that in the case β = d some logarithmic terms in the error estimate may arise.
Below we give numerical examples for the Newton potential with d = 3.
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3 Tensor approximation to discrete convolution

Recall that in the case of uniform grids the discrete convolution R
d can be implemented by d-

dimensional FFT with linear cost in the volume size, O(nd log n), which scales exponentially
in d. To break down the curse of dimensionality, we represent the d-dimensional convolution
product approximately in the low-rank tensor product formats. This reduces dramatically
the computational cost to O(dn logn).

3.1 Orthogonal Tucker and canonical tensor decompositions

Data sparse representation of high order tensors is based on the Tucker, canonical and mixed
models. A tensor is a multidimensional array,

V = [vi1,...,id : iℓ ∈ Iℓ] ∈ R
I , I = I1 × . . .× Id,

with I being the tensor-product index set, where Iℓ = {1, ..., nℓ} (denote by i the d-tuple
(i1, ..., id)). It is an element of linear space Vn = ⊗d

ℓ=1Vℓ of real-valued (complex-valued)
d-th order tensors with Vℓ = R

Iℓ , and equipped with the Euclidean inner product 〈·, ·〉 :
Vn × Vn → R, defined as

〈V, U〉 :=
∑

(i1,...,id)∈I
vi1...idui1...id for V, U ∈ Vn. (3.1)

Assume for simplicity that dimVℓ = #Iℓ = n for all ℓ = 1, ..., d, then the number of entries
in V amounts to nd, hence growing exponentially in d.

To get rid of exponential scaling in the dimension approximate representations in some
classes S ⊂ Vn of data-sparse “rank structured” tensors will be applied. The basic concept
is a representation by a short-term sum of rank-1 tensors. Specifically, the outer product of
vectors tℓ = {tℓ,iℓ}iℓ∈Iℓ

∈ Vℓ (ℓ = 1, ..., d) forms the canonical rank-1 tensor

T ≡ [ti]i∈I = t1 ⊗ ...⊗ td ∈ Vn with entries ti = t1,i1 · · · td,id ,

which requires only dn numbers to store it (now linear scaling in the dimension). In the case
d = 2, the outer product of two vectors represents a rank-1 matrix.

Commonly used classes S of “rank structured” tensors are given by the Tucker, canonical
and mixed models. The rank-(r1, . . . , rd) Tucker representation [21, 4] is based on subspaces
Tn := ⊗d

ℓ=1Tℓ of Vn for certain Tℓ ⊂ Vℓ with rℓ := dim Tℓ ≤ n. It is worth to note that
usually subspaces Tn are not fixed, and can be optimised via certain nonlinear approximation
process.

Definition 3.1 Given the vector-valued rank parameter r = (r1, ..., rd), we denote by T r,n ≡
T r ⊂ Vn the subset of tensors in Vn represented in the so-called Tucker format

V(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1...νd

tν1
1 ⊗ . . .⊗ tνd

d (3.2)

with some vectors tνℓ

ℓ ∈ Vℓ (1 ≤ νℓ ≤ rℓ), which form the orthonormal basis of Tℓ :=
span{tνℓ}rℓ

ν=1 (ℓ = 1, ..., d).

12



Conventionally, r = max
ℓ

{rℓ} is called the Tucker rank. In our applications we have r ≪ n,

say r = O(logn). The coefficients tensor β = [βν1...νd
] ∈ R

r1×...×rd, that is an element of the
dual (reciprocal) tensor space Br, is called the core tensor. As long as the grid-size n is fixed,
we will skip n in the notation T r,n. Introducing the (orthogonal) matrices T (ℓ) = [tν1

ℓ ...t
νd

ℓ ],
we then use a shorter notation for the Tucker decomposition of V ∈ T r:

V = β ×1 T
(1) ×2 T

(2)...×d T
(d),

where the symbol “×ℓ” denotes a tensor-by-matrix contraction product along the mode ℓ.
Notice that if the subspaces Tℓ = span{tνℓ }rℓ

ν=1 are fixed then we have the outer product
representation

T r,n = Tn := ⊗d
ℓ=1Tℓ.

In this case the approximation V(r) ∈ T r of the target tensor V is given by the orthogonal
projection of V onto the linear space Tn, that is

V(r) =
∑

ν1,...,νd

〈tν1
1 ⊗ ...⊗ tνd

d , V 〉 tν1
1 ⊗ . . .⊗ tνd

d .

This property is crucial in the computation of the best orthogonal Tucker approximation,
where the ”optimal” subspaces Tℓ are recalculated within a nonlinear approximation process.

Definition 3.2 Given the rank parameter R ∈ N, we denote by CR,n = CR ⊂ Vn a set of
tensors which can be represented in the canonical format

V(R) =
∑R

ν=1
βνv

ν
1 ⊗ . . .⊗ vν

d , βν ∈ R, (3.3)

with normalised vectors vν
ℓ ∈ Vℓ (ℓ = 1, ..., d).

The minimal parameter R in (3.3) is called the rank (or canonical rank) of a tensor V(R).
To simplify the discussion, we further assume rℓ = r for all ℓ = 1, ..., d. The storage

requirements for the Tucker (resp. canonical) decomposition is given by rd + drn (resp.
R + dRn), where usually r ≪ R. In turn, the maximal canonical rank of the Tucker
representation is rd−1. Since the Tucker core still presupposes the rd storage space, we
further consider a mixed (two-level) representation which gainfully combines the beneficial
features of both the Tucker and canonical models. In the following, the grid-size n will be
fixed.

Definition 3.3 (The two-level Tucker-canonical format, cf. [12]). Given the rank param-
eters r, R, we denote by T CR,r

the subclass of tensors in T r with the core β represented in
the canonical format, β ∈ CR,r ⊂ Br. Clearly, we have the imbedding T CR,r

⊂ CR.

The target tensor V ∈ Vn can be approximated by a sum of rank-1 tensors as in (3.2),
V(r) ≈ V (cf. tensor-product schemes (3.4), (3.5) below), or in (3.3), V(R) ≈ V (cf. Algorithm
2), or using the format T CR,r

(cf. Algorithm 1).
To unify the complexity analysis of the MLA operations including tensors in S =

{T r,CR,T CR,r
}, we will represent a tensor V(R) ∈ CR in the standard form (3.2) with

the diagonal core tensor β = diag{b1, ..., bR}, where the orthogonality of vectors {tνℓ}rℓ

ν=1

(ℓ = 1, ..., d) is no longer required. We denote by #A the number of nonzero elements
corresponding to the sparsity pattern of tensor A. In particular, for V(R) ∈ CR, we have
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for the corresponding core tensor #β = R, while in general for V(r) ∈ T r, one obtains

#β =
∏d

ℓ=1 rℓ. In the special case V(R) ∈ T CR,r
we have #β = dRr.

Multilinear algebraic operations (including visualization) with tensors of order d (d ≥ 3),
can be reduced to the standard linear algebra by unfolding of a tensor into a matrix. The un-
folding of a tensor along mode ℓ is a (unfolding) matrix of dimension nℓ×(nℓ+1...ndn1...nℓ−1),
further denoted by V(ℓ), whose columns are the respective fibers of V along the ℓ-th mode.

3.2 Tensor-product convolution on uniform grids

We notice that the multidimensional convolution product appears to be one of the most
computationally elaborate MLA operations. In the present paper, the key idea is to calculate
the d-dimensional convolution approximately using rank-structured tensor approximations.
Recall that for given d-th order tensors F,G ∈ T r, represented by

F = β ×1 F
(1) ×2 F

(2)...×d F
(d), and G = γ ×1 G

(1) ×2 G
(2)...×d G

(d),

the convolution product can be ”separated” via (cf. [15])

F ⋆ G :=

r∑

k=1

r∑

m=1

βk1...kd
γm1...md

(
fk1

1 ⋆ gm1
1

)
⊗ ...⊗

(
fkd

d ⋆ gmd

d

)
. (3.4)

Computing 1D convolution fkℓ

ℓ ⋆ gmℓ

ℓ ∈ R
2n−1 in O(n logn) operations leads to the overall

linear-logarithmic complexity in n,

NT⋆T = O(dr2n log n+ #β · #γ).

In general one might have #β ·#γ = O(r2d), which may be restrictive even for moderate d.
Significant complexity reduction is observed if at least one of the convolving tensors can

be represented by the canonical model. Letting F ∈ T r, G ∈ CR, i.e., γ = diag{γ1, ..., γR},
we tensorize the convolution product as follows

F ⋆ G =
r∑

k=1

R∑

m=1

βk1...kd
γm

(
fk1

1 ⋆ gm
1

)
⊗ ...⊗

(
fkd

d ⋆ gm
d

)
. (3.5)

However, the calculation by (3.5) still scales exponentially in d, which leads to certain limi-
tations in the case of higher dimensions.

To get rid of this exponential scaling, we propose to perform the convolution transform
using the two-level tensor format, i.e., F ∈ T CR1,r

(see Definition 3.3) in such a way that the
result U = F ⋆ G with G ∈ CRG

is represented in the two-level Tucker format T CR1RG,rRG
.

Recall that an explicit representation for F ∈ T CR1,r
is given by

F =
(∑R1

ν=1
βνz

ν
1 ⊗ . . .⊗ zν

d

)
×1 F

(1) ×2 F
(2)...×d F

(d), (3.6)

so that we have the imbedding T CR1,r
⊂ CR1,n with the corresponding (non-orthogonal)

side-matrices S(ℓ) = [F (ℓ)z1
ℓ ...F

(ℓ)zR1

ℓ ] ∈ R
n×R1 , and scaling factors βν (ν = 1, ..., R1). Now

we represent the tensor-product convolution in the two-level format

F ⋆ G =

RG∑

m=1

γm

(∑R1

ν=1
βνz

ν
1 ⊗ . . .⊗ zν

d

)
×1

(
F (1) ⋆ gm

1

)
×2 ...×d

(
F (d) ⋆ gm

d

)
, (3.7)

such that the above expansion can be evaluated by the following algorithm.
Algorithm 1. (d-dimensional tensor convolution of type T CR1,r

⋆ CRG,n → T CR1RG,rRG
).
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1. Given F ∈ T CR1,r
with the core β =

∑R1

ν=1βνz
ν
1 ⊗ . . .⊗ zν

d ∈ CR1,r, and G ∈ CRG,n.

2. For ℓ = 1, ..., d, compute the set of 1D convolutions uk,m
ℓ = fk

ℓ ⋆ g
m
ℓ (k = 1, ..., r,

m = 1, ..., RG) of size 2n − 1, restrict the results onto the index set Iℓ, and form the

n × rRG side-matrices U (ℓ) = [U
(ℓ)
1 ...U

(ℓ)
RG

], composed of the blocks U
(ℓ)
m with columns

uk,m
ℓ as U

(ℓ)
m = [f 1

ℓ ⋆ g
m
ℓ ...f

r
ℓ ⋆ g

m
ℓ ], all at the cost O(drRGn logn).

3. Build the core tensor ω = blockdiag{γ1β, ..., γRβ} and represent the resultant two-level
Tucker tensor in the form (storage demand is RG +R1 + drR1 + drRGn),

U = ω ×1 U
(1) ×2 ...×d U

(d) ∈ T CR1RG,rRG
.

In some cases one may require the consequent rank reduction of the target tensor U to
the two-level format T CR0,r0

with moderate rank parameters R0 and r0 = (r0, ..., r0). This
can be accomplished by the following heuristic Algorithm 1′. In this way, we use several
standard constructions. Let σℓ,1 ≥ σℓ,2... ≥ σℓ,min(n,R) be the singular values of the ℓ-mode

side-matrices U (ℓ) = Z(ℓ)D(ℓ)V (ℓ)T ∈ R
n×R with R = rRG, and let the rank-r0 truncation of

SVD for U (ℓ) be given by Z
(ℓ)
0 D

(ℓ)
0 V

(ℓ)
0

T
, such that D

(ℓ)
0 = diag{σℓ,1, σℓ,2, ..., σℓ,r0} and Z

(ℓ)
0 ,

V
(ℓ)
0 are given by the respective submatrices of Z(ℓ) and V (ℓ) containig their first r0 columns

(ℓ = 1, ..., d). Furthermore, we rewrite the matrices V (ℓ)T and Z(ℓ) in the block form,

V (ℓ)T = [M
(ℓ)
1

T
M

(ℓ)
2

T
...M

(ℓ)
RG

T
], Z(ℓ) = [Z

(ℓ)
0 Z

(ℓ)
1 ],

with M
(ℓ)
m ∈ R

r×n, and introduce the additional matrix splittings

D(ℓ) = blockdiag{D(ℓ)
0 , D

(ℓ)
1 }, M (ℓ)

m = [M
(ℓ)
m,0M

(ℓ)
m,1],

where M
(ℓ)
m,0 ∈ R

r×r0 , M
(ℓ)
m,1 ∈ R

r×(n−r0) (m = 1, ..., RG).
Recall that the higher-order SVD (HOSVD, cf. [5]) tensor approximation is defined by

truncated SVD of the mode-ℓ unfolding matrices.

Algorithm 1′. (Rank reduction for Algorithm 1.)

1. Given tensor U defined by Algorithm 1, and the rank parameters r0, R0 ∈ N (suppose
that R0 ≪ R1RG, r0 < r).

2. For ℓ = 1, ..., d, compute the ℓ-mode r0-dimensional dominating subspace for

U (ℓ), specified by the rank-r0 truncated SVD, given by Z
(ℓ)
0 D

(ℓ)
0 V

(ℓ)
0

T
(cost

O(dnrRGmin{n, rRG})).

3. Project the target tensor U onto orthogonal basis defined by columns of Z
(ℓ)
0 by cal-

culating the core tensor of size r0 = (r0, ..., r0) in the product-canonical format (the
so-called reduced HOSVD, or shortly RHOSVD, cf. [16]),

β̃0 =

RG∑

m=1

γm

(
R1∑

ν=1

βν

d⊗

ℓ=1

D
(ℓ)
0 M

(ℓ)
m,0

T
zν

ℓ

)
∈ CR1RG,r0,

and represent the RHOSVD approximation in the form

U(r0) = β̃0 ×1 Z
(1)
0 ×2 ...×d Z

(d)
0 ∈ T CR1RG,r0

.

The related cost is O(dR1RGrr0).
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4. Recompress the core β̃0 to the rank-R0 canonical tensor β0 and constitute the result
in the contracted product form

W0 = β0 ×1 Z
(1)
0 ×2 ...×d Z

(d)
0 ∈ T CR0,r0

.

5. (Optional.) Use tensor W0 as the initial guess for few nonlinear (say ALS) iterations
to approximate the target tensor U in the T CR0,r0

format.

Notice that the iterative Step 5 in Algorithm 1′ is not mandatory. In our applications
the approximation W0 usually provides safficiently good accuracy (see Lemma 3.4). The
justification of Algorithm 1′ is based on the effective error control of the RHOSVD for U (cf.
[16, Theorem 2.5] for the case of canonical input tensor).

Lemma 3.4 (Error estimate for RHOSVD). The RHOSVD approximation of the Tucker

rank r0, U(r0), given by the projection of U onto the matrices of singular vectors Z
(ℓ)
0 , exhibits

the error estimate

‖U − U(r0)‖ ≤ ‖γ‖‖β‖
d∑

ℓ=1

(

min(n,R)∑

k=r0+1

σ2
ℓ,k)

1/2, where ‖γ‖2 =

RG∑

m=1

γ2
m. (3.8)

Proof. Let us assume that R ≥ n. Using the contracted product representation of the
two-level Tucker tensor U ,

U = ω ×1 U
(1) ×2 U

(2) · · · ×d U
(d), with ω = blockdiag{γ1β, ..., γRG

β},

we obtain, by the construction, the following expansion for the RHOSVD approximation

U(r0) = ω ×1

[
Z

(1)
0 D

(1)
0 V

(1)
0

T
]
×2

[
Z

(2)
0 D

(2)
0 V

(2)
0

T
]
· · · ×d

[
Z

(d)
0 D

(d)
0 V

(d)
0

T
]
.

Introducing the auxiliary quantities

∆(ℓ) = U (ℓ) − Z
(ℓ)
0 D

(ℓ)
0 V

(ℓ)
0

T
, W (ℓ) = Z

(ℓ)
0 D

(ℓ)
0 V

(ℓ)
0

T
,

and
Bℓ = ω ×1 U

(1) · · · ×ℓ−1 U
(ℓ−1) ×ℓ ∆(ℓ) ×ℓ+1 W

(ℓ+1) · · · ×d W
(d),

and using the triangle inequality, we obtain

‖U − U(r0)‖ = ‖
d∑

ℓ=1

Bℓ‖ ≤
d∑

ℓ=1

‖Bℓ‖.

In turn, the ℓ-th term Bℓ can be represented by a sum

RG∑

m=1

γmβ×1U
(1)
m · · ·×ℓ−1U

(ℓ−1)
m ×ℓZ

(ℓ)
1 D

(ℓ)
1 M

(ℓ)
m,1

T×ℓ+1Z
(ℓ+1)
0 D

(ℓ+1)
0 M

(ℓ+1)
m,0

T · · ·×dZ
(d)
0 D

(d)
0 M

(d)
m,0

T
,

then, taking into account that ‖U (ℓ)
m ‖ = 1, and ‖Z(ℓ)

0 D
(ℓ)
0 M

(ℓ)
m,0

T‖ ≤ 1 (ℓ = 1, ..., d, m =
1, ..., RG), we arrive at the estimate

‖Bℓ‖ ≤ ‖β‖
RG∑

m=1

|γm|‖Z(ℓ)
1 D

(ℓ)
1 M

(ℓ)
m,1

T‖.
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Hence, we finalise the error bound using the Cauchy-Schwarz inequality, and taking into
account that V (ℓ) has orthonormal columns,

‖U − U(r0)‖ ≤ ‖
d∑

ℓ=1

RG∑

m=1

|γm|‖β‖‖Z(ℓ)
1 D

(ℓ)
1 M

(ℓ)
m,1

T‖

≤ ‖β‖
d∑

ℓ=1

(
RG∑

m=1

γ2
m

)1/2( RG∑

m=1

‖Z(ℓ)
1 D

(ℓ)
1 M

(ℓ)
m,1

T‖2

)1/2

= ‖γ‖‖β‖
d∑

ℓ=1

(
n∑

k=r0+1

σ2
ℓ,k

RG∑

m=1

‖
(
M

(ℓ)
m,1

)
k
‖2

)1/2

= ‖γ‖‖β‖
d∑

ℓ=1

(
n∑

k=r0+1

σ2
ℓ,k

)1/2

.

The case R < n can be analysed along the same line.
If F ∈ CRF

with β = diag{β1, ..., βRF
}, and G ∈ CRG

as above, then

F ⋆ G =

RF∑

k=1

RG∑

m=1

βkγm

(
fk

1 ⋆ g
m
1

)
⊗ ...⊗

(
fk

d ⋆ g
m
d

)
, (3.9)

leading to the reduced cost that scales linearly in dimensionality parameter d and linear-
logarithmically in n,

NC⋆C→C = O(dRFRGn logn).

Algorithm 2. (Multidimensional tensor product convolution of type C ⋆ C → C)

1. Given F ∈ CRF ,n, G ∈ CRG,n.

2. For ℓ = 1, ..., d, compute the set of 1D convolutions fk
ℓ ⋆g

m
ℓ (k = 1, ..., RF ,m = 1, ..., RG)

of size 2n− 1, restrict the results onto the index set Iℓ, and form the n× RFRG side-
matrix U (ℓ) (cost dRFRGn logn).

3. Compute the set of scaling factors βkγm as in (3.9).

We have proven the following complexity bounds.

Lemma 3.5 Algorithm 1 scales log-linearly in n and linearly in d,

NTC⋆C→TC
= O(drRGn logn + drRF + drRGn).

Algorithm 2 provides the complexity bound O(dRFRGn logn).

The resultant convolution product F ⋆ G in (3.9) may be approximated in either Tucker
or canonical formats, depending on further MLA operations applied to this tensor. In the
framework of approximate iterations with structured matrices and vectors, we can fix the
CR0-format for the output tensors, hence, the rank-R0 canonical approximation (with R0 <
RFRG) would be the proper choice to represent F ⋆ G. The tensor truncation of the rank-
RFRG intermediate result to rank-R0 tensor can be acomplished by fast multigrid accelerated
tensor approximation at the cost O(dRFRGR0n logn) (cf. [16]), and then the result can be
stored by O(dR0n) reals.
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Based on our experience with Algorithms 1 and 2, applied in electronic structure calcu-
lations in 3D, we notice that Algorithms 2 is preferable in the case of moderate grid-size
(say, n ≤ 104), while Algorithms 1 is faster for large grids. For example, Algorithms 2 works
perfectly in electronic structure calculations by the Hartree-Fock model for d = 3 [14, 16].
For example, the Hartree potential of simple molecules can be calculated on the n × n× n
grid up to n ≤ 1.6 · 104 in a few minutes providing the relative accuracy about 10−7 already
with n = 8192. Further numerical illustrations will be given in §4.

3.3 Tensor-product convolution on generic non-uniform grids

In this section we give few remarks concerning the design of multi-dimensional FTCT on
non-uniform grids. Again, our key principle is the low rank tensor approximation of the
multidimensional convolution transform described above. We stress the following issues:

• As soon as the multi-dimensional convolution is represented in the tensor-product form
as in (3.4) - (3.9), the computation is reduced to the fast 1D convolution transforms of ℓ-
mode univariate components for ℓ = 1, ..., d on equidistant grids, leading to practically
negligible cost O(n logn) in the large range of a grid-size n.

• The 1D convolution on the hierarchically structured refined grids can be effectively
computed in almost linear cost as discussed in [7].

• In the case of general tensor-product grids with adaptive grid refinement one can apply
the imbedding strategy (cf. [15]) to reduce the computation to 1D-FFT on a uniform
grid. Specifically, assume that a 1D refined grid of size n is obtained by agglomeration
of subintervals of the auxiliary fine grid of size N (usually n≪ N , say n = O(logN)),
so that there is a natural extension operator Pn→N from adaptive to fine uniform
grid. Further, assuming that the convolving tensors F and G in the collocation scheme
(2.4) are represented in some structured tensor formats as above, the summation over
i and for all m ∈ M can be reduced to the tensor-product convolution on the auxiliary
uniform grid with the cost O(dr2N logN + #β · #γ). Taking the proper subvectors
of size N from the corresponding ℓ-mode components given on the grid of size 2N − 1
(ℓ = 1, ..., d) and interpolating the results to the initial ”small” grid, we obtain the
approximate convolution on the adaptive grid and in the tensor-product form. Detailed
discussion of this issue is beyond the scope of our paper.

Preliminary numerical examples illustrating the efficiency of the convolution product in the
Tucker/canonical formats are given in [15]. These results indicate that 1D FFT on the
auxiliary equi-distant fine grid has negligible cost compared with the summation in (3.4),
(3.5), at least in the parameter domain N ≤ 104. Hence, the imbedding strategy can
be successfully applied in the case of moderate mesh-refinement. To reduce the FFT-cost
O(N logN) on the auxiliary uniform grid to the linear-logarithmic complexity in n, we will
describe a multi-dimensional FTCT on the two-level composite grids (for ease of presentation
we discuss the case of piecewise constant basis functions).

3.4 O(n log n) convolution on 1D composite grid

Let us describe the fast convolution transform (FCT) on a two-level composite grid defined
by the coarse level lattice with mesh-size H = 2A/n0. We introduce the coarse space
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Vn0 = span{φi0}, i0 ∈ R
n⊗d

0 , of piecewise constant basic functions (it is only for the ease
of exposition) supported by the domain Ω. Assume that p intervals Ωi, i = 1, ..., p with
p≪ n0 are further decomposed by fine uniform grid of size h = H/n (see (2.2)). The union
of subdomains will be called Ω(p) = ∪p

i=1Ωi ⊂ Ω. We define by Vn the corresponding fine
space of piecewise constant basic functions supported by Ω(p) and having zero mean value
at each subinterval Ω1, ...,Ωp, then introduce the composite space V = Vn0 + Vn. Our goal
is the fast evaluation of the convolution product

w = (x0 + xh) ⋆ (y0 + yh) with x0, y0 ∈ Vn0, xh, yh ∈ Vn

at the cost O(n0 logn0+n log n) assuming that the result is projected to the initial composite
space V . The corresponding numerical scheme can be implemented in four steps as follows
(for the ease of presentation we further simplify and set p = 1).

Algorithm 3. (FCT on two-level composite grid)

1. Given x0, y0 ∈ Vn0, xh, yh ∈ Vn.

2. Compute wh = xh⋆yh and project the result to the coarse and fine spaces. This includes
one convolution product of size n whose result will be defined on the union of intervals
Ω1 ∪Ω2. The coarse components supported by Ω1 and Ω2 will be calculated using the
mean values of wh|Ω1

and wh|Ω2
, respectively. Consequently, the fine projection onto

Vn has zero mean value. All together, this amounts to O(n logn) operations.

3. Compute w0h = x0 ⋆ yh + xh ⋆ y0 and project the result to the coarse and fine spaces.
The computational scheme is clear from the representation

xh ⋆ y0 = xh ⋆

n0∑

i=1

aiχi =

n0∑

i=1

ai (xh ⋆ χi)|Ωi−1∪Ωi∪Ωi+1
,

where χi is the indicator function of the interval Ωi. This includes one convolution
product and three scalar products of size n, plus calculation of the coarse grid projec-
tion. The numerical cost is estimated by O(n logn + n0).

4. Compute w0 = x0 ⋆ y0 and project the result to the coarse and fine spaces. The
corresponding computational ansatz

x0 ⋆ y0 = (

n0∑

i=1

aiχi) ⋆ (

n0∑

j=1

bjχj)

is evaluated at the coarse level by FFT of size n0. To obtain the projection onto Vn

we compute the weighted convolution a1b1(χ1 ⋆ χ1) for the vectors of size n supported
by Ω1. Hence, the total cost of Step 4 is estimated by O(n0 log n0 + n logn).

5. Collect the contributions from Steps 1 - 4 in the coarse and fine spaces which amounts
to O(n0 + n) operations.

This proves the following result.

Lemma 3.6 The numerical complexity of Algorithm 3 is estimated by O(n0 logn0 +n logn).
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Algorithm 3 applies to two-level composite grids. However, it can be easily extended in a
recursive manner to the case of multilevel composite grids.

Below we present numerical results for FCT on the two-level composite grid with n0 = 2ℓ0 ,
n = 2ℓn , where n0 and n are the dimensions of the coarse and fine spaces, respectively. The
full grid size is given by nf = n0 · n, which might be very large in our numerical examples
(say, nf = 217 with n0 = 29, n = 28). Algorithm 3 is implemented in MATLAB 7.3. The
next table presents CPU times (in sec.) for FFT on the corresponding full grid and for FCT
on the composite two-level grid. In this example the finest auxiliary 1D grid attaines the
size 217, which is more than enough to resolve arising singularities. The corresponding FCT
appears to be at about 4 · 104 times faster than 1D FFT. Numerics clearly demonstrate the
advantage of FCT on large composite grids.

ℓ0 4 5 6 7 8 9 9 9 9 9 9
ℓn 8 8 8 8 8 8 7 6 5 4 3

FFT 0.28 0.77 2.7 10.8 45.9 401. 45.7 10.4 2.7 0.75 0.27
FCT 0.05 0.05 0.04 0.04 0.05 0.08 0.06 0.06 0.05 0.05 0.06

Fig. 3.1 represents the error of the FCT (left) and coarse components

x0 = 0.2 {(−1)k k}n0

k=1, y0 = {k}n0

k=1,

of the input vectors x = x0 +xh and y = y0 + yh defined on the coarse grid with n0 = 8, and
with step size H = 1. Fine components of the input vectors are given by xh = {sin(2π i ·
h·)}n

i=1 and yh = {(−1)i}n
i=1 with fine grid size n = 28.
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Figure 3.1: The error of the FCT (left) and coarse components x0, y0.

Fig. 3.2 represents the fine (left) and coarse (middle) components of the output vector,
as well as the graph of the resultant convolution product.

In applications related to electronic structure calculations the number of refined zones
may correspond to the number of atoms in the molecule requiring high resolution.

4 Computational aspects and numerical examples

4.1 Low-rank approximation of convolving tensors F and G

In applications related to electronic structure calculations, the function related collocation
coefficient tensor F = [fi]i∈I can be generated by the electron density ρ(x), by the product of
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Figure 3.2: Fine and coarse components of the output vector (left, centre), resultant convo-
lution vector (right).

the interaction potential V (x) with the electron orbitals, V (x)ψ(x), or by some related terms.
In this way we make an a priori assumption on the existence of low rank approximation to
the corresponding tensors. This assumption is not easy to analyse, however, it works well in
practice.

Example 4.1 In the case of hydrogen atom we have

ρ(x) = e−2‖x‖, and V (x)ψ(x) =
e−‖x‖

‖x‖ with V (x) =
1

‖x‖ , x ∈ R
3,

hence, the existence of corresponding low-rank tensor approximations can be proven along
the lines of [12, Lemma 4.3] and [13, Theorem 3].

To construct a low-rank approximation of the tensor G, we consider a class of multi-
variate spherically-symmetric convolving kernels g : R

d → R parametrised by

g = g(ρ(y)) with ρ ≡ ρ(y) = y2
1 + ... + y2

d,

where the univariate function g : R+ → R can be represented via a generalised Laplace
transform

g(ρ) =

∫

R+

ĝ(τ 2)e−ρτ2

dτ. (4.1)

Without loss of generality, we introduce one and the same scaling function

φi(·) = φ(· + (i− 1)h), i ∈ In,

for all spatial dimensions ℓ = 1, ..., d, where h > 0 is the mesh parameter, so that the
corresponding tensor-product basis function φi is defined in (2.3).

Using sinc-quadrature methods, we approximate the collocation coefficient tensor G =
[gi]i∈I in (2.5) via rank-(2M + 1) canonical decomposition

g ≈
M∑

k=−M

wk E(τk) with E = [ei(τk)], i ∈ I, (4.2)

with suitably chosen coefficients wk ∈ R and quadrature points τk ∈ R+, and with the rank-1
components E(τk) ∈ R

I given by

ei(τk) = ĝ(τ 2
k )

d∏

ℓ=1

∫

R

e−y2
ℓ
τ2
kφiℓ(yℓ)dyℓ. (4.3)
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For a class of analytic functions the exponentially fast convergence of above quadrature in M
can be proven (see [9, 13]). Notice that the quadrature points τk can be chosen symmetrically,
i.e., τk = τ−k, hence reducing the number of terms in (4.2) to r = M + 1.

In our particular applications in electronic structure calculations we are interested in
fast convolution with the Newton or Yukawa kernels. In the case of the Newton kernel,
g(x) = 1/‖x‖, the approximation theory can be found in [9]. In the case of the Yukawa
potential e−κ‖x‖/‖x‖ for κ ∈ [0,∞), we apply the generalised Laplace transform (cf. (4.1))

g(ρ) =
e−κ

√
ρ

√
ρ

=
2√
π

∫

R+

exp(−ρτ 2 − κ2/4τ 2)dτ, (4.4)

corresponding to the choice

ĝ(τ 2) =
2√
π
e−κ2/4τ2

.

Approximation theory in the case of Yukawa potential is presented in [13].
In our numerical experiments below the collocation coefficient tensor G ∈ R

I for the
Newton kernel is approximated in the rank-R canonical format with R ∈ [20, 30] providing
an accuracy about 10−7 ÷ 10−5 for the grid-size up to n = 104.

4.2 Algebraic recompression of the sinc approximation

In the case of large computational grids the tensor rank of the (problem independent) con-
volving kernel g can be reduced by an algebraic recompression procedure. For ease of pre-
sentation let us consider the case d = 3. The idea of our recompression algorithm is based
on the observation that a typical feature of the analytic tensor approximation by the sinc
quadratures as in (4.2)-(4.3) (for symmetric quadrature points it is agglomerated to the
sequence with k = 0, 1, ...,M) is the presence of many terms all supported only by a few
gridpoints from p×p×p grid (domain Ω(p)) in the vicinity of the point-type singularity (say,
at x = 0). Assume that this group of rank-1 tensors is numbered by k = 0, ..., K < M . The
sum of these tensors, further called as Ap, effectively belongs to the low-dimensional space of
trilinear p×p×p-tensors, hence the maximal tensor rank of Ap does not exceed r = p2 ≤ K.
Furthermore, we can perform the rank-R0 canonical approximation of this small tensor with
R0 ≪ K using the ALS or gradient type optimisation.

Algorithm 4. (Rank recompression for the canonical sinc-based approximation)

1. Given the canonical tensor A of rank R = M + 1.

2. Agglomerate all rank-1 terms supported by only one point, say by Ω(1), into one rank-1
tensor, further called as A1.

3. Agglomerate by a summation all terms supported by Ω(2) \Ω(1) in one tensor A2 (with
maximal rank 3), and approximate with the tensor rank r2 ≤ 3, and so on until we
end up with tensor Ap supported by Ω(p) \ Ω(p−1) \ ... \ Ω(1).

4. Approximate the canonical sum A1 + ... + Ap by low rank tensor.

Notice that in our sinc-quadrature approximations most of these “local” terms are sup-
ported by only one point, say by Ω1, hence they are all agglomerated in rank-1 tensor. In
approximation of the classical potentails like 1/‖ · ‖ or e−‖·‖/‖ · ‖ the usual choice is p = 1, 2.
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The simple rank recompression procedure described above allows to reduce noticeably the
initial rank R = M + 1 appearing in the (symmetric) sinc quadratures. Numerical examples
on the corresponding rank reduction by Algorithm 4 are depicted in [13],Figure 2. Figure
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Figure 4.1: Tensor rank of the sinc- and recompressed sinc-approximation for 1/‖x‖.

4.1 presents the rank parameters obtained from the sinc approximations of g(x) = 1/‖x‖
up to threshold ε = 0.5 · 10−6 in max-norm, computed on n × n × n grids with n = 2L+3

for the level number L = 1, ..., 8 (upper curve), and the corresponding values obtained by
Algorithm 4 with p = 1 (lower curve). One observes the significant reduction of the tensor
rank.

4.3 Numerical verification on quantum chemistry data, g(x) = 1
‖x‖

We test the approximation error of the tensor-product collocation convolution scheme on
practically interesting data arising in electronic structure calculations using the Hartee-Fock
equation (see [14] for more details). We consider the (pseudo) electron density of simple
CH4-molecule represented by the exponential sum

f(x) :=

M∑

ν=1

(
R0∑

k=1

cν,k(x− xk)
βke−λk(x−xk)2

)2

, x ∈ R
3, R0 = 50, M = 4 (4.5)

with xk corresponding to the locations of the C and H atoms. We extract the “principal
exponential” approximation of the electron density, f0, obtained by setting βk = 0 (k =
1, ..., R0) in (4.5). Using the fast tensor-product convolution method, the Hartree potential
of f0,

VH(x) =

∫

Ω

f0(y)

‖x− y‖dy, x ∈ Ω = [−A,A]3,

is computed with high accuracy on a sequence of uniform (n+1)×(n+1)×(n+1) grids with
n = 2p, p = 5, 5, ..., 12, and with A = 9.6. The initial rank of the input tensor F = [f0(yi)]i∈I ,

presented in the canonical format, is bounded by R ≤ R0(R0+1)
2

(even for simple molecules it
normally takes about several thousands). The collocation coefficients tensor G in (2.5) for the
Newton kernel is approximated by the sinc-method with the algebraic rank-recompression
described in Algorithm 4. Figure 4.2 represents the shape of the functions f0 and VH .

Note that the Hartree potential has slow polynomial decay, i.e.,

VH(x) = O(
1

‖x‖) as ‖x‖ → ∞,
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Figure 4.2: The density f0(x1, x2, 0) (left) and its Hartree potential VH(x1, x2, 0) (right).

however, the density f0 decays exponentially. Hence the accurate tensor approximation is
computed in some smaller box Ω′ = [−B,B]3 ⊂ Ω, B < A.

In this numerical example the resultant convolution product with the Newton convolving
kernel can be calculated exactly by using the analytic representation for each individual
Gaussian, (

e−α‖·‖2

⋆
1

‖ · ‖

)
(x) =

(α
π

)−3/2 1

‖x‖ erf(
√
α‖x‖),

where the erf-function is defined by

erf(t) :=
2√
π

∫ t

0

exp(−τ)dτ, t ≥ 0.

The Hartree potential VH = f0 ⋆1/‖ · ‖ attains its maximum value at the origin x = 0 that is
VH(0) = 7.19. Figure 4.3(left) demonstrates the accuracy O(h2) of our tensor approximation
and of the corresponding improved values, O(h3), due to the Richardson extrapolation. Here
the grid-size is given by n = nℓ = 2ℓ+4 for the level number ℓ = 1, ..., 7, with the finest grid-
size n7 = 2048. It is seen that beginning from the level number ℓ = 5 (n5 = 512) the
extrapolated scheme already achieves the saturation error 10−6 of the tensor approximation
related to the chosen Tucker rank r = 22. This demonstrates high accuracy of the Richardson
extrapolation.

Absolute error for the Hartree potential of CH4 molecule are given in Figure 4.3(middle)
compared with the commonly used MOLPRO calculations (here we have max |VH | = 8.6).

Figure 4.3(right) presents the CPU times (min) to compute the 3D FTCT on n× n× n
grid for a sequence of grid-sizes n ∈ [64, 128, ..., 8192], and with the input rank R2 = 256, 484.
It confirms the theoretical result on linear-logarithmic scaling in n, and linear scaling in R2.
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