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Abstract. Starting from a microscopic stochastic lattice spin system and the corresponding coarse-grained
model we introduce a mathematical strategy to recover microscopic information given the coarse-grained data. We
define “reconstructed” microscopic measures satisfying two conditions: (i) they are close in specific relative entropy
to the initial microscopic equilibrium measure conditioned on the coarse-grained data and (ii) their sampling is
computationally advantageous when compared to sampling directly from the conditioned microscopic equilibrium
measure.
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1. Introduction. Problems in scientific disciplines ranging from materials science to the
dynamics of macromolecules, to the spread of epidemics and climate modeling involve non-linear
interactions within a vast disparity of scales ranging from the microscopic to the macroscopic. While
microscopic simulation methods such as Molecular Dynamics and Monte Carlo (MC) algorithms
can describe aspects of such complex systems, they are limited to short scales when compared to
morphological features such as vortices, traveling waves or domain walls that typically involve much
larger mesoscopic scales. In recent years there has been a growing interest in developing hierarchical
coarse-graining (CG) methods to address this problem. The idea is to reduce the complexity of the
microscopic system by lumping together degrees of freedom into appropriately chosen CG variables
defining in this way a Coarse-Grained model. By focusing on the relevant order parameter (CG
observable depending on the particular problem) one designs numerical methods of significantly
reduced computational cost. Such CG models have been developed for the study and simulation of
a number of applications, such as crystal growth, surface processes, polymers, proteins and complex
fluids, among others ([1], [18], [21]). In particular, coarse-graining of polymeric chains and other
macromolecular systems has attracted considerable attention. In this particular context the CG
method consists in grouping together in a systematic manner several atoms on a macromolecule
creating an effective new chain (see e.g. [8], [22], [2]).

In the present paper we are interested in the reconstruction of microscopic models given the CG
data. The motivation for this is two-fold. First, the CG model being computationally advantageous,
it is natural to approximate the microscopic model via the folllowing multi-scale procedure:

1. Coarse-Graining: Derivation of a CG model from the original microscopic model.
2. CG simulation.
3. Microscopic Reconstruction: Being given a CG configuration η define a reconstructed

microscopic model on the ground of η.
4. Simulation of the reconstructed microscopic model.

In short, the idea in this method is to reproduce the large scale structure by the CG model, and
then to obtain microscopic information by appropriate microscopic reconstruction. It has been
successfully followed in the multiscale treatment of various polycarbonates, as well as for a hierar-
chical approach to polystyrene allowing for important technological properties of the polymers to
be calculated ([24], [25], [19], [9], [10]). This approach opens new perspectives for a mathematical
investigation since the aforementioned applications were based on ad-hoc postulations for the def-
inition of both the CG and reconstructed models. While the rigorous derivation of CG models in
different contexts is addressed in e.g. [14], [11], [12] (see [13] for an up-to-date review) the present
work constitutes the first systematical approach to the reconstruction problem. It is clear that
reconstructed models should be such that on the one hand the four steps method described above
is computationally advantageous when compared to running directly microscopic MC algorithms
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and on the other hand the information loss in the transition from the exact microscopic model to
the overall reconstructed one is controlled (in order to avoid confusions we shall call reconstructed

model the microscopic model depending on CG data η defined at the third stage of the procedure
and overall reconstructed model the microscopic model resulting from all the four steps of the pro-
cedure). The second reason to investigate microscopic reconstruction lies on the fact that it often
happens that only CG data is available to the experimenter: Microscopic details are beyond the
reach of observation means (see e.g. [23]). In this case microscopic information should be derived
from reconstructed models.

Here we investigate the reconstruction of microscopic models (Steps 3 and 4 above) in the
context of equilibrium stochastic lattice systems of Ising type spins. Lattice systems for N particles
are defined in terms of a microscopic lattice Hamiltonian HN (σ) with σ being the microscopic
configuration. At inverse temperature β > 0 the system is in the configuration σ with probability

µN,β(σ) =
1

ZN,β

e−βHN (σ)PN (σ)

where PN stands for a prior distribution. In [14] a systematic approach for the Steps 1 and 2 above
was proposed. There the coarse-graining is performed by subdividing the lattice into coarse cells
and defining variables η on each coarse cell to be the total magnetization in the cell. The exact

coarse-grained Hamiltonian H̄M is obtained by means of the Kadanoff transform

e−βH̄M (η) =

∫

e−βHN (σ)PN (σ|η).

In [14] the authors found sufficient conditions under which H̄M can be expanded in a series

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + H̄

(2)
M (η) + · · · + H̄

(p)
M (η) + O(εp+1)

where ε is a small parameter depending on the characteristics of the model and the level of coarse-
graining. The CG models defined by truncated versions of this series expansions lead to numerical
simulations that are of improving accuracy and less demanding than any direct microscopic simu-
lations.

Regardless of computational constraints, being given a CG configuration η, a perfect recon-
structed model is given by the conditioned microscopic equilibrium measure µN,β(·|η). Our purpose
in the present paper is to show how one can define a reconstructed microscopic model - i.e. a re-
constructed Hamiltonian W̄N (·, η) defined on the space of microscopic configurations - taking into
account the following two conditions:

1. The reconstructed equilibrium measure lies within a controlled distance from µN,β(·|η)
uniformly in η.

2. Simulation of the reconstructed model is computationally advantageous when compared
to running directly MC algorithms on the exact reconstructed microscopic model.

The main feature of our reconstructed models is that they allow parallel computations. In this
way, instead of running a multi-constrained MC dynamic on a huge state space we are led to run in
parallel several multi-constrained MC dynamics on small state spaces. This leads to a considerable
speed-up of the simulations. As a result we can combine our methods with those proposed in [14]
to define efficient overall reconstructed models.

The issue of microscopic reconstruction arose also in the mathematical analysis of the error
resulting from the coarse-graining of stochastic particle dynamics ([16], [15]). The difficulty in
carrying out the error estimates rests on the fact that the CG dynamic is not Markovian. To
circumvent this obstacle in [16] it was suggested to define a reconstructed microscopic Markov
process which is an approximation of the exact microscopic dynamic. The reconstructed dynamic
was also used for the computation of weak errors in [15]. Notice however that the reconstruction
methods presented here are much more involved and efficient that the uniform sampling employed
there.

Let us mention that the problem of moving from a mesoscopic to a microscopic description is
at the core of many other computational multi-scale methods (e.g. [17] and [6]) and it is usually
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referred as reconstruction, or reverse mapping, or “lifting” operator. One of the common features
in these approaches is the attempt to capture the macroscale behavior of a system using microscale
models, without first deriving or obtaining the meso- (or macro-) scale models. An important step
in this process is to specify the appropriate conditional (to the meso variables) distribution with
respect to which one samples the microscopic configuration in the meso-to-micro mapping.

The paper is structured as follows: in Section 2.1 we present the model and fix the notation.
Then, in Section 2.2 we present the results together with the subsequent numerical schemes dis-
tinguishing the cases of the coarse-grained boxes being smaller (Section 2.2.1) or larger (Section
2.2.2) than the interaction length. We also discuss the problem of overall reconstruction in Section
2.2.3. The proofs of the theorems are presented in Section 3. Finally, in Section 4 we give some
numerical tests for our methods.

2. Main results and outline of the method.

2.1. The model.

The model at the microscopic scale. We consider as the physical domain for the system the
torus T = [0, 1) with periodic boundary conditions. There is no real additional difficulty for the
problem addressed here in considering the d-dimensional torus and/or other boundary conditions.
The microscopic system is settled on the uniform lattice ΛN = ( 1

N
Z) ∩ T. The number of lattice

sites N is fixed, but arbitrary and finite. A microscopic configuration σ = (σ(x))x∈ΛN
is an element

of SN = {−1, 1}ΛN and its energy is given by the Hamiltonian

HN (σ) = −
1

2

∑

x∈ΛN

∑

y∈ΛN
y 6=x

J(x − y)σ(x)σ(y). (2.1)

The potential J describes the interaction between individual spins and we will focus on the case of
finite-range interactions, i.e., a spin at site x interacts with its neighbors which are at most L lattice
points away from x. It will be useful to consider the range of the interaction L as a parameter of
the model. To this end we introduce a C1 map

V : R → R, such that V (r) = 0 if |r| ≥ 1 (2.2)

and we assume that the potential J(x − y) has the form

J(x − y) =
1

L
V

(

N

L
|x − y|

)

x, y ∈ ΛN . (2.3)

The factor 1/L in (2.3) is a normalization which ensures that the strength of the potential J is
essentially independent of L and we have ||J || =

∑

x6=0 |J(x)| ≃
∫

|V (r)|dr. The finite-volume
equilibrium states of the system are weighted by the canonical Gibbs measure

µN,β(σ) =
1

ZN,β

e−βHN (σ)PN (σ) (2.4)

where β is the inverse temperature, ZN,β is the normalizing partition function and PN (σ) is a
product measure

PN (σ) =
⊗

x∈ΛN

ρ(σ(x)).

In order to simplify the notations we shall take without loss of generality ρ(±1) = 1/2 and write
µN and ZN dropping the dependence on β. We shall denote by EN the expectation with respect
to PN and for every A ⊂ SN we shall denote by EN [ · |A] the expectation with respect to PN

conditioned on the event A.
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The coarse-graining map and the coarse-grained model. Next we consider two integers M
and Q such that N = MQ. We partition the torus T into M coarse cells: For k ∈ Z with
0 ≤ k ≤ M − 1 we define Ck = [ k

M
, k+1

M
) so T = ∪0≤k≤M−1Ck. For convenience in latter use we

also define CM = C0 = [0, 1
M

). We identify each cell Ck with a lattice point of the coarse lattice
Λ̄M = ( 1

M
Z)∩T. Each coarse cell contains Q points of the microscopic lattice and we will refer to

Q as the level of coarse-graining. The coarse-grained model is the image of the microscopic model
through the following coarse-graining map:

F : σ 7→ η = (
∑

x∈Ck∩ΛN

σ(x))k∈Λ̄M
.

The coarse-grained configurations space is thus S̄M = {−Q,−Q + 2, . . . , Q − 2, Q}Λ̄M . The prior
distribution PN on SN induces a new prior distribution P̄M on S̄M given by

P̄M (η) = PN (σ : F (σ) = η)

which is a product measure

P̄M (η) =
⊗

k∈Λ̄M

ρ̄(η(k))

with

ρ̄(η(k)) =

(

Q
η(k)+Q

2

)(

1

2

)Q

.

The distribution µN induces a new equilibrium distribution µ̄M on S̄M given by

µ̄M (η) = µN (σ : F (σ) = η).

Actually

µ̄M (η) =
1

Z̄M

e−βH̄M (η)P̄M (η) (2.5)

where H̄M is defined via the Kadanoff transformation

e−βH̄M (η) = EN [e−βHN (σ)|F (σ) = η]. (2.6)

It easily follows from the definition of H̄M that ZN = Z̄M . It is clear that the family of conditional
probabilities PN (·|F (σ) = η) defined on SN and indexed by the η ∈ S̄M will play a crucial role
in the sequel. With a slight abuse of notation we shall write PN (·|η), EN [·|η], µN (·|η), etc... For
every k ∈ Λ̄M , every σ ∈ SN and η ∈ S̄M such that η = F (σ) the average η(k) depends only on
the σ(x)’s with x ∈ Ck ∩ ΛN . Hence the probability PN (·|η) factorizes over the coarse cells:

PN (σ|η) =
PN (σ ∩ {F (σ) = η})

P̄M (η)
=
⊗

k∈Λ̄M

ρ̃k,η(k)(σ) (2.7)

where ρ̃k,η(k)(σ) stands for PN ((σ(x))x∈Ck∩ΛN
|F (σ) = η). To simplify the notations and because

for every k ∈ Λ̄M our estimates are uniform in η(k) we denote this measure simply by ρ̃k. Finally
let us introduce some more notations and definitions:

• Being given σ ∈ SN (resp. η ∈ S̄M ), for any D ⊂ T we shall write σD = (σ(x))x∈D∩ΛN

(resp. ηD = (η(k))k∈D∩Λ̄M
). More generally, for every B1 ⊂ B2 ⊂ T, being given αB2 ∈

{−1, 1}ΛN∩B2 we shall write αB1 = (αB2(x))x∈B1∩ΛN
∈ {−1, 1}ΛN∩B1 .

• For any integer r, any partition D1, . . . , Dr of T into not necessarily connected parts and
any σ1 ∈ {−1, 1}D1∩ΛN , . . . , σr ∈ {−1, 1}Dr∩ΛN (resp. η1 ∈ {−Q, . . . , Q}D1∩Λ̄M , . . . , ηr ∈
{−Q, . . . , Q}Dr∩Λ̄M ) we shall denote by [σ1, . . . , σr] (resp. [η1, . . . , ηr]) the microscopic
(resp. CG) configuration obtained by merging the partial configurations σ1, . . . , σr (resp.
η1, . . . , ηr).
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• Let I be a subset of {0, . . . ,M−1} and I = ∪i∈ICi. Let η be a coarse-grained configuration
and α be an element of {−1, 1}I∩ΛN . We shall say that α and η are compatible on I if
and only if for every i ∈ I we have η(i) =

∑

x∈Ci∩ΛN
α(x).

• For any two probability measures P,Q on a finite set Σ the relative entropy of P with
respect to Q is defined by

H(P |Q) =

{

∑

x∈Σ P (x) log P (x)
Q(x) if P ≪ Q

∞ otherwise.

We will use this notation for both cases of Σ being SN or S̄M . For a nice account on
relative entropy see [5].

2.2. Reconstruction schemes. Our purpose in the present section is to describe numerical
schemes for the sampling from probability measures defined on SN and indexed by the η ∈ S̄M

that are approximations of the conditional probability measures µN (·|η). More precisely we shall
introduce probability kernels νN (·; ·) (i.e. maps defined on SN × S̄M such that for every η ∈ S̄M

the partial map νN (·; η) is a probability measure defined on SN ) satisfying two conditions:
1. For every η ∈ S̄M the probability measure νN (·; η) lies within a controlled distance from

µN (·|η). The distance is measured in specific relative entropy.
2. We can design numerical schemes such that for every η ∈ S̄M sampling from νN (·; η) is

computationally less demanding than any “direct” sampling from µN (·|η).
In the sequel we will treat two cases:

1. If Q < L then a mean-field type approximation of the interaction potential (2.3) is justified
since averaging the value of the spins over coarse cells of length Q gives an error of the
order Q/L < 1. This is the situation considered in Section 2.2.1.

2. If Q > L a mean-field approach is not a good approximation any more. We shall assume
that µN satisfies a mixing condition and exploit the fact that this property is enforced by
the conditioning in µN (·|η) since spins located in a coarse-cell do not interact with spins
located in the next to nearest neighbor coarse-cell. This is the situation considered in
Section 2.2.2.

In the present paper we describe schemes designed for the reconstruction over the entire domain
T. However in most applications (see e.g. [19]) the reconstruction is performed over mesoscopic
domains, i.e. not the whole T but parts of T containing a number of microscopic sites that is a
large multiple of L. It should be clear to the reader how to adapt the analysis carried out here to
these situations.

Finally, in Section 2.2.3, we introduce in the Q < L case computationally advantageous numer-
ical schemes for the sampling from arbitrarily good approximations of the unconditioned measure
µN . They rely on the following “separation of scales” property: A sample σ from µN is obtained
by first getting a sample η from µ̄M and then a sample σ from µN (·|η). Hence samples from
approximations of µN are obtained by combining the schemes presented in Section 2.2.1 with the
Coarse-Grained Monte-Carlo algorithm proposed and developed in [14] which is tailored for the
numerically efficient sampling from arbitrarily good approximations of µ̄M in the Q < L regime.
In this way we propose, in the context of equilibrium stochastic lattice systems of Ising type spins,
a complete derivation of the multi-scale approach presented in the Introduction. We shall give
rigorous estimates on the information loss in the transition from the exact microscopic model
to the overall reconstructed one and illustrate the accuracy of the approximation by numerical
experiments detailed in Section 4.

2.2.1. Reconstruction schemes in the Q < L case. To simplify notations and without loss
of generality we assume that there exist even numbers R and U such that N = 2UL and L = RQ.
A crucial quantity for the reconstruction schemes presented in this section is the so-called small
parameter

ε = β
Q

L
||∇V ||∞ (2.8)

which measures how close to the high temperature and/or mean-field regime we are and how rough
the coarsening of the microscopic model is. We shall also use δ = Qε which represents the error
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per coarse-cell in the mean-field approximation while ε represents the error per microscopic lattice
site.

First we show that due to the particular form of the Gibbs measure (2.4) the problem in hands
essentially reduces, from the computational point of view, to sampling the value of the spins on
half of the microscopic lattice points. Then we propose several schemes designed to deal with this
problem and give the corresponding rigorous error estimates.

We partition T into 2U cells: For l ∈ Z with 0 ≤ l ≤ 2U − 1 we define Dl = [ l
2U

, l+1
2U

) so
T =

⋃

0≤l≤2U−1 Dl and every Dl contains L points of the microscopic lattice ΛN . For convenience
in latter use we also define D2U = D0. We call the Dl reconstruction domains and define

E =
⋃

0≤l≤2U−1
l even

Dl, SN,E = {−1, 1}E∩ΛN , O =
⋃

0≤l≤2U−1
l odd

Dl, and SN,O = {−1, 1}O∩ΛN .

Let η be a fixed coarse-grained configuration and α be a microscopic configuration compatible with
η on T. We shall denote by µN,O(·|αE , η) (resp. µN,E(·|η)) the O ∩ ΛN -marginal of

µN (·|αE , η) = µN (·|σE = αE , F (σ) = η)

(resp. the E ∩ ΛN -marginal of µN (·|η)). We have

µN (α|η) = µN,E(αE |η) µN,O(αO|αE , η) (2.9)

while naturally µN (α|η) = 0 if η and α are not compatible on T. In view of (2.9) we look for an
approximation of µN (·|η) expressed as

νN (α; η) = νN,E(αE ; η)νN,O(αO;αE , η).

Assume for a while that we are given αE ∈ SN,E . Since L is the range of interaction of µN the
probability measure µN,O(·|αE , η) defined on SN,O factorizes: for every ̺ ∈ SN,O

µN,O(̺|αE , η) =
⊗

0≤l≤2U−1
l odd

µN,Dl
(̺Dl |αE , η) (2.10)

where µN,Dl
(·|αE , η) stands for the Dl ∩ ΛN -marginal of µN (·|αE , η). Each of the factors in the

right hand side of the last display is a probability measure defined on {−1, 1}ΛN∩Dl which is a set of
cardinal 2L i.e. a small set when compared to SN . Furthermore, while sampling from µN,O(·|αE , η)
the product structure in (2.10) allows to run parallel simulations resulting in a global speed-up
of the computations and these simulations are perfect in the sense that we obtain samples from
the exact µN,O(·|αE , η) and not from an approximation of it. Hence sampling with respect to
µN,O(·|αE , η) does not represent a computational difficulty once we are given αE and we shall take
νN,O(·;αE , η) = µN,O(·|αE , η).

Our task is thus reduced to define efficient numerical schemes in order to get samples from
an approximation of the probability measure µN,E(·|η) defined on SN,E . Let η be a coarse-grained
configuration and fix α ∈ SN,E compatible with η on E . We introduce W̄N,E(α, η) by

e−βW̄N,E(α,η) = EN [e−βHN (σ)|α, η] (2.11)

the right hand side of the previous equality being a shortcut for EN [e−βHN (σ)|σE = α, F (σ) = η].
It is easy to show that

µN,E(α|η) =
e−βW̄N,E(α,η)

e−βH̄M (η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk).

Notice that whenever α and η are not compatible over E we get µN,E(α|η) = 0.
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First approximation. A direct computation of W̄N,E is actually impractical so we proceed by
introducing a first approximation

W̄
(0)
N,E(α; η) = EN [HN (σ)|α, η]. (2.12)

We define a probability kernel ν
(0)
N,E on SN,E × S̄M by

ν
(0)
N,E(α; η) =

e−βW̄
(0)
N,E(α,η)

Z
(0)
N,E(η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk) (2.13)

with

Z
(0)
N,E(η) =

∫

SN,E

e−βW̄
(0)
N,E(α,η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk).

By elementary computations we get

W̄
(0)
N,E(α, η) = −

1

2

∑

l: even

∑

x∈Dl∩ΛN

∑

y∈Dl∩ΛN ,

y 6=x

J(x − y)α(x)α(y)

−
1

2

∑

l: odd







∑

k∈Dl∩Λ̄M

∑

k′∈Dl∩Λ̄M ,

k′ 6=k

J̄(k, k′)η(k)η(k′) +
∑

k∈Dl∩Λ̄M

J̄(0)(η2(k) − Q)







−
∑

l: even

∑

k∈(Dl−1∪Dl+1)∩Λ̄M

∑

x∈Dl∩ΛN

J̆(x, k)α(x)η(k) (2.14)

where for every k, k′ ∈ Λ̄M , k 6= k′ and x ∈ ΛN r (Ck ∩ ΛN ) we have

J̄(k, k′) =
1

Q2

∑

x∈Ck∩ΛN

∑

y∈Ck′∩ΛN

J(x − y), J̄(0) =
1

Q(Q − 1)

∑

x∈Ck∩ΛN

∑

y∈Ck∩ΛN ,

y 6=x

J(x − y),

and

J̆(k, x) =
1

Q

∑

y∈Ck∩ΛN

J(x − y).

With a slight abuse of notation we shall write J̆(k, x) = J̆(x, k) since J is even. For every η ∈ S̄M

we define a probability measure ν
(0)
N (·; η) on SN by

ν
(0)
N (σ; η) =

{

ν
(0)
N,E(σE ; η) µN,O(σO|σE , η) if σ and η are compatible over T

0 otherwise.
(2.15)

Our first result is the following
Theorem 2.1. There exists a constant δ0 such that if δ = Qε < δ0 then for every η ∈ S̄M and

every α ∈ SN,E compatible with η on E the following estimate holds

β

N

(

W̄N,E(α, η) − W̄
(0)
N,E(α, η)

)

= O(ε2) (2.16)

where the O is uniform in η and α.
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We prove in Section 3.1.2 the following consequence of Theorem 2.1 which states that the first
approximation is actually a second order approximation in ε

Corollary 2.2. If δ = Qε < δ0 then for every η ∈ S̄M the following estimate holds

1

N
H
(

ν
(0)
N (·; η)|µN (·|η)

)

= O(ε2) (2.17)

where the O is uniform in η ∈ S̄M .

The particular form of W̄
(0)
N,E(α, η) makes ν

(0)
N,E(·; η) a product measure for every η ∈ S̄M . This

leads to the following

Scheme A
Step 1 We run in parallel U constrained simulations with coarse-grained boundary conditions given

by ηO to obtain α1 ∈ SN,E sampled from ν
(0)
N,E(·; η).

Step 2 We run in parallel U constrained simulations with microscopic boundary conditions given
by α1 to obtain α2 ∈ SN,O sampled from µN,O(·|α1, η).

Step 3 We obtain a sample of ν
(0)
N (·; η) by taking [α1, α2].

Numerical experiments following this scheme are presented in Section 4.

Higher order corrections. A natural question is to ask for schemes with higher order error
estimates. Following [14] we notice that for every η and every α ∈ SN,E compatible with η on E
we have

W̄N,E(α, η) − W̄
(0)
N,E(α, η) = −

1

β
log EN [e−β(HN (σ)−W̄

(0)
N,E(α,η))|α, η]. (2.18)

A high-temperature cluster expansion performed on the right hand side of the last display leads
to:

Theorem 2.3. If δ = Qε < δ0 with δ0 as in Theorem 2.1 then for every η ∈ S̄M and α ∈ SN,E

compatible over E the function W̄N,E(α, η) can be expanded into a convergent series

W̄N,E(α, η) =

+∞
∑

p=0

W̄
(p)
N,E(α, η) (2.19)

where the p = 1, 2 terms are explicitly given in Section 3.1.1. Furthermore, for every integer p ≥ 1
the following error bound holds uniformly in α and η

β

N

(

W̄N,E(α, η) −

p
∑

l=0

W̄
(l)
N,E(α, η)

)

= O(εp+1). (2.20)

For every integer p ≥ 1 we define a kernel ν
(p)
N,E(·; ·) on SN,E × S̄M by

ν
(p)
N,E(α; η) =

e−β(
Pp

l=0 W̄
(l)
N,E(α,η))

Z̄
(p)
N,E(η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk).

The corresponding kernel defined on SN × S̄M is

ν
(p)
N (σ; η) =

{

ν
(p)
N,E(σE ; η) µN,O(σO|σE , η) if σ and η are compatible over T

0 otherwise.
(2.21)

Corollary 2.4. If δ = Qε < δ0 then for every η ∈ S̄M and every integer p ≥ 1 the following

estimate holds

1

N
H
(

ν
(p)
N (·; η)|µN (·|η)

)

= O(εp+1) (2.22)
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where the O is uniform in η ∈ S̄M .

From the preceding result we derive the following

Scheme B
Step 1 We run a multi-constrained simulation with coarse-grained boundary conditions given by

ηO to obtain α1 ∈ SN,E sampled from ν
(p)
N,E(·; η).

Step 2 We run in parallel U constrained simulations with microscopic boundary conditions given
by α1 to obtain α2 ∈ SN,O sampled from µN,O(·|α1, η).

Step 3 We obtain a sample of ν
(p)
N (·; η), where p = 1, 2, . . . by taking [α1, α2].

Unfortunately the first step in this scheme is restrictive when compared to Step 1 in Scheme A.

Indeed the second order corrections W̄
(1)
N,E(α, η) + W̄

(2)
N,E(α, η) already contain interactions across

reconstruction domains Dl and Dl+2 with l even which make the sampling measure in Step 1 not
a product measure. As a consequence, Step 1 is not reducible to a set of parallel computations.
However, note that Step 1 corresponds to sampling the values of the spins on a lattice of N/2 points
and thus remains advantageous when compared to a direct simulation over the entire domain.
Numerical experiments following this scheme are presented in Section 4.

Higher order methods leading to parallel computations. A close look at the derivation of W̄
(1)
N

and W̄
(2)
N from the cluster expansion performed in Section 3.1.1 shows how to partially overcome

the difficulty in Scheme B pointed out above. Loosely speaking, the idea is that by increasing the

size of the reconstruction domains the two bodies interactions that appear in ν
(2)
N,E and couple Dl

and Dl+2 for every l even necessarily vanish. Indeed, such two bodies interactions are the result of
integrating over the values of three bodies interacting spins as found in the cluster expansion, each
spin being located in a coarse cell contained in Dl, Dl+1 and Dl+2. This three bodies interaction
vanish as soon as two adjacent spins are located at more than L microscopic points away from
each other. By taking reconstruction domains of 2L microscopic points we make sure that this
cancellation condition is satisfied. More details are given in Section 3.1.1.

Now let us describe more precisely our setting. We partition T into U cells: For l ∈ Z

with 0 ≤ l ≤ U − 1 we define new reconstruction domains D
′

l = [ l
U

, l+1
U

) and D
′

U = D
′

0 so

T =
⋃

0≤l≤U−1 D
′

l and every D
′

l contains 2L points of the microscopic lattice. Again we define

E
′

=
⋃

0≤l≤U−1
l even

D
′

l , SN,E′ = {−1, 1}E
′
∩ΛN , O

′

=
⋃

0≤l≤U−1
l odd

D
′

l , and SN,O′ = {−1, 1}O
′
∩ΛN .

For every η ∈ S̄M and α ∈ SN compatible over T we have that

µN (α|η) = µN,E′ (αE
′

|η) µN,O′ (αO
′

|αE
′

, η),

with

µN,O′ (αO
′

|αE
′

, η) =
⊗

l odd

µ
N,D

′
l
(αD

′

l |αE
′

, η).

The definition of the different probability measures involved here is clear by analogy with those
employed so far. Again, from a computational point of view, the main task is to define efficient
schemes for the sampling from a probability measure that approximates µN,E′ (·|η) on SN,E′ . A

perfect sampling from this measure is obtained through the function V̄N,E′ (α, η) defined on SN,E′ ×

S̄M by

e
−βV̄

N,E
′ (α,η)

= EN [e−βHN (σ)|α, η] (2.23)

since

µN,E′ (α|η) =
e
−βV̄

N,E
′ (α,η)

e−βH̄M (η)

⊗

k∈E′∩Λ̄M

ρ̃k(αCk). (2.24)
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A first approximation of V̄N,E′ is obtained by

V̄
(0)

N,E′ (α, η) = EN [HN (σ)|α, η] (2.25)

as we did for the first approximation of W̄N,E .

Theorem 2.5. If δ = Qε < δ0 with δ0 given in Theorem 2.1 then for every η ∈ S̄M and

α ∈ SN,E′ compatible over E ′ the function V̄N,E′ (α, η) can be expanded into a convergent series

V̄N,E′(α, η) =

+∞
∑

p=0

V̄
(p)
N,E′(α, η). (2.26)

Furthermore, for every integer p ≥ 1 the following error bound holds uniformly in α and η

β

N

(

V̄N,E′(α, η) −

p
∑

l=0

V̄
(l)
N,E′(α, η)

)

= O(εp+1). (2.27)

We shall see in Section 3.1.1 that due to the definition of the D
′

l for every η ∈ S̄M the measure on
SN,E′

γ
(2)

N,E′ (α; η) =
e
−β(

P2
p=0 V̄

(p)

N,E
′ (α,η))

Z̄
(2)

N,E′ (η)

⊗

k∈E′∩Λ̄M

ρ̃k(αCk) (2.28)

is a product measure. Finally, for every η ∈ S̄M we define a probability measure on SN by

γ
(2)
N (σ; η) =

{

γ
(2)

N,E′ (σE
′

; η)µN,O′ (σO
′

|σE
′

, η) if σ and η are compatible over T

0 otherwise
(2.29)

and get

Corollary 2.6. If δ = Qε < δ0 then for every η ∈ S̄M the following estimate holds

1

N
H(γ

(2)
N (·; η)|µN (·|η)) = O(δ3) (2.30)

where the O is uniform in η ∈ S̄M .

From the preceding result and the fact that for every η ∈ S̄M the probability γ
(2)
N (·; η) is product

we derive the

Scheme C
Step 1 We run in parallel U/2 constrained simulations with coarse-grained boundary conditions

given by ηO′

to obtain α1 sampled from γ
(2)

N,E′ (·; η).

Step 2 We run in parallel U/2 constrained simulations with microscopic boundary conditions given
by α1 to obtain α2 sampled from µN,O′ (·|α1, η).

Step 3 We obtain a sample of γ
(2)
N (·, η) by taking [α1, α2].

Numerical experiments following Scheme C are presented in Section 4. Actually, as it is explained
in Section 3.1.1, for every integer p up to N/4L one can define reconstruction schemes similar to
Schemes A and C (i.e. consisting of two steps of parallel computations) with global error O(δp+1)
in approximating µN (·|η). For example, by taking reconstruction cells D

′′

l with 3L microscopic
lattice points one can define a scheme with 2 steps of parallel computations and error O(δ4) in
approximating µN (·|η).
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2.2.2. Reconstruction schemes in the Q > L case. As in Section 2.2.1 in order to simplify
notations and without loss of generality we assume that there exist two integers U and R such that
N = 2URQ. In the Q > L case the role of the small parameter is played by

δ =
1

RQ
.

According to Proposition 5.1 in [3] this quantity partially measures the mixing properties of µN (·|η)
uniformly in η ∈ S̄M as soon as µN satisfies suitable conditions to be given below.

We partition T into 2U cells: For l ∈ Z with 0 ≤ l ≤ 2U − 1 we define Dl = [ l
2U

, l+1
2U

) and
D2U = D0 so T =

⋃

0≤l≤2U−1 Dl and every Dl contains R coarse-cells hence RQ points of the
microscopic lattice. We write

E =
⋃

0≤l≤2U−1
l even

Dl, SN,E = {−1, 1}E∩ΛN , O =
⋃

0≤l≤2U−1
l odd

Dl, and SN,O = {−1, 1}O∩ΛN .

Again, for every η ∈ S̄M and every σ compatible with η on T we have

µN (σ|η) = µN,E(σE |η) µN,O(σO|σE , η).

For the same reason as detailed in Section 2.2.1 we focus on defining schemes for the sampling from
approximations of µN,E(·|η). Let η be a coarse-grained configuration and fix α ∈ SN,E compatible
with η on E . We introduce W̄N,E(α, η) by

e−βW̄N,E(α,η) = EN [e−βHN (σ)|α, η]

and observe that

µN,E(α|η) =
e−βW̄N,E(α,η)

e−βH̄M (η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk). (2.31)

First approximation. Again a direct computation of W̄N,E is impractical and we proceed by

introducing a first approximation W̄
(0)
N,E . The Hamiltonian proposed in (2.12) is not a good ap-

proximation anymore since it leads to an error of order O(Q/L) which is O(1) in the Q > L case.
Rather, our approach is based on a rewriting of µN,E(·|η) in order to take profit as much as possible
of its mixing properties. For every σ ∈ SN we have

HN (σ) =
∑

(l,l′)∈D≤

Hl,l′(σ
Dl , σDl′ )

where

D≤ = {(l, l′) ∈ {0, . . . , 2U − 1} × {1, . . . , 2U} such that l ≤ l′} (2.32)

and

Hl,l′(σ
Dl , σDl′ ) =

{

− 1
2

∑

x∈Dl∩ΛN

∑

y∈Dl∩ΛN ,

x6=y

J(x − y)σDl(x)σDl(y) if l = l′

−
∑

x∈Dl∩ΛN ,y∈Dl′∩ΛN
J(x − y)σDl(x)σDl′ (y) if l 6= l′.

Let η be a fixed coarse-grained configuration. For every l such that 0 ≤ l ≤ 2U − 1, every
σ1 ∈ {−1, 1}ΛN∩Dl−1 and every σ2 ∈ {−1, 1}ΛN∩Dl+1 we define:
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Zl(σ1, σ2; η) =

∫

{−1,1}Dl∩ΛN

e−βHl,l+1(σ
Dl ,σ2)e−βHl−1,l(σ1,σDl )e−βHl,l(σ

Dl ,σDl )ρ̄l(σ
Dl), (2.33)

where ρ̄l(σ
Dl) =

⊗

k∈Λ̄M∩Dl
ρ̃k(σCk) and

Zl(σ1, 0; η) =

∫

{−1,1}Dl∩ΛN

e−βHl−1,l(σ1,σDl )e−βHl,l(σ
Dl ,σDl )ρ̄l(σ

Dl). (2.34)

We further define Zl(0, σ2; η) and Zl(0, 0; η) by analogy with (2.34). For every α ∈ SN,E compatible
with η on E we write

fl−1,l+1(α, η) =
Zl(α

Dl−1 , αDl+1 ; η)Zl(0, 0; η)

Zl(0, αDl+1 ; η)Zl(αDl−1 , 0; η)
− 1. (2.35)

Finally, for every l such that 0 ≤ l ≤ 2U − 1, we introduce

Al−1,l,l+1(η) =

∫

{−1,1}(Dl−1∪Dl∪Dl+1)∩ΛN

e−βHl,l+1(σ
Dl ,σ

Dl+1 )e−βHl−1,l(σ
Dl−1 ,σDl ) ×

×e−βHl+1,l+1(σ
Dl+1 ,σ

Dl+1 )e−βHl,l(σ
Dl ,σDl )e−βHl−1,l−1(σ

Dl−1 ,σ
Dl−1 )

⊗

k∈{l−1,l,l+1}

ρ̄k(σDk),

f∗
l (αDl , η) =

1

Al−1,l,l+1(η)
Zl+1(α

Dl , 0; η) Zl−1(0, αDl ; η), (2.36)

Bl(η) = Zl(0, 0; η), (2.37)

and

ρ∗l (α
Dl) = f∗

l (αDl , η)e−βHl,l(α
Dl ,αDl )ρ̄l(α

Dl). (2.38)

The quantities Al−1,l,l+1(η) and Bl(η) only depend on η while ρ∗l and f∗
l only depend on αDl and

η. The following rewriting of µN,E(·|η) is proved in Section 3.2.1.
Lemma 2.7. For every η ∈ S̄M and every α ∈ SN,E compatible with η on E we have

µN,E(α|η) =
1

e−H̄M (η)

∏

0≤l≤2U−1
l even

Al−1,l,l+1(η)
∏

0≤l≤2U−1
l odd

B−1
l (η)

∏

0≤l≤2U−1
l odd

(1+fl−1,l+1(α, η))
∏

0≤l≤2U−1
l even

ρ∗l (α
Dl).

(2.39)

Notice that µN,E(α|η) fails to be a product measure due to the presence of the fl−1,l+1 terms.
However according to Proposition 5.1 in [3] as soon as µN satisfies e.g. Dobrushin’s uniqueness
condition (see Chapter 8 in [7]) we have

Lemma 2.8. [Proposition 5.1 in [3]] There exists a constant C depending on N, Q and L
such that

sup
l∈O

sup
η∈S̄M

sup
α∈SN,E

|fl−1,l+1(α, η)| ≤ Cδ.

From the decomposition of µN,E(·|η) given in (2.39) we propose as a zero order approximation to
W̄N,E the Hamiltonian

W̄
(0)
N,E(α, η) =

∑

0≤l≤2U−1
l even

Hl,l(α
Dl , αDl) −

1

β

∑

0≤l≤2U−1
l even

log f∗
l (αDl , η). (2.40)
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The corresponding zero order measure turns out to be a product measure and is given by:

ν
(0)
N,E(α; η) =

1

Z
(0)
N,E

e−βW̄
(0)
N,E(α,η)

⊗

0≤l≤2U−1
l even

ρ̄l(α
Dl).

In the same fashion as in (2.15) the corresponding reconstruction kernel defined on SN × S̄M is
given by

ν
(0)
N (σ; η) =

{

ν
(0)
N,E(σE ; η) µN,O(σO|σE , η) if σ and η are compatible over T

0 otherwise.
(2.41)

From now on we assume that µN satisfies Dobrushin’s uniqueness condition or any of the sufficient
conditions given in [3] for Proposition 5.1 there to hold.

Theorem 2.9. There is a constant C such that

1

N
H(ν

(0)
N (·; η)|µN (·|η)) ≤

Cδ

N
. (2.42)

We remark that for every η ∈ S̄M the measure ν
(0)
N (·; η) is product. This leads to the following

Scheme D
Step 1 We run in parallel U constrained simulations with coarse-grained boundary conditions and

obtain α1 sampled from ν
(0)
N,E(·; η).

Step 2 We run in parallel U constrained simulations with microscopic boundary conditions given
by α1 and we get α2 sampled from µN,O(·|α1, η).

Step 3 We obtain a sample of ν
(0)
N (·|η) by taking σ = [α1, α2].

Numerical experiments following this scheme are presented in Section 4.

Higher order corrections. According to Lemma 2.7 W̄N,E(α, η) can be splitted into an order
one part (zero order approximation) and to higher order terms:

βW̄N,E(α, η) = βW̄
(0)
N,E(α, η) −

∑

0≤l≤2U−1
l odd

log(1 + fl−1,l+1(α
Dl−1 , αDl+1)). (2.43)

When we can make Cδ small enough (e.g. by taking large values for R) we obtain higher order
corrections by expanding the logarithm in (2.43):

βW̄N,E(α, η) = βW̄
(0)
N,E(α, η) −

∑

0≤l≤2U−1
odd

∞
∑

n=1

(−1)n+1

n
(fl−1,l+1(α

Dl−1 , αDl+1))n.

For every p ≥ 1 we propose the following reconstruction kernel on SN,E × S̄M

ν
(p)
N,E(α; η) =

1

Z
(p)
N,E(η)

e
−βW̄

(0)
N,E(α,η)+

P

0≤l≤2U−1
l odd

Pp
n=1

(−1)n+1

n
(fl−1,l+1)

n
⊗

l∈E

ρ̄l(α
Dl) (2.44)

and the corresponding reconstruction kernel on SN × S̄M defined by analogy with (2.41) satisfies
Theorem 2.10. There is a constant C such that for every η ∈ S̄M and every p ≥ 1 the

following error estimate holds

1

N
H(ν

(p)
N (·; η)|µN (·|η)) ≤

Cpδp

N
. (2.45)

Subsequently we suggest Scheme E.
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Scheme E
Step 1 We run a multi-constrained simulation with coarse-grained boundary conditions given by

ηO to obtain α1 ∈ SN,E sampled from ν
(p)
N,E(·; η).

Step 2 We run in parallel U constrained simulations with microscopic boundary conditions given

by α1 to obtain α2 ∈ SN,O sampled from µN,O(·|αE , η).

Step 3 We obtain a sample of ν
(p)
N (·, η), where p = 1, 2, . . . by taking [α1, α2].

Unfortunately the first step in this scheme is restrictive when compared to Step 1 in Scheme D.
Indeed, the terms fl−1,l+1 couple reconstruction domains making the sampling measure in Step
1 not a product measure. Furthermore, unlike Step 1 in Scheme B, there is in general no simple
closed expression for the coupling fl−1,l+1(α

Dl−1 , αDl+1) in terms of αDl−1 , αDl+1 and η(l). Finally,
let us also mention that the constant C depends on Q, β, L and ‖J‖ (for a detailed analysis see
Section 4 in [3]). Hence, the advantage of running Scheme E rather than a direct MC simulation
needs to be discussed on a case-by-case basis.

2.2.3. Overall reconstruction schemes. Combining the methods presented in Section
(2.2.1) in the Q < L case with the Coarse-Grained Monte Carlo (CGMC) algorithm described
in [14] gives a numerically advantageous method to get samples from a measure GN defined on SN

that approximates µN arbitrarily well. Indeed, for every integer p ≥ 0 the CGMC method consists

on a direct Monte Carlo Markov Chain sampling from a Gibbs measure µ̄
(p)
M defined on S̄M and

such that

1

N
H(µ̄

(0)
M |µ̄M ) = O(ε2)

and for every p ≥ 1

1

N
H(µ̄

(p)
M |µ̄M ) = O(εp+1)

with ε defined in 2.8. Notice that for every η ∈ S̄M and every σ ∈ SN such that F (σ) = η we have

µN (σ) = µN (σ|η)µ̄M (η). (2.46)

By defining e.g. G
(2)
N on SN by

G
(2)
N (σ) = γ

(2)
N (σ; η)µ̄

(2)
M (η) (2.47)

with γ
(2)
N (σ; η) as defined in (2.29) the separation of scales in both (2.46) and (2.47) leads to

1

N
H(G

(2)
N |µN ) =

1

N
H(µ̄

(2)
M |µ̄M ) +

1

N

∑

η∈S̄M

µ̄
(2)
M (η) H(γ

(2)
N (·; η)|µN (·|η))

= O(ε3).

In view of the latter result we propose the following algorithm

Scheme F
Step 1 We run a CGMC simulation and obtain η ∈ S̄M sampled from µ̄

(2)
M .

Step 2 We run in parallel N/4L simulations with coarse-grained boundary conditions given by ηO′

to obtain α1 ∈ SN,E′ sampled from γ
(2)
N (·; η).

Step 3 We run in parallel N/4L constrained simulations with microscopic boundary conditions

given by α1 to obtain α2 ∈ SN,O sampled from µN,O′(·|αE′

, η).

Step 4 We obtain a sample of G
(2)
N by taking [α1, α2].

Numerical experiments following this scheme are presented in Section 4.

3. Proofs.
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3.1. The Q < L case. The main content of this section is the identification of the higher
order corrections to the first approximation Scheme A. This is achieved in Section 3.1.1. There we
further show that the error estimates (2.16, 2.20, 2.27) are simple consequences of this higher-order
computation. The estimation of the errors measured in specific relative entropy (2.17, 2.22, 2.30)
is carried out in Section 3.1.2.

3.1.1. The series expansion. We want to construct corrections for the initial choice (2.12).
For this one would like to expand the exponential in (2.18), but the exponent is not small: It is
of the order of the volume times some small parameter. Cluster expansions are tools which allow
to expand such quantities in convergent power series using the independence properties of product
measures. Let η ∈ S̄M and α ∈ SN,E be compatible over E . For every σ ∈ SN compatible with η
over T and such that σE = α we have

HN (σ) − W̄
(0)
N,E(α, η) =

∑

(k,k′)∈Λ̄M,≤

∆̄k,k′J(σ)

where

Λ̄M,≤ = {(k, k′) ∈ {0, . . . ,M − 1} × {1, . . . ,M} such that k ≤ k′}

and

∆̄k,k′J(σ) =



















∆k,k′J(σ) if there is l odd s.t. k, k′ ∈ Dl

∆̆k,k′J(σ) if there is l odd s.t. k ∈ Dl, k
′ ∈ Dl+1

∆̃k,k′J(σ) if there is l odd s.t. k ∈ Dl−1, k
′ ∈ Dl

0 otherwise

with

∆k,k′J(σ) = −
1

2

∑

x∈Ck
y∈C

k′ ,y 6=x

(J(x − y) − J̄(k, k′))σ(x)σ(y)(2 − δk,k′),

∆̆k,k′J(σ) = −
∑

x∈Ck
y∈C

k′

(J(x − y) − J̆(k, y))σ(x)α(y),

and

∆̃k,k′J(σ) = −
∑

x∈Ck
y∈C

k′

(J(x − y) − J̆(k′, y))α(x)σ(y).

These terms are connected to the small parameter δ since it follows from a simple Taylor expansion
that for every k, k′ ∈ Λ̄M

sup
η∈S̄M

sup
α∈SN,E

sup
σ∈SN

|∆̄k,k′J(σ)| ≤ 2
Q3

L2
||∇V ||∞.

By letting

f̄k,k′(σ) = e−β∆̄k,k′J(σ) − 1 (3.1)

we get

EN [e−β(HN (σ)−W̄
(0)
N,E(α,η))|α, η] =

∫

{σ:σE=α}

∏

k,l∈Λ̄M,≤

(1 + f̄k,l)
⊗

k∈Λ̄M∩O

ρ̃k(σ).
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The polymer model is as in [14] with the only difference that we are integrating over the half space
O keeping fixed the variables σE = α. In order to benefit from the analysis carried out in [14] we
introduce the following notation:

ρ̂k(σ) =

{

ρ̃k(σ) if k ∈ Λ̄M ∩ O
1{σCk=αCk} if k ∈ Λ̄M ∩ E

so

EN [e−β(HN (σ)−W̄
(0)
N,E(α,η))|α, η] =

∫

SN

∏

k,l∈Λ̄M,≤

(1 + f̄k,l)
⊗

k∈Λ̄M

ρ̂k(σ).

We shall simply write
∫

for
∫

SN
when no confusion can occur. By expanding and arranging the

terms in the sum into a cluster representation we obtain

EN [e−β(HN (σ)−W̄
(0)
N,E(α,η))|α, η] =

∑

n≥0

1

n!

∑

(R1,...,Rn)∈Rn

i6=j⇒Ri∩Rj=∅,

n
∏

i=1

ζ(Ri) (3.2)

where R is the set of non-empty subsets of Λ̄M . For every R ∈ R the activity ζ(R) of the cluster
R is

ζ(R) =

∫

∑

g∈GR

∏

{k,l}∈g

f̄kl(σ)
⊗

{k}∈R

ρ̂k(σ) (3.3)

where GR stands for the set of generalized connected graphs on the set R. The activities of the
polymers are functions of η and α. By a straightforward adaptation of the proof of Lemma 2.3 in
[14] (see also Theorem 2 in [4]) one can prove that there exists a δ0 > 0 such that if δ = Qε < δ0

then we have

sup
α∈SN,E

sup
η∈S̄M

sup
k∈Λ̄M

∑

R∈R,R⊃{k}
|R|=1

|ζ(R)| ≤ δ

and for every r ≥ 2

sup
α∈SN,E

sup
η∈S̄M

sup
k∈Λ̄M

∑

R∈R,R⊃{k}
|R|=r

|ζ(R)| ≤ δr−1.

Then, according to Theorem 2 in [4] if δ = Qε < δ0 we get

W̄N,E(α, η) = W̄
(0)
N,E(α, η) −

1

β

∑

n≥1

1

n!

∑

(R1,...,Rn)∈Rn

Ri⊂Λ̄M

φ(R1, . . . , Rn)

n
∏

i=1

ζ(Ri) (3.4)

with

φ(R1, . . . , Rn) =

{

1 if n =1
∑

g∈Gn

∏

{i,j}∈g(1(Ri, Rj) − 1) if n >1

where Gn is the set of the generalized, connected graphs on {1, . . . , n} and

1(Ri, Rj) =

{

0 if {Ri ∩ Rj 6= ∅}

1 if {Ri ∩ Rj = ∅}.

Again a straightforward adaptation of the proof of Lemma 2.1 in [14] shows that

∑

R∈R,R⊂Λ̄M

|ζ(R)| ≤ M(δ +
∑

r≥2

δr−1) (3.5)
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and that for every n ≥ 2

1

n!

∑

(R1,...,Rn)∈Rn

Ri⊂Λ̄M

|φ(R1, . . . , Rn)

n
∏

i=1

ζ(Ri)| ≤
M

2(n − 1)

(

2e
5

4

δ

1 − δ

)n−1


δe +
∑

r≥2

r(δe)r−1



 .

(3.6)
The inequalities (3.5) and (3.6) allow to identify in (3.4) the terms of the series expansion of
Theorem 2.3. In particular

W̄
(1)
N,E(α, η) = −

1

β

∑

R:|R|=1,2

ζ(R)

= O(Mδ)

and

W̄
(2)
N,E(α, η) = −

1

2β

∑

R1,R2
|Ri|=1,2

φ(R1, R2)ζ(R1)ζ(R2) −
1

β

∑

R:|R|=3

ζ(R)

= O(Mδ2).

Actually, in the sums defining W̄
(1)
N,E and W̄

(2)
N,E some terms are already of order 4 or higher. Indeed

W̄
(1)
N,E(α, η) = −

1

β

∑

k∈Λ̄M

∫

f̄kkρ̂k(σ)

−
1

β

∑

(k,l)∈Λ̄M,≤

∫

(f̄kl +f̄klf̄kk +f̄klf̄ll +f̄klf̄kkf̄ll)ρ̂k(σ)ρ̂l(σ) (3.7)

and

W̄
(2)
N,E(α, η) =

1

2β

∑

k∈Λ̄M

(∫

f̄kkρ̂k(σ)

)2

+

+
1

2β

∑

(k,l)∈Λ̄M,≤

∫

f̄kkρ̂k(σ)

∫

(f̄kl +f̄klf̄kk +f̄klf̄ll +f̄klf̄kkf̄ll)ρ̂k(σ)ρ̂l(σ) +

+
1

2β

∑

k∈{0,...,M−1}

∑

l1:(k,l1)∈Λ̄M,≤

∑

l2:(k,l2)∈Λ̄M,≤
∫

(f̄kl1 + f̄kkf̄kl1 + f̄kl1 f̄l1l1 + f̄kkf̄kl1 f̄l1l1)ρ̂k(σ)ρ̂l1(σ) ×

×

∫

(f̄kl2 + f̄kkf̄kl2 + f̄kl2 f̄l2l2 + f̄kkf̄kl2 f̄l2l2)ρ̂k(σ)ρ̂l2(σ) +

−
1

β

∑

k∈{0,...,M−1}

∑

l1:(k,l1)∈Λ̄M,≤

∑

l2:(l1,l2)∈Λ̄M,≤ or (k,l2)∈Λ̄M,≤
∫

(f̄kl1 f̄l1l2 + f̄kl1 f̄kl2 + f̄kl2 f̄l1l2 + [. . .])ρ̂k(σ)ρ̂l1(σ)ρ̂l2(σ) (3.8)

where [. . .] means the previous three terms with all possible combinations of loops. Combining
(3.7) and (3.8) with the facts that

f̄k,l(σ) = e−β∆̄klJ(σ) − 1 =

∞
∑

p=1

1

p!
(−β∆̄klJ(σ))p with ∆̄klJ(σ) ∼ O(Q2 Q

L2
‖∇V ‖∞) (3.9)

uniformly in σ ∈ SN , α ∈ SN,E and η ∈ S̄M and that for every k, l ∈ Λ̄M
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∫

∆̄k,lJ(σ)ρ̂k(σ)ρ̂l(σ) = 0

we get an improved estimate on W̄
(1)
N,E

−W̄
(1)
N,E(α, η) = β

∑

k

∫

1

2
(∆̄kkJ(σ))2ρ̂k(σ) + β

∑

k<l

∫

1

2
(∆̄klJ(σ))2ρ̂k(σ)ρ̂l(σ) +

+ β
∑

k<l

∫

∆̄kkJ(σ)∆̄klJ(σ)ρ̂k(σ)ρ̂l(σ) +

+β
∑

k<l

∫

∆̄klJ(σ)∆̄llJ(σ)ρ̂k(σ)ρ̂l(σ) (3.10)

= O(Mδ2)

and

−W̄
(2)
N,E(α, η) = β

∑

k1

∑

k2>k1

∑

k3>k2

∫

∆̄k1k2J(σ)∆̄k2k3J(σ)ρ̂k1(σ)ρ̂k2(σ)ρ̂k3(σ) +

+

∫

∆̄k2k3J(σ)∆̄k1k3J(σ)ρ̂k2(σ)ρ̂k3(σ)ρ̂k1(σ) +

+

∫

∆̄k1k3
J(σ)∆̄k1k2

J(σ)ρ̂k3
(σ)ρ̂k1

(dσ)ρ̂k2
(σ) (3.11)

= O(Mδ2)

the other terms from (3.7) and (3.8) being higher order. In particular this proves that as soon as
δ < δ0 we have

β

N

(

W̄N,E(α, η) − W̄
(0)
N,E(α, η)

)

= O(ε2)

uniformly in η, α and σ and Theorem 1 is thus established.
In order to compute the interactions that enter into play in Step 1 of Scheme B with p = 2 we

discard terms like e.g.
∫

(∆̄kkJ(σ))2ρ̂k(σ) since they are either 0 (k ∈ Λ̄M ∩ E) or functions of η
alone (k ∈ Λ̄M ∩ O). After simple but long computations we get

−W̄
(1)
N,E(α, η) = β

∑

m:even

∑

k∈Λ̄M∩Dm





∑

x,y∈Ck

Θ1(m, x, y, η)α(x)α(y) +
∑

y∈Ck

Θ2(m, y, η)α(y)





where

Θ1(m, x, y, η) =
1

2

∑

l∈Λ̄M∩(Dm−1∪Dm+1)

C1(l, x, y)(1 − e2(η(l)))

with

C1(l, x, y) =
∑

u∈Cl

(J(u − x) − J̆(l, x))(J(u − y) − J̆(l, y)) and e2(η(l)) =
η2(l) − Q

Q(Q − 1)
,

and

Θ2(m, y, η) =
∑

l∈Λ̄M∩(Dm−1∪Dm+1)

(C2(l, y)e3(η(l)) + C3(l, y)e1(η(l)))
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with

C2(l, y) =
∑

u,v,w∈Cl
u 6=v,v 6=w,w 6=u

(J(u − v) − J̄(0))(J(w − y) − J̆(l, y)),

C3(l, y) = 2
∑

u,v∈Cl
u 6=v

(J(u − v) − J̄(0))(J(u − y) − J̆(l, y)),

e1(η(l)) =
η(l)

Q
and e3(η(l)) =

4η3(l) + 4η(l)Q2 − 24η(l)Q + 16η(l)

8Q(Q − 1)(Q − 2)
.

Notice that Θ1 couples spins that are inside the same coarse cell while Θ2 acts like an external
magnetic field. We further have

−W̄
(2)
N,E(α, η) = β

∑

m:even

∑

k∈Λ̄M∩Dm





∑

y∈Ck

Θ3(m, y, η)α(y)



+

+β
∑

m:even

∑

k,l∈Λ̄M ∩Dm
k<l

∑

x∈Ck,y∈Cl

Θ4(m, x, y, η)α(x)α(y) +

+β
∑

m:odd

∑

k∈Λ̄M∩Dm−1

∑

k′∈Λ̄M∩Dm+1

∑

x∈Ck,y∈Ck′

Θ5(m, x, y, η)α(x)α(y)

with

Θ4(m, x, y, η) =
∑

j∈Λ̄M∩(Dm+1∪Dm−1)

C4(x, y, j)(1 − e2(η(j))),

where

C4(x, y, j) =
∑

u∈Cj

(J(x − u) − J̆(x, j))(J(y − u) − J̆(y, j)),

Θ3(m, y, η) =
∑

(k,k′)∈(Λ̄M ∩Dm−1)2∪(Λ̄M ∩Dm+1)2

k<k′

C5(y, k, k′)e1(η(k′))(1 − e2(η(k)))

+
∑

(k,k′)∈(Λ̄M ∩Dm−1)2∪(Λ̄M ∩Dm+1)2

k<k′

C5(y, k′, k)e1(η(k))(1 − e2(η(k′)))

+
∑

k∈Λ̄M ∩Dm−1
k′∈Λ̄M ∩Dm+1

C6(y, k, k′)e1(η(k))(1 − e2(η(k′)))

+
∑

k∈Λ̄M ∩Dm−1
k′∈Λ̄M ∩Dm+1

C6(y, k′, k)e1(η(k′))(1 − e2(η(k))).

where

C5(y, k, k′) =
∑

u∈Ck,v∈Ck′

(J(y − u) − J̆(y, k))(J(u − v) − J̄(k, k′))

C6(y, k, k′) =
∑

u∈Ck,v∈Ck′

(J(y − v) − J̆(y, k′))(J(u − v) − J̄(k, k′))
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and finally

Θ5(m, x, y, η) =
∑

j∈Λ̄M∩Dm

C7(x, y, j)(1 − e2(η(j)))

where

C7(x, y, j) =
∑

u∈Cj

(J(x − u) − J̆(x, j))(J(u − y) − J̆(j, y))).

Notice that Θ3 acts like an external magnetic field, Θ4 couples spin that are in different coarse cells
within the same reconstruction domains and Θ5 couples spins that are in different reconstruction
domains.

In the p = 2 case the obtained reconstruction kernel is not a product measure because of the
presence of the Θ5 coupling. Now notice that all the computations we performed are based on
controls that depend on M,Q and L, but not on the size of the reconstruction domains Dl. Should
we have reconstructed over domains D′

l with 2L microscopic points we would have get formally
the same expression with the difference that in this case for every m odd, every k ∈ Λ̄M ∩ Dm−1,
k′ ∈ Λ̄M ∩ Dm+1 and every x ∈ Ck, y ∈ Ck′ we necessarily have Θ5(m, x, y, η) = 0. Indeed,
for every j ∈ Λ̄M ∩ Dm and every u ∈ Cj we necessarily have either J(x − u) − J̆(x, j) = 0 or

J(u − y) − J̆(j, y) = 0 since the interaction range of the potential J is L. It follows from this

observation that for every η ∈ S̄M the measure γ
(2)

N,E′ (·; η) is product.

Finally, it is clear from (3.6) that in the definition of a reconstruction scheme with O(δ4) error
one has to consider terms like ∆̄k1,k2J(σ)∆̄k2,k3J(σ)∆̄k3,k4J(σ). The previous observation applies

once again and we see that by choosing reconstruction domains D
′′

l including 3L microscopic points,
for every σ ∈ SN at least one of the 3 factors in the previous expression cancels making the kernel
in the first step of the reconstruction algorithm a product measure.

3.1.2. Specific relative entropy estimate. In this section we prove (2.22). The proof of
all specific relative entropy estimates given in this paper, including those of Section 2.2.2 and 2.2.3
work the same way. For every integer p ≥ 1 and every η ∈ S̄M we have:

1

N
H(ν

(p)
N (·, η)|µN (·|η)) =

1

N

∑

σ∈SN

ν
(p)
N (σ, η) log

ν
(p)
N (σ, η)

µN (σ|η)

=
1

N

∑

σ∈SN

ν
(p)
N,E(σE , η)µN,O(σO|σE , η) log

ν
(p)
N,E(σE , η)

µN,E(σE |η)

µN,O(σO|σE , η)

µN,O(σO|σE , η)

=
1

N

∑

σ∈SN

ν
(p)
N,E(σE , η)µN,O(σO|σE , η) ×

×

[

−β(W̄
(p)
N,E(σE , η) − W̄N,E(σE , η)) + log

Z̄N,E(η)

Z
(p)
N,E(η)

]

(3.12)

and

Z
(p)
N,E(η) =

∫

SN,E

e−βW̄
(p)
N,E(α,η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk)

=

∫

SN,E

e−β(W̄
(p)
N,E(α,η)−W̄N,E(α,η))−βW̄N,E(α,η)

⊗

k∈E∩Λ̄M

ρ̃k(αCk)

= eNO(εp+1)Z̄N,E(η)

which combined with (2.20) and (3.12) proves the announced result.

3.2. The Q > L case. In this Section we prove Lemma 2.7. Theorem 2.9 and 2.10 are
straightforward consequences of Lemmas 2.7 and 2.8 that are obtained by adapting the computa-
tions of Section 3.1.2
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3.2.1. Proof of Lemma 2.7. As before, the effective interaction W̄N,E(α, η) for α ∈ SN,E is
given after integrating over σO ∈ SN,O compatible with η over O:

e−βW̄N,E(α,η) =

∫

{−1,1}ΛN ∩O

e−βHN ([σO,α])
∏

k∈Λ̄M∩O

ρ̃k(σCk)

= e−β
P

l∈E Hl,l(α
Dl ,αDl ) ×

×
∏

l∈O

[

∫

{−1,1}ΛN ∩O

e−βHl,l(σ
Dl ,σDl )e−βHl−1,l(α

Dl−1 ,σDl )e−βHl,l+1(σ
Dl ,α

Dl+1 )ρ̄l(σ
Dl)

]

Note that the term in brackets in the last display [. . . ] = Zl(α
Dl−1 , αDl+1 ; η), couples the con-

figurations αDl−1 and αDl+1 . To proceed with our calculation we want to decouple them, so we
decompose [. . .] as follows:

[. . .] =
Zl(0, αDl+1 ; η) Zl(α

Dl−1 , 0; η)

Zl(0, 0; η)
(fl−1,l+1(α) + 1).

By changing indices we have that

∏

l∈O

Zl(0, αDl+1 ; η) Zl(α
Dl−1 , 0; η) =

∏

l∈E

Zl+1(α
Dl , 0; η) Zl−1(0, αDl ; η)

We multiply and divide by Al−1,l,l+1(η) and finally obtain the announced formulation.

4. Numerical experiments. In this section we illustrate the efficiency of the schemes we
introduced by giving the results of some numerical experiments. We consider a microscopic lattice
of size N = 512 and a microscopic coupling defined by J(x) = 1/2L when |x| ≤ L/N and J(x) = 0
otherwise. We consider different values for Q, L and β in order to illustrate their interplay in the
problems addressed here. To evaluate the efficiency of the schemes we made MC computations of

< HN (σ)|η >̺β
=

∫

SN

HN (σ)̺β(σ|η) (4.1)

with η being a CG configuration and the microscopic measure ̺β(σ|η) being either µN,β(σ|η) or
one of its approximations. We distinguish between two cases for η:

1. η is sampled from µ̄M,β and we call it a “typical” η.
2. η is sampled from P̄M and we call it a “deviant” η.

As β increases, in typical η’s most of the coarse-cells are covered: η(k) = ±Q. In this case most
of the information on the microscopic configuration is already given by η and first approximation
schemes A and D are “perfect”. With deviant η’s almost all information on the microscopic
configurations is lost in the transition micro-CG and the results of our experiments show that our
higher order schemes are efficient in recovering this information. In particular the higher order
schemes designed to deal with the Q < L case show to be efficient even at very low temperatures.

In the Tables 4.1-4.6 below we first give the value of (4.1) with ̺β(·|η) = µβ(·|η) computed
by a Direct MCMC algorithm which is a straightforward adaptation of the algorithm proposed in
Chapter 5 in [20] to get samples from the Conserved Order Parameter (COP) Ising model. Then we
give the value of (4.1) where ̺β(·|η) is one of the approximating measures suggested in Scheme A-
D. This value is obtained by taking the mean over independent and identically distributed samples
from the corresponding ̺β(·|η). We further give the relative error when compared to the reference
value obtained by the Direct MC simulation. Finally in Table 4.7 we compare the result of the MC

computation of
∫

SN
HN (σ)µN (σ) and

∫

SN
HN (σ)G

(2)
N (σ) with G

(2)
N given in Section 2.2.3.

5. Conclusions. Starting from a microscopic stochastic system and the corresponding coarse-
grained model we introduced a mathematical strategy to recover microscopic information given the
coarse-grained data. We defined “reconstructed” microscopic measures satisfying two conditions:
(i) they are close in specific relative entropy to the initial microscopic equilibrium measure condi-
tioned on the coarse-grained data and (ii) their sampling is computationally advantageous when
compared to sampling directly from the conditioned microscopic equilibrium measure. We worked
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out these questions in the context of equilibrium stochastic lattice systems of Ising type spins. We
met condition (i) by defining reconstructed Hamiltonians that are uniformly close to the original
microscopic one. We met condition (ii) by defining reconstructed models fitted for parallel com-
putations. We employed different tools depending on whether the coarse-graining is performed
over or below the interaction length of the microscopic Hamiltonian. In the latter case we used a
high-temperature cluster expansion while in the former we exploited the factorization properties
of high-temperature multi-canonical constrained Gibbs measures.

Acknowledgments. The first author acknowledges very kind hospitality of the Max Planck
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Table 5.1

N=512, L=16, Q=4.

Direct MC Scheme A Scheme B Scheme C
β = 0.5 -0.0018 -0.0018 0 % -0.0018 0 % -0.0018 0 %

Typical η β = 1 -0.1001 -0.1001 0 % -0.1001 0 % -0.1001 0 %
β = 1.5 -0.3513 -0.3513 0 % -0.3513 0 % -0.3513 0 %
β = 2 -0.4382 -0.4382 0 % -0.4382 0 % -0.4382 0 %

β = 0.5 -0.0047 -0.0047 0 % -0.0047 0 % -0.0047 0 %
β = 1 -0.0043 -0.0043 0 % -0.0043 0 % -0.0043 0 %

Deviant η β = 1.5 -0.0086 -0.0086 0 % -0.0086 0 % -0.0086 0 %
β = 2 -0.0035 -0.0035 0 % -0.0035 0 % -0.0035 0 %
β = 5 -0.0060 -0.0059 2 % -0.0060 0 % -0.0060 0 %
β = 10 -0.0099 -0.0093 6 % -0.099 0 % -0.0096 3 %

Table 5.2

N=512, L=16, Q=8.

Direct MC Scheme A Scheme B Scheme C
β = 0.5 -0.0235 -0.0235 0 % -0.0235 0 % -0.0235 0 %

Typical η β = 1 -0.0244 -0.0244 0 % -0.0244 0 % -0.0244 0 %
β = 1.5 -0.3765 -0.3765 0 % -0.3765 0 % -0.3765 0 %
β = 2 -0.4695 -0.4695 0 % -0.4695 0 % -0.4695 0 %

β = 0.5 -0.00048 -0.00048 0 % -0.00048 0 % -0.00048 0 %
β = 1 0.0039 0.0039 0 % 0.0039 0 % 0.0039 0 %

Deviant η β = 1.5 0.0010 0.0010 0 % 0.0010 0 % 0.0010 0 %
β = 2 -0.0016 -0.0016 0 % -0.0016 0 % -0.016 0 %
β = 5 -0.0068 -0.0062 9 % -0.0068 0 % -0.0064 6 %
β = 10 -0.0167 -0.0129 23 % -0.0174 4 % -0.0155 7 %

Table 5.3

N=512, L=16, Q=16.

Direct MC Scheme A Scheme B Scheme C
β = 0.5 -0.0036 -0.0036 0 % -0.0036 0 % -0.0036 0 %

Typical η β = 1 -0.0666 -0.0666 0 % -0.0666 0 % -0.0666 0 %
β = 1.5 -0.3387 -0.3387 0 % -0.3387 0 % -0.3387 0 %
β = 2 -0.4136 -0.4136 0 % -0.4136 0 % -0.4136 0 %

β = 0.5 -0.0096 -0.0096 0 % -0.0096 0 % -0.0096 0 %
β = 1 -0.0058 -0.0058 0 % -0.0058 0 % -0.0058 0 %

Deviant η β = 1.5 -0.0042 -0.0040 5 % -0.0042 0 % -0.0042 0 %
β = 2 -0.0100 -0.0095 5 % -0.0100 0 % -0.0099 1 %
β = 5 -0.0286 -0.0204 29 % -0.0303 6 % -0.0269 6 %
β = 10 -0.0616 -0.0340 45 % -0.0675 10 % -0.0600 3 %



24

Table 5.4

N=512, L=4, Q=4.

Direct MC Scheme D, R=1 Scheme D, R=2
β = 0.5 -0.0605 -0.0605 0 % -0.0605 0 %

Typical η β = 1 -0.1944 -0.1944 0 % -0.1944 0 %
β = 1.5 -0.2957 -0.2956 0 % -0.2957 0 %
β = 2 -0.4129 -0.4129 0 % -0.4129 0 %

β = 0.5 0.0046 0.0046 0 % 0.0046 0 %
β = 1 -0.0155 -0.0154 0 % -0.0155 0 %

Deviant η β = 1.5 -0.0135 -0.0129 4 % -0.0134 1 %
β = 2 -0.0474 -0.0464 2 % -0.0474 0 %
β = 5 -0.0774 -0.0712 8 % -0.0769 1 %
β = 10 -0.0942 -0.0844 10 % -0.0929 1 %

Table 5.5

N=512, L=4, Q=8.

Direct MC Scheme D, R=1 Scheme D, R=2
β = 0.5 -0.0380 -0.0379 0 % -0.0380 0 %

Typical η β = 1 -0.1608 -0.1605 0 % -0.1608 0 %
β = 1.5 -0.3192 -0.3183 0 % -0.3192 0 %
β = 2 -0.4120 -0.4119 0 % -0.4120 0 %

β = 0.5 -0.0219 -0.0218 0 % -0.0219 0 %
β = 1 -0.0413 -0.0407 2 % -0.0413 0 %

Deviant η β = 1.5 -0.0547 -0.0513 6 % -0.0543 1 %
β = 2 -0.0784 -0.0679 13 % -0.0761 3 %
β = 5 -0.1779 -0.1330 25 % -0.1589 10 %
β = 10 -0.1878 -0.1427 25 % -0.1679 10 %

Table 5.6

N=512, L=4, Q=16.

Direct MC Scheme D, R=1 Scheme D, R=2
β = 0.5 -0.0599 -0.0599 0 % -0.0599 0 %

Typical η β = 1 -0.1202 -0.1196 0 % -0.1203 0 %
β = 1.5 -0.2600 -0.2558 2 % -0.2598 0 %
β = 2 -0.4200 -0.4205 0 % -0.4199 0 %

β = 0.5 -0.0321 -0.0320 0 % -0.0321 0 %
β = 1 -0.0768 -0.0761 1 % -0.0768 0 %

Deviant η β = 1.5 -0.1603 -0.1518 5 % -0.1592 1 %
β = 2 -0.2592 -0.0229 12 % -0.2431 6 %
β = 5 -0.3400 -0.2995 12 % -0.3068 10 %
β = 10 -0.3435 -0.3005 12 % -0.3096 10 %

Table 5.7

N=512, L=16.

β=0.5 β=1 β=1.5 β=2
Direct MC -0.0124 -0.0659 -0.3579 -0.4574

Scheme F, Q=4 -0.0124 0 % -0.0659 0 % -0.3579 0 % -0.4574 0 %
Scheme F, Q=8 -0.0124 0 % -0.0659 0 % -0.3579 0 % -0.4574 0 %
Scheme F, Q=16 -0.0124 0 % -0.0659 0 % -0.3579 0 % -0.4574 0 %


