
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Mathematical strategies in the coarse-graining of

extensive systems: error quantification and

adaptivity

by

Markos Katsoulakis, Petr Plechac, Luc Rey-Bellet, and Dimitrios

Tsagkarogiannis

Preprint no.: 39 2008





MATHEMATICAL STRATEGIES IN THE COARSE-GRAINING OF

EXTENSIVE SYSTEMS: ERROR QUANTIFICATION AND

ADAPTIVITY

MARKOS A. KATSOULAKIS∗, PETR PLECHÁČ† , LUC REY-BELLET‡, AND DIMITRIOS
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Abstract. In this paper we continue our study of coarse-graining schemes for stochastic many-
body microscopic models started in [17, 20], focusing on equilibrium stochastic lattice systems.
Using cluster expansion techniques we expand the exact coarse-grained Hamiltonian around a first
approximation and derive higher accuracy schemes by including more terms in the expansion. The
accuracy of the coarse-graining schemes is measured in terms of information loss, i.e., relative entropy,
between the exact and approximate coarse-grained Gibbs measures. We test the effectiveness of our
schemes in systems with competing short and long range interactions, using an analytically solvable
model as a computational benchmark. Furthermore, the cluster expansion in [20] yields sharp a
posteriori error estimates for the coarse-grained approximations that can be computed on-the-fly
during the simulation. Based on these estimates we develop a numerical strategy to assess the
quality of the coarse-graining and suitably refine or coarsen the simulations. We demonstrate the
use of this diagnostic tool in the numerical calculation of phase diagrams.
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1. Introduction. Microscopic extended systems with complex and multi-scale
interactions are one of the primary quantitative modeling tools in a broad spectrum
of scientific disciplines ranging from materials and polymers to biological systems.
Such systems are typically simulated by Molecular Dynamics (MD) or Monte Carlo
(MC) methods. However, despite substantial progress in available algorithms, such
molecular simulations are typically limited to short length and time scales, compared
to device sizes and morphologies observed in experiments. If a reliable coarse-graining
method is available, i.e., a new model, derived from the microscopic one, that involves
only a reduced number of variables, it can provide a powerful computational tool for
speeding-up molecular and multi-scale simulations.

Coarse-graining methods have a long history in the applied sciences and engi-
neering literature. In particular, in polymer science, a sophisticated array of methods
have been developed recently, and they are, in spirit, closely related to our proposed
methodologies. In the coarse-graining of macromolecules the primary goal is to group
together, in a systematic manner, several atoms on a macromolecule, creating an ef-
fective new chain, as means of reducing the degrees of freedom of the original system,
see for instance [31, 8, 4, 10]. Key challenges here include the presence of complex
short and long range interactions, the off-lattice nature of the models, as well as the
typical issues related to the high dimensional integrations necessary for extensive sys-
tems. The integration issue is handled by adopting a semi-empirical strategy that
allows the break-up of the computational task into simpler, lower dimensional inte-
grations by assuming some additional structure on the coarse-grained interactions;
for instance eliminating multi-body terms and assuming a particular form for the
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coarse-grained bonded and non-bonded interactions. An alternative, statistics-based,
approach for the coarse-graining of macromolecules was also developed recently, [27].
In this method a parametrization of coarse-grained potentials assumed to be of a
known functional form e.g. Lennard-Jones, is optimized sequentially, against pair
distribution functions obtained from atomistic simulations. The reverse procedure of
coarse-graining, i.e., reproducing the microscopic properties directly from CG simu-
lations is an issue arising extensively in the polymer science literature, [32, 27]. The
main idea is that computationally inexpensive CG simulations are expected to repro-
duce the large scale structure; subsequently microscopic information will be added
through a process of microscopic reconstruction, reversing the coarse-graining. Math-
ematical results on error quantification for this issue were first obtained in the context
of lattice systems in [18, 22].

Although coarse-graining methods can provide a powerful computational tool
in molecular simulations, it has been also observed that in some regimes important
macroscopic properties may not be captured properly, [1, 28]. For example, in coarse-
grained Monte Carlo (CGMC) simulations for lattice systems, hysteresis and critical
behavior are not captured adequately for short and intermediate range potentials,
while CGMC performs well in the case of long-range interactions, [19, 20]. Relying
on these observations, we initiate here a systematic study of coarse-graining methods,
from the point of view of numerical analysis where error is estimated in view of a
specified tolerance.

We restrict ourselves to stochastic (Ising-type) lattice systems as a paradigm of
hierarchical coarse-graining because they are, mathematically and computationally,
more tractable than, for instance, off-lattice deterministic systems such as in MD.
Furthermore lattice systems are of interest on their own as they are widely used in
stochastic modeling and Monte Carlo simulations, [24]. Such a system, on a lattice
with N sites, is specified by translation invariant microscopic Hamiltonians HN (σ)
(σ is the microscopic configuration) and an a priori Bernoulli measure PN (dσ). To
coarse-grain we subdivide the lattice into M coarse cells and define a new configura-
tion η given by the total magnetization in each coarse cell. An exact coarse-grained
Hamiltonian H̄M (η) is given the renormalization group map [9, 15]

e−βH̄M(η) =

∫

e−βHN (σ)PN (dσ|η) , (1.1)

where PN (dσ|η) is the probability of having a microscopic configuration σ given a
configuration η at the coarse level. However, due to the high-dimensional integration,
H̄M (η) cannot be easily calculated explicitly and thus used in numerical simulations.
Our perspective is to approximate it by viewing it as a perturbation of a, well-chosen,

coarse-grained approximating Hamiltonian H̄
(0)
M , for instance the one suggested in

[17, 19] (see ((2.12)) below) or in [13, 14] where it was constructed using a wavelet
expansion. In [20] we proved that, using a cluster expansion, one can expand H̄M (η)

around H̄
(0)
M :

H̄M (η) = H̄
(0)
M (η) + H̄

(1)
M (η) + · · · + H̄

(p)
M (η) + O(ǫp+1) , (1.2)

where the correction terms H̄
(1)
M , H̄

(2)
M · · · can be calculated explicitly. The small

parameter ǫ is given in (2.16) and depends on the characteristics of the coarse-graining,
the potential and the inverse temperature.

The choice of this first approximation H̄
(0)
M is crucial to our method and it should,

(i) be computable explicitly, analytically as in [13, 17] or numerically and (ii) satisfy
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good a-priori estimate with respect to the microscopic Hamiltonian (see Section 2.2).
Cluster expansions are widely used in statistical physics (see e.g. [29] for an overview);
in particular the cluster expansions around mean field models (e.g. [30, 5, 2, 26]) used
to analyze critical behavior are conceptually related to ours. Our focus is however
more on the computational schemes and related numerical analysis questions.

The error estimates in this paper provide bounds, in terms of relative entropy or
information loss, between the exactly coarse-grained Gibbs measure associated with
H̄M (η) and the approximate, computable, coarse-grained Gibbs measures obtained by
truncating the Hamiltonian in (1.2). Error estimates between measures are natural
and useful since the measures determine the most likely configurations observed in
simulations and the relative entropy estimates quantify the information compression
depending on the truncation level in (1.2).

In [20] we tested our numerical schemes, focusing either short/intermediate or
long range interactions, assessing the effectiveness of the method, especially in phase
transition regimes. We continue here our computational explorations for systems with
more complex, combined short and long range interactions. Such interactions arise
in many realistic microscopic systems, one notable example being in macromolecules
discussed earlier and in Section 5 below. We assess the coarse-graining schemes by (a)
comparing them to fully resolved numerical simulations, and (b) using an analytically
solvable model with short and long range interactions due to M. Kardar, [16] as a
computational benchmark.

Another consequence of the analysis in [20] is to provide a posteriori estimates on
the coarse-graining error, i.e., they can be computed during a coarse-grained simula-
tion and are expressed exclusively in terms of the coarse variables η. For instance, for

the scheme based on H̄
(0)
M (η), the a posteriori error (see (1.2)) involves only H̄

(1,2)
M (η)

plus a controlled error of order O(ǫ2+1). In Section 3 we track, on-the-fly, these a
posteriori estimates throughout our simulations. They serve as a diagnostic tool for
the quality of the numerical coarse-graining and indicate whether a given level of
coarse-graining produces large error and thus needs to be refined, or whether we can
safely use a coarser scale and speed up the simulations. This approach leads to an
adaptive coarse-graining of the microscopic system which relies on the fact that the
coarse-grained schemes in [19, 20] form a hierarchy of models allowing a seamless
transition between microscopic and coarser resolutions. We demonstrate the advan-
tages of such an adaptative approach in the numerical calculation of phase diagrams
for systems with combined short and long range interactions. Most of the phase dia-
gram can be constructed with very coarse (inexpensive) simulations, while the critical,
phase transition regimes, require finer, even fully resolved simulations. The transi-
tions from finer to coarser scales and back are done on-the-fly, using the a posteriori
error computation.

Acknowledgments: The research of M.K. was partially supported by DE-FG02-
05ER25702, NSF-DMS-0413864 and NSF-ITR-0219211. The research of P.P. was
partially supported by NSF-DMS-0303565. The research or L.R-B. was partially
supported by NSF-DMS-0605058. M.K. and P.P. thank Dr. Vagelis Harmandaris for
many valuable discussions regarding the coarse-graining of polymer systems.

2. Summary of theoretical results. In this section we outline our coarse-
graining strategy for lattice models of Ising type and, briefly, review the results on
related coarse-garining methods obtained in [20] to which we refer for more details
and proofs.
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2.1. Microscopic lattice models. Let us consider a spin system on the cubic
d-dimensional lattice ΛN = {x ∈ Z

d ; 0 ≤ xi ≤ n − 1} with N = nd lattice sites.
At each site x ∈ ΛN , the spin σ(x) takes value in {−1, +1} and we denote by σ =
{σ(x)}x∈ΛN

∈ SN := {−1, +1}ΛN a configuration on ΛN . The Hamiltonian of the
system is given by

HN (σ) = −
1

2

∑

x∈ΛN

∑

y 6=x

J(x − y)σ(x)σ(y) + h
∑

x∈ΛN

σ(x) , (2.1)

where the two-body inter-particle potential J describes the interaction between indi-
vidual spins and h is an external field. For simplicity we assume that periodic bound-
ary conditions are imposed on the system. The finite-volume equilibrium states of
the system are given by the canonical Gibbs measure

µN,β(dσ) =
1

ZN
e−βHN (σ)PN (dσ) , (2.2)

where β is the inverse temperature, ZN is the partition function, and PN (dσ), the
prior distribution on SN , is the product measure

PN (dσ) =
∏

x∈ΛN

ρ(dσ(x)) ,

where ρ(σ(x) = +1) = ρ(σ(x) = −1) = 1
2 is the distribution of a Bernoulli random

variable for each x ∈ ΛN .

2.2. Coarse-graining strategy. We now turn to our coarse-graining strategy
which consists of three main steps.

Step 1. Coarse graining of the configuration space. We partition the lattice ΛN

into M = md disjoint cells with each cell containing Q = qd lattice points so that
N = nd = MQ = mdqd. We define a coarse lattice Λ̄M = {k ∈ Z

d ; 0 ≤ ki < m − 1}
and to each k ∈ Λ̄M we associate the coarse cell Ck = {x ∈ ΛN ; qki ≤ xi < q(ki +1)}.
We will refer to Q as the level of coarse graining (Q = 1 corresponds to no coarse
graining).

In each cell Ck we define a new spin variable η(k) ∈ {−Q,−Q + 2, . . . , Q} given
by

η(k) =
∑

x∈Ck

σ(x) ,

i.e., η(k) is the total spin in Ck. The configuration space for the coarse grained system
is S̄M ≡ {−Q,−Q + 2, . . . , Q}Λ̄M and we denote η = {η(k)}k∈Λ̄M

a configuration on
the coarse lattice Λ̄M . It is also convenient to introduce the coarse-graining map
F : SN → S̄M given by F(σ) = η which assigns a configuration on the coarse lattice
Λ̄M given a configuration on the microscopic lattice ΛN . An equivalent coarse grained
variable, which we shall also use later, is

α(k) := card{x ∈ Ck : σ(x) = +1} = #{x ∈ Ck : σ(x) = +1} (2.3)

which takes values in {0, 1, . . . , Q}. The two equivalent coarse variables are related
by η = 2α − Q or α = η+Q

2 .
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Step 2. Coarse-graining of the prior distribution. The prior distribution PN on SN

induces a new prior distribution on S̄M given by P̄M = PN ◦ F−1, i.e.,

P̄M (η) = PN (σ : F(σ) = η) .

We note two simple, but important facts, which follow immediately from the definition
of F.

• The probability measure P̄M (dη) is a product measure

P̄M (dη) =
∏

k∈Λ̄M

ρ̄(dη(k)) with ρ̄(η(k)) =

(

Q
η(k)+Q

2

) (

1

2

)Q

.

• The conditional probability measure PN (dσ|η) is a product measure

PN (dσ|η) =
∏

k∈Λ̄M

ρ̃k,η(k)(dσ) , (2.4)

where ρ̃k,η(k)(dσ) depends only on {σ(x)}x∈Ck
; for example we have

ρ̃k,η(k)(σ(x) = 1) =
η(k) + Q

2Q
and ρ̃k,η(k)(σ(x) = −1) =

Q − η(k)

2Q
. (2.5)

For a function f = f(σ) the corresponding conditional expectation is given
by

E[f |η] =

∫

f(σ)PN (dσ|η) =

∫

f(σ)
∏

k

ρ̃k,η(k)(dσ) . (2.6)

Step 3. Coarse-graining of the Hamiltonian. We define an exact coarse-grained
Hamiltonian H̄M (η) by using the renormalization group block averaging transforma-
tion (also known as Kadanoff transformation), i.e.,

e−βH̄M(η) = E[e−βHN |η] . (2.7)

Given the Hamiltonian H̄M (η) we define the corresponding Gibbs measure on S̄M by

µ̄M,β(dη) =
1

Z̄M
e−βH̄M (η)P̄M (dη) . (2.8)

The factor β in front of H̄M is merely a convention as, in general, the Hamiltonian
H̄M depends itself on β in a nonlinear way. From a practical, and computational,
point of view the nonlinear Kadanoff transformation, even for moderately large N ,
is impossible to compute directly, and our goal is to present a rather systematic way
of calculating explicit approximations of the coarse-grained Hamiltonian H̄M , to any
given degree of accuracy. Our approach consists of two distinct substeps:

Step 3a: Find a “good” first approximation H̄
(0)
M (η) for the exact coarse-grained

H̄M (η). Since H̄M (η), of course, is unknown, a convenient way to quantify our first

approximation is to require the following a-priori estimate on H̄
(0)
M (η): If F(σ) = η

then

β

N

∣

∣

∣
HN (σ) − H̄

(0)
M (η)

∣

∣

∣
= O(ǫ) (2.9)
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for a suitable chosen small parameter ǫ. We include β on the left hand side of this
estimate since β multiplies the Hamiltonian in the Gibbs measure. It is important

to note that the choice of H̄
(0)
M (η) is not given a-priori, nor necessarily unique: a

good choice of H̄
(0)
M (η) should take into account all the properties of the system, e.g.,

temperature, range of the interaction, oscillations of the interactions, and so on. We
will discuss one such choice [19, 20] and its range of applicability in the next section.

Step 3b: Using the initial approximation H̄
(0)
M (η) we rewrite the exact coarse-graining

as (1.1), or

H̄M (η) = H̄
(0)
M (η) −

1

β
log E[e−β(HN (σ)−H̄

(0)
M

(η))|η] . (2.10)

The usefulness of this formula lies in the estimate (2.9), the fact HN (σ) − H̄
(0)
M (η))

is a sum of local interactions, and the fact the conditional probability PN (dσ|η) is
a product measure at the coarse level. These facts put us, at least in principle, in
the domain of applicability of cluster expansion techniques which allow a rigorous
expansion of H̄M in power of ǫ.

Remark 2.1. For fixed N the Kadanoff transformation is always well-defined.
However, from a physical point of view, one should be able to construct H̄M (η), for all
M , as a sum of translation-invariant local many body-interactions. In this respect it
is known that the Kadanoff transformation suffers some relatively mild pathologies at
very low temperatures [33, 3] but this will not affect our discussion in the parameter
ranges where our techniques apply.

2.3. Coarse-grained Hamiltonians and error estimates. We provide a con-
crete example where the strategy outlined in Sect. 2.2 has been carried out successfully
[20]. In particular it covers the case of system with long-range interactions which is
physically relevant and computationally challenging. In a subsequent paper [21] we

will discuss another choice of H̄
(0)
M which is more adapted for systems with strong

competition between short and long-range interactions.
In order to state our assumptions on the interactions let us consider a function

V : R
+ → R , such that V (r) = 0 for |r| ≥ 1 and let us assume that potential J(x−y)

has the form

J(x − y) =
1

Ld
V

(

1

L
|x − y|

)

, x, y ∈ ΛN , (2.11)

so that each site interacts with its neighbors up to a distance of L. The factor 1/Ld

in (2.11) is a normalization which ensures that the strength of the potential J is
essentially independent of L and ≃

∫

|V |dr. This allows us to consider the interaction
range L as an independent parameter of the system.

We define the first approximation H̄
(0)
M (η) by simply averaging the Hamiltonian

HN over coarse cells, i.e., we set

H̄
(0)
M (η) ≡ E[HN |η] . (2.12)

A simple computation using the conditional probability PN (dσ|η) shows that for x, y ∈
Ck we have

E[σ(x)|η] =
η(k)

Q
, E[σ(x)σ(y)|η] =

η(k)2 − Q

Q(Q − 1)
. (2.13)
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Using the factorization property of PN (dσ|η) one obtains

H̄
(0)
M (η) = −

1

2

∑

k

∑

l 6=k

J̄(k − l)η(k)η(l) −
1

2

∑

k

J̄(0)(η2(k) − Q) + h
∑

k

η(k) ,

where

J̄(k − l) =
1

Q2

∑

x∈Ck,y∈Cl

J(x − y) , for k 6= l,

J̄(0) =
1

Q(Q − 1)

∑

x,y∈Ck,y 6=x

J(x − y) , for k = l.

In H̄
(0)
M (η) the potential J(x− y) is replaced by its average over a coarse cell and

therefore the error for the potential is proportional to

Ekl(x − y) := J(x − y) − J̄(k − l) , x ∈ Ck, y ∈ Cl ,

which measures the variation of the potential J(x − y) over a cell. An estimate on
the error is provided by the following lemma, see [20]

Lemma 2.1. (Identification of a small parameter) Assume that J satisfies (2.11)
and V (r) is C1.

1. There exists a constant C > 0 such that, if x ∈ Ck and y ∈ Cl, we have

|J(x − y) − J̄(k − l)| ≤ 2
q

Ld+1
sup

x′
∈Ck,

y′∈Cl

‖∇V (x′ − y′)‖ . (2.14)

2. There exists a constant C > 0 such that, if F(σ) = η, we have

1

N

∣

∣

∣
HN (σ) − H̄

(0)
M (η)

∣

∣

∣
≤ C

q

L
‖∇V ‖∞ . (2.15)

While the estimate in Lemma 2.1 is not optimal it adequately identifies a small
parameter

ǫ ≡ Cβ
q

L
‖∇V ‖∞ , (2.16)

which encapsulates the various factors influencing our coarse-graining method: (i)
Ratio q/L of the coarse cell size compared to the interaction range; (ii) Temperature;
(iii) Variations of the potential. Clearly, improved estimates can be obtained when
the interaction potential J(x − y) has long-range decay properties.

Using a cluster expansion, the main result proved in [20] is
Theorem 2.2. (Expansion of the Hamiltonian) Assume that J satisfies (2.11)

and that V (r) is C1. Then there exists a constant δ0 > 0 such that if Qǫ < δ0, the
Hamiltonian H̄M (η) can be expanded into a convergent series

H̄M (η) =
∞
∑

p=0

H̄
(p)
M (η) ,

where each term H̄
(p)
M (η) is a sum of finite-range translation invariant many-body

potentials and we have the following error bounds, uniformly in η and N ,

β

N

(

H̄M (η) − (H̄
(0)
M (η) + . . . + H̄

(p)
M (η)

)

= O(ǫp+1) .
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It is important to note that the theorem provides an algorithm to compute the
corrections, in principle, to any degree of accuracy. The first few terms have been
calculated explicitly in [20] and are reproduced below.

While Theorem 2.2 gives error bounds at the level of the Hamiltonian, it is im-
portant to have error bounds for the corresponding Gibbs measure, since the latter
determines the most probable states η. Truncating the expansion we obtained the
following Gibbs measures

µ̄
(p)
M,β(dη) =

1

Z̄
(p)
M

e−β(H̄
(0)
M

(η)+...+H̄
(p)
M

(η))P̄M (dη) .

Coarse-graining is an information compression and therefore it is natural to measure
errors in this context in terms of the relative entropy which, by definition, is a measure
of the information loss. Recall that for two probability distribution π1 and π2 defined
on a common finite state space S, the relative entropy of π1 with respect to π2 is
defined as

R (π1 |π2) =
∑

σ∈S

π1(σ) log
π1(σ)

π2(σ)
.

Furthermore since we are dealing with extended systems and and compressing local
interactions, the errors will be extensive quantities and it is thus natural to measure
the error per unit volume, i.e. in terms of the relative entropy per unit volume. Note
that the exactness of the coarse-graining given by the Kadanoff transformation is
expressed by the fact that (see [20] Sect. 1.3)

1

N
R(µ̄M,β |µN,β ◦ F−1) = 0 .

Using Theorem 2.2 one can prove the following estimates [20]
Theorem 2.3. (Relative entropy error bounds)

1

N
R(µ̄

(0)
M,β |µN,β ◦ F−1) = O(ǫ2) ,

1

N
R(µ̄

(p)
M,β |µN,β ◦ F−1) = O(ǫp+1) ,

where p = 2, . . . and ǫ is given by (2.16).
Note that, naively, one would expect the error for the measure µ̄(0) constructed

with the first approximation H̄
(0)
M given in (2.12) to be O(ǫ). The fact that it is

actually O(ǫ2) is due to cancellations which follow from the definition of H̄
(0)
M .

2.4. Numerical coarse-graining schemes. Using the Hamiltonians provided
by Theorem 2.2 we can construct a number of Monte-Carlo methods, at the coarse-
level, to simulate the Gibbs measure µN,β. We will use Metropolis-type algorithms in
this paper, but other choices such as Arhenius dynamics can be used too.

The first scheme is based on the approximation based on H
(0)
M and has been

extensively studied in [17, 19, 18, 22].
Scheme 2.1 (2nd-order coarse-graining). The 2nd-order coarse-graining algo-

rithm has the following characteristics

1. Hamiltonian: H̄
(0)
M , see (2.12).
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2. Gibbs measure: µ̄
(0)
M,β(dη) =

1

Z̄
(0)
M

e−βH̄
(0)
M

(η)P̄M (dη).

3. Relative entropy error:
1

N
R(µ̄

(0)
M,β |µN,β ◦ F−1) = O(ǫ2).

Thus the scheme is second-order accurate.

Our second scheme is based on the expansion of the Hamiltonian in Theorem 2.2
and the error is O(ǫ3).

Scheme 2.2 (3rd-order coarse-graining). The 3rd-order coarse-graining algo-
rithm has the following characteristics

1. Hamiltonian: H̄
(0)
M + H̄

(1)
M + H̄

(2)
M .

2. Gibbs measure: µ̄
(2)
M,β(dη) =

1

Z̄
(2)
M

e−(H̄
(0)
M

+H̄
(1)
M

+H̄
(2)
M

)P̄M (dη).

3. Relative entropy error:
1

N
R(µ̄

(2)
M,β |µN,β ◦ F−1) = O(ǫ3).

Thus the scheme is third-order accurate.

To provide explicit formulas for H̄
(1)
M and H̄

(2)
M it is convenient to express our

results in terms of the variables α(k), i.e., the number of spins σ(x) = 1 in the coarse
cell Ck), and ω(k) = q − α(k). We introduce the following quantities, assuming in
each case that all spins belong to a single cell but are located at different sites of the
cells.

E1(α) := E[σ(x)|α] =
2α − q

q
(2.17)

E2(α) := E[σ(x)σ(y)|α] =
α(α − 1) − 2αω + ω(ω − 1)

q(q − 1)
(2.18)

E3(α) := E[σ(x)σ(y)σ(z)|α] =

=
α(α − 1)(α − 2) − 3α(α − 1)ω + 3α(ω − 1)ω − (ω − 2)(ω − 1)ω

q(q − 1)(q − 2)
(2.19)

E4(α) := E[σ(x)σ(y)σ(z)|α] =

=
α(α − 1)(α − 2)(α − 3) − 4α(α − 1)(α − 2)ω

q(q − 1)(q − 2)(q − 3)
+

+
6α(α − 1)(ω − 1)ω − 4α(ω − 2)(ω − 1)ω + ω(ω − 1)(ω − 2)(ω − 3)

q(q − 1)(q − 2)(q − 3)
(2.20)

Furthermore, we introduce the notation

j1
kl :=

∑

x∈Ck
y∈Cl

(J(x − y) − J̄(k, l))2 (2.21)

j2
kl :=

∑

x∈Ck
y,y′∈Cl

(J(x − y) − J̄(k, l))(J(x − y′) − J̄(k, l)) (2.22)

j2
k1k2k3

:=
∑

x∈Ck1
y∈Ck2

,z∈Ck3

(J(x − y) − J̄(k1, k2))(J(y − z) − J̄(k2, k3)) (2.23)

If k1 = k2 then we also impose that for x, y ∈ Ck1 we have y 6= x.
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Then we have

−H̄
(1)
M (η) =

β

8

∑

k

4j2
kk [−E4(α(k)) + E2(α(k))+]

+2j1
kk [E4(α(k)) + 1 − 2E2(α(k))] +

(2.24)

+
β

2

∑

k<l

j1
kl [E2(α(k))E2(α(l)) − E2(α(l)) − E2(α(k)) + 1] +

+j2
kl [−2E2(α(k))E2(α(l)) + E2(α(k)) + E2(α(l))] +

+
β

2

∑

k,l 6=k

j2
kkl [−E3(α(k))E1(α(l)) + 2E1(α(k))E1(α(l)) −

− E3(α(l))E1(α(k))] .

and

H̄
(2)
M (η) = β

∑

k1

∑

k2>k1

∑

k3>k2

j2
k1k2k3

[−E1(α(k1))E2(α(k2))E1(α(k3)) + E1(α(k1))E1(α(k3))]

+j2
k2k3k1

[−E1(α(k2))E2(α(k3))E1(α(k1)) + E1(α(k2))E1(α(k1))]

+j2
k3k1k2

[−E1(α(k3))E2(α(k1))E1(α(k2)) + E1(α(k3))E1(α(k2))] .

(2.25)

3. A posteriori estimation and adaptive coarse-graining. The error esti-
mate in Theorem 2.3, along with the cluster expansion in Theorem 2.2 combine to
provide us with an explicit representation of the error in the coarse-grained numerical
approximation. For instance, in [20] we showed the following a posteriori error for
Scheme 2.1:

Theorem 3.1. (A posteriori error) We have

1

N
R(µ̄

(0)
M,β |µN,β ◦ F−1) =

1

N
E

µ̄
(0)
M,β

[R(η)] +
1

N
log

(

E
µ̄

(0)
M,β

[eR(η)]
)

+ O(ǫ3) ,

where the residuum operator R is given by R(η) = H̄
(1)
M (η) + H̄

(2)
M (η) .

Note also that such an a posteriori error cannot be numerically computed directly from
the relative entropy formula, since it involves the calculation of the entire probability
densities. However, the error representation indicates that the error in coarse-graining
can be computed on-the-fly, during a coarse-grained simulation. As the Theorem
suggests, when using Scheme 2.1, the a posteriori error can be described exclusively

in terms of the coarse observables η: the error involves only H̄
(1,2)
M (η) plus a controlled

error of order O(ǫ3).
Earlier work that uses only an upper bound and not the sharp estimate of The-

orem 3.1 can be found in [6, 7]. These papers are more related in spirit to adap-
tive finite element methods for PDEs, where a posteriori errors are typically used
to construct spatially adaptive coarse-grainings. However the implementation proved
somewhat cumbersome due to the extensive sampling needed in determining the op-
timal spatially-variable coarse lattice mesh, without excluding the possibility that the
methods can be substantially improved.

In this paper we implement the sharp a posteriori estimates of Theorem 3.1,
tracking them throughout our simulations. The on-the-fly estimated error serves as
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a diagnostic tool for the quality of the coarse-grained simulations. It indicates when
a particular level of coarse-graining produces excessive error and needs to be refined,
or when it can be safely coarsened further in order to speed up the simulation. This
approach leads to adaptive coarse-graining of the microscopic system and clearly relies
on the fact that the coarse-grained models introduced in [19, 20] form a hierarchy of
models. The hierarchy includes the microscopic description at the finest level, while
it allows for a seamless transition between different resolutions.

We demonstrate the use of such diagnostics and the ensuing adaptive coarse-
grainings in the numerical calculation of phase diagrams in systems with combined
short and long range interactions. In this case it turns out that most of the phase
diagram is constructed using coarse levels and hence inexpensive-simulations, while
the relatively fewer regimes where critical phenomena arise, require finer, or even fully
resolved simulations. The transitions from finer to coarser scales and back are done
on-the-fly, based on the a posteriori error computation. The refinement or coarsening
are govern by the error indicator of Theorem 3.1. We remark that this indicator does
not easily relate to the absolute error of a given observable (e.g., magnetization). In
the presented simulations a simple strategy has been adopted: the change of the level
is controlled by the relative value of the indicator with respect to its maximal value
along the simulation path. More elaborate strategies for the error control will be
discussed elsewhere.

4. Computational algorithms and numerical experiments. The error es-
timates presented in Section 2.3 open a new way to evaluate a posteriori the quality
of coarse-grained simulations performed with Scheme 2.1 or Scheme 2.2. The a poste-
riori indicator from Theorem 3.1 is useful for exploring phase diagrams efficiently and
refininig the simulation only at critical regions of the parameter space. We demon-
strate the properties of Scheme 2.1 and Scheme 2.2 on a prototype problem that
includes both short-range and long-range interactions. Competing short-range and
long-range interactions appear in diverse applications such as micromagnetics, epi-
taxial growth or macromolecular systems and their implementation is known to be
a difficult computational task. The presented test example, due to M. Kardar [16],
has analytical solutions in one or higher dimensions and exhibits a host of interesting
complex behavior including phase transitions, multicritical behavior in the antiferro-
magnetic regime, as well as crossover from mean field to nearest-neighbor regimes.
The one-dimensional system provides a suitable test bed since the exact (analytical)
solutions are known for both the classical Ising system (i.e., the nearest-neighbor in-
teractions only) and the mean-field model (the Curie-Weiss model). We use the exact
solutions to ensure that the simulations are not influenced by finite-size effects. In all
figures the exact solutions visually coincide with the fully resolved simulations, i.e.,
q = 1. We computed error bars for statistical post-processing, however, they are not
displayed in the figures due to their small relative size as compared to the scales of
figures.

Test Example: combined short and long range interactions. ([16])
The model combines the classical nearest-neighbor interaction of Ising spins in the
external magnetic field with a weak long-range interaction. By adding the long-range,
Kac-type interaction we observe transition between the critical behavior of the Ising
model and the mean-field model. We briefly describe the formulation of the model
and refer the reader to [16] for more details about analysis and various types of phase
transitions. The Hamiltonian of the system describes interaction of N spins coupled by
a nearest-neighbor interaction of the strength K and a long-range Kac-type potential



12 M.A. Katsoulakis, P. Plecháč, L. Rey-Bellet, D. K. Tsagkarogiannis

of the constant strength J/N

βH(σ) = −
K

2

∑

x

∑

|y−x|=1

σ(x)σ(y) −
J

2N

∑

x

∑

y 6=x

σ(x)σ(y) − h
∑

x

σ(x) . (4.1)

The technique of central-limit minimization applied in [16] yields, in the thermody-
namic limit N → ∞, the minimization problem for the free energy F (K, J, h)

F (K, J, h) = min
m

{

1

2
Jm2 + F0(K, Jm + h)

}

,

where F0 = F0(K, h) is the free energy of the nearest neighbor (J = 0) Ising model
with interaction strength K and external field h. Using the well-known explicit solu-
tion of the one-dimensional nearest neighbor Ising model we have

F (K, J, h) =

min
m

{

1

2
Jm2 − log

[

eK cosh(h + Jm) + (e2K sinh2(h + Jm) + e−2K)1/2
]

}

,

or equivalently the magnetization curve is given by the minimizer

mβ(K, J, h) = (4.2)

argmin
m

(

J

2
m2 − log

[

eK cosh(h + Jm) +

√

e2K sinh2(h + Jm) + e−2K

])

.

A sketch of the phase diagram for h = 0 is depicted in Figure 4.1. In the plane of
parameters K and J , with h = 0 there is a line of classical (mean-field) second-order
transitions corresponding to Jc = e−2K terminating at a classical tri-critical point
given by Kt = −1/4 log 3. The line separates the disordered state (with the mean
magnetization 〈m〉 = 0) and the ferromagnetic state. We also plot magnetization
curves depending on K for specific values of J indicated in the insets in the phase
diagram. To remove degeneracy due to the reflectional symmetry we perform simula-
tions with a small external field h = 0.05 and plot the quantity 〈|m|〉 rather than 〈m〉.
By 〈.〉 we denote the expected value (average) with respect to the equilibrium Gibbs
measure. Knowing the exact solution in the thermodynamic limit we can explore the
behavior of the coarse-graining schemes at different regimes, depending on the choice
of the parameters K and J .

Case I: Long-range interactions only, K = 0: First we choose K = 0 which corre-
sponds to a purely long-range interaction as in the Curie-Weiss model. The approx-
imation of the hysteresis behavior in coarse-grained simulations provides a good test
for the two coarse-graining schemes. It has been observed previously that hysteresis
and critical behavior are not captured properly for short and intermediate range po-
tentials, [19]. Similar issues in predicting critical behavior were also observed in [28]
for coarse-graining of complex fluids. There an artificial solidification effect was ob-
served for higher levels of coarse-graining. Similar issues arise in the coarse-graining
of polymer chains [1].

In the numerical tests presented here we demonstrate that the derived corrections
improve this behavior even in the case of nearest-neighbor interactions or high coarse-
graining ratio q. The sampling of the equilibrium measure is done by using microscopic
and coarse-grained Metropolis dynamics. We compute isotherms similarly to natural
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Fig. 4.1. Phase diagram for the one-dimensional model (the exact solution from [16]). Insets
depict depends of the magnetization curve < |m| > for the fixed value of J and the fixed external
field h = 0.

parameter continuation, i.e., we trace the magnetization mβ vs. external field h, first
upon increasing the field h from low values and then decreasing it from high values.

While nearest neighbor Ising models in one dimension do not exhibit phase tran-
sitions, for infinitely long attractive interactions there exists a 2nd-order phase tran-
sition, and hysteresis behavior is observed according to the global mean-field theory
for β > βc, [12]. More explicitly, the mean-field (Curie-Weiss) model gives the mag-
netization curve as a solution of the non-linear equation

mβ(h) = tanh
[

β
(

J0mβ(h) + h
)]

. (4.3)

The Curie-Weiss model exhibits phase transition at the critical temperature given by
βcJ0 = 1 in the case of spins {−1, 1} (βcJ0 = 4 for spins {0, 1}). Similarly Ising
systems with long enough interaction radii also exhibit phase transitions. We explore
two such cases below in the context of our coarse-graining schemes and use the mean
field magnetization (4.3) as a point of reference.

All simulations have been done with the fine lattice of the size N = 512. As
derived in Theorem 2.2 the errors depend on the interplay of three parameters q,
L and β, and the potential J . Improvements due to application of higher-order
Scheme 2.2 have been reported in [20]. The transition between two equilibria may not
be estimated accurately in the coarse-grained model. The a posteriori error indicator
we present here allows us to refine the level of coarse-graining at the critical regions
of the phase diagram. This application of the error estimates is demonstrated in
Figure 4.2 where most of the magnetisation curve is simulated at the level q = 8 (i.e.,
coarse-graining to the nearest-neighbour) and it is adaptively refined to capture the
transition accurately only at the transition region. In Figure 4.3 we also plot the
distribution of the error along the continuation in h.
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Fig. 4.2. Demonstration of adaptivity dictated by the a posteriori error indicator. Magneti-
zation curve for the purely long-range interaction case, i.e., K = 0. Levels of coarse-graining for
sampling at different points of the phase diagram h-〈m〉 are depicted in the middle of the figure.

Case II: short-range interactions only, J = 0: In this case the test problem reduces to
the classical Ising model. We recall that in the case of nearest-neighbor interactions
the one-dimensional system does not exhibit phase transition. In fact, the exact
solution is given by a well-known formula (see, e.g., [25]), which we adopt to our choice
of Hamiltonian with the constant nearest-neighbor (L = 1) interaction potential of
strength K. The equilibrium magnetization curve is then given by

mβ(h) =
sinh(βh)

√

sinh2(βh) + e−2βK

. (4.4)

Our analysis predicts that the coarse-graining beyond the interaction range L in this
case will produce significant errors. Nonetheless, Figure 4.4 demonstrates that in-
cluding 3rd-order corrections in Scheme 2.2 improves the accuracy for a wide range of
interaction strength K. Note that in the Ising model K and β play an equivalent role.
Large values of K correspond to low temperatures. Therefore we include error bars
for estimated statistical errors as an accurate sampling in low temperatures becomes
more difficult. The discrepancies for higher values of K are consistent with the error
estimate in Theorem 2.2. In Figure 4.4 we explored also a range of antiferromagnetic
interactions, i.e., negative values of K. The exact magnetization curve is again given
by (4.4) and is also depicted in Figure 4.5. Note that this regime exhibits microstruc-
ture (disordered phase) at the finest scale, when the external field h is close to zero;
thus the coarse-grained observable η, which is essentially a local average (see Sec-
tion 2.2), is not expected to work well. We estimate the error using the a posteriori
error indicator and Figure 4.6 depicts distribution of error along the magnetization
curve. When using the error indicator we can explore the phase diagram efficiently as
we can limit the region of parameters (h in this case) where fully resolved, microscopic
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Fig. 4.3. Distribution of error for the purely long-range interaction case, i.e., K = 0.

simulations need to be performed. This point is clearly visiaulized in Figure 4.5 where
we also indicate the level of coarse-graining.

Case III: competing short and long-range interaction K 6= 0 and J 6= 0: Many realistic
lattice and off-lattice systems arising in diverse applications such as micromagnetics,
epitaxial growth or macromolecular systems involve combinations of short-range and
long-range interactions. We show a comparison of the exact solution (4.2) to coarse-
grained simulations in Figure 4.7. It appears that both Scheme 2.1 and Scheme 2.2
perform modestly well, however a special coarse-graining strategy needs to be devised
for such systems due to the short-range interactions in the Hamiltonian. In a subse-
quent paper [21] we will show how to extend our analysis to such systems with both
short and long-range interactions. However, the presented strategy still allows us to
perform simulations with adaptive coarse-graining in which case we can approximate
the solution within a controlled error. We observe in Figure 4.7 that depending on
the tolerance allowed in the simulation the refinement is not necessarily up to the
microscopic level q = 1.

We conclude this section with a brief remark about the computational complexity
of the approximations. As a simple measure of complexity we use the number of
operations required for evaluating the Hamiltonian. Although the actual Monte Carlo
step does not require evaluation of the full Hamiltonian the relative complexity with
respect to the operation count of the full microscopic simulation q = 1 is properly
reflected by this measure. The major computational cost in a typical lattice simulation
on a d-dimensional lattice will be related to evaluating the long-range interactions of
the radius L. We summarize the computational complexity in Table 4 We see that the
3rd-order approximation gives an improved error estimate at the same computational
cost whenever q = L, in other words, whenever we can compress interactions to the
nearest-neighbor potential.
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antiferromagnetic interaction, i.e., K = −1.

Count Speed-up
Microscopic q = 1: HN (σ) O(NLd) 1

Scheme 2.1: H̄
(0)
M O(MLd/qd) O(q2d)

Scheme 2.2: H̄
(0)
M + H̄

(1)
M O(ML2d/q2d) O(q3d/Ld)

Table 4.1
Computational complexity of evaluating the Hamiltonian on the d-dimensional lattice for the

interaction range L and the coarse-graining level q,

5. Connections to the coarse-graining of polymeric chains. In this paper
as well as earlier in [20], we studied analytically and computationally strategies for
coarse-graining many-particle microscopic systems. Our work focused on prototype
stochastic lattice systems which provide a more tractable setup to study this problem,
while at the same time they can still have complex collective behaviors which pose
substantial challenges in devising accurate coarse-graining algorithms. At this point it
seems that the our methodologies have the potential to be extended to more complex,
off-lattice macromolecular systems. We next briefly outline how such an extension
could be carried out by drawing some broad analogies between our current work and
existing approaches in polymer science.

Coarse-graining of polymer and other macromolecular systems has attracted con-
siderable attention in polymers science and engineering, [23, 27]. The primary goal is
to group together in a systematic manner several atoms on a macromolecule, creating
an effective new chain, as means of reducing the degrees of freedom of the original
system. Some of the key challenges in this effort is the off-lattice set-up of the mod-
els, as well as the presence of complex short and long range interactions; in fact, the
latter feature is what partly motivated our study in Section 4 of lattice systems with
combined short and long range interactions. Here we consider as our microscopic
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Fig. 4.7. Adaptive coarse-graining in the computation of the magnetization curve 〈|m|〉 depend-
ing on the strength of the short-range (nearest-neighbour) interaction K. Levels of coarse-graining
for sampling at different points of the phase diagram h-〈m〉 are depicted in the middle of the figure.

polymeric system a United Atom model, as typically studied in the polymer science
coarse-graining literature, see for instance [4], [8], [10]. This class of models consists
of n macromolecules (e.g. polymer chains) in a simulation box with a fixed volume
at the inverse temperature β. Each molecule consists of m atoms. We have in total
N = nm microscopic particles represented by their position in configuration space
R

3d, X = (x1, . . . , xN ), where xi ∈ R
3 is the position vector of the ith atom. The

interactions in the system are described by the Hamiltonian

HN (X) = Hb(X) + Hnb(X) + HCoul(X) + Hwall(X) + Hkin(X) (5.1)

The first term Hb defines short-range (bonded) interactions between neighboring
atoms in each individual polymer chain; it is defined in terms of a potential Ub,
i.e. Hb =

∑

Ub The second term Hnb describes non-bonded long-range interactions
between atoms in different chains and is typically modelled with a Lennard-Jones
two-body potential Unb. The Coulomb term HCoul describes interactions associated
with charged macromolecules, while Hwall interactions with walls. Finally the term
Hkin is the total kinetic energy of the system. We next consider the canonical Gibbs
measure (ensemble) at the inverse temperature β given by

µ(dX) = Z−1e−βHN (X)
∏

i

dxi , Z =

∫

X

e−βHN(X)
∏

i

dxi . (5.2)

In order to obtain a coarse-grained description of the above system, we follow the
standard practice in the aforementioned polymer science literature and lump together
k microscopic atoms on the same chain into a single coarse-grained state, which is
usually referred as a “super-atom”; we thus have M = N/k coarse-grained variables
describing the whole system. The coarse variables are denoted by Q = (q1, . . . , qM )
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Fig. 4.8. Distribution of error in computing the K-〈|m|〉 phase diagram.

where each qi ∈ R
3 corresponds to one“super-atom”. The new coarse state Q is

completely analogous to the coarse variable η employed in the lattice case.
Once the coarse variables are selected, we focus on obtaining the coarse-grained

Hamiltonian and the corresponding interaction potentials. In fact, as in the lattice
case (2.8), the exact coarse-grained Hamiltonian H̄M (Q) is defined by the renormal-
ization map

e−βH̄M(Q) =

∫

{X|FX=Q}

e−βHN (X) dX , (5.3)

where F denotes again the projection from fine to coarse variables. Following our
strategy outlined earlier for the lattice case, we would next need to identify a suitable

first approximation H̄
(0)
M (Q) and as in (2.10) rewrite (5.3) as

H̄M (Q) = H̄
(0)
M (Q) −

1

β
log

∫

{X|FX=Q}

e−β(HN (X)−H̄
(0)
M

(Q)) dX . (5.4)

Cluster expansions can be used to further improve the initial approximation H̄
(0)
M (Q),

similarly to (1.2).
This outline provides a brief sketch of how the coarse-grained procedure intro-

duced in [20] is extended to off-lattice polymer systems. A detailed presentation,
analysis and extensive simulations for the polymers case will appear in [11].
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