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On Tensor Approximation of Green Iterationsfor Kohn-Sham EquationsBoris N. KhoromskijMax-Plank-Institute for Mathematis in the SienesInselstr. 22-26, D-04103 Leipzig, Germanyfbokhg�mis.mpg.deAbstratIn the present paper we disuss eÆient rank-strutured tensor approximation meth-ods for 3D integral transforms representing the Green iterations for the Kohn-Shamequation. We analyse the loal onvergene of the Newton iteration to solve the Green'sfuntion integral formulation of the Kohn-Sham model in eletroni struture alula-tions. We prove the low-separation rank approximations for the arising disrete onvolv-ing kernels given by the Coulomb and Yukawa potentials 1=jxj, and e��jxj=jxj, respe-tively, with x 2 Rd . Complexity analysis of the nonlinear iteration with trunation tothe �xed Kroneker tensor-produt format is presented. Our method has linear salingin the univariate problem size. Numerial illustrations demostrate uniform exponentialonvergene of tensor approximations in the orthogonal Tuker and anonial formats.1 IntrodutionPrimarily, low rank tensor deomposition methods were applied in hemometris and inde-pendent omponent analysis and further spread on image proessing, population modelling,mathematial biology and �nanial mathematis. They were generally treated as methods forstatistial data proessing [34, 31℄ with moderate auray requirements.Beginning from [2℄ and [21℄ the idea of tensor approximation of operators and funtionshas lead to the powerful omputational tools in large-sale problems of omputational physis.Reent papers show that this tehnique is surprisingly eÆient in multi-dimensional omputa-tions, where the traditional methods fail due to the "urse of dimensionality". In partiular,we mention results for many-partile models based on the eletroni Shr�odinger [30, 3, 13℄and Hartree-Fok [23, 4, 5℄ equations in eletroni struture alulations, for the Ornstein-Zernike equation in moleular density simulations [8℄, and for the deterministi Boltzmannequation [25℄ for dilute gas.The Hartree-Fok/Kohn-Sham equations in 3D provide a mean-�eld approximation for theground state of many-eletron systems initially desribed by the high-dimensional eletroniShr�odinger equation. Methods based on the Hartree-Fok model (wavefuntion methods)are preferred if the preise simulation of small size systems is required. In turn, the density1



funtional methods based on the Kohn-Sham model an be used for numerial simulation oflarge moleular systems (say, proteins) as well as in the solid state physis.In this paper, we disuss the methods of low-separation rank representations of Greeniterations for the Kohn-Sham equation, whih sale linearly in the univariate problem size.The tehniques an be applied as well to the Hartree-Fok model. The main results presentedbelow an be formulated as follows:� Proof of the loal onvergene of the Newton iterations for the Green funtion formula-tion of the Kohn-Sham equation.� Proof of the low-separation rank approximations for the disrete onvolving kernels givenby the Coulomb and Yukawa potentials 1=jxj, and e��jxj=jxj, respetively, with x 2 R3 .� Complexity analysis of the nonlinear iteration with trunation to �xed Kroneker tensor-produt format.� Numerial illustrations.Tensor approximation methods form the main building bloks of our approah. Prinipaladvantages of the tensor-produt representations of operators and funtions are sublinearstorage and omplexity of multi-linear algebra (MLA) operations (say, matrix-vetor andmatrix-matrix produts, matrix inversion, onvolution produt, funtions of matries) appliedto higher-order tensors. The main diÆulties of numerial MLA arise from the fat thattensor approximation methods are atually equivalent to nonlinear approximations in higherdimensions.There are algebrai, analytially-based and ombined strategies for omputing the lowtensor-rank approximations of a higher-order tensor:� Algebrai methods are the most general ones. The ommon approah is to derive the uni-variate omponents of separable terms by straightforward minimisation of the quadratiost funtional (see (3.5) below).� Analytially-based approximation methods are eÆient for a speial lass of funtion-related tensors (see the desription of sin-methods in x3.5).� Combined methods are designed to take advantage of both algebrai and analyti ap-proahes, and, at the same time, to relax their limitations (f. [24℄). In this way, theinitial analyti approximations an be optimised via the algebrai rank reompression.Analyti sin-quadrature based and ombined methods will be in the fous of the presentpaper.EÆient solution proess for the Hartree-Fok/Kohn-Sham equations an be performedby approximate nonlinear iterations via the ontrolled tensor rank [22℄. In this ontext,understanding of the trunated MLA operations addresses the following issues: existene oflow-rank approximations, onstrution of a good initial guess, fast algebrai methods basedon rank trunation.It is worth to note that the omplexity of low-separation rank approximations of funtionsand operators sales linearly in the univariate problem size, allowing to avoid tehniallyinvolved high-order approximations in the spae variables. Hene, simple low-order ansatzspaes, say, by pieewise onstant/linear basis funtions, an be applied.2



The rest of the paper is organised as follows. In Setion 2 we disuss the Green funtionbased integral formulation of the Kohn-Sham equation. The main result of this Setionis the onvergene theory for the Newton iteration. Setion 3 proves the low tensor-rankapproximations of arising onvolution operator. In Setion 4 we desribe the disretisationshemes, disuss the omplexity issues and present numerial illustrations.We mention that omparative analysis of the urrent approah with other ommonly usedmethods to ompute invarian subspaes, say, based on the Krylov-subspae-Lanzos algo-rithms or the Davidson methods, will be the topi of a separate paper.2 Green funtion based integral formulation2.1 Basi equationsThe Hartree-Fok equation for determination of the ground state of a moleular system on-sisting of M nulei and N eletrons is a self-onsistent eigenvalue problem in L2(R3)F��i(x) = �i �i(x); ZR3 �i�j = Æij; i; j = 1; :::; N (2.1)with F� being the nonlinear Fok operatorF� := �12� � MX�=1 Z�j� � a�j + VH � NXj=1 �� �j ? 1jxj��j;with the Hartree potential de�ned byVH(x) := �� ? 1jxj� (x);where ? denotes the onvolution produt in L2(R3), and Z�, a� (� = 1; :::;M) speify hargesand positions of M nulei. The eletron density � : R3 ! R is given by�(x) = NXi=1 j�i(x)j2; x 2 R3 :The last term in the Fok operator F� (the so-alled exhange potential) is the most ompli-ated part for the numerial treatment. In fat, it de�nes the nonloal interation(Vx )(x) = NXi=1 ZR3 �i(x)�i(x0)jx� x0j  (x0)dx0;that inludes the onvolution with the density matrix�(x; x0) := NXi=1 �i(x)�i(x0):It an be proven that �i solutions to (2.1) are smooth funtions having a usp at eah pointnuleus, and in addition, they derease exponentially fast at in�nity. The density � is an3



exponentially dereasing funtion at in�nity, as well (see the review paper [29℄). Furtherregularity results for the eletroni Shr�odinger and Hartree-Fok equations an be found in[36, 10, ?℄.In the Kohn-Sham model one deals with the system of equations (2.1), where the nonloaloperator F� is substituted by a loal one,F� := �12� � MX�=1 Z�j� � a� j + VH + vx(�) (2.2)with vx(�) being a salar funtion that depends only upon �(x). One possible hoie isvx(�) = �1=3.A standard method to solve the system of nonlinear equations (2.1) is based on the two-level iteration whih inludes:(a) the so-alled self-onsistent �eld (SCF) algorithms, i.e., the iterations on the nonlinearity,(b) at eah SCF yle, omputation of the spetral projetion to build the update of eletrondensity/density matrix, using the urrent (frozen) disretisation to the Fok or Kohn-Sham operators.Hene, the rutial point for the eÆient performane of nested iterations (a), (b) would bethe multiple omputation of N -dimensional invariant subspae of �xed linear operators F� orF�.2.2 Green's funtion formulationIn the present notes we fous on the solution of the spetral problem at step (b) of SCFiteration in the set of low-separation rank funtions. We will onsider the eigenvalue problemof the form H� := [�12� + V ℄� = ��; (2.3)posed in L2(R3), where the \interation" potential V ensures the existene of the disretespetrum that belongs to (�1; 0), and also it allows the low-separation rank representationin univariate variables in the sense whih will be spei�ed later on. To avoid unessentialtehnialities, below, we onsider the Kohn-Sham model, that is represented by the loalmultipliation operator with the potentialV := � MX�=1 Z�j � � a� j + �� ? 1jxj�+ vx(�): (2.4)However, the Hartree-Fok equation an be treated with minor modi�ations.For the ease of presentation, we onsider the omputation of the minimal eigenvalue�� = min(�(�12� + V ))and the orresponding eigenfuntion �� of the problem (2.3). Introduing the ellipti resolvent(the Green's funtion operator) Rz = (��+ zI)�14



with the kernel funtion de�ned by the Yukawa potentialGz(x) := e�zjxj4�jxj ; z 2 (0;1); (2.5)and setting z = p�2�, we obtain the equivalent formulation to the eigenvalue problem (2.3)� = Gz� with Gz := �2(V � ) ? Gz � �2RzV (2.6)with the ompat operator Gz. This formulation was �rst introdued in [19℄. The importantfeature of this approah is that any eigenvalue-eigenfuntion pair, (�; �), (� in the disretespetrum), for the operator H is a �xed point solution of the problem (2.6) (f. [23℄).Numerial algorithms for solving the integral equation (2.6) are based on onsidering theeigenvalue problem for the Lippmann-Shwinger type parametri integral operator�z�z = Gz�z for z 2 (0;1); (2.7)where both �z = �(z) and �z depend on the parameter z.Lemma 2.1 Suppose that the \exhange part" vx(�) in the Kohn-Sham potential (2.4) sat-is�es assumption vx(�)(x) = V1(x) + V2(x)with V1 2 L2(R3); V2 2 L1(R3);where V2 an be taken to be arbitrarily small in the L1 sense.Then ��� = 1 is the largest eigenvalue of G��, and the orresponding single eigenfuntion��� = �� is the desired ground-state eigenfuntion of (2.3).Proof. The proof is a slight modi�ation of respetive arguments in the proof of Thm 1.1, [30℄.This inludes the relation kG��k = 1 in Proposition 3.1, [30℄, whih an be similarly justi�edin our ase.2.3 Analysis of the Newton iterationLemma 2.1 implies that �nding the eigenvalue �� an be redued to iterative solution of thesalar nonlinear equation �(z) = 1; z 2 R+ (2.8)with an initial guess z0 2 R+ that belongs to the attration basin of �� (we never starteletroni struture alulations from srath).Remark 2.2 Other eigenvalues/eigenfuntions may be obtained by deation whih is usedto reast the integral equation for eah orbital as a ground-state problem (see [23℄ for moredetails). Let Pm be the orthoprojetion onto the spae of eigenfuntions of lower energy thanorbital m. Then the mth oupied orbital  m will be the lowest energy solution of(I � Pm)H(I � Pm) m = �m m;whih leads to the modi�ed integral formulation m = �2Rz(V + PmH(I � Pm)) m:5



Several iteration shemes were onsidered in the literature to solve the nonlinear problem(2.6). In partiular, in the ase of Shr�odinger equation, the onvergene of the power methodin the form �n+1 = Gzn�nkGzn�nk ; zn+1 = hH�n+1; �n+1iwas analysed in [30℄. Under the orresponding assumptions, the power method an be appliedto the Kohn-Sham equation as well (see Theorem 2.3). Newton's type iteration in the forme�n = Gzn�n; �n+1 = e�n=ke�nk;zn+1 = zn � hV �n; �n � e�ni=ke�nk2;was applied in [23℄ to the Kohn-Sham equation de�ned by the potential (2.4).The following result provides suÆient onditions for the quadrati (loal) onvergene ofthe Newton iteration applied diretly to equation (2.8),given z0 : zn+1 = zn � �(zn)� 1���z (zn) ; n = 0; 1; ::: (2.9)Partiular realization of the iteration (2.9) is determined by approximations hosen for �(zn)and ���z (zn).Theorem 2.3 (I) Under assumptions in Lemma 2.1 the power method onverges geometri-ally.(II) Let the exat eigenvalue-eigenfuntion pair of (2.3), (��; ��), satisfyh(V ��) ? e�z�jxj; ��i 6= 0; z� =p�2��: (2.10)Then (a) the Newton iteration (2.9) onverges (loally) quadratially, and(b) the quasi-Newton iteration de�ned by the approximation���z (zn) � h(V �n) ? e�znjxj; �ni;onverges (loally) quadratially as well.Proof. First, we note that Gz is an analyti family in z, hene (V � ) ? Gz is an analyti familyand thus its eigenvalue �z and eigenfuntion �z depend analytially on z. Di�erentiatingequation (2.7) at z = z�, we obtain��z�z �� + ��z�z = �Gz�z �� + Gz� ��z�z :Salar multipliation of this equation with �� and taking into aount the symmetry of Gz�and relations G���� = ��; h��; ��i = 1;leads to ��z�z jz=z� = ��Gz�z jz=z���; ��� : (2.11)6



Moreover, the diret omputation shows that�Gz�z jz=z� = (V � ) ? e�z�jxj: (2.12)This proves (a).Furthermore, due to analytiity of Gz in z, and in view of (2.11) and (2.12), we onludethat the approximation of ��z�z (in general nonomputable) given by��z�z (zn) � ��z�z (z�) = h(V ��) ? e�z�jxj; ��iensures the loal quadrati onvergene. The desired omputable approximation an be provenby perturbation argument. Indeed, the funtional f : R+ � L2(R3)! R,f(z; �) := 1=h(V �) ? e�zjxj; �i; z > 0;is ontinuously di�erentiable at (z�; ��) , hene, in the small viinity of (z�; ��), we havef(zn; �n) = 1=h(V ��) ? e�z�jxj; ��i+ �n; �n 2 R;where j�nj � C(jz� � znj+ k�� � �nk):This ompletes the proof of part (b).In this paper, we fous on the eÆient implementation of the Lippmann-Shwinger typeoperator Gz for z > 0, whih onstitutes the omputational kern of the Green iterations inboth power method and Newton's sheme.Example 2.4 The non-degeneray ondition (2.10) an be justi�ed in the ase of Hydrogenatom/ion with V (x) = C=jxj and ��(x) = e���jxj with �� > 0 (say, �� = 1=2). In fat, usingrepresentation in spherial oordinates, it is easy to hek thathe���jxjjxj ? e���jxj; e���jxji 6= 0:3 Low tensor-rank representation of operators3.1 Main motivationsWe are interested in the low tensor-rank approximation of the Green's funtion operator Gzin (2.6), whih an be presented (up to the saling fator) in one of the following formsGz = (V � ) ? Gz � RzV: (3.1)The �rst one is well suited for the integral representation of equation (2.6), while the seondform, that ontains the ellipti resolvent, an be applied to the FE/FD disretisations of theinitial equation (2.3) posed on the bounded domain. We refer to [12, 17, 20℄ onerning thelow-rank tensor approximation methods for the ellipti resolvent operators.To �x the point, in the following we disuss the method of fast tensor-produt onvolutionof the Yukawa kernel and the ation of interation potential, (V �)? Gz, involved in the integralrepresentation of equation (2.6). Our approah is based on the ideas from [15, 26℄ appliedto the olloation onvolution shemes. The main advantages of the integral representationGz = (V � ) ? Gz are the following: 7



� Compatness of the operator Gz.� Appliability of simple olloation shemes with disontinuous basis funtions (L2 set-ting).� Possibility to ompute the total energy using only integral operators (avoid the appli-ation of � that requires at least H1 basis funtions).� Existene of low-separation rank appproximations to the operators V and Gz.� Nonlinear (say, Newton's) quadratially onvergent iteration, whih is well suited forthe numerial multi-linear algebra via trunation to �xed tensor format.Notie that for the sake of generality, most onstrutions in the next setion will be de-sribed in the d-dimensional ase with the arbitrary dimension parameter d, while the basiequations in eletroni struture alulations are formulated for the ase d = 3.3.2 Tuker-type and anonial modelsWe onsider linear spae H of real-valued d-th order tensorsA = [ai1:::id℄ 2 RI ; I = I1 � : : :� Id; I` = f1; :::; n`g;equipped by with the inner produthA;Bi := X(i1;:::;id)2I ai1:::idbi1:::id;induing the Frobenius norm kAk := phA;Ai: One needs Qd̀=1 n` units to store the multi-dimensional array A. The outer produt of vetors forms the anonial rank-1 tensorU � [ui℄i2I = U (1) 
 :::
 U (d) 2 RIwith the entries ui1:::id = u(1)i1 � � � u(d)id ; (3.2)where U (`) � [u(`)i` ℄i`2I` 2 RI` ` = 1; :::; d:The storage requirements are redued to Pd̀=1 n`. In the ase d = 2, the outer produt ofvetors represents a rank-1 matrix.Rank-(r1; : : : ; rd) Tuker-type deomposition approximates the tensor A by a sum of rank-1tensors A(r) = r1Xk1=1 : : : rdXkd=1 bk1:::kd � U (1)k1 
 : : :
 U (d)kd ; (3.3)where r = (r1; :::; rd), so that r = max` fr`g is alled the Tuker rank. The oeÆients tensorB = [bk1:::kd℄ 2 Rr1�:::�rd is usually alled the ore tensor. Without loss of generality weonventionally assume that the Tuker omponents U(`) = [U (`)1 U (`)2 :::U (`)r` ℄ are orthogonalmatries of the respetive size n` � r`, that isU(`)TU(`) = Ir`�r` (` = 1; :::; d):8



We denote by T r the set of tensors represented in the Tuker-type format (3.3).Fig. 1 represents the orthogonal omponents U (3)k (k = 1; :::; 5) from the rank-5 Tukerapproximation of the Yukawa potential on the n� n� n, n = 65, grid (see omments in x3.6,4.1). This omponents resolve both the singularity at the origin and exponential deay atthe in�nity. By the onstrution, the set of funtions U (`)k (` = 1; :::; d) represents the bestproblem adapted orthogonal basis, omputed by the nonlinear approximation.
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Figure 1: Orthogonal univariate omponents U (3)k (k = 1; :::; 5) for Tuker approximation ofthe Yukawa potential.The anonial (CP/PARAFAC) deomposition of a tensor is de�ned byA(R) = RXk=1 bk � U (1)k 
 : : :
 U (d)k ; bk 2 R (3.4)with normalised omponents U (`)k (` = 1; :::; d). The minimal parameter R in the abovereperesentation is alled the rank (or anonial rank) of a tensor. The set of tensors whihan be represented in the CP format (3.4) will be denoted by CR.We denote by #S(A) the number of nonzero elements orresponding to the sparsity patternS(A) of A. In partiular, for A(R) 2 CR we have for the orresponding ore tensor B =diagfb1; :::; bRg, #S(B) = R, while in general for A(r) 2 T r one obtains #S(B) =Qd̀=1 r`.3.3 Numerial multi-linear approximationsSine both T r and CR are not linear spaes, we obtain a severe nonlinear approximationproblem as soon as we want to estimate�(A;S) := infs2S kA � sk; (3.5)for A 2 H, where either S =Mr or S = CR.As it was already mentioned, there are algebrai, analytially-based and ombined strate-gies for omputing a Kroneker tensor-produt deomposition of a higher-order tensor.The most ommonly used methods to ompute the Tuker deomposition are based ondiret minimisation in (3.5) via the alternating least-squares (ALS) iteration. We refer to [6℄9



onerning the orthogonal rank-(r1; :::; rd) Tuker deomposition. Speial versions of the ALSiteration adapted to the format of input data presented either by the Tuker or anonialmodels are disussed in [27℄.For S = CR, the approximation problem (3.5) an be onsidered in the framework of bestr-term approximation with regard to a redundant ditionary (f. [33℄). The diÆulties in therigorous analysis and eÆient implementation of the minimisation proess in CR are due to(a) multiple loal minima of the ost funtional,(b) degeneray of the minimising sequene (see examples in [24℄),() high-dimensional nonlinear optimisation.In the ase of anonial deomposition one an �nd loal minima in (3.5) via the ALS algo-rithm as follows: with bk from (3.4) de�ne B = diagfb1; :::; bdg and for any �xed m 2 f1; :::; dgassume that all matries V(`), ` 6= m, are �xed. Then (3.5) is a quadrati expression in theomponents of the matrix V(m) � B, hene we obtain a lassial least-squares problem. TheALS iteration repeats this proedure for all m = 1; :::; d until onvergene (or termination).The omponents of B = diagfb1; :::; bdg are obtained by normalisation of the olumns V (m)k(k = 1; :::; R).A seond approah is based on the Newton-type algorithms applied to the Lagrange equa-tion orresponding to the unonstrained minimisation problem: Find A 2 CR and the La-grange multipliers �(k;`) 2 R suh thathA � A0;A�A0i+ RXk=1 dX̀=1 �(k;`) �kV (`)k k2 � 1�! min:An alternative method to implement the CP model is based on a simultaneous generalisedShur deomposition, see [7℄.The two-level methods to ompute a rank-R CP approximation start from the rank-rTuker approximation with r = (r1; :::; rd) and then proeed with the rank-R CP deomposi-tion of the small-size ore tensor B 2 Rr1�:::�rd, whih results in the CR-representation of theinitial tensor (see [7, 27℄ for more details).3.4 Colloation disretisation of the onvolution in RdThe multi-dimensional onvolution transform of funtions f; g 2 L2(Rd) is given byw(x) := (f � g)(x) := ZRd f(y)g(x� y)dy; x 2 Rd :We are interested in approximate omputation of f � g in some �xed box 
 = [�A;A℄d. Wesuppose that the onvolving funtion f has a support in 
0 = [�B;B℄d � 
 (B < A), i.e.,supp f � 
0. In our appliations we have two partiular hoiesg(x) = 1jxj and f(x) = �(x);as well as g(x) = e�zjxj=jxj and f(x) = V (x)�(x);where �; � are exponentially deaying funtions.10



Note that for both the Hartree-Fok and Kohn-Sham equations the interation potentialV already ontains the Hatrtree potential VH = � ? 1jxj (� is the eletron density), whih anbe eÆiently approximated by the low tensor rank onvolution algorithms, to be desribedbelow. For this ase, the theoretial analysis and numerial results an be found in [26, 5℄.There are three ommonly used disretisation methods of the integral operators: the so-alled Nystr�om, olloation and Galerkin type shemes. The Galerkin sheme is known as themost onvenient for theoretial analysis. However, ompared with the olloation method, ithas higher implementational ost sine the presene of double integration. In the following,we fous on the olloation methods.Introdue the equi-distant tensor-produt lattie !d := !1 � ::: � !d of size h = 2A=n bysetting !` := f�A+ (i� 1)h : i = 1; :::; n+ 1g;where for the sake of onveniene n = 2p, p 2 N . Hene 
 = [i2I
i beomes the union oflosed boxes 
i = dǸ=1
i` with intervals
i` := fx` : x` 2 [�A + (i` � 1)h;�A+ i`h℄g � Rfor ` = 1; :::; d.We onsider olloation disretisation in the ase of tensor-produt pieewise onstant basisfuntions f�ig assoiated with !d, so that �i = �
i is the harateristi funtion of 
i,�i(x) = dỲ=1 �i`(x`); where �i` = �
i` : (3.6)Let xm 2 !d be the set of olloation points with m 2 M := f1; :::; n+ 1gd, and let fi bethe representation oeÆients of f in f�ig,f(y) � ef(y) :=Xi2I fi�i(y):In the following, we speify the oeÆients as fi = f(yi), where yi is the midpoint of 
i, i 2 I(the alternative hoie would be the exat L2-projetion to the set of basis funtions f�ig).We onsider the following disrete olloation shemef � g � fwmg; wm :=Xi2I fi ZRd �i(y)g(xm � y)dy (3.7)with xm 2 !d; m 2 M: Pointwise evaluation of this sheme has exponential in d omplexity,O(n2d) (urse of dimensionality). In the ase of uniform grids the omputational omplexityan be redued to O(nd logn) by applying the multi-dimensional FFT.Here we present the onvolution algorithm of almost linear omplexity O(n logq n) basedon the tensor deomposition of onvolving funtions. Preompute the olloation oeÆientsgi = ZRd �i(y)g(�y)dy; i 2 I; (3.8)and de�ne the d-th order tensors F = [fi℄; G = [gi℄ 2 RI :11



Let us introdue the d-dimensional disrete onvolution F � G := fzjg; wherezj :=Xi figj�i+1; j 2 J := f1; :::; 2n� 1gd; (3.9)where the sum is over all i 2 I whih lead to legal subsripts for gj�i+1, i.e., j � i + 1 2 Ifor j 2 J , then the disrete olloation sheme fwmg, m 2 M, is obtained by opying theorresponding portion of fzjg from (3.9), entred at j = n = n
d (f. [26℄),fwmg = fzjgjj=j0+m; m 2 M; j0 = n=2:For the olloation method with pieewise onstant basis funtions and for the input dataf 2 C2, we are able to prove the O(h2)-error bound (superonvergene). We reall thatontinuous Fourier transform in Rd is given byF(f)(�) := ZRd f(x)e�ih�;xidx; � 2 Rd :Lemma 3.1 ([26℄) Let f 2 C2(
) and let g 2 L1(
). Furthermore, we assume that thereexist � � 1 and � > 0, suh thatjF(g)j � C=j�j� as j�j ! 1; � 2 Rd (3.10)and jryg(x� y)j � C=jx� yj� for x; y 2 
; x 6= y:Then there is a onstant C > 0 independent of h suh thatjw(xm)� wmj � Ch2; m 2 M: (3.11)Example 3.2 To illustrate Lemma 3.1 we notie that the fundamental solution of the Laplaeoperator in Rd is given by G(x) = (d)=jxjd�2, and F(G) = C=j�j2. Hene Lemma 3.1 applieswith � = d� 1, � = 2.More re�ned error analysis justi�es the Rihardson extrapolation method on a sequeneof diadially re�ned grids providing the better approximation error O(h3).Lemma 3.3 ([26℄) Let f 2 C3(
), then there exists a funtion 1 2 C(
) whih is indepen-dent of h, suh that for m 2 M we havew(xm) = wm + 1(xm)h2 + �m;h; �m;h 2 R (3.12)with j�m;hj � Ch3.The Rihardson extrapolation allows substantial improvement of the approximation a-uray using the simple basis set and without an extra ost. Moreover, omputation on asequene of grids optimises the numerial ost of tensor approximations of arising funtions.
12



3.5 Tensor-produt onvolution on uniform gridsWe notie that the onvolution produt appears to be one of the most omputationally elab-orate MLA operations sine in general one might have for the orresponding ore tensors#S(B) �#S(C) = O(r2d). Signi�ant omplexity redution is observed if at least one of theonvolving tensors an be represented by the CP model.Theorem 3.4 Let F 2 T r, G 2 CR, then the orresponding disrete onvolution F � G anbe omputed in the linear in n omplexityNT�C = O(drRn logn+Rrd):Furthermore, if F 2 CR1 , and G 2 CR2 with the ore tensors BF = diagfb1; :::; bR1g andBG = diagf1; :::; R2g, respetively, then F � G an be omputed in lower ost, whih saleslinearly in both the dimensionality parameter d and the grid-size n (up to a log-fator),NC�C = O(dR1R2n logn):Proof. We tensorize the onvolution produt as follows (f. [27℄)F � G = rXk=1 RXm=1 bkm �U (1)k1 � V (1)m �
 :::
 �U (d)kd � V (d)m � ;whih ontains R#S(B) = Rrd terms. Computing the 1D onvolution U (`)k` � V (`)m 2 R2n�1 inO(n logn) operations leads to the desired bound. In the seond ase, we obtainF � G = R1Xk=1 R2Xm=1 bkm �U (1)k � V (1)m �
 :::
 �U (d)k � V (d)m � ; (3.13)leading to the redued ost sine the number of terms is equal to R1R2.The resultant onvolution produt F�G an be again represented (approximately) in eitherlow-rank Tuker or CP formats, depending on further MLA operations applied to this tensor.Fast tensor-produt onvolution learly outperforms the traditional FFT based algorithm thatsales as O(nd logn) (see [5℄ for more details). The fast tensor-produt onvolution an beimplemented on a nonuniform grid as well (f. [27, 15, 26℄), however, this topi is beyond thesope of our paper.3.6 Low-rank approximation of F and GIn our appliations, the funtion related olloation oeÆients tensor F = [fi℄i2I is generatedby either density funtion �(x) or by the produt V (x) (x). In this way we make a prioriassumption on the existene of low rank approximation to both tensors. This assumption isnot easy to analyse, however, it works well in pratie.Example 3.5 In the ase of hydrogen atom we have�(x) = e�2jxj; and V (x) (x) = e�jxjjxj ;hene, the orresponding low-rank tensor approximations an be proven along the line ofLemma 4.3 [24℄ and Theorem 3.7 below. 13



To onstrut low-rank approximation of tensor G, we onsider a lass of multi-variatespherially-symmetri onvolving kernels g : Rd ! R parametrised byg(y) = G(�(y)) � G(�) with � � �(y) = y21 + :::+ y2d;where the univariate funtion G : R+ ! R an be represented via the generalised Laplaetransform G(�) = ZR+ bG(� 2)e���2d�: (3.14)Without loss of generality, we introdue one and the same saling funtion�i(�) = �(�+ (i� 1)h); i 2 In;for all spatial dimensions ` = 1; :::; d, where h > 0 is the mesh parameter, so that the orre-sponding tensor-produt basis funtion �i is de�ned by (3.6).Using sin-quadrature methods [32℄, we approximate the olloation oeÆients tensorG = [gi℄i2I in (3.8) via rank-(2M + 1) anonial deompositionG � MXk=�M wk E(�k) with E = [ei℄; i 2 I;with suitably hosen oeÆients wk 2 R and �k 2 R+ , and with the rank-1 omponentsE(�k) 2 RI given by ei(�k) = bG(� 2k ) dỲ=1 ZR e�y2̀�2k�i`(y`)dy`: (3.15)Following the standard desription of the sin-methods, we introdue the Hardy spaeH1(DÆ) as the set of all omplex-valued funtions f , whih are analyti in the stripDÆ := fz 2 C : j=m zj < Æg;suh that N(f;DÆ) := ZR (jf(x + iÆ)j+ jf(x� iÆ)j) dx <1:Given f 2 H1(DÆ), h > 0, and M 2 N0 , the orresponding sin-quadrature reads asTM(f; h) := h MXk=�M f(kh) � ZR f(�)d�: (3.16)Proposition 3.6 Let f 2 H1(DÆ), h > 0, and M 2 N0 be given. If f possesses the hyper-exponential deay jf(�)j � C exp(�beaj�j) for all � 2 R (3.17)with a; b; C > 0, then the hoie h = log(2�aMb )= (aM) leads to (f. [11℄)����ZR f(�)d� � TM(f; h)���� � C N(f;DÆ) e� 2�ÆaMlog(2�aM=b) :14



For a lass of analyti funtions the exponential onvergene of above quadrature in Man be proven (see [16℄). In our partiular ase of the Yukawa potential for � 2 [0;1), weapply the Gauss transform (f. (3.14)G(�) = e��p�p� = 2p� ZR+ exp(��� 2 � �2=� 2)d�; (3.18)orresponding to the hoie bG(� 2) = 2p�e��2=�2 :Theorem 3.7 For given G(�) in (3.18) with �xed � > 0, we setwk = hM bG(� 2k ) and �k = etk ;where tk = khM with hM = C0 log(M)=M for some C0 > 0. Then we have the exponentiallyonvergent CP approximation of the rank (2M + 1) for the olloation oeÆients tensorG = [gi℄i2I in (3.8) orresponding to the Yukawa potential G(�) ,G � MXk=�M wk E(�k) � Ce��2M=(C+log(M)); (3.19)where E = [ei℄ with (3.15).Proof. We apply Proposition 3.6. Following [32℄, we hoose the analytiity domain for theintegrand in (3.14) as a setor SÆ := fw 2 C : jarg(w)j < Æg with apex angle 0 < 2Æ < �=2,and then make use the onformal map'�1 : SÆ ! DÆ with w = '(z) = ez; '�1(w) = log(w):Hene, we apply the hange of variables � = et to obtainG(�) = ZR f(t; �)dt with f(t; �) = Q(t)e��e2t ;where Q(t) = Q(t; �) = 2p�et��2e�2t. By the way, f an be analytially extended into the stripDÆ. By de�nition (3.8) we havegi = hG(�); �ii = ZRhf(t; �); �iidt � ZR pi(t)dt;where pi(t) = Q(t) dỲ=1 ZR e�y2̀e2t�i`(y`)dy`:Furthermore, the funtion pi : R ! R, an be analytially extended into the strip DÆ with0 < Æ < �=4, and this extension belongs to the Hardy spae H1(DÆ). In fat, introduing theerror funtion erf : R ! R by erf(t) := 2p� Z t0 e��2 d�;15



we alulate the expliit representationZR e�y2e2t�i(y)dy = 12 t� erf(t ih)� erf(t (i� 1)h)	; (3.20)with h = 2A=n (uniform grid spaing) for i = 1; :::; n. Sine erf(z)=z is an entire funtion itproves the required analytiity of pi.Now we estimate the onstant N(f;DÆ) applying arguments similar to those in Lemma4.7, [24℄. To that end, we let Hi = h(i1 � 1; :::; id � 1) 2 Rd to obtainZRd e�w2jyj2�(y +Hi)dy = ZRd e�w2jv�Hij2�(v)dv;taking into aount that � has ompat support [�h; h℄d.We notie that jQ(� exp(iÆ))j � C0 <1 for � 2 [0;1). The following argument is slightmodi�ation of those in Lemma 4.3, [24℄, applied there to the Galerkin approximation of thefuntion e�jxj, N(f;DÆ) == Z�SÆ jf(w)j jdwj= Z�SÆ ZRd jQ(w)j ���e�w2jyj2�(y +Hi)dy��� jdwj� 2 ZR+ ZRd jQ(�eiÆ)j ���e��2 exp(2iÆ)ju�Hij2�(u)du���d�� 2C0 ZRd ZR+ ���e��2 exp(2iÆ)ju+Hij2��� d� j�(u)jdu= 2C0 ZRd ZR+ e��2os(2Æ)ju+Hij2d� j�(u)jdu= 2C0pos(2Æ) ZRd j�(u)jju�Hij2du:The latter bound is uniform in Hi.The deay of the integrand p(t) := p(t; �) on the real axis isp(t; �) � et��2e2t as t!1;p(t; �) � et��2e2jtj as t! �1;orresponding to a = 2, b = �2 and C = 1 in (3.17).Finally, we apply Proposition 1, providing the exponential onvergene of the quadratureapproximation gi = ZR p(t; �)dt � hM MXk=�M p(tk; �);whih proves (3.19).Theorem 3.7 applies to the ase with �xed � > 0. To onstrut the approximation, whihis uniform for � 2 [0;1) (i.e., inluding the ase of Coulomb potential orresponding to � = 0)16



we modify the above quadrature using a variable transformation t = sinh(u) to obtain thequadrature ZRpi(t) dt = ZR+ 2 osh(u) pi(sinh(u)) du � MXk=0 wk pi(tk)with tk := sinh(khM) and wk := � hM for k = 02 hM osh(khM) for k > 0 (3.21)with the hoie hM = C0 ln(M)M for some C0 > 0. The analysis is similar to those in Lemma4.3, [16℄, taking into aount the symmetry of the integrand.4 Disretisation, omplexity issues, numeris4.1 Disretisation of the Green funtion operatorOur primal interest is onerned with integral formulation in L2-setting. Hene, we onsiderthe olloation-type approximation of the operator Gz = (V �) ?Gz with respet to the ertainansatz spae W = spanf�ig � L2(R3) of disontinuous funtions (see, e.g., (3.6)). Letting =Xi2I ai�i; V = fhV �i; �jigi;j2I;we alulate the L2-projetion of V  onto W ,PW (V  ) =Xj2IXi2I aihV �i; �ji�j =Xj2I bj�jwith bj = (VA)j , A = [ai℄, and introdue the oeÆients tensorF = [bj℄j2I 2 Rn�n�n ; i.e.; F = VA:The disretisation of Gz is then de�ned byGz � G ? F ;where tensor G was desribed in x3.6. In the ase of pieewise onstant basis funtions (3.6)the sti�ness matrix V beomes diagonal, V = diagfhV �i; �iigi2I.Finite element or �nite di�erene approximations result into the representation Gz =RzV  , where Rz is the disrete ellipti resolvent and V  is the ation of the disrete interationpotential. In this ase, we �rst approximate the initial operator H using the ansatz spae ofontinuous funtions in H1(R3), and then ompute the disrete ellipti inverse (��+ zI)�1.For example, the �nite di�erene Helmholtz operator on the uniform n � n � n tensor-produt grid (subjet to homogeneous Dirihlet boundary onditions) is represented by amatrix A + zh2I2 Rn�n�n withA := V (1) 
 I 
 I + I 
 V (2) 
 I + I 
 I 
 V (3);17



and with V (`); I 2 Rn�n , where I is the identity matrix and V (`) = tridiagf�1; 2;�1g,` = 1; 2; 3. Using sin-methods, we hoose oeÆients tk; k 2 R and then onstrut therank-(2M + 1) CP approximation in the formB(M) = MXk=�M k 3Ò=1 exp(�tk(V (`) + zh2d I)) � (A + zh2I)�1;providing exponential onvergene in r = 2M + 1,(A + zh2I)�1� B(M) � Ce�sM= log(M):The partiular hoie of oeÆients tk; k is desribed in [16℄.4.2 Complexity issuesWe assume that at eah step m of the Newton iteration, we have rank-RG and rank-RF CPrepresentations of tensors Gn 2 Rn3 and Fn 2 Rn3 at our disposal, respetively, as well as thegood initial guess for the orthogonal omponents of the Tuker approximation for the nextiterant  m+1 = Gm ?Fm. We apply the two-level approximation method [27℄. Sine the tensor m+1 has maximal anonial rank RGRF , its rank-r Tuker approximation has the ostQCT = O(RGRFnr2 + nr2minfr2; ng):Computing the rank-RF CP approximation to the orresponding ore tensor of size r� r� r(by ALS iteration) with the ost that does not depend on n,QFC = O(NitRF r2);where Nit is the number of ALS iteration loops, we return the urrent iterant  m+1 to therequired format  m+1 2 CRF . The overall numerial ost is estimated by QTC +QFC, whihsales linearly in the univariate problem size n.Similar omplexity bounds an be derived for the FE/FD disretizations.4.3 NumerisComputations were performed in MATLAB, Release 7.3. General purpose MATLAB sub-routines to ompute tensor approximations by ALS iteration an be found in [1, 31℄. Somespeial algorithms for fast numerial multi-linear algebra are desribed in [24, 27, 26℄.The olloation oeÆients tensor G 2 RI , orresponding to the Coulomb potentialg(x) = 1=jxj, is approximated with auray 10�6 in the rank-R CP format with R 2 [10; 20℄depending logarithmially on n (see [18℄ for more details). Convergene results orrespond-ing to the sin-quadrature method are shown in Figure 2 (solid lines). Marked solid linesorrespond to algebraially reompressed sin approximations desribed in [26℄.Figure 3 illustrates the sin-approximation method for the disrete ellipti inverse de�nedon n� n� n grid with n = 128. Here M de�nes the number of terms in the sin-quadrature,so that the total rank is r = 2M + 1.Figure 4 presents the onvergene history for the Tuker approximation of the Yukawapotential de�ned on [0; 8℄3 with di�erent number of the grid points n = 64; 128; 256. Wevisualise the relative error in the Frobenius norm.18
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