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MULTIGRID ACCELERATED TENSOR APPROXIMATION OF
FUNCTION RELATED MULTIDIMENSIONAL ARRAYS∗

B. N. KHOROMSKIJ† AND V. KHOROMSKAIA†

Abstract. In this paper, we describe and analyze a novel tensor approximation method for
discretized multidimensional functions and operators in R

d, based on the idea of multigrid accelera-
tion. The approach stands on successive reiterations of the orthogonal Tucker tensor approximation
on a sequence of nested refined grids. On the one hand, it provides a good initial guess for the
nonlinear iterations to find the approximating subspaces on finer grids; on the other hand, it allows
us to transfer from the coarse-to-fine grids the important data structure information on the loca-
tion of the so-called most important fibers in directional unfolding matrices. The method indicates
linear complexity with respect to the size of data representing the input tensor. In particular, if
the target tensor is given by using the rank-R canonical model, then our approximation method is
proved to have linear scaling in the univariate grid size n and in the input rank R. The method is
tested by three-dimensional (3D) electronic structure calculations. For the multigrid accelerated low
Tucker-rank approximation of the all electron densities having strong nuclear cusps, we obtain high
resolution of their 3D convolution product with the Newton potential. The accuracy of order 10−6

in max-norm is achieved on large n × n × n grids up to n = 1.6 · 104, with the time scale in several
minutes.
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1. Introduction. In recent years tensor approximation methods have opened
challenging perspectives for a feasible numerical solution of multidimensional problems
arising in large scale electronic and molecular structure calculations [1, 2, 7, 8, 10, 12,
15, 4, 18, 28], in stochastic PDEs [24], and in financial mathematics. Traditional fields
of applications of tensor methods include information technologies, chemometrics,
signal processing, as well as stochastic models [25, 6, 20, 21].

The success of tensor methods based on low-rank separable approximation can
be explained by their intrinsic nearly one-dimensional (1D) data structure organiza-
tion. In fact, this allows us to avoid the so-called curse of dimensionality inherent
in traditional numerical methods, which usually scale exponentially in the physical
dimension d. However, there are fundamental difficulties in the systematic promotion
of tensor techniques due to

• challenging problems in a rigorous theoretical analysis of tensor methods,
• high-dimensional nonlinear approximation problems,
• the need of the relevant and physically consistent, though normally hidden,

well-formatted data-sparse representations of large and highly redundant data
in R

d.

Hence efficient rank-structured tensor methods are required for approximation
of high-order tensors representing physically relevant functions and operators in R

d,
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discretized on large spatial grids of size nd. The commonly used tensor methods are
based on the so-called orthogonal Tucker and canonical models. The main advantage
of the orthogonal Tucker approximation is the (robust) construction of a problem
adapted orthogonal basis that simultaneously resolves the peculiarities of the approx-
imated object with an optimal tensor rank. In turn, the canonical tensor format
allows us to get rid of the curse of dimensionality.

Efficiency of the Tucker-type tensor decomposition for the low-rank approxima-
tion of some classical functions and operators in R

d was demonstrated in [19]. In [18]
the Tucker tensor approximation has been applied to the task of accurate compu-
tation of integral operators in electronic structure calculations on three-dimensional
(3D) Cartesian grids. These computations have been performed on the n × n × n
uniform grids with the univariate grid size n ≤ 800, which was sufficient to achieve
high accuracy in the case of pseudopotentials of some simple molecules. However,
computations involving the all electron densities of molecules, which contain strong
cusps due to the core electron contribution, require much larger spatial grids, thus
motivating substantial improvement of the numerical schemes.

Here we describe and analyze a novel tensor approximation method for discretized
multidimensional functions and operators in R

d, based on a multigrid acceleration
technique.1 This approach allows us to overcome the limitations of the single grid
schemes in higher dimensions and for large grid size. The algorithm is based on the
successive reiteration of the orthogonal Tucker tensor approximation on a sequence of
nested refined grids. It resembles the so-called nested iterations in the multigrid (MG)
method usually applied as an elliptic problem solver or as a preconditioner. Along with
a good initial guess for the nonlinear approximation process it provides the transfer
of the important data structure information from the coarse-to-fine grids, based on
the maximum energy principle; see section 2.4. In particular, we construct the initial
guess for the alternating least squares (ALS) iteration by using the interpolated side-
matrices calculated on the coarser grid. Furthermore, based on the maximum energy
principle we extract from the coarser grids the location of dominating columns of
the ℓ-mode unfolding matrices. This leads to a fast nonlinear ALS iteration over an
almost minimal sufficient subset of directional fibers in the target tensor.

Notice that our approach can be viewed as a tensor method with constraints,
namely, the Tucker model with the constraint on the core that is assumed to be
presented in the low-rank canonical format. In this regard we mention that another
class of tensor decompositions, CANDELINC, considering canonical tensors with con-
straints on factor matrices, was introduced in [3]; see also the review paper [21].

We apply our technique to both tensors in the canonical rank-R representation
and to full format tensors:

• When the target tensor is represented by a rank-R canonical model, the
MG accelerated scheme combined with the two-level Tucker-canonical repre-
sentation described in [19] is proved to have linear scaling in the grid size
n and in the input rank R, O(rRn), where r is the Tucker rank. Note
that the unigrid approach leads to the polynomial-exponential complexity
O(dRn min{R, n} + drd−1n min{rd−1, n}), which might be computationally
infeasible for large parameters d, R, and n. We demonstrate the performance
of our approach by fast and highly accurate numerical computations in elec-
tronic structure calculations, with R ∼ 5000, r ∼ 20, and n ∼ 104 (see

1This method was presented by the authors at the Conference on Tensor Methods, MPI MIS,
Leipzig, 22–24 January, 2008.
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section 3).
• For fully populated tensors of size nd, the MG accelerated tensor method

leads to a nested rank-r Tucker-to-canonical approximation that has only
linear storage requirements O(drn+drR), where R is now the canonical rank
of the Tucker core. The computational cost of such an approximation scales
linearly in the size of input data O(nd), instead of O(nd+1)-scaling for the
standard Tucker approximation. We present the numerical illustrations for
the full format tensors of size 5123 on the example of computing the low-rank
representation of a function of electron density ρ, ρ1/3, which is an important
issue in the problems of density functional theory (see section 2.5).

It should be emphasized that our technique is particularly efficient for the rank-R
initial data, which is the case in electronic structure calculations. As was shown in
[19], the orthogonal Tucker decomposition reduces dramatically the effective rank for
a class of discretized analytic functions with point singularities, which is the case
for the solutions of the Hartree–Fock equation. Our numerical tests presented in
this paper show that the MG accelerated Tucker approximation method is a good
candidate for fast and accurate computation of the Hartree potential with all electron
densities for some simple molecules. Based on the low Tucker rank approximation of
electron density, we obtain high resolution of its convolution product with the Newton
potential in three dimensions up to 10−6 in the max-norm and for large n × n × n
grids in the range n ≤ 1.6 · 104. The total computational time on such grids amounts
to only several minutes in MATLAB implementation on a standard SUN cluster.
For verification of our results we used the corresponding quantities computed by the
MOLPRO program with reference accuracy.

The rest of the paper is organized as follows. In section 2 we discuss the basic
methods of rank-structured tensor approximation. Theorem 2.5 proves the error es-
timate for the reduced higher-order SVD (HOSVD) applied to the canonical target
tensor. We describe the MG accelerated Tucker approximation applied to different
tensor classes. Theorem 2.7 proves linear complexity for the MG algorithm applied to
the rank-R canonical input. Section 3 presents extensive numerical tests on the data
from electronic structure calculations, illustrating the efficiency of the new algorithm
applied to the large 3D spatial grids.

2. Rank-structured tensor approximation.

2.1. Basic definitions. A tensor of order d is a multidimensional array of data
whose elements are referred to by using a tensor-product index set I = I1 × · · · × Id.
We use the common notation

V = [vi1,...,id
: iℓ ∈ Iℓ] ∈ R

I , Iℓ = {1, . . . , nℓ}, ℓ = 1, . . . , d,

to denote a dth-order tensor and n for the d-tuple (n1, . . . , nd). A tensor V is an
element of the linear space Vn = ⊗d

ℓ=1Vℓ of real-valued (complex-valued) dth-order
tensors with Vℓ = R

Iℓ , and is equipped with the Euclidean inner product 〈·, ·〉 :
Vn × Vn → R, defined as

(2.1) 〈V, U〉 :=
∑

(i1,...,id)∈I

vi1,...,id
ui1,...,id

for V, U ∈ Vn.

The related Frobenius norm is ‖V ‖F :=
√
〈V, V 〉. Notice that a vector is an order-1

tensor, while a matrix is an order-2 tensor such that our tensor norm coincides with
the 2-norm of vectors and the Frobenius norm of matrices, respectively.
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Multilinear algebraic operations (including visualization) with tensors of order d
(d ≥ 3) can be reduced to the standard linear algebra by the unfolding of a tensor
into a matrix. The unfolding of a tensor along mode ℓ is a matrix of dimension
nℓ×(nℓ+1 . . . ndn1 . . . nℓ−1), further denoted by V(ℓ), whose columns are the respective
columns of V along the ℓth mode.

Another important tensor operation is the so-called contracted product of two ten-
sors. In the following, we frequently use its special case of tensor-matrix multiplication
along mode ℓ. Given a tensor V ∈ R

I1×···×Id and a matrix M ∈ R
Jℓ×Iℓ , we define the

respective mode-ℓ tensor-matrix product by

U = V ×ℓ M ∈ R
I1×···×Iℓ−1×Jℓ×Iℓ+1···×Id ,

where

ui1,...,iℓ−1,jℓ,iℓ+1,...,id
=

nℓ∑

iℓ=1

vi1,...,iℓ−1,iℓ,iℓ+1,...,id
mjℓ,iℓ

, jℓ ∈ Jℓ.

In terms of unfolding matrices we then obtain

U(ℓ) = MV(ℓ).

The tensor-matrix product can be applied successively along several modes, and it
can be shown to be commutative:

(V ×ℓ M) ×m P = (V ×m P ) ×ℓ M = V ×ℓ M ×m P, ℓ �= m.

The repeated (iterated) mode-ℓ tensor-matrix product for matrices M and P of ap-
propriate dimensions can be simplified as follows:

(V ×ℓ M) ×ℓ P = V ×ℓ (MP ).

Assume for simplicity that dim Vℓ = #Iℓ = n for all ℓ = 1, . . . , d; then the number
of entries in V amounts to nd, hence growing exponentially in d.

To get rid of exponential scaling in the dimension, approximate representations
in some classes S ⊂ Vn of data-sparse “rank structured” tensors will be applied. As
the simplest rank structured ansatz, we make use of rank-1 tensors. Specifically, the
outer product of vectors tℓ = {tℓ,iℓ

}iℓ∈Iℓ
∈ Vℓ (ℓ = 1, . . . , d) forms the canonical rank-1

tensor

T ≡ [ti]i∈I = t1 ⊗ · · · ⊗ td ∈ Vn with entries ti = t1,i1 · · · td,id
,

which requires only dn numbers to store it (now linear scaling in the dimension).
When d = 2, the outer product of two vectors represents a rank-1 matrix.

In the present paper we apply data-sparse representation of high-order tensors
based on the Tucker, canonical, and mixed models.

Given the vector-valued rank parameter r = (r1, . . . , rd), the rank-(r1, . . . , rd)
Tucker approximation [26, 6] is based on subspaces

Tr := ⊗d
ℓ=1Tℓ of Vn for certain Tℓ ⊂ Vℓ

with rℓ := dim Tℓ ≤ n. We denote by T r,n (or simply T r) the subset of tensors in
Vn represented in the so-called Tucker format

(2.2) V(r) =
∑r1

ν1=1
. . .

∑rd

νd=1
βν1,...,νd

tν1
1 ⊗ · · · ⊗ tνd

d ,
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with some vectors tνℓ

ℓ ∈ Vℓ = R
Iℓ (1 ≤ νℓ ≤ rℓ), which form the orthonormal basis of

Tℓ = span{tνℓ }
rℓ

ν=1 (ℓ = 1, . . . , d). With fixed r and n, we can write

T r,n := {⊗d
ℓ=1Tℓ : dim Tℓ = rℓ}.

In this paper the parameter

r = max
ℓ

{rℓ}

is called the maximal Tucker rank. In our applications, we normally have r ≪ n, say,
r = O(log n). The coefficient tensor β = [βν1,...,νd

], which is an element of a tensor
space Br = R

r1×···×rd , is called the core tensor. The space Br can be viewed as the
dual space with respect to the primal tensor space Vn. Introducing the (orthogonal)
side-matrices T (ℓ) = [t1ℓ . . . trℓ

ℓ ], we then use a tensor-by-matrix contracted product to
represent the Tucker decomposition of V ∈ T r:

(2.3) V = β ×1 T (1) ×2 T (2) · · · ×d T (d).

Remark 2.1. Notice that the representation (2.3) is not unique, since the tensor
V is invariant under directional rotations. In fact, for any set of orthogonal rℓ × rℓ

matrices Yℓ (ℓ = 1, . . . , d), we have the equivalent representation

V = β̂ ×1 T̂ (1) ×2 T̂ (2) · · · ×d T̂ (d),

with

β̂ = β ×1 Y1 ×2 Y2 · · · ×d Yd, T̂ (ℓ) = T (ℓ)Y T
ℓ , ℓ = 1, . . . , d.

Remark 2.2. If the subspaces Tℓ = span{tνℓ }
rℓ

ν=1 are fixed, then the approximation
V(r) ∈ T r of a given tensor V ∈ Vn is reduced to the orthogonal projection of V onto

the particular linear space Tr = ⊗d
ℓ=1Tℓ ⊂ T r,n, that is,

V(r) =
∑

ν1,...,νd

〈tν1
1 ⊗ · · · ⊗ tνd

d , V 〉 tν1
1 ⊗ · · · ⊗ tνd

d .

This property is crucial in the computation of the best orthogonal Tucker approxima-
tion, where the “optimal” subspaces Tℓ are recalculated within a nonlinear approxi-
mation process.

Given a rank parameter R ∈ N, we denote by CR,n = CR ⊂ Vn a set of tensors
which can be represented in the canonical format

(2.4) V(R) =
∑R

ν=1
ξνuν

1 ⊗ · · · ⊗ uν
d, ξν ∈ R,

with normalized vectors uν
ℓ ∈ Vℓ (ℓ = 1, . . . , d). The minimal parameter R in (2.4)

is called the rank (or canonical rank) of a tensor. Introducing the side-matrices
corresponding to representation (2.4),

U (ℓ) = [u1
ℓ . . . uR

ℓ ]

and the diagonal tensor ξ := diag{ξ1, . . . , ξR} such that ξν1,...,νd
= 0 except when

ν1 = · · · = νd with ξν,...,ν = ξν (ν = 1, . . . , R), we obtain the equivalent representation

(2.5) V(R) = ξ ×1 U (1) ×2 U (2) · · · ×d U (d).
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In the following, to simplify the discussion of complexity issues, we assume that
rℓ = r (ℓ = 1, . . . , d). The storage requirements for the Tucker (resp., canonical)
decomposition is given by rd + drn (resp., R + dRn), where usually r ≪ R. In turn,
the maximal canonical rank of the Tucker representation is rd−1.

Since the Tucker core still presupposes rd storage space, we introduce further the
approximation methods using the mixed (two-level) representation which gainfully
combines the beneficial features of both the Tucker and the canonical models [19, 17].

Definition 2.3 (the two-level (primal-dual) Tucker-canonical format). Given
the rank parameters r, R (normally, r ≪ R), we denote by T CR,r

the subclass of
tensors in T r,n with the core β represented in the canonical format, β ∈ CR,r ⊂ Br.
An explicit representation for V ∈ T CR,r

is given by

(2.6) V =

(∑R

ν=1
ξνuν

1 ⊗ · · · ⊗ uν
d

)
×1 T (1) ×2 T (2) · · · ×d T (d).

Clearly, we have the imbedding T CR,r
⊂ CR,n with the corresponding (nonorthogonal)

side-matrices U (ℓ) = [T (ℓ)u1
ℓ · · ·T

(ℓ)uR
ℓ ] and scaling coefficients ξν (ν = 1, . . . , R).

The target tensor V ∈ Vn can be approximated by a sum of rank-1 tensors as in
(2.2), (2.4), or by using the two-level format T CR,r

as in (2.6). In the next sections
we present fast and efficient methods to compute the corresponding rank structured
approximations in different problem settings.

2.2. Best orthogonal Tucker approximation. Notice that the target tensor
A to be approximated may itself belong to a certain class S0 ⊂ Vn of data structured
tensors. Since both T r,n and CR,n are not linear spaces we are led to the challenging
nonlinear approximation problem on estimation

(2.7) A ∈ S0 ⊂ Vn : σ(A,S) := inf
T∈S

‖A − T ‖

with S ∈ {T r,n, CR,n, T CR,r
}. Subsets of symmetric/antisymmetric or nonnegative

tensors can also be utilized. The target tensor A might inherit certain data-sparse
structure as follows: S0 ⊂ {Vn, CR0,n, T r0,n}.

We are interested in approximation of function related tensors defined on a se-
quence of large spatial grids. As the basic nonlinear approximation scheme, we con-
sider the best orthogonal rank-(r1, . . . , rd) Tucker model. The main motivations are
the following:

• The orthogonal Tucker approximation normally leads to robust minimization
processes.

• For the wide class of function related tensors we observe fast exponential
convergence in the Tucker rank (almost optimal tensor rank).

• Moreover, the approximations on a sequence of grids usually provide a stable
representation of the side-matrices with respect to the grid parameter (good
initial guess for the ALS iteration on the fine grid).

• For the case of S0 ⊂ CR0,n input data, by using the maximal energy principle,
it is possible to transfer from the coarse-to-fine grid the important structured
information on the location of dominating columns (fibers) of the ℓ-mode
unfolding matrices (reduction of computational cost).

The key point for the efficient solving of the minimization problem (2.7) with
S = T r,n is its equivalence to the dual maximization problem [6],

(2.8) [Z(1), . . . , Z(d)] = argmax
∥∥[〈vν1

1 ⊗ · · · ⊗ vνd

d , A〉]rν=1

∥∥2

Br

,
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over the set of side-matrices V (ℓ) in the Stiefel manifold,

(2.9) V (ℓ) = [vν1

ℓ . . . vνd

ℓ ] ∈ Mℓ := {Y ∈ R
n×rℓ : Y T Y = Irℓ×rℓ

} (ℓ = 1, . . . , d).

In view of Remark 2.1, the rotational uniqueness of the maximizer in (2.8) is achieved
if one solves this maximization problem in the so-called Grassmann manifold that is
the factor space of Mℓ with respect to the rotational transforms. Under the natural
compatibility conditions

(2.10) rℓ ≤ r̄ℓ := r1 . . . rℓ−1rℓ+1 . . . rd, ℓ = 1, . . . , d,

the dual maximization problem (2.8) can be proven to have a global maximum (see
[16]). We use the notation Ir̄ℓ

for the “single hole” index set of size r1 × · · · × rℓ−1 ×
rℓ+1 × · · · × rd, associated with the dual space of coefficient tensors.

The best (nonlinear) Tucker approximation (BTA) based on solving the dual
maximization problem (2.8) is usually solved numerically by the ALS iteration with
the initial guess computed by HOSVD [5]. In this case, the generic ALS algorithm
G BTA reads as follows [6].

Algorithm G BTA (Vn → T r,n). Given the input tensor A ∈ Vn.

1. Compute an initial guess V
(ℓ)
0 (ℓ = 1, . . . , d) for the ℓ-mode side-matrices by

“truncated” SVD applied to matrix unfolding A(ℓ) (cost O(nd+1)).

2. For each q = 1, . . . , d, and with fixed side-matrices V (ℓ) ∈ R
n×rℓ , ℓ �= q,

the ALS iteration optimizes the q-mode matrix V (q) via computing the dom-
inating rq-dimensional subspace (truncated SVD) for the respective matrix
unfolding

(2.11) B(q) ∈ R
n×r̄q , r̄q = r1 . . . rq−1rq+1 . . . rd = O(rd−1),

corresponding to the q-mode contracted product

B = A ×1 V (1)T
×2 · · · ×q−1 V (q−1)T

×q+1 V (q+1)T
· · · ×d V (d)T .

Each iteration has the cost O(drd−1n min{rd−1, n}).
3. Compute the core β as the representation coefficients of the orthogonal pro-

jection of A onto Tn = ⊗d
ℓ=1Tℓ with Tℓ = span{vν

ℓ }
rℓ

ν=1 (see Remark 2.2),

β = A ×1 V (1)T
×2 · · · ×d V (d)T ∈ Br,

at the cost O(rdn).

In the molecular structure calculations, we normally observe fast and robust local
convergence of the ALS iteration, though it is not always the case in traditional appli-
cations of the Tucker decomposition. This fact can, probably, be illuminated by the
exponential error bound in the Tucker rank for the rank-r orthogonal approximation,
which is often observed in applications to the “smooth” physically relevant data [19].

However, notice that the Tucker model applied to the general fully populated
tensor of size nd requires O(nd+1) arithmetical operations due to the presence of
complexity dominating HOSVD. Hence, normally, this algorithm applies only to small
d and small n.
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2.3. Two-level (primal-dual) BTA. Further reduction of numerical complex-
ity for the Tucker model is based on the concept of the two-level (primal-dual) Tucker
approximation [19]. The main idea of the two-level approximation consists of a rank-
structured representation in certain tensor classes in the dual space, S ⊂ Br, applied
to the Tucker core β ∈ Br. In particular, we consider a class S = CR,r of rank-R
canonical tensors in the dual space, i.e., β ∈ CR,r. The target tensor may either be
represented entrywise or it may inherit certain data-sparse structure like in the Tucker
or canonical models.

2.3.1. General target tensor. First, we describe the two-level Tucker model
for the general input tensors. The two-level version of Algorithm G BTA (Vn → T r,n)
can be described as the following “model reduction” computational chain:

Vn→T r,n → T CR,r
⊂ CR,n,

where Level-I is understood as an application of Algorithm G BTA (Vn → T r,n)
and Level-II includes the rank-R canonical approximation to the small-size Tucker
core β ∈ Br. Figure 2.1 illustrates the computational scheme of the two-level Tucker
approximation.
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I3

I2
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2
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I
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1
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(1)
1

U
(3)
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U
(2)
R

U
(1)

R

B

.

.

Fig. 2.1. Level-I: Tucker model; Level-II: canonical approximation of β.

In the case of function related tensors, our goal is to compute the Level-I approx-
imation with linear cost in the size of the input data (see section 2.4).

2.3.2. Target tensor in Tucker format. If the input tensor A0 is already
presented in the rank-r Tucker format, then one can apply the following lemma.

Lemma 2.4 (two-level Tucker-to-canonical approximation). (a) See [19]. Let the
target tensor A ∈ T r,n in (2.7) have the form A = β ×1 T (1) ×2 · · · ×d T (d) with the
side-matrices T (ℓ) ∈ R

n×rℓ in the Grassman manifold and with β ∈ R
r1×···×rd. Then,

for a given R < rd−1,

(2.12) min
Z∈CR,n

‖A − Z‖2 = min
µ∈CR,r

‖β − µ‖2.

Moreover, the optimal rank-R approximation A(R) ∈ CR,n of A (if existing) and the
optimal rank-R approximation β(R) ∈ CR,r of β are related by

(2.13) A(R) = β(R) ×1 T (1) ×2 · · · ×d T (d).

(b) For a given q = (q1, . . . , qd), such that q ≤ r (in the componentwise sense),
and satisfying the compatibility condition (2.10), the BTA of A in the tensor class
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T q,n is reduced to the BTA β(q) = µ(q)×1 Σ(1)×2 Σ(2) · · ·×d Σ(d) of β in T q,r, where

Σ(ℓ) ∈ R
rℓ×qℓ . The corresponding approximant can be represented by

A(q) = µ(q) ×1 (T (1)Σ(1)) ×2 · · · ×d (T (d)Σ(d)).

This representation is unique up to the rotational transform (see Remark 2.1).

Proof. Part (a) is proven in [19, Lemma 2.5]. To prove (b) it is enough to check
the identity

(
µ ×1 Σ(1) ×2 · · · ×d Σ(d)

)
×1T (1)×2 · · ·×d T (d) = µ×1 (T (1)Σ(1))×2 · · ·×d (T (d)Σ(d))

and then verify that T (ℓ)Σ(ℓ) ∈ R
n×qℓ (ℓ = 1, . . . , d) are orthogonal matrices. The

rest argument is similar to those in the proof of Lemma 2.5 in [19].
Lemma 2.4 means that the corresponding low-rank Tucker-canonical approxima-

tion of A can be reduced to the canonical approximation of a small-size core tensor.
Likewise, the reduction of the Tucker rank of the target tensor A ∈ T r,n can be re-
duced to the Tucker approximation of a small-size core tensor. In this way the general
G BTA algorithm can be easily adapted.

2.3.3. Rank-R canonical input. In applications related to the solution of
high-dimensional PDEs the typical situation may arise when the target tensor is
already presented in the rank-R canonical format, A ∈ CR,n, but with relatively
large R. In this case the computational cost of the two-level method can be reduced
dramatically (see section 2.4.2 in [19]). The corresponding approximation scheme is
presented as the following two-level chain:

(2.14) CR,n→T CR,r → T CR′,r
.

Here, on Level-I, we compute the best orthogonal Tucker approximation with CR,n-
type input, so that the resultant core is represented in the CR,r format. On Level-II,
the small-size Tucker core in CR,r is approximated by an element in CR′,r with R′ < R.
In section 2.4, we will describe the computational algorithm on Level-I (which is, in
fact, the most laborious part in computational scheme (2.14)) that has polynomial
cost in the size of input data in CR,n (see Remark 2.6).

The next statement gives the characterization on the solution structure for the
Level-I scheme in (2.14) and provides the key ingredients for constructing its efficient
numerical implementation, provided that the target A is represented by (2.4). It
also presents the error estimates for the reduced rank-r HOSVD-type approximation.
Suppose for definiteness that n ≤ R, so that an SVD of the side-matrix U (ℓ) is given by

U (ℓ) = Z(ℓ)DℓV
(ℓ)T

=

n∑

k=1

σℓ,kzk
ℓ vk

ℓ

T
, zk

ℓ ∈ R
n, vk

ℓ ∈ R
R,

with the orthogonal matrices Z(ℓ) = [z1
ℓ , . . . , zn

ℓ ], and V (ℓ) = [v1
ℓ , . . . , vn

ℓ ], ℓ = 1, . . . , d.

Introduce the truncated SVD of the side-matrices U (ℓ), Z
(ℓ)
0 Dℓ,0V

(ℓ)
0

T
(ℓ = 1, . . . , d),

where Dℓ,0 = diag{σℓ,1, σℓ,2, . . . , σℓ,rℓ
} and Z

(ℓ)
0 ∈ R

n×rℓ , V0
(ℓ) ∈ R

R×rℓ represent the
orthogonal factors being the respective submatrices in the SVD of U (ℓ).

In the following we denote by Gℓ the Grassman manifold that is a factor space to
the Stiefel manifold Mℓ (ℓ = 1, . . . , d) in (2.9), with respect to all possible rotations.
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Theorem 2.5 (canonical-to-Tucker approximation). (a) Let A ∈ CR,n be given
by (2.4). Then the minimization problem

(2.15) A ∈ CR,n ⊂ Vn : A(r) = argminT∈Tr,n
‖A − T ‖Vn

is equivalent to the dual maximization problem,

(2.16) [W (1), . . . , W (d)] = argmaxY (ℓ)∈Gℓ

∥∥∥∥∥

R∑

ν=1

ξν

(
Y (1)T

uν
1

)
⊗ · · · ⊗

(
Y (d)T

uν
d

)∥∥∥∥∥

2

Br

,

over the Grassman manifolds Gℓ, Y (ℓ) = [y1
ℓ . . . yrℓ

ℓ ] ∈ Gℓ (ℓ = 1, . . . , d), and where

Y (ℓ)T uν
ℓ ∈ R

rℓ .
(b) The compatibility condition (2.10) is simplified to

rℓ ≤ rank(U (ℓ)) with U (ℓ) = [u1
ℓ . . . uR

ℓ ] ∈ R
n×R,

and this condition ensures the solvability of (2.16).
The maximizer is given by orthogonal matrices W (ℓ) = [w1

ℓ · · ·w
rℓ

ℓ ] ∈ R
n×rℓ ,

which can be computed by Algorithm G BTA, where the HOSVD at step 1 is reduced to

computation of truncated SVD of the side-matrices U (ℓ), Z
(ℓ)
0 Dℓ,0V

(ℓ)
0

T
(ℓ = 1, . . . , d).

(c) The minimizer in (2.15) is then calculated by the orthogonal projection

A(r) =

r∑

k=1

µkwk1
1 ⊗ · · · ⊗ wkd

d , µk = 〈wk1
1 ⊗ · · · ⊗ wkd

d , A〉,

so that the core tensor µ = [µk] can be represented in the rank-R canonical format

(2.17) µ =

R∑

ν=1

ξν(W (1)T
uν

1) ⊗ · · · ⊗ (W (d)T
uν

d) ∈ CR,r.

(d) Let σℓ,1 ≥ σℓ,2 · · · ≥ σℓ,min(n,R) be the singular values of the ℓ-mode side-

matrix U (ℓ) ∈ R
n×R (ℓ = 1, . . . , d). Then the reduced HOSVD approximation A0

(r) at

step 1 of Algorithm G BTA (see item (b)), obtained by the projection of A onto the

matrices of singular vectors Z
(ℓ)
0 , exhibits the error estimate

(2.18) ‖A − A0
(r)‖ ≤ ‖ξ‖

d∑

ℓ=1




min(n,R)∑

k=rℓ+1

σ2
ℓ,k




1/2

,

where ‖ξ‖2 =
∑R

ν=1 ξ2
ν .

Proof. (a) The generic dual maximization problem (2.8), with A given by (2.4),
now takes the form (2.16) due to the relation

〈yk1
1 ⊗ · · · ⊗ ykd

d , A〉 =

R∑

ν=1

ξν〈y
k1
1 , uν

1〉 . . . 〈ykd

d , uν
d〉.

(b) The compatibility condition ensures the size consistency of all matrix unfold-

ings. Let us assume that n ≤ R for definiteness. To justify the choice of Z
(ℓ)
0 , we

notice that using the contracted product representation (2.5) of the canonical tensors
A ∈ CR,n,

A = ξ ×1 U (1) ×2 U (2) · · · ×d U (d),
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we have, by the construction, the following expansion for the reduced HOSVD ap-
proximation:

A0
(r) = ξ ×1

[
Z

(1)
0 D1,0V

(1)
0

T
]
×2

[
Z

(2)
0 D2,0V

(2)
0

T
]
· · · ×d

[
Z

(d)
0 Dd,0V

(d)
0

T
]

.

Now we start from the error representation

A − A0
(r) = ξ ×1 U (1) ×2 U (2) · · · ×d U (d)

− ξ ×1

[
Z

(1)
0 D1,0V

(1)
0

T
]
×2

[
Z

(2)
0 D2,0V

(2)
0

T
]
· · · ×d

[
Z

(d)
0 Dd,0V

(d)
0

T
]

= ξ ×1

[
U (1) − Z

(1)
0 D1,0V

(1)
0

T
]
×2

[
Z

(2)
0 D2,0V

(2)
0

T
]
· · · ×d

[
Z

(d)
0 Dd,0V

(d)
0

T
]

+ ξ ×1 U (1) ×2

[
U (2) − Z

(2)
0 D2,0V

(2)
0

T
]
· · · ×d

[
Z

(d)
0 Dd,0V

(d)
0

T
]

+ · · ·

+ ξ ×1 U (1) ×2 U (2) · · · ×d

[
U (d) − Z

(d)
0 Dd,0V

(d)
0

T
]

.

To proceed, we introduce

∆(ℓ) = U (ℓ) − Z
(ℓ)
0 Dℓ,0V

(ℓ)
0

T
, W (ℓ) = Z

(ℓ)
0 Dℓ,0V

(ℓ)
0

T
;

then the ℓth summand in the right-hand side above takes the form

Bℓ = ξ ×1 U (1) · · · ×ℓ−1 U (ℓ−1) ×ℓ ∆(ℓ) ×ℓ+1 W (ℓ+1) · · · ×d W (d).

This leads to the error bound (by the triangle inequality)

‖A − A0
(r)‖ ≤

d∑

ℓ=1

‖Bℓ‖ = ‖ξ ×1 ∆(1) ×2 W (2) · · · ×d W (d)‖

+ ‖ξ ×1 U (1) ×2 ∆(2) · · · ×d W (d)‖ + · · ·

+ ‖ξ ×1 U (1) ×2 U (2) · · · ×d ∆(d)‖.

Here the ℓth term Bℓ can be represented by

R∑

ν=1

ξνuν
1 · · ·×ℓ−1u

ν
ℓ−1×ℓ

n∑

k=rℓ+1

σℓ,kzk
ℓ vk

ℓ,ν×ℓ+1

rℓ+1∑

k=1

σℓ+1,kzk
ℓ+1v

k
ℓ+1,ν · · ·×d

rd∑

k=1

σd,kzk
dvk

d,ν ,

giving the estimate (take into account that ‖uν
ℓ ‖ = 1, ℓ = 1, . . . , d, ν = 1, . . . , R)

‖Bℓ‖ ≤
R∑

ν=1

|ξν |

(
n∑

k=rℓ+1

σ2
ℓ,kvk

ℓ,ν

2

)1/2

·

(
rℓ+1∑

k=1

σ2
ℓ+1,kvk

ℓ+1,ν

2

)1/2

· · ·

(
rd∑

k=1

σ2
d,kvk

d,ν

2

)1/2

.

Recall that U (ℓ) (ℓ = 1, . . . , d) has normalized columns, i.e., 1 = ‖uν
ℓ‖ = ‖

∑n
k=1 σℓ,k

zk
ℓ vk

ℓ,ν‖, implying
∑n

k=1 σ2
ℓ,kvk

ℓ,ν

2
= 1 for ℓ = 1, . . . , d and ν = 1, . . . , R.
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Hence, we finalize the error bound as follows:

‖A − A0
(r)‖ ≤

d∑

ℓ=1

R∑

ν=1

|ξν |

(
n∑

k=rℓ+1

σ2
ℓ,kvk

ℓ,ν

2

)1/2

≤
d∑

ℓ=1

(
R∑

ν=1

ξ2
ν

)1/2 (
R∑

ν=1

n∑

k=rℓ+1

σ2
ℓ,kvk

ℓ,ν

2

)1/2

=

d∑

ℓ=1

‖ξ‖

(
n∑

k=rℓ+1

σ2
ℓ,k

R∑

ν=1

vk
ℓ,ν

2

)1/2

= ‖ξ‖
d∑

ℓ=1

(
n∑

k=rℓ+1

σ2
ℓ,k

)1/2

.

The case R < n can be analyzed along the same lines. Now item (d) follows.
We notice that the error estimate (2.18) in Theorem 2.5 actually provides the

control of the reduced (simplified) HOSVD approximation error via the computable
ℓ-mode error bounds since, by the construction, we have

‖U (ℓ) − Z
(ℓ)
0 Dℓ,0V

(ℓ)
0 ‖2

F =
n∑

k=rℓ+1

σ2
ℓ,k, ℓ = 1, . . . , d.

This result is similar to the well-known error estimate for the HOSVD approximation
(see Property 10 in [5]).

Based on Theorem 2.5 the corresponding C BTA algorithm for the rank-R input
data reads as follows.

Algorithm C BTA (CR,n → T CR,r). Given A ∈ CR,n in the form (2.4) and the
rank parameter r.

1. For ℓ = 1, . . . , d compute the truncated SVD of U (ℓ) to obtain orthogonal

matrices Z
(ℓ)
0 ∈ R

n×rℓ , representing the rank-rℓ HOSVD approximation of
dominating subspaces Tℓ (cost O(dRn min{R, n})).

2. Perform ALS iteration as at step 2 in the general G BTA algorithm to obtain
the maximizer W (ℓ) (ℓ = 1, . . . , d) (cost O(drd−1n min{rd−1, n}) per itera-
tion).

3. Calculate projections of ImU (ℓ) onto the orthogonal basis of W (ℓ) as the

matrix product W (ℓ)T U (ℓ) (ℓ = 1, . . . , d), at the cost O(drRn).
4. Compute the rank-R core tensor β ∈ CR,r as in (2.17), in O(drRn) operations

and with O(drR)-storage.
Notice that step 2 in Algorithm C BTA (CR,n→T CR,r) above is not mandatory.

It can be omitted if the initial guess Z
(ℓ)
0 turns out to be “good enough” with respect

to the chosen threshold criterion (see estimate (2.18)).
The following remark addresses the complexity issues.
Remark 2.6. Algorithm C BTA (CR,n→T CR,r) exhibits polynomial cost in R, r, n,

O(dRn min{n, R} + drd−1n min{rd−1, n}),

but with exponential scaling in d. In the absence of step 2, it does not contain iteration
loops, and for any d ≥ 2 it is a finite algorithm (now scales linearly in d) taking into
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account that the matrix SVD is the finite algorithm with cubic cost in the matrix
size.

Numerical tests show that Algorithm C BTA(CR,n→T CR,r) is efficient for mod-
erate R and n (in particular, it works well in electronic structure calculations in three
dimensions for moderate grid size n � 103 and for R ≤ 103). However, in large scale
simulations (say, in quantum chemistry) one may require computations in the range
n � 3 ·104, R ≤ 104. Hence, to get rid of polynomial scaling in R, n, r, we develop the
new generation of BTA methods based on the idea of MG acceleration of nonlinear
ALS iteration.

2.4. MG accelerated Tucker approximation with linear scaling. The con-
cept of multigrid acceleration (MGA) can be applied to the multidimensional data
obtained as a discretization of some smooth enough functions on a sequence of re-
fined spatial grids. Typical application areas are the solution of integral-differential
equations in R

d, approximation of multidimensional operators and functionals, and
data-structured representation of physically relevant quantities (say, molecular or elec-
tron densities, the Hartree and exchange potentials). Note that for such applications,
we usually have the following estimate on the Tucker rank, r = O(log n) ≪ n. This
concept can be applied to the fully populated as well as to the canonical rank-R target
tensors. In the case of rank-R input data it can be understood as an adaptive tensor
approximation method running over an incomplete set of data in the dual space. It
resembles the multidimensional “adaptive cross approximation” (see, e.g., [23] and [9]
related to the 3D case).

We introduce the equidistant tensor grid ωd,n := ω1 × ω2 · · · × ωd, where ωℓ :=
{−XA + (m − 1)h : m = 1, . . . , n + 1} (ℓ = 1, . . . , d) with mesh-size h = 2XA/n.
Define a set of collocation points {xm} in Ω ∈ R

d, m ∈ I := {1, . . . , n}d, located at
the midpoints of the grid-cells numbered by m ∈ I. For fixed n, the target tensor
An = [an,m] ∈ R

I is defined as the trace of the given continuous multivariate function
f : Ω → R on the set of collocation points {xm} as follows:

an,m = f(xm), m ∈ I.

Notice that the projected Galerkin discretization method can be applied as well. For
further constructions, we also need an “accurate” 1D interpolation operator Im−1→m

from the coarse-to-fine grids and in each spatial direction. For example, this might
be the interpolation by either piecewise linear or cubic splines.

The basic idea of the MG accelerated best orthogonal Tucker approximation can
be described by the following principles (topics 3–4 below apply to CR,n initial data):

1. General MG concept. We solve a sequence of nonlinear approximation prob-
lems for A = An as in (2.7) with n = nm := n02

m, m = 0, 1, . . . , M , corre-
sponding to a sequence of (d-adic) refined spatial grids ωd,nm

. The sequence
of approximation problems is treated successively in one run from the coarse-
to-fine grids (brings to mind the cascadic version of the MG method).

2. Coarse initial approximation to the side-matrices U (q). We use a coarse initial
approximation to the q-mode dominating subspaces on finer grids, represented
by the orthogonal side-matrices U (q) (see Definition 2.3). Specifically, initial
approximation of U (q) on finer grid ωd,nm

is obtained by the linear interpola-
tion from coarser grid ωd,nm−1 , up to interpolation accuracy O(n−α

m ), α > 0.
3. Most important fibers. We employ the idea of most important fibers (MIFs)

of the q-mode unfolding matrices B(q) ∈ R
n×rq (see (2.11) in step 2 of ba-

sic algorithm G BTA, section 2.2.), whose positions are extracted from the
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coarser grids. To identify the location of MIFs we apply the so-called maximal
energy principle as follows. On the coarse grid, we calculate a projection of
the q-mode unfolding matrix B(q) onto the true q-mode orthogonal subspace

ImU (q) = span{u1
q, . . . , u

rq

q }, which is computed as the matrix product,

(2.19) β(q) = U (q)T
B(q) ∈ R

rq×rq .

Now the maximal energy principle specifies the location of MIFs by finding
pr columns in β(q) with maximal Euclidean norms (supposing that pr ≪ rq);
see Figures 2.2 and 2.3. The positions of MIFs are numbered by the index
set Iq,p with #Iq,p = pr being the subset of the larger index set,

Iq,p ⊂ Irq
:= Ir1 × · · · × Irq−1 × Irq+1 × · · · × Ird

, #Irq
= rq = O(rd−1).

This strategy allows a “blind search” sampling of a fixed portion of q-mode
fibers in the Tucker core which accumulate the maximum part of ℓ2-energy.
The union of selected fibers from every space dimension (specified by the index
set Iq,p, q = 1, . . . , d) accumulates the most important information about the
structure of the rank R-tensor in the dual space R

r1×···×rd . This knowledge
enormously reduces the amount of computational work on fine grids (SVD
with matrix-size n × pr instead of n × rq).

4. Performing restricted ALS iteration. The proposed choice of MIFs allows
us to accelerate the ALS iteration to solving the problem of best rank-r
approximation to the large unfolding matrix B(q) ∈ R

n×rq with dominating

second dimension rq = rd−1 (always the case for large d). Our approach
allows us to reduce ALS iteration to the problem of computation of the r-
dimensional dominating subspace of small n × pr submatrices B(q,p) of B(q)

(q = 1, . . . , d), where p = O(1) is some fixed parameter.
The invention of the above principles leads to dramatical complexity reduction of the
standard tensor algorithms G BTA(Vn → T Br

) and C BTA(CR,n→T CR,r). In the
latter case, this approach leads to the efficient tensor approximation method with
linear scaling in parameters n, R, and r up to the computational cost on the “very
coarse” level. In the case of fully populated tensors we arrive, at least, at the linear
cost O(nd), corresponding to the storage space for the initial tensor (cf. also [23]); see
also section 2.5.

In the following we focus on the case of rank-R input. The proposed algorithm
of MG accelerated BTA for A ∈ CR,n can be outlined as follows.

Algorithm MG C BTA (CR,nM
→ T CR,r) (MG accelerated canonical-to-Tucker

approximation).
1. Given Am ∈ CR,nm

in the form (2.4), corresponding to a sequence of grid
parameters nm := n02

m, m = 0, 1, . . . , M, fix a reliability threshold parameter
ε > 0, a structural constant p = O(1), the critical grid level m0 < M , and
the Tucker parameter r.

2. For m = 0, solve C BTA(CR,n0 → TCR,r) and compute the index set Iq,p(n0) ⊂
Irq

via identification of MIFs in the matrix unfolding B(q), q = 1, . . . , d, us-
ing the maximum energy principle applied to the “preliminary core” β(q)

in (2.19).
3. For m = 1, . . . , m0, perform the cascadic MG nonlinear approximation by the

ALS iteration:
(3a) Compute initial orthogonal basis by interpolation (say, using cubic splines)

{U (1), . . . , U (d)}m = Im−1→m({U (1), . . . , U (d)}m−1).
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Fig. 2.2. Illustration for d = 3. Finding MIFs in the “preliminary core” β(q) for q = 1 for the

rank-R initial data on the coarse grid n = n0, n = (n1, n2, n3). B(q) is presented in a tensor form
for explanatory reasons.
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Fig. 2.3. MIFs: selected projections of the fibers of the preliminary “cores” for computing
U (1)(left), U (2) (middle), and U (3) (right). The example is taken from the MGA rank compression
during the computation of the Hartree potential for the water molecule, r = 14, p = 4.

For each q = 1, . . . , d, and with fixed U (ℓ) (ℓ = 1, . . . , d, ℓ �= q), perform the
following:
(3b) Define the index set Iq,p(nm) = Iq,p(nm−1) ⊂ Irq

and check the relia-
bility (approximation) criteria by SVD analysis of the small-size matrix (see
illustration in Figure 2.5, right)

B(q,p) = B(q)|Iq,p(nm)
∈ R

nm×pr.

If σmin(B(q,p)) ≤ ε, then the index set Iq,p is admissible. If for m = m0 the
approximation criteria above is not satisfactory, choose p = p + 1 and repeat
steps m = 0, . . . , m0.
(3c) Determine the orthogonal matrix U (q) ∈ R

n×r via computing the r-
dimensional dominating subspace for the “restricted” matrix unfolding B(q,p).

4. For levels m = m0 + 1, . . . , M , perform the MGA Tucker approximation by
ALS iteration as in steps (3a), (3c), but with fixed positions of MIFs specified
by the index set Iq,p(nm0), i.e., by discarding all fibers in B(q) corresponding
to the “less important” index set Ir̄q

\ Iq,p.
5. Compute the rank-R core tensor β ∈ CR,r, as in step 3 of basic algorithm C BTA

(CR,n → T CR,r).

Figure 2.4 shows the flow chart of Algorithm MG C BTA for the simplest case
m0 = 1. Numerical illustrations to the above algorithm will be presented in section 3.

The next statement proves the linear complexity of Algorithm MG C BTA.

Theorem 2.7. Algorithm MG C BTA(CR,nM
→T CR,r) amounts to

O(dRrnM + dp2r2nM )
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m=0,..., M, l=1,...,d

HOSVD   : 0 0

Given , U
(l)
m ,  for,p>0
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(l)

0
(Z

(l)

0
)
T

 0

dq=1,...,,

µ

  find  MIFs in B(q) , specify  I p,q

,       l=1,...,d

compute projections 
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for   m=1,...,M interpolate  Z
(l)

m1
Z

(l)

m

using I p,q

B (q)compute dominating subspaces

its canonical rank

compute    µM and reduce

using matrix unfolding of 0µ B (q)

compute reduced  unfoldings 

ξ

and the "preliminary"core tensor 

B (q)
(l)

mZ

pr

Fig. 2.4. Flow chart of the algorithm for the MG accelerated Tucker approximation of the
rank-R target, corresponding to the case m0 = 1.

operations per ALS loop, plus extra cost of the coarse mesh solver BTA (CR,n0→T CR,r).
It requires O(drnM + drR) storage to represent the result.

Proof. Step (3a) requires O(drnM ) operations and memory. Notice that for large
M , we have pr ≤ nM ; hence the complexity of step (3c) is bounded by O(dRrnM +
prnM +p2r2nM ) per iteration loop, and the same for step (3b). Rank-R representation
of β ∈ CR,r requires O(drRnM ) operations and O(drR)-storage. Summing up these
costs over levels m = 0, . . . , M proves the result.

Notice that the complexity and error of the MGA Tucker approximation can be
effectively controlled by the adaptive choice of the governing parameters p, m0, and
n0.

Figure 2.5(left) demonstrates linear scaling of the MGA Tucker approximation in
the input rank R and in the grid size n (electron density for the CH4 molecule). Fig-
ure 2.5(right) plots the singular values of the mode-1 matrix unfolding B(1,p) with the
choice p = 4, which demonstrates the reliability of the maximal energy principal in the
error control. Similar fast decay of respective singular values is typical in most of our
numerical examples in electronic structure calculations considered so far. Remark-
ably, the “representative subset” of fibers I(q,p) normally has the size pr of several r’s
with p ≪ r. In our applications, the usual choice of the critical grid level is m0 = 1.

2.5. Remarks on general types of input data. We distinguish three par-
ticular versions of the MG accelerated algorithm, MG BTA(S0 → T r), adapted to
different classes S0 of input tensors:

(F) Full (pointwise) tensor format, i.e., S0 = Vn.
Initial guess on the coarse grid: (a) truncated ℓ-mode SVD (cf. [6]), (b) approxi-

mation with smaller Tucker rank, or (c) three-way cross-approximation algorithm as
proposed in [23] (applies to d = 3).

(C) Type CR with some R > r (may correspond to an analytic approximation
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B(1,p), p = 4 (right).
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Fig. 2.6. Approximation error of the MG Tucker tensor approximation for the 3D Slater
function (left) and for the ρ1/3 function (right).

via sinc-quadratures or representation by exponential fitting as in electronic structure
calculations).

Initial guess on the coarse grid: ℓ-mode QR-decomposition with truncated SVD.
(T) Type T R (may correspond to an analytic approximation via tensor-product

interpolation).
Initial guess on the coarse grid : truncated HOSVD of the Tucker core, or ap-

proximation with smaller Tucker rank accomplished with best rank-1 approximation
to the initial increment.

In view of Lemma 2.4, the case (T) can be reduced to the case (F). The case (F)
will be addressed in more detail in a forthcoming paper.

Here we give only the numerical examples of the MG accelerated Tucker approxi-
mation for fully populated tensors given by 3D Slater function, e−‖x‖, Figure 2.6(left),
and by the transcendental function of electron density ρ, ρ1/3 (see (3.3) below), Fig-
ure 2.6(right). Note that the low-rank representation of the potential ρ1/3 is an
important issue in the density functional theory computations. For both functions
we compute the Tucker approximation on the grid n3 up to n = 512. As was men-
tioned before, the convergence upon the Tucker rank depends on physical “relevance”
(smoothness) of the function. Our MG accelerated scheme requires the SVD with
the complexity O(nrd−1 min{n, rd−1}), where r ≪ n, instead of O(nd+1) in the uni-
grid approach. In fact, the grid size of the MG accelerated Tucker decomposition for
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full tensors is bounded only by the amount of available computer memory for tensor
representation.

3. Numerical examination of Algorithm MG C BTA. As the basic ex-
ample, let us consider some quantities in the Hartree–Fock equation for pairwise
orthogonal electronic orbitals ψi : R

3 → R, which reads as

(3.1) FΦψi(x) = λi ψi(x),

∫

R3

ψiψj = δij , i, j = 1, . . . , N,

with FΦ being the nonlinear Fock operator

FΦ := −
1

2
∆ − Vc + VH −K.

Here we use the definitions

τ(x, y) :=

N∑

i=1

ψ∗
i (x)ψi(y), ρ(x) := τ(x, x),

(Kψ) (x) := −
1

2

N∑

i=1

(
ψ ψi ⋆

1

‖ · ‖

)
ψ∗

i (x) = −
1

2

∫

R3

τ(x, y)

‖x − y‖
ψ(y)dy

with the density matrix τ(x, y), the electron density ρ(x), the atomic potential Vc(x) =∑M
ν=1

Zν

|x−aν |
, the Hartree potential VH(x) given by

(3.2) VH(x) :=

∫

R3

ρ(y)

|x − y|
dy, x ∈ R

3,

and the nonlocal exchange operator K.

The MG CBTA algorithm has been evoked by the problem of computation of the
Hartree potential VH in the Tucker and canonical tensor formats (cf. [18]). In the cited
paper we used the tensor-product convolution described in [17, 19] for calculation
of the Hartree potential for the pseudodensities of some simple molecules. These
computations provide sufficient accuracies of order 10−6 Hartree in the max-norm for
the Hartree potential over n × n × n grid, already with n = 400 to 800.

However, when computing the all electron densities of molecules, which contain
strong cusps due to the core electron contribution (see all electron density for the water
molecule in Figure 3.1), large grids of the order of several thousands are required to
ensure the high resolution of local singularities. In the recent work [4], where the
wavelet basis set is used for approximation of the electronic structure quantities,
the Hartree potential of CH4 and C2H6 molecules is resolved in the cusp area with
the accuracies of the order of 10−3, by computations in the volume of [−XA, XA]3

with XA = 20 atomic units (au) and with the univariate grid size n = 5.1 · 103; that
is, the step-size should be as small as h = 2XA/n ≤ 8 · 10−3 au. In the present work
we perform electronic structure calculations in tensor-product format using uniform
grids with the step-size up to h = 1.3 · 10−3 au (corresponding to the univariate grid
size n = 16384 with XA = 10.6 au).

Our computational scheme for the convolution integral (3.2) involves the following
steps:
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Fig. 3.1. (a) Electron density of H2O in the section Ω = [−4, 4] × [−4, 4] × {0}. (b) MG vs.
single grid CPU times for the C-T transform in computations of the Hartree potential of the C2H6

molecule, r = 22, p = 4.

1. Compute the electron density of the molecule using an initial Gaussian-type
representation (GTO) for the orbitals with discretization on the correspond-
ing grid size. The resulting canonical rank of the data is Rρ ∼ 103 ÷ 104,
depending on the molecule.

2. Reduce the rank of the electron density by consequent canonical-to-Tucker
(C-T) and Tucker-to-canonical transform. Then the canonical rank of ρ is
reduced by the order of magnitude, which is sufficient for fast discrete con-
volution. Note that in the single grid approach, the complexity of a direct
C-T transformation depends polynomially on the main model parameters.
To avoid this limitation, we apply the MGA technique (see section 2.4) which
yields the linear complexity scaling with increasing grid size n, canonical rank
Rρ, and dimension parameter d.

3. Compute the convolution (3.2) (representing the Hartree potential) in tensor-
product format using rank-RN canonical representation of the Newton poten-
tial with RN ∼ 19 ÷ 32 and canonical representation of the electron density
obtained in step 2.

Then one can compute accurately physically relevant functionals which built the Fock
operator in the framework of the Hartree–Fock model, say, the Coulomb matrix.

We obtain the total electron density in a form of separable representation of
orbitals in Gaussian-type basis set (GTO) given by the exponential sum

(3.3) ρ(x) :=
M∑

ν=1

(
R0∑

k=1

cν,k(x − xk)βke−λk(x−xk)2

)2

, x ∈ R
3, M = N/2,

where xk correspond to the locations of the atoms in a molecule, M is the number of
electron pairs, and R0 is the number of GTO basis functions.

The number of GTO basis functions (Gaussians) for orbitals are given by R0 =
55, 41, and 96 for CH4, H2O, and C2H6 molecules, respectively. We assume that a
particular molecule is imbedded in an appropriate computational box [−XA, XA]3.
We use XA = 10.6 au for H2O and XA = 14.6 au for CH4 and C2H6 molecules. In the
following we represent the convolving tensor corresponding to ρ(x) in the canonical
format. Since the products of two Gaussians in (3.3) can be written in the form of
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single Gaussians by recomputing the coefficients as

e−λ(x−a)2 · e−β(x−b)2 = eσ · e−γ(x−c)2, σ =
λβ(a − b)2

λ + β
, γ = λ + β, c =

aλ + bβ

λ + β
,

this leads to the following bound on the initial rank of the input tensor:

(3.4) R = R(ρ) =
R0(R0 + 1)

2
.

So, we have the following ranks of the discrete canonical representation of all electron
densities for the considered molecules: RCH4 = 1540, RC2H6 = 4656, RH2O = 861.

We apply the piecewise constant approximation to discretize the Gaussians of the
type

(3.5) gk(y) = (y − Ak)ake−αk(y−Ak)2 , y ∈ R
3, k = 1, . . . , R,

by rank-1 n × n × n tensors by computing the sampling values of the corresponding
Gaussians at the centers of intervals corresponding to the equidistant tensor grid
ω3,n := ω1 × ω2 × ω3, ωℓ := {−XA + (m− 1)h : m = 1, . . . , n + 1} (ℓ = 1, . . . , 3) with
mesh-size h = 2XA/n. We define the sampling points as {yi = (y1

i1 , y
2
i2 , y

3
i3)}, iℓ ∈

Iℓ = {1, . . . , n} for ℓ = 1, 2, 3. Here we have ak = (a1
k, a2

k, a3
k), Ak = (A1

k, A2
k, A3

k).
The rank-1 tensor representing the single Gaussian gk is given by the canonical rank-1
tensor

Gk ≡ [ti]i∈I = t1 ⊗ t2 ⊗ t3 ∈ Vn with entries ti = t1,i1 · t2,i2 · t3,i3 ,

where

tℓ = {tℓ,i}i∈Iℓ
∈ Vℓ, tℓ,i = (yℓ

i − Aℓ
k)aℓ

ke−αk(yℓ
i−Aℓ

k)2 , ℓ = 1, 2, 3.

We apply the standard collocation scheme to discretize the convolution product
on tensor grid ω3,n of collocation points {xm} in ω3,n, m ∈ M := {1, . . . , n+1}3 [17].
For given piecewise constant basis functions {φi}, i ∈ I := {1, . . . , n}3, associated
with ω3,n, let fi = f(yi) be the representation coefficients of f in {φi},

f(y) ≈
∑

i∈I

fiφi(y),

where yi is the midpoint of the grid-cell numbered by i ∈ I. Now the collocation
scheme reads as

f ∗ g ≈ {Wm}m∈M, Wm :=
∑

i∈I

fi

∫

R3

φi(y)g(xm − y)dy, xm ∈ ω3,n.

As a first step, we precompute the coefficients

gi =

∫

R3

φi(y)

|y|
dy, i ∈ I.

The coefficient tensor G = [gi] ∈ R
I for the Coulomb potential 1

|x−y| is approxi-

mated in the rank-RN canonical tensor format (see section 2) using optimized sinc-
quadratures [12, 13, 17], where the rank parameter RN = O(| log ε| log n) depends
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logarithmically on both the required accuracy and the problem-size n. In all com-
putations presented below we choose the tensor rank in the range RN ∈ [20, 30] to
provide the desired accuracy. The third-order tensor F = [fi] ∈ R

I is approximated
either in the rank r = (r, r, r) Tucker format or via the canonical model with the
tensor rank R.

Following [17, 19], we compute Wm by copying the corresponding portion of the
discrete convolution in R

3,

(3.6) F ∗ G := {zj}, zj :=
∑

i∈I

figj−i+1, j ∈ J := {1, . . . , 2n− 1}3,

centered at j = n, where the sum is over all i, j ∈ I, which lead to legal subscripts for
gj−i+1, i.e., j − i + 1 ∈ I.

Approximating F in the rank-R canonical format (see (2.4)) enables us to compute
F ∗ G in the form

F ∗ G =

RN∑

k=1

R∑

m=1

ckbm

(
uk

1 ∗ vm
1

)
⊗

(
uk

2 ∗ vm
2

)
⊗

(
uk

3 ∗ vm
3

)
,

which leads to the cost

NC∗C = O(RRNn logn).

Thus, computation of the convolution product with such ranks of the input tensors has
practical limitations since the exact rank of the resulting tensor is a product of those
for the corresponding convolving arrays. For the purpose of reducing the tensor rank
of the convolving density, we apply the fast algorithm MG C BTA(CR,nM

→T CR,r) for
the C-T MG transform defined on the sequence of refined grids, followed by the Tucker-
to-canonical transform of the core tensor. In this way, the canonical rank R can be
reduced by the order of magnitude, from several thousands to a few hundreds or even
tens, depending on the input data. As was mentioned, in general, the complexity of the
single grid C-T transform depends polynomially on the parameters of the model; see
Algorithm C BTA (CR,n→T CR,r). The MGA technique implemented by Algorithm
MG CBTA provides calculations of the 3D integral transform (3.2) using record grid
sizes up to n = 16384 in small computational times of both the MG preprocessing
and discrete 3D convolution; see Figure 3.2(b). Figure 3.1 shows a comparison of the
C-T preprocessing times for BTA and MG BTA algorithms for computations with the
same accuracy.

The table below shows the advantage of the fast tensor-product convolution
method with the rank recompression via Algorithm MG C BTA, compared with those
based on 3D FFT. We present the CPU times for high accuracy computation of the
Hartree potential for the H2O molecule calculated in MATLAB on a Sun Fire X4600
computer with 2.6 GHz processor. The CPU time for the FFT-based scheme with
n ≥ 1024 is obtained by extrapolation.

n3 1283 2563 5123 10243 20483 40963 81923 163843

3D FFT (sec) 4.3 55.4 582.8 ∼ 6000 – – – ∼ 2 years
ConvCC (sec) 1.0 3.1 5.3 21.9 43.7 127.1 368.6 700.2

Figures 3.2(a), 3.3(a), and 3.4(a) show the accuracy of the computation of the Hartree
potential of H2O, CH4, and C2H6 molecules on logarithmic scale. We present the abso-
lute error for VH in the subinterval along the x-axis compared with the corresponding
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Fig. 3.3. (a) Absolute approximation error of the tensor-product computation of the Hartree
potential of the CH4 molecule in the subinterval Ω = [−8, 8] × {0} × {0} and (b) the corresponding
CPU times.

values of VH computed by the MOLPRO package. We compare the computational
error for the grid sizes n = 4096, 8192 and for the corresponding Richardson extrap-
olation of order O(h3); see Theorems 2.2 and 2.3 from [17]. We observe the accuracy
8 · 10−5 Hartree at the cusp region corresponding to carbon atoms in CH4, 5 · 10−5

Hartree at the cusp corresponding to oxygen atoms in H2O, and 5 · 10−6 Hartree at
the cusps corresponding to carbon atoms in C2H6. Note that maximum values of the
Hartree potential at the cusp points are VH(0, 0, 0) = 8.35, 11.73, and 9.49 Hartree
for the methane, water, and ethane molecules, respectively. This yields the relative
accuracy of the order 10−6 for the considered molecules.

Figures 3.2(b), 3.3(b), and 3.4(b) show CPU times for the CH4, H2O, and C2H6

molecules, respectively. “C2T” lines correspond to the preprocessing time, which
consists mostly of the MG rank compression, while the “3D conv.” lines show the
respective convolution times. The total computational time for VH at a fixed grid
size n = nf consists of a sum of preprocessing times from all previous levels, starting
from the initial grid with, say, n0 = 64, up to nf , plus the convolution time for the
level with n = nf .

Computational time depends mainly on the chosen accuracy of approximation,
which is defined by the MG parameters, namely, by the structural constant p and
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Fig. 3.5. (a) Coulomb matrix (absolute values) for H2O and (b) the absolute approximation
error of the MG tensor-product computation of the Coulomb matrix for H2O.

the respective Tucker rank; see Theorem 2.7. It should be noted that the CPU times
can be crucially reduced if the accuracy of the result is not so demanding, say, up to
10−3. In applications discussed above the computational task was challenging due to
accuracy requirements, which led to the increase of the Tucker rank and of the struc-
tural constant p in the MG scheme, and consequently the demands on computational
resources.

Next, we computed the Coulomb matrix for the Hartree potential of the consid-
ered molecules in the GTO basis set, using the tensor-product scheme [19] as discussed
in [18]. The Coulomb matrix for VH with respect to the set of normalized Gaussians
{g̃k} is given by

(3.7) Jkm :=

∫

R3

g̃k(x)g̃m(x)VH (x)dx, k, m = 1, . . . , R0, x ∈ R
3.

Figure 3.5 shows the absolute approximation error of the Coulomb matrix Jkm for the
water molecule. Figures 3.6 and 3.7 show absolute errors of diagonal elements of the
Coulomb matrices for CH4 and C2H6 compared with the MOLPRO computations.
It should be noticed that the absolute approximation errors for the diagonal matrix
elements corresponding to cusp areas are below 4 · 10−6, 3 · 10−5, and 8 · 10−5 for the
CH4, C2H6, and water molecules, respectively.
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