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Introduction

Let M be a compact manifold without boundary, and let H be a time-dependent smooth Hamil-
tonian on T ∗M , the cotangent bundle of M . We assume that H is 1-periodic in time and grows
asymptotically quadratically on each fiber. Generically, the corresponding Hamiltonian system

x′(t) = XH(t, x(t)), x : T := R/Z→ T ∗M, (1)

has a discrete set P(H) of 1-periodic orbits. The free Abelian group F∗(H) generated by the
elements in P(H), graded by their Conley-Zehnder index, supports a chain complex, the Floer
complex (F∗(H), ∂). The boundary operator ∂ is defined by an algebraic count of the maps u from
the cylinder R× T to T ∗M , solving the Cauchy-Riemann type equation

∂su(s, t) + J(u(s, t))
(
∂tu(s, t)−XH(t, u(s, t))

)
= 0, ∀(s, t) ∈ R× T, (2)

and converging to two 1-periodic orbits of (1) for s → −∞ and s → +∞. Here J is the almost-
complex structure on T ∗M induced by a Riemannian metric on M , and (2) can be seen as the
negative L2-gradient equation for the Hamiltonian action functional.

This construction is due to Floer (see e.g. [Flo88a, Flo88b, Flo89a, Flo89b]) in the case of
a compact symplectic manifold P , in order to prove a conjecture of Arnold on the number of
periodic Hamiltonian orbits. The extension to non-compact symplectic manifolds, such as the
cotangent bundles we consider here, requires suitable growth conditions on the Hamiltonian, such
as the convexity assumption used in [Vit96] or the asymptotic quadratic-growth assumption used
in [AS06b]. The Floer complex obviously depends on the Hamiltonian H , but its homology often
does not, so it makes sense to call this homology the Floer homology of the underlying sympletic
manifold P , which is denoted by HF∗(P ). The Floer homology of a compact symplectic manifold
P without boundary is isomorphic to the singular homology of P , as proved by Floer for special
classes of symplectic manifolds, and later extended to larger and larger classes by several authors
(the general case requiring special coefficient rings, see [HS95, LT98, FO99]). Unlike the compact
case, the Floer homology of a cotangent bundle T ∗M is a truly infinite dimensional homology
theory, being isomorphic to the singular homology of the free loop space Λ(M) of M . This fact
was first proved by Viterbo (see [Vit96]) using a generating functions approach, later by Salamon
and Weber using the heat flow for curves on a Riemannian manifold (see [SW06]), and then by the
authors in [AS06b]. In particular, our proof reduces the general case to the case of Hamiltonians
which are fiber-wise convex, and for such a Hamiltonians it constructs an explicit isomorphism
from the Floer complex of H to the Morse complex of the action functionalSL(γ) =

∫T L(t, γ(t), γ′(t)) dt, γ ∈ W 1,2(T,M),

associated to the Lagrangian L which is the Fenchel dual of H . The latter complex is just the
standard chain complex associated to a gradient flow on a manifold. Here actually, the manifold
is the infinite dimensional Hilbert manifold W 1,2(T,M) consisting of closed loops of Sobolev class
W 1,2 on M , and an important fact is that the functional SL is of class C2, it is bounded from
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below, it satisfies the Palais-Smale condition, and its critical points have finite Morse index.
The construction of the Morse complex in this infinite dimensional setting and the proof that its
homology is isomorphic to the singular homology of the ambient manifold are described in [AM06].
The isomorphism between the Floer and the Morse complex is obtained by coupling the Cauchy-
Riemann type equation on half-cylinders with the gradient flow equation for the Lagrangian action.
We call this the hybrid method.

Since the space W 1,2(T,M) is homotopy equivalent to Λ(M), we get the required isomorphism

Φ : H∗(Λ(M))
∼=−→ HF∗(T

∗M), (3)

from the singular homology of the free loop space of M to the Floer homology of T ∗M .
Additional interesting algebraic structures on the Floer homology of a symplectic manifold

are obtained by considering other Riemann surfaces than the cylinder as domain for the Cauchy-
Riemann type equation (2). By considering the pair-of-pants surface, a non-compact Riemann
surface with three cylindrical ends, one obtains the pair-of-pants product in Floer homology (see
[Sch95] and [MS04]). When the symplectic manifold P is compact without boundary and sym-
plectically aspherical, this product corresponds to the standard cup product from topology, after
identifying the Floer homology of P with its singular cohomology by Poincaré duality, while when
the manifold P can carry J-holomorphic spheres the pair-of-pants product corresponds to the
quantum cup product of P (see [PSS96] and [LT99]).

The main result of this paper is that in the case of cotangent bundles, the pair-of-pants product
is also equivalent to a product on H∗(Λ(M)) coming from topology, but a more interesting one
than the simple cup product:

Theorem. Let M be a compact oriented manifold without boundary. Then the isomorphism
Φ in (3) is a ring isomorphism when the Floer homology of T ∗M is endowed with its pair-of-
pants product, and the homology of the space of free parametrized loops of M is endowed with its
Chas-Sullivan loop product.

The latter is an algebraic structure which was recently discovered by Chas and Sullivan [ChS99],
and which is currently having a strong impact in string topology (see e.g. [CHV06] and [Sul07]).
In some sense, it is the free loop space version of the classical Pontrjagin product on the singular
homology of the based loop space, and it can be described in the following way. Let Θ(M) be the
subspace of Λ(M)×Λ(M) consisting of pairs of parametrized loops with identical initial point. If
M is oriented and n-dimensional, Θ(M) is both a co-oriented n-co-dimensional submanifold of the
Banach manifold Λ(M)× Λ(M) as well as of Λ(M) itself via the concatenation map Γ: Θ(M)→
Λ(M),

Λ(M)× Λ(M)
e←֓ Θ(M)

Γ→֒ Λ(M) . (4)

Seen as continuous maps, e and Γ induce homomorphisms e∗, Γ∗ in homology. Seen as n-co-
dimensional co-oriented embeddings, they induce Umkehr maps

e! : Hj(Λ(M)× Λ(M))→ Hj−n(Θ(M)),
Γ! : Hj(Λ(M))→ Hj−n(Θ(M)),

∀j ∈ N.
The loop product is the degree −n product on the homology of the free loop space of M ,

o : Hj(Λ(M))⊗Hk(Λ(M))→ Hj+k−n(Λ(M)),

defined as the composition

Hj(Λ(M))⊗Hk(Λ(M))
×−→ Hj+k(Λ(M)× Λ(M))

e!−→ Hj+k−n(Θ(M))
Γ∗−→ Hj+k−n(Λ(M)),

where × is the exterior homology product. The loop product turns out to be associative, commu-
tative, and to have a unit, namely the image of the fundamental class of M by the embedding of
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M into Λ(M) as the space of constant loops. More information about the loop product and about
its relationship with the Pontrjagin and the intersection product are recalled in section 1. Note
that, we also obtain immediately in an anologous way a coproduct of degree −n by composing
e∗ ◦Γ! which corresponds to the pair-of-pants coproduct on Floer homology. It is easy to see, that
this coproduct is almost entirely trivial except for homology class of dimension n, see [AS08]

Actually, the analogy between the pair-of-pants product and the loop product is even deeper.
Indeed, we may look at the solutions (x1, x2) : [0, 1] → T ∗M × T ∗M of the following pair of
Hamiltonian systems

x′1(t) = XH1
(t, x1(t)), x′2(t) = XH2

(t, x1(2)), (5)

coupled by the non-local boundary condition

q1(0) = q1(1) = q2(0) = q2(1),

p1(1)− p1(0) = p2(0)− p2(1).
(6)

Here we are using the notation xj(t) = (qj(t), pj(t)), with qj(t) ∈M and pj(t) ∈ T ∗
qj(t)

M , for j =

1, 2. By studying the corresponding Lagrangian boundary value Cauchy-Riemann type problem
on the strip R× [0, 1], we obtain a chain complex, the Floer complex for figure-8 loops (FΘ(H), ∂),
on the graded free Abelian group generated by solutions of (5)-(6). Then we can show that:

(i) The homology of the chain complex (FΘ(H), ∂) is isomorphic to the singular homology of
Θ(M).

(ii) The pair of pants product factors through the homology of this chain complex.

(iii) The first homomorphism in this factorization corresponds to the homomorphism e!◦×, while
the second one corresponds to homomorphism Γ∗.

We also show that similar results hold for the space of based loops. The Hamiltonian problem
in this case is the equation (1) for x = (q, p) : [0, 1]→ T ∗M with boundary conditions

q(0) = q(1) = q0,

for a fixed q0 ∈M . The corresponding Floer homology HFΩ
∗ (T ∗M) is isomorphic to the singular

homology of the based loop space Ω(M), and there is a product on such a Floer homology, the
triangle product, which corresponds to the classical Pontrjagin product # on H∗(Ω(M)). Actually,
every arrow in the commutative diagram from topology

Hj(M)⊗Hk(M)
•−−−−→ Hj+k−n(M)

c∗⊗c∗

y
yc∗

Hj(Λ(M))⊗Hk(Λ(M))
o−−−−→ Hj+k−n(Λ(M))

i!⊗i!

y
yi!

Hj−n(Ω(M))⊗Hk−n(Ω(M))
#−−−−→ Hj+k−2n(Ω(M, q0)),

(7)

has an equivalent homomorphism in Floer homology. Here • is the intersection product in singular
homology, c is the embedding of M into Λ(M) by constant loops, and i! denotes the Umkehr map
induced by the n-co-dimensional co-oriented embedding Ω(M) →֒ Λ(M).

All the Floer homologies on cotangent bundles we consider here - for free loops, figure eight
loops, or based loops - are special cases of Floer homology for non-local conormal boundary
conditions: One fixes a closed submanifold Q of M ×M and considers the Hamiltonian orbits
x : [0, 1]→ T ∗M such that (x(0),−x(1)) belongs to the conormal bundle N∗Q of Q, that is to the
set of covectors in T ∗(M ×M) which are based at Q and annihilate every vector which is tangent
to Q. See [APS08], where we show that the isomorphism (3) generalizes to

Φ: H∗(Ω
Q(M))

∼=−→ HFQ
∗ (T ∗M)
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where ΩQ(M) is the space of paths γ : [0, 1] → M such that (γ(0), γ(1)) ∈ Q, and HFQ
∗ is the

Floer homology associated to N∗Q.
The first step in the proof of the main statements of this paper is to describe objects and mor-

phisms from algebraic topology in a Morse theoretical way. The way this translation is performed
is well known in the case of finite dimensional manifolds (see e.g. [Fuk93], [Sch93], [BC94], [Vit95],
[Fuk97]). In section 2 we outline how these results extend to infinite dimensional Hilbert manifolds.
We pay particular attention to the transversality conditions required for each construction, and
we particularize the analysis to the action functional associated to a fiberwise convex Lagrangian
having quadratic growth in the velocities. See also [Coh06, CHV06, CS08].

The core of the paper consists of sections 3 and 4. In the former we define the Floer complexes
we are dealing with and the products on their homology. In the latter we establish the equivalence
with algebraic topology, thus proving the above theorem and the other main results of this paper.
The linear Fredholm theory used in these sections is described in section 5, whereas section 6 con-
tains compactness and removal of singularities results, together with the proofs of three cobordism
statements from sections 3 and 4.

Some of the proofs are based on standard techniques in Floer homology, and in this case we
just refer to the literature. However, there are a few key points where we need to introduce some
new ideas. We conclude this introduction by briefly describing these ideas.

Riemann surfaces as quotients of strips with slits. The definition of the pair-of-pants
product requires extending the Cauchy-Riemann type equation (2) to the pair-of-pants surface.
The Cauchy-Riemann operator ∂s + J∂t naturally extends to any Riemann surface, by letting it
act on anti-linear one-forms. The zero-order term −JXH(t, u) instead does not have a natural
extension when the Riemann surface does not have a global coordinate z = s+ it. The standard
way to overcome this difficulty is to make this zero-order term act only on the cylindrical ends of the
pair-of-pants surface - which do have a global coordinate z = s+it - by multiplying the Hamiltonian
by a cut-off functions making it vanish far from the cylindrical ends (see [Sch95], [MS04]). This
construction does not cause problems when dealing with compact symplectic manifolds as in the
above mentioned reference, but in the case of the cotangent bundle it would create problems with
compactness of the spaces of solutions. In fact, on one hand cutting off the Hamiltonian destroys
the identity relating the energy of the solution with the oscillation of the action functional, on the
other hand our C0-estimate for the solutions requires coercive Hamiltonians.

We overcome this difficulty by a different - and we believe more natural - way of extending the
zero-order term. We describe the pair-of-pants surface - as well as the other Riemann surfaces we
need to deal with - as the quotient of an infinite strip with a slit - or more slits in the case of more
general Riemann surfaces. At the end of the slit we use a chart given by the square root map. In
this way, the Riemann surface is still seen as a smooth object, but it carries a global coordinate
z = s+ it with singularities. This global coordinate allows to extend the zero-order term without
cutting off the Hamoltonian, and preserving the energy identity. See subsection 3.2 below.

Cauchy-Riemann operators on strips with jumping boundary conditions. When using
the above description for the Riemann surfaces, the problems we are looking at can be described in
a unified way as Cauchy-Riemann type equations on a strip, with Lagrangian boundary conditions
presenting a finite number of jumps. In section 5 we develop a complete linear theory for such
problems, in the case of Lagrangian boundary conditions of co-normal type. This is the kind of
conditions which occur naturally on cotangent bundles. Once the proper Sobolev setting has been
chosen, the proof of the Fredholm property for such operators is standard. The computation of
the index instead is reduced to a Liouville type statement, proved in subsection 5.5

These linear results have the following consequence. Let Q0, . . . , Qk be submanifolds of M×M ,
such that Qj−1 and Qj intersect cleanly, for every j = 1, . . . , k. Let −∞ = s0 < s1 < · · · < sk <
sk+1 = +∞, and consider the space M consisting of the maps u : R × [0, 1] → T ∗M solving the
Cauchy-Riemann type equation (2), satisfying the boundary conditions

(u(s, 0),−u(s, 1)) ∈ N∗Qj ∀s ∈ [sj , sj+1], ∀j = 0, . . . , k,
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and converging to Hamiltonian orbits x− and x+ for s→ −∞ and s→ +∞. The results of section
5 imply that for a generic choice of the Hamiltonian H the space M is a manifold of dimension

dimM = µQ0(x−)− µQk(x+)−
k∑

j=1

(dimQj−1 − dimQj−1 ∩Qj).

Here µQ0(x−) and µQk(x+) are the Maslov indices of the Hamiltonian orbits x− and x+, with
boundary conditions (x−(0),−x−(1)) ∈ N∗Q0, (x+(0),−x+(1)) ∈ N∗Qk, suitably shifted so that
in the case of a fiberwise convex Hamiltonian they coincide with the Morse indices of the corre-
sponding critical points γ− and γ+ of the Lagrangian action functional on the spaces of paths
satisfying (γ−(0), γ−(1)) ∈ Q0 and (γ+(0), γ+(1)) ∈ Qk, respectively. Similar formulas hold for
problems on the half-strip.

Cobordism arguments. The main results of this paper always reduce to the fact that certain
diagrams involving homomorphism defined either in a Floer or in a Morse theoretical way should
commute. The proof of such a commutativity is based on cobordism arguments, saying that a given
solution of a certain Problem 1 can be “continued” by a unique one-parameter family of solutions of
a certain Problem 2, and that this family of solutions converges to a solution of a certain Problem
3. In many situations such a statement can be proved by the classical gluing argument in Floer
theory: One finds the one-parameter family of solutions of Problem 2 by using the given solution
of Problem 1 to construct an approximate solution, to be used as the starting point of a Newton
iteration scheme which converges to a true solution. When this is the case, we just refer to the
literature. However, we encounter three situations in which the standard arguments do not apply,
one reason being that we face a Problem 2 involving a Riemann surface whose conformal structure
is varying with the parameter: this occurs when proving that the pair-of-pants product factorizes
through the figure-8 Floer homology (subsection 3.5), that the Pontrjagin product corresponds
to the triangle product (subsection 4.2), and that the homomorphism e! ◦ × corresponds to its
Floer homological counterpart (subsection 4.4). We manage to reduce the former two statements
to the standard implicit function theorem (see subsections 6.3 and 6.4). The proof of the latter
statement is more involved, because in this case the solution of Problem 2 we are looking for
cannot be expected to be even C0-close to the solution of Problem 1 we start with. We overcome
this difficulty by the following algebraic observation: In order to prove that two chain maps
ϕ, ψ : C → C′ are chain homotopic, it suffices to find a chain homotopy between the chain maps
ϕ ⊗ ψ and ψ ⊗ ϕ, and to find an element ǫ ∈ C0 and a chain map δ from the complex C′ to
the trivial complex (Z, 0) such that δ(ϕ(ǫ)) = δ(ψ(ǫ)) (see Lemma 4.6 below). In our situation,
the chain homotopy between ϕ⊗ ψ and ψ ⊗ ϕ is easier to find, by using a localization argument
and the implicit function theorem (see subsection 6.5). This argument is somehow reminiscent of
an alternative way suggested by Hofer to prove standard gluing results in Floer homology. The
construction of the element ǫ and of the chain map δ is presented in subsection 4.4, together
with the proof of the required algebraic identity. This is done by considering special Hamiltonian
systems, having a hyperbolic equilibrium point.

The main results of this paper were announced in [AS06a]. Related results concerning the
equivariant loop product and its interpretation in the symplectic field theory of unitary cotangent
bundles have been announced in [CL07].

Outlook. An immediate question raised by the main result of this paper whether other product
structures in classical homoloy theories for path and loop spaces can also be constructed naturally
on chain level in Floer theory. The answer appears to be affirmative for all so far considered
structures. In a following paper [AS08] we give the explicit construction of the cup-product in
all path and loop space cases, a direct proof of the Hopf algebra structure on HFΩ(T ∗M) based
on Floer chain complex morphisms, and we also construct the counterpart of the very recently
introduced product structure on relative cohomology

Hk(Λ(M),M)×H l(Λ(M),M)→ Hk+l+n−1(Λ(M),M)
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from [GH07]. Also in view of the uniformization of path and loop space homology H∗(ΩQ(M)) for
Q ⊂M ×M we show in [APS08] that the bilinear operation for cleanly intersecting submanifolds
Q1 ∩Q2 6= ∅, viewed as composable correspondences, which one obtains analogously to the loop
product from

ΩQ1(M)× ΩQ2(M) ←֓ ΩQ1∩Q2(M) →֒ ΩQ1◦Q2(M),

is isomorphic to the operation

HFQ1(T ∗M)⊗HFQ2(T ∗M) → HFQ1◦Q2(T ∗M)

which follows from the above moduli problem M with conormal boundary condition jump from
Q1 ×Q2 to Q1 ◦Q2. The latter is the composition as correspondences

Q1 ◦Q2 = π14

(
(Q1 ×Q2) ∩ (M ×△×M)

)

where π14 : M4 → M2 is the projection onto the first and fourth factor. The special case Q1 =
Q2 = △ describes the Chas-Sullivan and the pair-of-pants product.

Acknowledgements. We wish to thank the Max Planck Institute for Mathematics in the Sci-
ences of Leipzig and the Department of Mathematics at Stanford University, and in particular
Yasha Eliashberg, for their kind hospitality. We are also indebted with Ralph Cohen and Helmut
Hofer for many fruitful discussions. The second author thanks the Deutsche Forschungsgemein-
schaft for the support by the grant DFG SCHW 892/2-3.

1 The Pontrjagin and the loop products

1.1 The Pontrjagin product

Given a topological space M and a point q0 ∈M , we denote by Ω(M, q0) the space of loops on M
based at q0, that is

Ω(M, q0) :=
{
γ ∈ C0(T,M) | γ(0) = q0

}
,

endowed with the compact-open topology. Here T = R/Z is the circle parameterized by the interval
[0, 1]. The concatenation

Γ(γ1, γ2)(t) :=

{
γ1(2t) for 0 ≤ t ≤ 1/2,
γ2(2t− 1) for 1/2 ≤ t ≤ 1,

maps Ω(M, q0)× Ω(M, q0) continuously into Ω(M, q0). The constant loop q0 is a homotopy unit
for Γ, meaning that the maps γ 7→ Γ(q0, γ) and γ 7→ Γ(γ, q0) are homotopic to the identity map.
Moreover, Γ is homotopy associative, meaning that Γ ◦ (Γ × id) and Γ ◦ (id × Γ) are homotopic.
Therefore, Γ defines the structure of an H-space on Ω(M, q0).

We denote by H∗ the singular homology functor with integer coefficients. The composition

Hj(Ω(M, q0))⊗Hk(Ω(M, q0))
×−→ Hj+k(Ω(M, q0)× Ω(M, q0))

Γ∗−→ Hj+k(Ω(M, q0))

where the first arrow is the exterior homology product, is by definition the Pontrjagin product

# : Hj(Ω(M, q0))⊗Hk(Ω(M, q0))→ Hj+k(Ω(M, q0)).

The fact that q0 is a homotopy unit for Γ implies that [q0] ∈ H0(Ω(M, q0)) is the identity element
for the Pontrjagin product. The fact that Γ is homotopy associative implies that the Pontrjagin
product is associative. Therefore, the product # makes the singular homology of Ω(M, q0) a
graded ring. In general, it is a non-commutative graded ring. See for instance [tDKP70] for more
information on H-spaces and the Pontrjagin product.
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1.2 The Chas-Sullivan loop product

We denote by Λ(M) := C0(T,M) the space of free loops on M . Under the assumption that M
is an oriented n-dimensional manifold, it is possible to use the concatenation map Γ to define a
product of degree −n on H∗(Λ(M)). In order to describe the construction, we need to recall the
definition of the Umkehr map.

LetM be a (possibly infinite-dimensional) smooth Banach manifold, and let e :M0 →֒ M be a
smooth closed embedding, which we assume to be n-codimensional and co-oriented. In other words,
M0 is a closed submanifold ofM whose normal bundle NM0 := TM|M0

/TM0 has codimension
n and is oriented. The tubular neighborhood theorem provides us with a homeomorphism1 u :
U → NM0, uniquely determined up to isotopy, of an open neighborhood of M0 onto NM0,
mappingM0 identically onto the zero section of NM0, that we also denote by M0 (see [Lan99],
IV.§5-6). The Umkehr map is defined to be the composition

Hj(M) −→ Hj(M,M\M0)
∼=−→ Hj(U ,U \M0)

u∗−→ Hj(NM0, NM0 \M0)
τ−→ Hj−n(M0),

where the first arrow is induced by the inclusion, the second one is the isomorphism given by
excision, and the last one is the Thom isomorphism associated to the n-dimensional oriented vector
bundle NM0, that is, the cap product with the Thom class τNM0

∈ Hn(NM0, NM0 \M0). The
Umkehr map associated to the embedding e is denoted by

e! : Hj(M) −→ Hj−n(M0).

We recall that if M is an n-dimensional manifold, Λ(M) is an infinite dimensional smooth
manifold modeled on the Banach space C0(T,Rn). The set Θ(M) of pairs of loops with the same
initial point (figure-8 loops),

Θ(M) := {(γ1, γ2) ∈ Λ(M)× Λ(M) | γ1(0) = γ2(0)} ,

is the inverse image of the diagonal ∆M of M ×M by the smooth submersion

ev× ev : Λ(M)× Λ(M)→M ×M, (γ1, γ2) 7→ (γ1(0), γ2(0)).

Therefore, Θ(M) is a closed smooth submanifold of Λ(M)×Λ(M), and its normal bundle2 NΘ(M)
is n-dimensional, being isomorphic to to the pull-back of the normal bundle N∆M of ∆M in M×M
by the map ev × ev. If moreover M is oriented, so is N∆M and thus also NΘ(M). Notice also
that the concatenation map Γ is well-defined and smooth from Θ(M) into Λ(M). If we denote
by e the inclusion of Θ(M) into Λ(M) × Λ(M), the Chas-Sullivan loop product (see [ChS99]) is
defined by the composition

Hj(Λ(M))⊗Hk(Λ(M))
×−→ Hj+k(Λ(M)× Λ(M))

e!−→ Hj+k−n(Θ(M))
Γ∗−→ Hj+k−n(Λ(M)),

and it is denoted by

o : Hj(Λ(M))⊗Hk(Λ(M))→ Hj+k−n(Λ(M)).

We denote by c : M → Λ(M) the map which associates to every q ∈ M the constant loop q in
Λ(M). A simple homotopy argument shows that the image of the fundamental class [M ] ∈ Hn(M)
under the homomorphism c∗ is a unit for the loop product: α o c∗[M ] = c∗[M ] oα = α for every

1If M admits smooth partitions of unity (for instance, if it is a Hilbert manifold) then u can be chosen to be a
smooth diffeomorphism.

2The Banach manifold Λ(M) does not admit smooth partitions of unity (actually, the Banach space C0(T,Rn)
does not admit non-zero functions of class C1 with bounded support). So in general a closed submanifold of
Λ(M), or of Λ(M) × Λ(M), will not have a smooth tubular neighborhood. However, it would not be difficult to
show that the submanifold Θ(M) and all the submanifolds we consider in this paper do have a smooth tubular
neighborhood, which can be constructed explicitly by using the exponential map and the tubular neighborhood
theorem on finite-dimensional manifolds.
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α ∈ H∗(Λ(M)). Since Γ ◦ (id× Γ) and Γ ◦ (Γ× id) are homotopic on the space of triplets of loops
with the same initial points, the loop product turns out to be associative. Finally, notice that the
maps (γ1, γ2) 7→ Γ(γ1, γ2) and (γ1, γ2) 7→ Γ(γ2, γ1) are homotopic on Θ(M), by the homotopy

Γs(γ1, γ2)(t) :=

{
γ2(2t− s) if 0 ≤ t ≤ s/2, or (s+ 1)/2 ≤ t ≤ 1,
γ1(2t− s) if s/2 ≤ t ≤ (s+ 1)/2.

This fact implies the following commutation rule

β oα = (−1)(|α|−n)(|β|−n)α o β,

for every α, β ∈ H∗(Λ(M)).
In order to get a product of degree zero, it is convenient to shift the grading by n, obtaining

the graded group Hj(Λ(M)) := Hj+n(Λ(M)),

which becomes a graded commutative ring with respect to the loop product (commutativity has
to be understood in the graded sense, that is β oα = (−1)|α||β|α o β).

1.3 Relationship between the two products

If M is an oriented n-dimensional manifold, we denote by

• : Hj(M)⊗Hk(M)→ Hj+k−n(M),

the intersection product on the singular homology of M (which is obtained by composing the
exterior homology product with the Umkehr map associated to the embedding of the diagonal
into M ×M). Shifting again the grading by n, we see that the product • makesHj(M) := Hj+n(M)

a commutative graded ring.
Since Ω(M, q0) is the inverse image of q0 by the submersion ev : Λ(M) → M , ev(γ) = γ(0),

Ω(M, q0) is a closed submanifold of Λ(M), and its normal bundle is n-dimensional and oriented.
If i : Ω(M, q0) →֒ Λ(M) is the inclusion map, we find that the following diagram

Hj(M)⊗Hk(M)
•−−−−→ Hj+k−n(M)

c∗⊗c∗

y
yc∗

Hj(Λ(M))⊗Hk(Λ(M))
o−−−−→ Hj+k−n(Λ(M))

i!⊗i!

y
yi!

Hj−n(Ω(M, q0))⊗Hk−n(Ω(M, q0))
#−−−−→ Hj+k−2n(Ω(M, q0))

(8)

commutes. In other words, the maps

{H∗(M), •} c∗−→ {H∗(Λ(M)), o } i!−→ {H∗(Ω(M, q0),#}
are graded ring homomorphisms. Notice that the homomorphism c∗ is always injective onto a
direct summand, the map ev being a left inverse of c. Using the spectral sequence associated to
the Serre fibration

Ω(M) →֒ Λ(M)→M,

it is possible to compute the ring {H∗(Λ(M)), o } from the intersection product on M and the
Pontrjagin product on Ω(M), see [CJY03].

The aim of this paper is to show how the homomorphisms appearing in the diagram above can
be described symplectically, in terms of the Floer homology of the cotangent bundle of M . The
first step is to describe them in a Morse theoretical way, using suitable Morse functions on some
infinite dimensional Hilbert manifolds having the homotopy type of Ω(M, q0) and Λ(M).
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1.1. Remark. The loop product was defined by Chas and Sullivan in [ChS99], by using intersec-
tion theory for transversal chains. The definition we use here is due to Cohen and Jones [CJ02].
See also [ChS04, Sul03, BCR06, Coh06, CHV06, Ram06, Sul07] for more information and for
other interpretations of this product.

2 Morse theoretical descriptions

2.1 The Morse complex

Let us recall the construction of the Morse complex for functions defined on an infinite-dimensional
Hilbert manifold. See [AM06] for detailed proofs. Let M be a (possibly infinite-dimensional)
Hilbert manifold, and let g be a complete Riemannian metric on M. Let F(M, g) be the set of
C2 functions f :M→ R such that:

(f1) f is bounded below;

(f2) each critical point of f is non-degenerate and has finite Morse index;

(f3) f satisfies the Palais-Smale condition with respect to g (that is, every sequence (pn) such
that (f(pn)) is bounded and ‖Df(pn)‖ → 0 has a converging subsequence).

Here ‖ · ‖ is the norm on T ∗M induced by the metric g.
Let f ∈ F(M, g). We denote by crit(f) the set of critical points of f , and by critk(f) the

set of critical points of Morse index m(x) = k. Let φ be the local flow determined by the vector
field −gradf (our assumptions imply that the domain of such a flow contains [0,+∞[×M, and
that each orbit converges to a critical point of f for t→ +∞). The stable (respectively unstable)
manifold of a critical point x,

W s(x) :=

{
p ∈ M | lim

t→+∞
φ(t, p) = x

} (
resp. Wu(x) :=

{
p ∈M | lim

t→−∞
φ(t, p) = x

})

is a submanifold of codimension (resp. dimension) m(x). Actually, it is the image of an embedding
of V +(Hess f(x)) (resp. V −(Hess f(x))), the positive (resp. negative) eigenspace of the Hessian of
f at x. Our assumptions imply that the closure of Wu(x) in M is compact.

The vector field −gradf is said to satisfy the Morse-Smale condition if for every x, y ∈ crit(f)
the intersection Wu(x)∩W s(y) is transverse. The Morse-Smale condition can be achieved by per-
turbing the metric g. Such perturbations can be chosen to be arbitrarily small in many reasonable
senses, in particular the perturbed metric can be chosen to be equivalent to the original one, so
that f satisfies the Palais-Smale condition also with respect to the new metric.

Let us assume that −gradf satisfies the Morse-Smale condition. Then we can choose an open
neighborhood U(x) of each critical point x so small that the increasing sequence of positively
invariant open sets

Uk :=
⋃

x∈crit(f)
m(x)≤k

φ([0,+∞[×U(x)),

is a cellular filtration3 of U∞ :=
⋃

k∈N Uk, meaning that Hj(Uk,Uk−1) = 0 if j 6= k. Actually,

Hk(Uk,Uk−1) is isomorphic to the free Abelian group generated by the critical points of Morse
index k, which we denote by Mk(f). Indeed, Hk(Uk,Uk−1) is generated by the relative homology

3Actually here one needs a stronger transversality condition, namely that every critical point x is not a cluster
point for the union of all the unstable manifolds of critical points of Morse index not exceeding m(x), other than
x. This assumption follows from the standard Morse-Smale condition provided that there are finitely many critical
point with any given Morse index. Since the latter condition automatically holds on sublevels of f , the Morse
complex can be defined under the standard Morse-Smale assumption by a direct limit argument on sublevels. See
[AM06] for full details.
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classes of balls in Wu(x), so large that their boundaries lie in Uk−1, for every x ∈ critk(f). Hence,
the isomorphism Mk(f) ∼= Hk(Uk,Uk−1) is determined by the choice of an orientation for the
unstable manifold of each x ∈ critk(f). Furthermore, the inclusion U∞ →֒ M is a homotopy
equivalence.

It is well known that the cellular complex associated to the cellular filtration U := {Uk}k∈N,
namely

WkU := Hk(Uk,Uk−1),

∂k :WkU = Hk(Uk,Uk−1)→ Hk−1(Uk−1)→ Hk−1(Uk−1,Uk−2) = Wk−1U ,
is a chain complex of Abelian groups, whose homology is naturally isomorphic to the singular
homology of U∞, hence to the singular homology ofM (see for instance [Dol80], V.1). Therefore,
a Morse-Smale metric g and an arbitrary choice of an orientation for the unstable manifold of
each critical point determine a boundary operator ∂∗(f, g) on the graded group M∗(f), making it
a chain complex called the Morse complex of (f, g), which we denote by M(f, g), whose homology
is isomorphic to the singular homology ofM,

HkM(f, g) ∼= Hk(M).

A change of the metric g and of the orientation data produces an isomorphic chain complex.
The boundary operator ∂∗(f, g) can be easily interpreted in terms of intersection numbers.

Indeed, since TxW
u(x) ⊕ TxW

s(x) = TxM for each x ∈ crit(f), the orientation of Wu(x) de-
termines an orientation of the normal bundle of W s(x). Therefore each (transverse) intersection
Wu(x)∩W s(y) is canonically oriented. If m(x)−m(y) = 1, compactness and transversality imply
that Wu(x)∩W s(y) consists of finitely many orbits R · p := φ(R×{p}) of φ, each of which can be
given a sign ǫ(R · p) = ±1, depending on whether the orientation of R · p defined above agrees or
not with the direction of the flow. If we then set n∂(x, y) :=

∑
ǫ(R · p) ∈ Z, where the sum ranges

over all the orbits of φ in Wu(x) ∩W s(y), there holds

∂k(f, g)x =
∑

y∈critk−1(f)

n∂(x, y) y,

for every x ∈ critk(f).
It is also useful to consider the following relative version of the Morse complex. Let A be an

open subset of the Hilbert manifoldM, and assume that the function f ∈ C∞(M) and the metric
g on M satisfy:

(f1’) f is bounded below onM\A;

(f2’) each critical point of f inM\A is non-degenerate and has finite Morse index;

(f3’) f satisfies the Palais-Smale condition with respect to g onM\A;

(f4’) A is positively invariant for the flow of −gradf , and this flow is positively complete with
respect to A (meaning that the orbits that never enter A are defined for every t ≥ 0).

In particular, (f3’) implies that there are no critical points on the boundary of A (such a critical
point would be the limit of a Palais-Smale sequence in M \ A which does not converge in this
set). Assume that −gradf satisfies the Morse-Smale condition4 in M\A. Then one constructs
the relative Morse complex M(f, g), taking into account only the critical points of f in M \ A,
and finds that its homology is isomorphic to the singular homology of the pair (M,A),

HkM(f, g) ∼= Hk(M,A).

It is well known that many operations in singular homology have their Morse theoretical in-
terpretation, in the sense that they can be read on the Morse complex (see for instance [Sch93,
Fuk93, BC94, Vit95, Fuk97]). Here we are interested only in functoriality, in the exterior ho-
mology product, and in the Umkehr map. The corresponding constructions - still in our infinite
dimensional setting - are outlined in the following sections.

4Notice that transversality issues are more delicate here because one wants A to remain positively invariant for
the perturbed flow. We will not state a general result, but we will discuss the transversality question case by case.
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2.2 Functoriality

Let (M1, g1) and (M2, g2) be complete Riemannian Hilbert manifolds, and let f1 ∈ F(M1, g1),
f2 ∈ F(M2, g2) be such that −gradf1 and −gradf2 satisfy the Morse-Smale condition. Denote
by φ1 and φ2 the corresponding negative gradient flows.

Let ϕ :M1 →M2 be a smooth map. We assume that

each y ∈ crit(f2) is a regular value of ϕ; (9)

x ∈ crit(f1), ϕ(x) ∈ crit(f2) =⇒ m(x; f1) ≥ m(ϕ(x); f2). (10)

The set of critical points of f2 is discrete, and in many cases (for instance, if ϕ is a Fredholm
map) the set of regular values of ϕ is generic (i.e. a countable intersection of open dense sets, by
Sard-Smale theorem [Sma65]). In such a situation, condition (9) can be achieved by arbitrary
small (in several senses) perturbations of ϕ or of f2. Also condition (10) can be achieved by an
arbitrary small perturbation of ϕ or of f2, simply by requiring that the image of the set of critical
points of f1 by ϕ does not meet the set of critical point of f2.

By (9) and (10), up to perturbing the metrics g1 and g2, we may assume that

∀x ∈ crit(f1), ∀y ∈ crit(f2), ϕ|W u(x;−grad f1) is transverse to W s(y;−gradf2). (11)

Indeed, by (9) and (10) one can perturb g1 in such a way that if p ∈ Wu(x;−grad f1) and ϕ(p) is
a critical point of f2 then rankDϕ(p)|TpW u(x) ≥ m(ϕ(p); f2). The possibility of perturbing g2 so
that (11) holds is now a consequence of the following fact: if W is a finite dimensional manifold
and ψ : W → M2 is a smooth map such that for every p ∈ W with ψ(p) ∈ crit(f2) there holds
rankDψ(p) ≥ m(ϕ(p); f2), then the set of metrics g2 on M2 such that the map ψ is transverse
to the stable manifold of every critical point of f2 is generic in the set of all metrics, with many
reasonable topologies5.

The transversality condition (11) ensures that if x ∈ crit(f1) and y ∈ crit(f2), then

W (x, y) := Wu(x;−grad f1) ∩ ϕ−1(W s(y;−gradf2))

is a submanifold of dimension m(x; f1)−m(y; f2). If Wu(x;−grad f1) is oriented and the normal
bundle of W s(y;−gradf2) inM2 is oriented, the manifold W (x, y) carries a canonical orientation.
In particular, if m(x; f1) = m(y; f2), W (x, y) is a discrete set, each of whose point carries an
orientation sign ±1. The transversality condition (11) and the fact that Wu(x;−grad f1) has
compact closure inM1 imply that the discrete set W (x, y) is also compact, so it is a finite set and
we denote by nϕ(x, y) ∈ Z the algebraic sum of the corresponding orientation signs. We can then
define the homomorphism

Mkϕ : Mk(f1, g1)→Mk(f2, g2), Mkϕx =
∑

y∈critk(f2)

nϕ(x, y) y,

for every x ∈ critk(f1).
We claim that M∗ϕ is a chain map from the Morse complex of (f1, g1) to the Morse complex of

(f2, g2), and that the corresponding homomorphism in homology coincides - via the isomorphism
described in section 2.1 - with the homomorphism ϕ∗ : H∗(M1)→ H∗(M2).

Indeed, let us fix small open neighborhoods Ui(x), i = 1, 2, for each critical point x ∈ crit(fi),
such that the sequence of open sets

Uk
i =

⋃

x∈crit(fi)
m(x;fi)≤k

φi([0,+∞[×Ui(x)), k ∈ N, i = 1, 2,

5Here one is interested in finding perturbations of g1 and g2 which are so small that −grad f1 and −grad f2

still satisfy the Morse-Smale condition and the corresponding Morse complexes are unaffected (for instance, be-
cause the perturbed flows are topologically conjugated to the original ones). This can be done by consider-
ing Banach spaces of Ck perturbations of g1 and g2 endowed with a Whitney norm, that is something like
‖h‖ =

P

1≤j≤k supp∈Mi
ǫ(p)|Djh(p)|, for a suitable positive function ǫ : Mi →]0,+∞[. We shall not specify

these topologies any further, and we shall always assume that the perturbations are so small that the good prop-
erties of the original metrics are preserved.
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is a cellular filtration of U∞
i =

⋃
k Uk

i . By the transversality assumption (11), if p belongs to
Wu(x;−grad f1) then ϕ(p) belongs to the stable manifold of some critical point y ∈ crit(f2) with
m(y; f2) ≤ m(x; f1). A standard compactness-transversality argument shows that, up to replacing
the neighborhoods U1(x), x ∈ crit(f1), by smaller ones, we may assume that

p ∈ Uk
1 =⇒ ϕ(p) ∈W s(y;−gradf2) with m(y; f2) ≤ k.

Since the set Uk
2 is a φ2-positively invariant open neighborhood of the set of the critical points of

f2 whose Morse index does not exceed k, it is easy to find a continuous function t0 : Uk
1 → [0,+∞[

such that

p ∈ Uk
1 =⇒ φ2(t0(p), ϕ(p)) ∈ Uk

2 .

Therefore, ψ(p) := φ2(t0(p), ϕ(p)) is a cellular map from (U∞
1 , {Uk

1 }k∈N) to (U∞
2 , {Uk

2 }k∈N), and
it is easy to check that the induced cellular homomorphism

W∗ψ : W∗{Uk
1 }k∈N →W∗{Uk

2 }k∈N
coincides with M∗ϕ, once we identify Hk(Uk

i ,Uk−1
i ) with Mk(fi), by taking the orientations of

the unstable manifolds into account. Then, everything follows from the naturality of cellular
homology, from the fact that the inclusions ji : U∞

i →֒ Mi are homotopy equivalences, and from
the fact that j2 ◦ ψ is homotopic to ϕ ◦ j1.

The above construction has an obvious extension to the case of a smooth map ϕ between two
pairs (M1,A1) and (M2,A2), Ai open subset of Mi, i = 1, 2 (but some care is needed to deal
with transversality issues, see footnote 4).

2.1. Remark. We recall that if two chain maps between free chain complexes induce the same
homomorphism in homology, they are chain homotopic. So from the functoriality of singular
homology, we deduce that M∗ϕ ◦ M∗ψ and M∗ϕ ◦ ψ are chain homotopic. Actually, a chain
homotopy between these two chain maps could be constructed in a direct way.

2.2. Remark. Consider the following particular but important case: M1 = M2 and ϕ = id.
Then (9) holds automatically, and (10) means asking that every common critical point x of f1 and
f2 must satisfy m(x; f1) ≥ m(x; f2). In this case, the above construction produces a chain map
from M∗(f1, g1) to M∗(f2, g2) which induces the identity map in homology (after the identification
with singular homology).

2.3. Remark. For future reference, let us stress the fact that if it is already known that p ∈
Wu(x;−grad f1) and ϕ(p) ∈ crit(f2) imply rankDϕ(p)|TpW u(x;−grad f1) ≥ m(ϕ(p); f2), then con-
dition (9) is useless, condition (10) holds automatically, and there is no need of perturbing the
metric g1 on M1.

2.3 The exterior homology product

Let (M1, g1) and (M2, g2) be complete Riemannian Hilbert manifolds, and let f1 ∈ F(M1, g1),
f2 ∈ F(M2, g2) be such that −gradf1 and −gradf2 satisfy the Morse-Smale condition. If we
denote by f1 ⊕ f2 the function onM1 ×M2,

f1 ⊕ f2 (p1, p2) := f1(p1) + f2(p2),

we see that f1 ⊕ f2 belongs to F(M1 ×M2, g1 × g2). Moreover,

critℓ(f1 ⊕ f2) =
⋃

j+k=ℓ

critj(f1)× critk(f2),

hence

Mℓ(f1 ⊕ f2) =
⊕

j+k=ℓ

Mj(f1)⊗Mk(f2).
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The orbits of −grad (f1⊕f2) are just pairs of orbits of −gradf1 and −gradf2, so the Morse-Smale
condition holds. If we fix orientations for the unstable manifold of each critical point of f1, f2, and
we endow the unstable manifold of each (x1, x2) ∈ crit(f1 ⊕ f2),

Wu((x1, x2)) = Wu(x1)×Wu(x2),

with the product orientation, we see that the boundary operator in the Morse complex of (f1 ⊕
f2, g1 × g2) is given by

∂(x1, x2) = (∂x1, x2) + (−1)m(x1)(x1, ∂x2), ∀xi ∈ crit(fi), i = 1, 2.

We conclude that the Morse complex of (f1 ⊕ f2, g1 × g2) is the tensor product of the Morse
complexes of (f1, g1) and (f2, g2). So, using the natural homomorphism from the tensor product of
the homology of two chain complexes to the homology of the tensor product of the two complexes,
we obtain the homomorphism

HjM(f1, g1)⊗HkM(f2, g2)→ Hj+kM(f1 ⊕ f2, g1 × g2). (12)

We claim that this homomorphism corresponds to the exterior product homomorphism

Hj(M1)⊗Hk(M2)
×−→ Hj+k(M1 ×M2), (13)

via the isomorphism between Morse homology and singular homology described in section 2.1.
Indeed, the cellular filtration in M1 ×M2 can be chosen to be generated by small product

neighborhoods of the critical points,

Wℓ =
⋃

(x1,x2)∈crit(f1⊕f2)
m(x1)+m(x2)=ℓ

φ1([0,+∞[×U1(x1))× φ2([0,+∞[×U2(x2)) =
⋃

j+k=ℓ

Uj
1 × Uk

2 .

By excision and by the Kunneth theorem, together with the fact that we are dealing with free
Abelian groups, one easily obtains that

WℓW = Hℓ(Wℓ,Wℓ−1) ∼=
⊕

j+k=ℓ

Hj(Uj
1 ,Uj−1

1 )⊗Hk(Uk
2 ,Uk−1

2 ),

and that the boundary homomorphism of the cellular filtration W is the tensor product of the
boundary homomorphisms of the cellular filtrations U1 and U2. Passing to homology, we find that
(12) corresponds to the exterior homology product

Hj(U∞
1 )⊗Hk(U∞

2 )
×−→ Hj+k(U∞

1 × U∞
2 ) = Hj+k(W∞),

by the usual identification of the cellular complex to the Morse complex induced by a choice of
orientations for the unstable manifolds. But since the inclusion U∞

1 →֒ M1 and U∞
2 →֒ M2 are

homotopy equivalences, we conclude that (12) corresponds to (13).

2.4 Intersection products

Let M0 be a Hilbert manifold, and let π : E → M0 be a smooth n-dimensional oriented real
vector bundle overM0. It is easy to describe the Thom isomorphism

τ : Hk(E , E \M0)
∼=−→ Hk−n(M0), α 7→ τE ∩ α,

in a Morse theoretical way (τE ∈ Hn(E , E \M0) denotes the Thom class of the vector bundle E).
Indeed, let g0 be a complete metric on M0 and let f0 ∈ F(M0, g0) be such that −gradf0

satisfies the Morse-Smale condition. The choice of a Riemannian structure on the vector bundle
E determines a class of product-type metrics g1 on the manifold E , and a smooth function

f1(ξ) := f0(π(ξ)) − |ξ|2, ∀ξ ∈ E .
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It is readily seen that (f1, g1) satisfies conditions (f1’)-(f4’) of section 2.1 on the pair (E , E \U1), U1

being the set of vectors ξ in the total space E with |ξ| < 1, and that −gradf1 satisfies the Morse-
Smale condition. Therefore, the homology of the relative Morse complex of (f1, g1) on (E , E \ U1)
is isomorphic to the singular homology of the pair (E , E \ U1), that is to the singular homology of
(E , E \M0). Actually,

critk(f1) = critk−n(f0), TxW
u(x;−grad f1) = TxW

u(x;−grad f0)⊕ Ex,

so the orientation of the vector bundle E allows to associate an orientation of Wu(x;−grad f1) to
each orientation of Wu(x;−grad f0). Then the relative Morse complex of (f1, g1) on (E , E \ U1) is
obtained from the Morse complex of (f0, g0) onM0 by a −n-shift in the grading:

Mk(f1, g1) = Mk−n(f0, g0),

and it is easily seen that the isomorphism τ - read on the Morse complexes by the isomorphisms
described in section 2.1 - is induced by the identity mapping

Mk(f1, g1)
id−→Mk−n(f0, g0).

Consider now the general case of a closed embedding e :M0 →֒ M, assumed to be of codimen-
sion n and co-oriented. The above description of the Thom isomorphism associated to the normal
bundle NM0 ofM0 and the discussion about functoriality of section 2.2 yield the following Morse
theoretical description for the Umkehr map

e! : Hk(M)→ Hk−n(M0).

It is actually useful to identify an open neighborhood ofM0 to NM0 by the tubular neighborhood
theorem, to consider again the open unit ball U1 around the zero section of NM0, and to see the
Umkehr map as the composition

Hj(M)
i∗−→ Hj(M,M\ U1) ∼= Hj(NM0, NM0 \M0)

τ−→ Hj−n(M0),

the map i : M →֒ (M,M \ U1) being the inclusion. Let f0, g0, f1, g1 be as above. We use the
symbols f1 and g1 also to denote arbitrary extensions of f1 and g1 to the whole M. Let g be
a complete metric on M, and let f ∈ F(M, g) be such that −gradf satisfies the Morse-Smale
condition. Since we would like to achieve transversality by perturbing g and g0, but keeping g1 of
product-type nearM0, we need the condition

x ∈ crit(f) ∩M0 =⇒ m(x; f) ≥ n, (14)

which implies that up to perturbing g we may assume that the unstable manifold of each critical
point of f is transversal toM0. Assumption (9) is automatically satisfied by the triplet (i, f, f1),
while (10) is equivalent to asking that

x ∈ crit(f) ∩ crit(f0) =⇒ m(x; f) ≥ m(x; f0) + n. (15)

Conditions (14) and (15) are implied by the generic assumption crit(f) ∩ M0 = ∅. By the
arguments of section 2.2 applied to the map i (in particular, condition (11)), we see that up
to perturbing g and g0 (keeping g1 of product-type near M0), we may assume that for every
x ∈ crit(f), y ∈ crit(f0), the intersection

Wu(x;−gradf) ∩W s(y;−gradf1) = Wu(x;−grad f) ∩W s(y;−gradf0)

is transverse in M, hence it is a submanifold of dimension m(x; f) −m(y; f0) − n. If we fix an
orientation for the unstable manifold of each critical point of f and f0, these intersections are
canonically oriented. Compactness and transversality imply that when m(y; f0) = m(x; f) − n,
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this intersection is a finite set of points, each of which comes with an orientation sign ±1. Denoting
by ne!

(x, y) the algebraic sum of these signs, we conclude that the homomorphism

Mk(f, g)→Mk−n(f0, g0), x 7→
∑

y∈crit(f0)
m(y;f0)=k−n

ne!
(x, y) y, ∀x ∈ critk(f),

is a chain map of degree −n, and that it induces the Umkehr map e! in homology (by the identi-
fication of the homology of the Morse complex with singular homology described in section 2.1).

Let us conclude this section by describing the Morse theoretical interpretation of the inter-
section product in homology. Let M be a finite-dimensional oriented manifold, and consider the
diagonal embedding e : ∆M →֒M×M , which is n-codimensional and co-oriented. The intersection
product is defined by the composition

Hj(M)⊗Hk(M)
×−→ Hj+k(M ×M)

e!−→ Hj+k−n(∆M ) ∼= Hj+k−n(M),

and it is denoted by

• : Hj(M)⊗Hk(M) −→ Hj+k−n(M).

The above description of e! and the description of the exterior homology product × given in section
2.3 immediately yield the following description of •. Let g1, g2, g3 be complete metrics on M , and
let fi ∈ F(M, gi), i = 1, 2, 3, be such that −gradfi satisfies the Morse-Smale condition. The
non-degeneracy conditions (14) and (15), necessary to represent e!, are now

x ∈ crit(f1) ∩ crit(f2) =⇒ m(x; f1) +m(x; f2) ≥ n, (16)

x ∈ crit(f1) ∩ crit(f2) ∩ crit(f3) =⇒ m(x; f1) +m(x; f2) ≥ m(x; f3) + n. (17)

These conditions are implied for instance by the generic assumption that f1 and f2 do not have
common critical points. We can now perturb the metrics g1, g2, and g3 on M in such a way that
for every triplet xi ∈ crit(fi), i = 1, 2, 3, the intersection

Wu((x1, x2);−gradg1×g2
f1 ⊕ f2) ∩ a(W s(x3;−gradg3

f3)),

a : M → M ×M being the map a(p) = (p, p), is transverse in M ×M , hence it is an oriented
submanifold of ∆M of dimension m(x1; f1) + m(x2; f2) − m(x3; f3) − n. By compactness and
transversality, when m(x3; f3) = m(x1; f1) + m(x2; f2) − n, this intersection, which can also be
written as

{(p, p) ∈Wu(x1;−gradf1)×Wu(x2;−gradf2) | p ∈W s(x3;−gradf3)} ,
is a finite set of points, each of which comes with an orientation sign ±1. Denoting by n•(x1, x2;x3)
the algebraic sum of these signs, we conclude that the homomorphism

Mj(f1, g1)⊗Mk(f2, g2)→Mj+k−n(f3, g3), x1 ⊗ x2 7→
∑

x3∈crit(f3)
m(x3;f3)=j+k−n

n•(x1, x2;x3)x3,

where x1 ∈ critj(f1), x2 ∈ critk(f2), is a chain map of degree −n from the complex M(f1, g1) ⊗
M(f2, g2) to M(f3, g3), and that it induces the intersection product • in homology (by the identi-
fication of the homology of the Morse complex with singular homology described in section 2.1).

2.5 Lagrangian action functionals, and Morse theoretical interpretation

of the homomorphisms c∗, ev∗, and i!

We are now in a good position to describe the homomorphisms appearing in diagram (8) in a
Morse theoretical way. The first thing to do is to replace the Banach manifolds Ω(M, q0), Λ(M),
and Θ(M) by the Hilbert manifolds

Ω1(M, q0) :=
{
γ ∈ Λ1(M) | γ(0) = q0

}
, Λ1(M) := W 1,2(T,M),

Θ1(M) :=
{
(γ1, γ2) ∈ Λ1(M)× Λ1(M) | γ1(0) = γ2(0)

}
,
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W 1,2 denoting the class of absolutely continuous curves whose derivative is square integrable. The
inclusions

Ω1(M, q0) →֒ Ω(M, q0), Λ1(M) →֒ Λ(M), Θ1(M) →֒ Θ(M),

are homotopy equivalences. Therefore, we can replace Ω(M, q0), Λ(M), and Θ(M) by Ω1(M, q0),
Λ1(M), and Θ1(M) in the constructions of section 1.

Consider as before the smooth maps

c : M → Λ1(M), c(q)(t) ≡ q, ev : Λ1(M)→M, ev(γ) = γ(0),

i : Ω1(M, q0) →֒ Λ1(M), e : Θ1(M) →֒ Λ1(M)× Λ1(M).

Applying the results of sections 2.2 and 2.4, one can describe the homomorphisms c∗, ev∗, i!, and
e!, in terms of the Morse complexes of a quite general class of functions on M , Ω1(M, q0), Λ1(M),
and Θ1(M). However, in order to find a link with symplectic geometry, we wish to consider a
special class of functions on the three latter manifolds, namely the action functionals associated
to (possibly time-dependent) Lagrangian functions on TM .

For this purpose, let us assume the oriented n-dimensional manifold M to be compact. Let
L : T× TM → R or L : [0, 1]× TM → R be a smooth Lagrangian, such that

(L1) there exists ℓ0 > 0 such that ∂vvL(t, q, v) ≥ ℓ0I, for every (t, q, v);

(L2) there exists ℓ1 ≥ 0 such that

|∂vvL(t, q, v)| ≤ ℓ1, |∂vqL(t, q, v)| ≤ ℓ1(1 + |v|), |∂qqL(t, q, v)| ≤ ℓ1(1 + |v|2),

for every (t, q, v).

These assumptions are stated by means of local coordinates and of a Riemannian structure on
the vector bundle TM , but they actually do not depend on these objects. If | · |· is a Riemannian
metric on M , the geodesic Lagrangian L(t, q, v) = |v|2q/2, and more generally the electro-magnetic
Lagrangian

L(t, q, v) =
1

2
|v|2q + 〈A(t, q), v〉q − V (t, q).

satisfy conditions (L1) and (L2), for every scalar potential V and every vector potential A. The
Lagrangian L defines a second order ODE on M , which in local coordinates can be written as

d

dt
∂vL(t, γ(t), γ′(t)) = ∂qL(t, γ(t), γ(t)), (18)

and (L1) guarantees that the corresponding Cauchy problem is well-posed. The action functionalSL(γ) =

∫ 1

0

L(t, γ(t), γ′(t)) dt

is of class C2 on Ω1(M, q0) and on Λ1(M) (in the second case we assume L to be defined onT× TM , in the first case [0, 1]× TM suffices). The restriction of SL to Ω1(M, q0) is denoted bySΩ
L, whereas its restriction to Λ1(M) is denoted by SΛ

L. The critical points of SΛ
L are precisely

the 1-periodic solutions of (18), while the critical points of SΩ
L are the solutions γ : [0, 1]→ M of

(18) such that γ(0) = γ(1) = q0 (but in general γ′(0) 6= γ′(1), so these solutions do not extend to
period solutions, even if L is 1-periodic in time). Denote by

P
Ω(L) = crit(SΩ

L), P
Λ(L) = crit(SΛ

L),

these sets of solutions. Assumption (L1) implies that each critical point γ of SΩ
L and of SΛ

L has
finite Morse index, which we denote by mΩ(γ) and mΛ(γ). The requirement that each critical
point γ should be non-degenerate is translated into the following assumptions on the Jacobi vector
fields along γ (i.e. solutions of the second order linear ODE obtained by linearizing (18) along γ):
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(L0)Ω every solution γ ∈ PΩ(L) is non-degenerate, meaning that there are no non-zero Jacobi
vector fields along γ which vanish for t = 0 and for t = 1.

(L0)Λ every solution γ ∈PΛ(L) is non-degenerate, meaning that there are no non-zero periodic
Jacobi vector fields along γ.

These conditions hold for a generic choice of L, in several reasonable senses. Notice that (L0)Λ

forces L to be explicitly time-dependent, otherwise γ′ would be a non-zero 1-periodic Jacobi vector
field along γ, for every non-constant periodic solution γ. In the fixed ends case instead, L is allowed
to be autonomous.

We need also to consider the following Lagrangian problem for figure-8 loops. Let L1, L2 ∈
C∞([0, 1]×TM) be Lagrangians satisfying (L1) and (L2). Let PΘ(L1⊕L2) be the set of all pairs
(γ1, γ2), with γj : [0, 1]→M solution of the Lagrangian system given by Lj , such that

γ1(0) = γ1(1) = γ2(0) = γ2(1),

1∑

i=0

2∑

j=1

(−1)i∂vLj(i, γj(i), γ
′
j(i)) = 0. (19)

The elements of PΘ(L1⊕L2) are precisely the critical points of the functional SL1⊕L2
= SL1

⊕SL2

restricted to the submanifold Θ1(M),SL1⊕L2
(γ1, γ2) =

∫ 1

0

L1(t, γ1(t), γ
′
1(t)) dt+

∫ 1

0

L2(t, γ2(t), γ
′
2(t)) dt.

Such a restriction is denoted by SΘ
L1⊕L2

. If we denote by mΘ(γ1, γ2) the Morse index of (γ1, γ2) ∈
PΘ(L1 ⊕ L2), we clearly have

max{mΩ(γ1;L1) +mΩ(γ2;L2),m
Λ(γ1;L1) +mΛ(γ2;L2)− n} ≤ mΘ(γ1, γ2)

≤ min{mΩ(γ1;L1) +mΩ(γ2;L2) + n,mΛ(γ1;L1) +mΛ(γ2;L2)}.

The non-degeneracy of every critical point of SΘ
L1⊕L2

is equivalent to the condition:

(L0)Θ every solution (γ1, γ2) ∈PΘ(L1 ⊕ L2) is non-degenerate, meaning that there are no non-
zero pairs of Jacobi vector fields ξ1, ξ2 along γ1, γ2 such that

ξ1(0) = ξ1(1) = ξ2(0) = ξ2(1),
1∑

i=0

2∑

j=1

(
∂qvLj(i, γj(i), γ

′
j(i))ξj(i) + ∂vvLj(i, γj(i), γ

′
j(i))ξ

′
j(i)

)
= 0.

This condition allows both L1 and L2 to be autonomous. It also allows L1 = L2, but this excludes
the autonomous case (otherwise pairs (γ, γ) with γ ∈ PΛ(L1) = PΛ(L2) non-constant would
violate (L0)Θ).

Assumption (L1) implies that L is bounded below, and it can be shown that (L1) and (L2)
imply that SL satisfies the Palais-Smale condition on Ω1(M, q0) and on Λ1(M), with respect to
the standard W 1,2-metric

〈〈ξ, η〉〉γ :=

∫ 1

0

(
〈ξ(t), η(t)〉γ(t) + 〈∇tξ(t),∇tη(t)〉γ(t)

)
dt,

where 〈·, ·〉 is a metric on M , and ∇t is the corresponding Levi-Civita covariant derivation along
γ. The same is true for the functional SL1⊕L2

on Θ1(M). See for instance the appendix in [AF07]
for a proof of the Palais-Smale condition under general non-local conormal boundary conditions,
including all the case treated here. We conclude that under the assumptions (L0)Ω (resp. (L0)Λ,
resp. (L0)Θ), (L1), (L2), the function SΩ

L (resp. SΛ
L, resp. SΘ

L1⊕L2
) belongs to F(Ω1(M, q0), 〈〈·, ·〉〉)

(resp. F(Λ1(M), 〈〈·, ·〉〉), resp. F(Θ1(M), 〈〈·, ·〉〉)).
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It is now straightforward to apply the results of section 2.2 to describe the homomorphisms

c∗ : Hk(M)→ Hk(Λ1(M)), and ev∗ : Hk(Λ1(M))→ Hk(M),

in terms of the Morse complexes of SΛ
L and of a Morse function f on M . Indeed, in the case of c∗

one imposes the condition

q ∈ crit(f) =⇒ c(q) /∈P
Λ(L), (20)

which guarantees (9) and (10) (given any Lagrangian L satisfying (L0)Λ, one can always find a
Morse function f on M such that (20) holds, simply because (L0)Λ implies that the Lagrangian
system has finitely many constant solutions). Then one can find a metric gM on M and a small
perturbation gΛ of the metric 〈〈·, ·〉〉 on Λ1(M) such that the vector fields −gradSΛ

L and −gradf
satisfy the Morse-Smale condition, and the restriction of c to the unstable manifold of each q ∈
crit(f) is transverse to the stable manifold of each γ ∈ crit(SL). When m(q; f) = mΛ(γ), the
intersection

Wu(q;−grad f) ∩ c−1
(
W s(γ;−gradSΛ

L)
)

consists of finitely many points, each of which comes with an orientation sign ±1. The algebraic
sums nc(q, γ) of these signs provide us with the coefficients of a chain map

Mkc : Mk(f, gM )→Mk(SΛ
L, g

Λ),

which in homology induces the homomorphism c∗.
The map ev : Λ1(M)→M is a submersion, so (9) holds automatically. Condition (10) instead

is implied by

γ ∈P
Λ(L) =⇒ γ(0) /∈ crit(f), (21)

which again holds for a generic f , given L. Then one finds suitable metrics gM on M and gΛ on
Λ1(M), and when mΛ(γ) = m(q; f) the intersection

Wu(γ;−gradSΛ
L) ∩ ev−1 (W s(q;−gradf))

consists of finitely many oriented points, which add up to the integer nev(γ, q). These integers are
the coefficients of a chain map

Mkev : Mk(SΛ
L, g

Λ)→Mk(f, gM ),

which in homology induces the homomorphism ev∗.

2.4. Remark. The fact that ev∗ ◦ c∗ = idH∗(M), together with the fact that the Morse complex is
free, implies that M∗ev ◦M∗c is chain homotopic to the identity on M∗(f, gM ).

We conclude this section by using the results of section 2.4 to describe the homomorphism

i! : Hk(Λ1(M))→ Hk−n(Ω1(M, q0)),

working with the same action functional SL both on Λ1(M) and on Ω1(M, q0). Conditions (14)
and (15) are implied by the following assumption,

γ ∈P
Λ(L) =⇒ γ(0) 6= q0, (22)

a condition holding for all but a countable set of q0’s. Under this assumption, we can perturb the
standard metrics on Λ1(M) and Ω1(M, q0) to produce metrics gΛ and gΩ such that −gradSΛ

L and
−gradSΩ

L satisfy the Morse-Smale condition, and the unstable manifold of each γ1 ∈ PΛ(L) is
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transverse to the stable manifold of each γ2 ∈ PΩ(L) in Λ1(M). When mΩ(γ2) = mΛ(γ1) − n,
the set

Wu(γ1;−gradSΛ
L) ∩W s(γ2;−gradSΩ

L)

consists of finitely many oriented points, which determine the integer ni!(γ1, γ2). These integers
are the coefficients of a chain map

Mi! : M∗(SΛ
L, g

Λ)→M∗−n(SΩ
L, g

Ω),

which in homology induces the homomorphism i!.

2.6 Morse theoretical interpretation of the Pontrjagin product

In the last section we have described the vertical arrows of diagram (8), as well as a preferred left
inverse of the top-right vertical arrow. The top horizontal arrow has already been described at
the end of section 2.4. There remains to describe the middle and the bottom horizontal arrows,
that is the loop product and the Pontrjagin product. This section is devoted to the description
of the latter product. The following Propositions 2.5, 2.7 and 2.8 are consequences of the general
statements in Sections 2.1–2.4

Given two Lagrangians L1, L2 ∈ C∞([0, 1]×TM) such that L(1, ·) = L2(0, ·) with all the time
derivatives, we define the Lagrangian L1#L2 ∈ C∞([0, 1]× TM) as

L1#L2(t, q, v) =

{
2L1(2t, q, v/2) if 0 ≤ t ≤ 1/2,
2L2(2t− 1, q, v/2) if 1/2 ≤ t ≤ 1.

(23)

The curve γ : [0, 1] → M is a solution of the Lagrangian equation (18) with L = L1#L2 if and
only if the rescaled curves t 7→ γ(t/2) and t 7→ γ((t+1)/2) solve the corresponding equation given
by the Lagrangians L1 and L2, on [0, 1].

In view of the results of section 2.3, we wish to consider the functional SΩ
L1
⊕SΩ

L2
on Ω1(M, q0)×

Ω1(M, q0), SΩ
L1
⊕ SΩ

L2
(γ1, γ2) = SΩ

L1
(γ1) + SΩ

L2
(γ2),

and the functional SΩ
L1#L2

on Ω1(M, q0). The concatenation map

Γ : Ω1(M, q0)× Ω1(M, q0)→ Ω1(M, q0)

is nowhere a submersion, so condition (9) for the triplet (Γ,SΩ
L1
⊕ SΩ

L2
,SΩ

L1#L2
) requires that the

image of Γ does not meet the critical set of SΩ
L1#L2

, that is

γ ∈P
Ω(L1#L2) =⇒ γ(1/2) 6= q0. (24)

Notice that (24) allows L1 and L2 to be equal, and actually it allows them to be also autonomous
(however, it implies that q0 is not a stationary solution, so they cannot be the Lagrangian associ-
ated to a geodesic flow).

Assuming (24), condition (10) is automatically fulfilled. Moreover, if g1, g2 are metrics on
Ω1(M, q0), we have that for every γ1 ∈PΩ(L1), γ2 ∈PΩ(L2),

Γ(Wu((γ1, γ2);−gradg1×g2
SΩ

L1
⊕ SΩ

L2
)) ∩ crit(SΩ

L1#L2
) = ∅.

By Remark 2.3, there is no need to perturb the metric g1×g2 on Ω1(M, q0)×Ω1(M, q0) to achieve
transversality, and we arrive at the following description of the Pontrjagin product.

Let L1, L2 be Lagrangians such that L(1, ·) = L2(0, ·) with all the time derivatives, satisfying
(L0)Ω, (L1), (L2), and (24), such that also L1#L2 satisfies (L0)Ω. Let g1, g2, g be complete
metrics on Ω1(M, q0) such that −gradg1

SΩ
L1

, −gradg2
SΩ

L2
, −grad gSΩ

L1#L2
satisfy the Palais-Smale

and the Morse-Smale condition. Fix an arbitrary orientation for the unstable manifolds of each
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critical point of SΩ
L1

, SΩ
L2

, SΩ
L1#L2

. Up to perturbing the metric g, we get that the restriction of Γ
to the unstable manifold

Wu((γ1, γ2);−gradg1×g2
SΩ

L1
⊕ SΩ

L2
) = Wu(γ1;−gradg1

SΩ
L1

)×Wu(γ2;−gradg2
SΩ

L2
)

of every critical point (γ1, γ2) ∈PΩ(L1)×PΩ(L2) is transverse to the stable manifold

W s(γ;−gradgSΩ
L1#L2

)

of each critical point of SΩ
L1#L2

. When mΩ(γ) = mΩ(γ1)+m
Ω(γ2), the corresponding intersections

{
(α1, α2) ∈ Wu(γ1;−gradSΩ

L1
)×Wu(γ2;−gradSΩ

L2
) | Γ(α1, α2) ∈W s(γ;−gradSΩ

L1#L2
)
}
,

is a finite set of oriented points. Let n#(γ1, γ2; γ) be the algebraic sum of these orientation signs.

2.5. Proposition. The homomorphism

M# : Mj(SΩ
L1
, g1)⊗Mk(SΩ

L2
, g2)→Mj+k(SΩ

L1#L2
, g), γ1 ⊗ γ2 7→

∑

γ∈P
Ω(L1#L2)

mΩ(γ)=j+k

n#(γ1, γ2; γ) γ,

is a chain map, and it induces the Pontrjagin product # in homology.

2.6. Remark. It is not necessary to consider the Lagrangian L1#L2 on the target space of this
homomorphism. One could actually work with any three Lagrangians (with the suitable non-
degeneracy condition replacing (24)). The choice of dealing with two Lagrangians L1, L2 and their
concatenation L1#L2 will be important to get energy estimates in Floer homology. We have made
this choice also here mainly to see which kind of non-degeneracy condition one needs.

2.7 Morse theoretical interpretation of the loop product

The loop product is slightly more complicated than the other homomorphisms considered so far,
because it consists of a composition where two homomorphisms are non-trivial (that is, not just
identifications) when read on the Morse homology groups, namely the Umkehr map associated to
the submanifold Θ1(M) of figure-8 loops, and the homomorphism induced by the concatenation
map Γ : Θ1(M)→ Λ1(M). We shall describe these homomorphisms separately, and then we will
show a compact description of their composition.

Let us start by describing the Umkehr map

e! : Hk(Λ1(M)× Λ1(M))→ Hk−n(Θ1(M)).

Let L1, L2 ∈ C∞(T × TM) be Lagrangians satisfying (L0)Λ, (L1), (L2), and such that the pair
(L1, L2) satisfies (L0)Θ. Assume also

γ1 ∈P
Λ(L1), γ2 ∈P

Λ(L2) =⇒ γ1(0) 6= γ2(0). (25)

Notice that this condition prevents L1 from coinciding with L2. We shall consider the functionalSΛ
L1
⊕SΛ

L2
on Λ1(M)×Λ1(M), and the functional SΘ

L1⊕L2
on Θ1(M). Condition (25) implies that

the unconstrained functional has no critical points on Θ1(M), so conditions (14) and (15) hold.
By the discussion of section 2.4, we can find complete metrics g1×g2 and gΘ on Λ1(M)×Λ1(M)

and on Θ1(M) such that −grad g1×g2
SΛ

L1
⊕SΛ

L2
and −grad gΘSΘ

L1⊕L2
satisfy the Palais-Smale condi-

tion and the Morse-Smale condition, and such that the unstable manifoldWu(γ−;−grad g1×g2
SΛ

L1
⊕SΛ

L2
) of every γ− = (γ−1 , γ

−
2 ) ∈ PΛ(L1) ×PΛ(L2) is transverse to Θ1(M) and to the stable

manifold W s(γ+;−grad gΘSΘ
L1⊕L2

) of every γ+ = (γ+
1 , γ

+
2 ) ∈ PΘ(L1 ⊕ L2). Fix an arbitrary

orientation for the unstable manifold of every critical point of SΛ
L1
⊕ SΛ

L2
and SΘ

L1⊕L2
. When

mΘ(γ+) = mΛ(γ−1 ) +mΛ(γ−2 )− n, the intersection

Wu(γ−;−grad g1×g2
SΛ

L1
⊕ SΛ

L2
) ∩W s(γ+;−grad gΘSΘ

L1⊕L2
)

is a finite set of oriented points. If we denote by ne!
(γ−, γ+) the algebraic sum of these orientation

signs, we have the following:
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2.7. Proposition. The homomorphism

Mk(SΛ
L1
⊕ SΛ

L2
, g1 × g2)→Mk−n(SΘ

L1⊕L2
, gΘ), γ− 7→

∑

γ+∈P
Θ(L1⊕L2)

mΘ(γ+)=k−n

ne!
(γ−, γ+)γ+,

is a chain map, and it induces the Umkehr map e! in homology.

By composing this homomorphism with the Morse theoretical version of the exterior homology
product described in section 2.3, that is the isomorphism

Mj(SΛ
L1
, g1)⊗Mh(SΛ

L2
, g2)→Mj+h(SΛ

L1
⊕ SΛ

L2
, g1 × g2),

we obtain the homomorphism

M! : Mj(SΛ
L1
, g1)⊗Mh(SΛ

L2
, g2)→Mj+h−n(SΘ

L1⊕L2
, gΘ).

Let us describe the homomorphism

Γ∗ : Hk(Θ1(M))→ Hk(Λ1(M)),

induced by the concatenation map Γ. Let L1, L2 be Lagrangians such that L(1, ·) = L2(0, ·) with
all the time derivatives, satisfying (L1), (L2). We assume that (L1, L2) satisfies (L0)Θ and L1#L2

satisfies (L0)Λ. We would like to apply the results of section 2.2 to the functionals SΘ
L1⊕L2

on

Θ1(M) and SΛ
L1#L2

on Λ1(M). The map Γ : Θ1(M) → Λ1(M) is nowhere a submersion, so

condition (9) for the triplet (Γ,SΘ
L1⊕L2

,SΛ
L1#L2

) requires that Γ(Θ1(M)) does not contain critical

points of SΛ
L1#L2

, that is

γ ∈P
Λ(L1#L2) =⇒ γ(1/2) 6= γ(0). (26)

Assuming (26), conditions (9) and (10) are automatically fulfilled. Therefore, the discussion of
section 2.2 implies that we can find complete metrics gΘ and gΛ on on Θ1(M) and Λ1(M) such
that −gradgΘSΘ

L1⊕L2
and −gradgΛSΛ

L1#L2
satisfy the Palais-Smale and the Morse-Smale condition,

and that the restriction of Γ to the unstable manifold

Wu(γ−;−gradgΘSΘ1

L1⊕L2
)

of every critical point γ− = (γ−1 , γ
−
2 ) ∈PΘ(L1 ⊕ L2) is transverse to the stable manifold

W s(γ+;−gradgΛSΛ
L1#L2

)

of every critical point γ+ ∈PΛ(L1#L2). Fix arbitrary orientations for the unstable manifolds of
every critical point of SΘ

L1⊕L2
and SΛ

L1#L2
. When mΛ(γ+) = mΘ(γ−), the intersection

{
(α1, α2) ∈Wu(γ−;−gradSΘ

L1⊕L2
) | Γ(α1, α2) ∈W s(γ+;−gradSΛ

L1#L2
)
}
,

is a finite set of oriented points. If we denote by nΓ(γ−, γ+) the algebraic sum of these orientation
signs, we have the following:

2.8. Proposition. The homomorphism

MΓ : Mk(SΘ
L1⊕L2

, gΘ)→Mk(SΛ
L1#L2

, gΛ), γ− 7→
∑

γ+∈P
Λ(L1#L2)

mΛ(γ)=k

nΓ(γ−, γ+) γ+,

is a chain map, and it induces the homomorphism Γ∗ : Hk(Θ1(M))→ Hk(Λ1(M)) in homology.
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Therefore, the composition MΓ ◦M! induces the loop product in homology.

We conclude this section by exhibiting a compact description of the loop product

o : Hj(Λ
1(M))⊗Hk(Λ1(M))→ Hj+k−n(Λ1(M)).

Since we are not going to use this description, we omit the proof. Let L1, L2 ∈ C∞(T× TM) be
Lagrangians satisfying (L0)Λ, (L1), (L2), such that L1(0, ·) = L2(0, ·) with all time derivatives,
and such that the concatenated Lagrangian L1#L2 defined by (23) satisfies (L0)Λ. We also assume
(25), noticing that this condition prevents L1 from coinciding with L2. Let g1, g2, g be complete
metrics on Λ1(M) such that −gradg1

SΛ
L1

, −gradg2
SΛ

L2
, and −gradgSΛ

L1#L2
satisfy the Palais-Smale

and the Morse-Smale condition on Λ1(M). By (25), the functional SΘ
L1⊕L2

has no critical points on

Θ1(M), so up to perturbing g1 and g2 we can assume that for every γ1 ∈PΛ(L1), γ2 ∈PΛ(L2),
the unstable manifold

Wu((γ1, γ2);−gradg1×g2
SΛ

L1
⊕ SΛ

L2
) = Wu(γ1;−gradg1

SΛ
L1

)×Wu(γ2;−gradg2
SΛ

L2
)

is transverse to Θ1(M). Moreover, assumption (25) implies that the image of Θ1(M) by the
concatenation map Γ does not contain any critical point of SΛ

L1#L2
. Therefore, up to perturbing g

we can assume that for every γ1 ∈PΛ(L1), γ2 ∈PΛ(L2), the restriction of Γ to the submanifold

Wu((γ1, γ2);−gradg1×g2
SΛ

L1
⊕ SΛ

L2
) ∩Θ1(M)

is transverse to the stable manifold W s(γ;−gradgSΛ
L1#L2

) of each γ ∈PΛ(L). In particular, when

mΛ(γ) = mΛ(γ1) +mΛ(γ2)− n, the submanifold
{
(α1, α2) ∈ (Wu(γ1;−gradSΛ

L1
)×Wu(γ2;−gradSΛ

L2
)) ∩Θ1(M) | Γ(α1, α2) ∈W s(γ;−gradSΛ

L1#L2
)
}

is a finite set of oriented points. We contend that if n o (γ1, γ2; γ) denotes the algebraic sum of the
corresponding orientation signs, the following holds:

2.9. Proposition. The homomorphism

Mj(SΛ
L1
, g1)⊗Mk(SΛ

L2
, g2)→Mj+k−n(SΛ

L1#L2
, g), γ1 ⊗ γ2 7→

∑

γ∈P
Λ(L1#L2)

mΛ(γ)=j+k−n

n o (γ1, γ2; γ) γ,

(27)

is a chain map, and it induces the loop product in homology.

3 Floer homologies on cotangent bundles and their ring

structures

3.1 Floer homology for the periodic and the fixed ends orbits

In this section we recall the construction of Floer homology for periodic and for fixed-ends orbits
on the cotangent bundle of a compact oriented manifold. See [AS06b] for detailed proofs.

Let M be a compact oriented manifold. We shall often use standard coordinates (q, p) on
T ∗M , the cotangent bundle of M . Denote by ω the standard symplectic form ω := dp∧ dq on the
manifold T ∗M , that is the differential of the Liouville form η := p dq. Equivalently, the Liouville
form η can be defined by

η(ζ) = x(Dπ(x)[ζ]), for ζ ∈ TxT
∗M, x ∈ T ∗M,

where π : T ∗M →M is the bundle projection. Let Y be the Liouville vector field on T ∗M , defined
by the identity

ω(Y (x), ·) = η. (28)
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A submanifold L ⊂ T ∗M is called a co-normal iff the Liouville form η vanishes on L. Equivalently,
L is the conormal bundle N∗π(L) of its projection onto M . They are a special class of Lagrangian
submanifolds.

Consider the class of Hamiltonians H on T× T ∗M or on [0, 1]× T ∗M such that:

(H1) DH(t, q, p)[Y ]−H(t, q, p) ≥ h0|p|2 − h1, for every (t, q, p);

(H2) |∂qH(t, q, p)| ≤ h2(1 + |p|2), |∂pH(t, q, p)| ≤ h2(1 + |p|), for every (t, q, p);

for some constants h0 > 0, h1 ≥ 0, h2 ≥ 0. As seen for conditions (L1) and (L2), these assumptions
do not depend on the Riemannian structure and on the local coordinates used to state them.
Condition (H1) essentially says that H grows at least quadratically in p on each fiber of T ∗M , and
that it is radially convex for |p| large. Condition (H2) implies that H grows at most quadratically
in p on each fiber. Notice also that if H is the Fenchel transform of a convex Lagrangian L in
C∞([0, 1]×TM) (see section 4.1), then the term DH(t, q, p)[Y (q, p)]−H(t, q, p) appearing in (H1)
coincides with L(t, q, ∂pH(t, q, p)).

Let XH be the time-dependent Hamiltonian vector field associated to H by the formula
ω(XH , ·) = −DxH . Condition (H2) implies the quadratic bound

|XH(t, q, p)| ≤ h3(1 + |p|2), (29)

for some h3 ≥ 0. Let (t, x) 7→ φH(t, x) be the non-autonomous flow associated to the vector field
XH . We are interested in the set PΛ(H) of one-periodic orbits of φH (in this case we assume H
to be defined on T× T ∗M), and in the set PΩ(H) of orbits x of φH such that x(0), x(1) ∈ T ∗

q0
M

(in this case H may be defined only on [0, 1]×T ∗M). The superscripts Λ and Ω will appear often
to distinguish the periodic from the fixed-ends problem. We shall omit them when we wish to
consider both situations at the same time.

The non-degeneracy assumptions for the elements of PΛ(H) and PΩ(H) are:

(H0)Λ for every x ∈PΛ(H), the number 1 is not an eigenvalue of Dxφ
H(1, x(0)) : Tx(0)T

∗M →
Tx(0)T

∗M ;

(H0)Ω for every x ∈ PΩ(H), the linear mapping Dxφ
H(1, x(0)) : Tx(0)T

∗M → Tx(1)T
∗M maps

the vertical subspace T v
x(0)T

∗M at x(0) into a subspace having intersection (0) with the

vertical subspace T v
x(1)T

∗M at x(1).

As in the Lagrangian case, these conditions hold for a generic choice of H in several reasonable
topologies, and (H0)Λ forces H to be explicitly time-dependent.

Each x ∈ PΛ(H) has a well-defined Conley-Zehnder index µΛ(x) ∈ Z. Indeed, the fact that
T ∗M has a Lagrangian fibration consisting of the fibers T ∗

q M singles out a class of preferred sym-
plectic trivializations for the vector bundle x∗(TT ∗M), namely those which map the Lagrangian
subspace

λ0 := (0)× Rn ⊂ R2n

into the vertical space T v
x(t)T

∗M . Here R2n = Rn × Rn is endowed with the symplectic form

ω0 = dp ∧ dq,

with respect to coordinates (q, p) ∈ Rn × Rn. Any two such trivializations are isotopic in the
space of all symplectic trivializations, so the Conley-Zendher index µCZ(Φ) of the path Φ of
symplectic matrices obtained by conjugating the path t 7→ Dxφ

H(t, x(0)) by such a trivialization
is well-defined, and we set

µΛ(x) := µCZ(Φ).

See also section 5.1.
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Similarly, each x ∈PΩ(H) has a well defined Maslov index µΩ(x), obtained from the relative
Maslov index of the path of Lagrangian subspaces t 7→ Dxφ

H(t, x(0))T v
x(0)T

∗M with respect to
the path of Lagrangian subspaces t 7→ T v

x(t)T
∗M . Indeed, using a symplectic trivialization of

x∗(TT ∗M) mapping λ0 into the vertical subbundle, and defining Φ as above, we set

µΩ(x) := µ(Φλ0, λ0)−
n

2
,

where µ denotes the relative Maslov index (see section 5.1 for the sign conventions). When x in
PΛ(H) (respectively in PΩ(H)) is non-degenerate, then µΛ(x) (respectively µΩ(x)) is an integer.

The elements of PΛ(H) and PΩ(H) are the critical points of the Hamiltonian action functionalAH(x) =

∫

[0,1]

x∗(η −Hdt) =

∫ 1

0

(
p(t)[q′(t)]−H(t, q(t), p(t))

)
dt,

on the space of one-periodic loops in T ∗M , or on the space of curves x : [0, 1] → T ∗M such that
x(0), x(1) ∈ T ∗

q0
M . Indeed, the differential of AH on the space of free paths on T ∗M is

DAH(x)[ζ] =

∫ 1

0

(
ω(ζ, x′)−DxH(t, x)[ζ]

)
dt+ η(x(1))[ζ(1)] − η(x(0))[ζ(0)], (30)

and the boundary terms vanish if either x and ζ are 1-periodic, or ζ(0) and ζ(1) belong to the
vertical subbundle.

Conditions (H0) and (H1) imply that the set of x ∈P(H) with AH(x) ≤ A is finite, for every
A ∈ R. Indeed, this follows immediately from the following general:

3.1. Lemma. Let H ∈ C∞([0, 1]× T ∗M) be a Hamiltonian satisfying (H1) and (H2). For every
A ∈ R there exists a compact subset K ⊂ T ∗M such that each orbit x : [0, 1]→ T ∗M of XH withAH(x) ≤ A lies in K.

Proof. Let x = (q, p) be an orbit of XH such that AH(x) ≤ A. Since x is an orbit of XH , by (28),

η(x)[x′]−H(t, x) = ω(Y (x), XH(t, x))−H(t, x) = DH(t, x)[Y (x)] −H(t, x).

Therefore (H1) implies that |p| is uniformly bounded in L2(]0, 1[). By (29), |x′| in uniformly
bounded in L1(]0, 1[). Therefore x is uniformly bounded in W 1,1, hence in L∞.

3.2. Remark. Assume that the flow generated by a Hamiltonian H ∈ C∞([0, 1]×T ∗M) is globally
defined (for instance, this holds if H is coercive and |∂tH | ≤ c(|H | + 1)). Then the conclusion
of Lemma 3.1 holds assuming just that the function DH [Y ] − H is coercive (a much weaker
assumption than (H1), still implying that H is coercive), without any upper bound such as (H2).

Let us fix a Riemannian metric 〈·, ·〉 on M . This metric induces metrics on TM and on T ∗M ,
both denoted by 〈·, ·〉. It induces also an identification T ∗M ∼= TM , horizontal-vertical splittings
of both TTM and TT ∗M , and a particular almost complex structure J on T ∗M , namely the one
which in the horizontal-vertical splitting takes the form

J =

(
0 −I
I 0

)
. (31)

This almost complex structure is ω-compatible, meaning that6

〈ξ, η〉 = ω(Jξ, η), ∀ξ, η ∈ TxT
∗M, ∀x ∈ T ∗M.

6Notice that our sign convention here differs from the one used in [AS06b]. The reason is that here we prefer
to see the leading term in the Floer equation as a Cauchy-Riemann operator, and not as an anti-Cauchy-Riemann
operator.
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The L2-negative gradient equation for the Hamiltonian action functional AH is the Floer equa-
tion

∂J,H(u) := ∂su+ J(u)[∂tu−XH(t, u)] = 0, (32)

for u = u(s, t), s ∈ R, t in T or in [0, 1]. A generic choice of the Hamiltonian H ∈ C∞(T× T ∗M)
makes the space of solutions of the Floer equation on the cylinder,

M
Λ
∂ (x, y) =

{
u ∈ C∞(R× T, T ∗M) | ∂J,H(u) = 0 and lim

s→−∞
u(s, t) = x(t), lim

s→+∞
u(s, t) = y(t)

}

a manifold of dimension µΛ(x) − µΛ(y), for every x, y ∈ PΛ(H). Similarly, a generic choice of
H ∈ C∞([0, 1]× T ∗M) makes the space of solutions of the Floer equation on the strip,

M
Ω
∂ (x, y) =

{
u ∈ C∞(R× [0, 1], T ∗M) | ∂J,H(u) = 0, u(s, 0), u(s, 1) ∈ T ∗

q0
M ∀s ∈ R, and

lim
s→−∞

u(s, t) = x(t), lim
s→+∞

u(s, t) = y(t)
}

a manifold of dimension µΩ(x)−µΩ(y), for every x, y ∈PΩ(H). Here generic means for a count-
able intersection of open and dense subsets of the space of smooth time-dependent Hamiltonians
satisfying (H0), (H1), and (H2), with respect to suitable topologies (see [FHS96] for transversality
issues). In particular, the perturbation of a given Hamiltonian H satisfying (H0), (H1), (H2) can
be chosen in such a way that the discrete set P(H) is unaffected.

3.3. Remark. As it is well-known, transversality can also be achieved for a fixed Hamiltonian
by perturbing the almost complex structure J in a time-dependent way. In order to have good
compactness properties for the spaces M∂ one needs the perturbed almost complex structure J1

to be C0-close enough to the metric one J defined by (31) (see [AS06b, Theorem 1.14]). Other
compactness issues in this paper would impose further restrictions on the distance between J1 and
J . For this reason here we prefer to work with the fixed almost complex structure J , and to achieve
transversality by perturbing the Hamiltonian.

The manifolds M∂(x, y) can be oriented in a coherent way. Assumptions (H1) and (H2) imply
that these manifolds have nice compactifications. In particular, when µ(x) − µ(y) = 1, M∂(x, y)
consists of finitely many one-parameter families of solutions σ 7→ u(·+ σ, ·), each of which comes
with a sign ±1, depending whether its orientation agrees or not with the orientation determined
by letting σ increase. The algebraic sum of these numbers is an integer nΛ

∂ (x, y), or nΩ
∂ (x, y). If we

let Fk(H) denote the free Abelian group generated by the elements x ∈P(H) of index µ(x) = k,
the above coefficients define the homomorphism

∂ : Fk(H)→ Fk−1(H), x 7→
∑

y∈P(H)
µ(x)=k−1

n∂(x, y) y,

which turns out to be a boundary operator. The resulting chain complexes FΛ(H, J) and FΩ(H, J)
are the Floer complexes associated to the periodic orbits problem, and to the fixed-ends problem.
If we change the metric on M - hence the almost complex structure J - and the orientation data,
the Floer complex F (H, J) changes by an isomorphism. If we change the Hamiltonian H , the new
Floer complex is homotopically equivalent to the old one. In particular, the homology of the Floer
complex does not depend on the metric, on H , and on the orientation data. This fact allows us to
denote this graded Abelian group as HFΛ

∗ (T ∗M), in the periodic case, and HFΩ
∗ (T ∗M), in the

fixed-ends case. Actually, the homology of FΛ(H, J) is isomorphic to the singular homology of the
free loop space Λ(M), while the homology of FΩ(H, J) is isomorphic to the singular homology of
the based loop space Ω(M, q0),

HFΛ
k (T ∗M) ∼= Hk(Λ(M)), HFΩ

k (T ∗M) ∼= Hk(Ω(M, q0)).
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The first fact was first proved by Viterbo in [Vit96] (see also [SW06] for a different proof). In
section 4.1 we outline a third definition of both isomorphisms, which is fully described in [AS06b],
and in the subsequent sections we prove that these isomorphisms are actually ring isomorphisms
intertwining the pair-of-pants product and the triangle product in Floer homology, with the loop
product and the Pontrjagin product in the singular homology of the free and based loop spaces.

3.2 The Floer equation on triangles and pair-of-pants

Additional algebraic structures on Floer homology are defined by extending the Floer equation to
more general Riemann surfaces than the strip R× [0, 1] and the cylinder R× T.

Let (Σ, j) be a Riemann surface, possibly with boundary. For u ∈ C∞(Σ, T ∗M) consider the
nonlinear Cauchy-Riemann operator

DJu =
1

2
(Du+ J(u) ◦Du ◦ j),

that is the complex anti-linear part of Du with respect to the almost-complex structure J . The
operator DJ is a section of the bundle over C∞(Σ, T ∗M) whose fiber at u is Ω0,1(Σ, u∗(TT ∗M)),
the space of anti-linear one-forms on Σ taking values in the vector bundle u∗(TT ∗M). In some
holomorphic coordinate z = s+ it on Σ, the operator DJ takes the form

DJu =
1

2
(∂su+ J(u)∂tu) ds−

1

2
J(u)(∂su+ J(u)∂tu) dt. (33)

This expression shows that the leading term ∂J := ∂s + J(·)∂t in the Floer equation (32) can be
extended to arbitrary Riemann surfaces, at the only cost of considering an equation which does
not take values on a space of tangent vector fields, but on a space of anti-linear one-forms.

When Σ has a global coordinate z = s+ it, as in the case of the strip R× [0, 1] or of the cylinderR × T, we can associate to the Hamiltonian term in the Floer equation the complex anti-linear
one-form

FJ,H(u) = −1

2
(J(u)XH(t, u) ds+XH(t, u) dt) ∈ Ω0,1(Σ, u∗(TT ∗M)). (34)

Formula (33) shows that the Floer equation (32) is equivalent to

DJu+ FJ,H(u) = 0. (35)

If we wish to use the formulation (35) to extend the Floer equation to more general Riemann
surfaces, we encounter the difficulty that - unlike DJ - the Hamiltonian term FJ,H is defined in
terms of coordinates.

One way to get around this difficulty is to consider Riemann surfaces with cylindrical or strip-
like ends, each of which is endowed with some fixed holomorphic coordinate z = s+ it, to define
the operator FJ,H on such ends, and then to extend it to the whole Σ by considering a Hamiltonian
H which also depends on s and vanishes far from the ends. In this way, only the Cauchy-Riemann
operator acts in the region far from the ends. This approach is adopted in [Sch95, PSS96, MS04].

A drawback of this method is that one looses sharp energy identities relating some norm
of u to the jump of the Hamiltonian action functional. Moreover, an s-dependent Hamiltonian
which vanishes for some values of s cannot satisfy assumptions (H1) and (H2). These facts lead
to problems with compactness when dealing - as we are here - with a non-compact symplectic
manifold.

Therefore, we shall use a different method to extend the Hamiltonian term FJ,H . We shall
describe this construction in the case of the triangle and the pair-of-pants surface, although the
same idea could be generalized to any Riemann surface.

Let ΣΩ
Υ be the holomorphic triangle that is the Riemann surface consisting of a closed triangle

with the three vertices removed (equivalently, a closed disk with three boundary points removed).
Let ΣΛ

Υ be the pair-of-pants Riemann surface, that is the sphere with three points removed.
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s = 0 s→∞

Figure 1: The strip with a slit ΣΩ
Υ.

The Riemann surface ΣΩ
Υ can be described as a strip with a slit: one takes the disjoint unionR× [−1, 0] ⊔ R× [0, 1]

and identifies (s, 0−) with (s, 0+) for every s ≥ 0. See Figure 1. The resulting object is indeed a
Riemann surface with interior

Int(ΣΥ) = (R×]− 1, 1[) \ (]−∞, 0]× {0})

endowed with the complex structure of a subset of R2 ∼= C, (s, t) 7→ s + it, and three boundary
components R× {−1}, R× {1}, ]−∞, 0]× {0−, 0+}.

The complex structure at each boundary point other than 0 = (0, 0) is induced by the inclusion
in C, whereas a holomorphic coordinate at 0 is given by the map

{ζ ∈ C | Re ζ ≥ 0, |ζ| < 1} → ΣΩ
Υ, ζ 7→ ζ2, (36)

which maps the boundary line {Re ζ = 0, |ζ| < 1} into the portion of the boundary ] − 1, 0] ×
{0−, 0+}.

≃

Figure 2: The pair-of-pants ΣΛ
Υ.

Similarly, the pair-of-pants ΣΛ
Υ can be described as the following quotient of a strip with a slit:

in the disjoint union R× [−1, 0] ⊔ R× [0, 1] we consider the identifications

(s,−1) ∼ (s, 0−)
(s, 0+) ∼ (s, 1)

for s ≤ 0,
(s, 0−) ∼ (s, 0+)
(s,−1) ∼ (s, 1)

for s ≥ 0.

See figure 2. This object is a Riemann surface without boundary, by considering the standard com-
plex structure at every point other than (0, 0) ∼ (0,−1) ∼ (0, 1), and by choosing the holomorphic
coordinate

{
ζ ∈ C | |ζ| < 1/

√
2
}
→ ΣΛ

Υ, ζ 7→





ζ2 if Re ζ ≥ 0,
ζ2 + i if Re ζ ≤ 0, Im ζ ≥ 0,
ζ2 − i if Re ζ ≤ 0, Im ζ ≤ 0,

(37)
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at this point.
The advantage of these representations is that now ΣΩ

Υ and ΣΛ
Υ are endowed with a global

coordinate z = s+ it, which is holomorphic everywhere except at the point (0, 0) (identified with
(0,−1) and (0, 1) in the Λ case). We refer to such a point as the singular point: it is a regular
point for the complex structure of ΣΩ

Υ or ΣΛ
Υ, but it is singular for the global coordinate z = s+ it.

In fact, the canonical map

ΣΛ
Υ → R× T, (s, t) 7→ (s, t),

is a 2 : 1 branched covering of the cylinder.
Let H ∈ C∞([−1, 1]×T ∗M). If u ∈ C∞(ΣΩ

Υ, T
∗M), the complex anti-linear one-form FJ,H(u)

is everywhere defined by equation (34). We just need to check the regularity of FJ,H(u) at the
singular point. Writing FJ,H(u) in terms of the holomorphic coordinate ζ = σ + iτ by means of
(36), we find

FJ,H(u) = (τI − σJ(u))XH(2στ, u) dσ + (σI + τJ(u))XH(2στ, u) dτ.

Therefore FJ,H(u) is smooth, and actually it vanishes at the singular point.
Assume now that H ∈ C∞(R/2Z × T ∗M) is such that H(−1, ·) = H(0, ·) = H(1, ·) with all

the time derivatives. If u ∈ C∞(ΣΛ
Υ, T

∗M), (34) defines a smooth complex anti-linear one-form
FJ,H(u) ∈ Ω0,1(ΣΛ

Υ, u
∗(TT ∗M)).

A map u in C∞(ΣΩ
Υ, T

∗M) or in C∞(ΣΛ
Υ, T

∗M) solves equation (35) if and only if it solves
the equation

∂J,H(u) = ∂su+ J(u)(∂tu−XH(t, u)) = 0

on Int(ΣΥ). If u solves the above equation on [s0, s1] × [t0, t1], formula (30) together with an
integration by parts leads to the identity

∫ s1

s0

∫ t1

t0

|∂su(s, t)|2 dt ds = A[t0,t1]
H (u(s0, ·))− A[t0,t1]

H (u(s1, ·))

+

∫ s1

s0

(η(u(s, t1))[∂su(s, t1)]− η(u(s, t0))[∂su(s, t0)]) ds,

where AI
H(x) denotes the Hamiltonian action of the path x on the interval I. We conclude that

a solution u of (35) on ΣΛ
Υ or on ΣΩ

Υ - in the latter case with values in T ∗
q0
M on the boundary -

satisfies the sharp energy identity

∫ ∫

(]−s0,s0[×]−1,1[)\(]−s0,0]×{0}
|∂su(s, t)|2 ds dt

= A[−1,0]
H (u(−s0, ·)) + A[0,1]

H (u(−s0, ·))− A[−1,1]
H (u(s0, ·)).

(38)

3.3 The triangle and the pair-of-pants products

Given H1, H2 ∈ C∞([0, 1]×T ∗M) such that H1(1, ·) = H2(0, ·) with all time derivatives, we define
H1#H2 ∈ C∞([0, 1]× T ∗M) by

H1#H2(t, x) =

{
2H1(2t, x) for 0 ≤ t ≤ 1/2,
2H2(2t− 1, x) for 1/2 ≤ t ≤ 1.

(39)

Let us assume that H1, H2, and H1#H2 satisfy (H0)Ω. The triangle product on HFΩ(T ∗M) will
be induced by a chain map

ΥΩ : FΩ
h (H1, J1)⊗ FΩ

k (H2, J2)→ FΩ
h+k(H1#H2, J1#J2).
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In the periodic case, we consider Hamiltonians H1, H2 ∈ C∞(T × T ∗M) such that H1(0, ·) =
H2(0, ·) with all time derivatives. Assuming that H1, H2, and H1#H2 satisfy (H0)Λ, the pair-of-
pants product on HFΛ(T ∗M) will be induced by a chain map

ΥΛ : FΛ
h (H1, J1)⊗ FΛ

k (H2, J2)→ FΛ
h+k−n(H1#H2, J1#J2),

where n is the dimension of M .
Let H ∈ C∞([−1, 1]× T ∗M), respectively H ∈ C∞(R/2Z× T ∗M), be defined by

H(t, x) =
1

2
H1#H2((t+ 1)/2, x) =

{
H1(t+ 1, x) if − 1 ≤ t ≤ 0,
H2(t, x) if 0 ≤ t ≤ 1.

(40)

Notice that x : [−1, 1] → T ∗M is an orbit of XH if and only if the curve t 7→ x((t + 1)/2) is an
orbit of XH1#H2

.
Given x1 ∈PΩ(H1), x2 ∈PΩ(H2), and y ∈PΩ(H1#H2), consider the space of solutions of

the Floer equation
delbarJ,H(u) = 0 on the holomorphic triangle

M
Ω
Υ (x1, x2; y) :=

{
u ∈ C∞(ΣΩ

Υ, T
∗M)

∣∣∣ ∂J,H(u) = 0, u(z) ∈ T ∗
q0
M ∀z ∈ ∂ΣΩ

Υ,

lim
s→−∞

u(s, t− 1) = x1(t), lim
s→−∞

u(s, t) = x2(t), lim
s→+∞

u(s, 2t− 1) = y(t), uniformly in t ∈ [0, 1]
}
.

Similarly, for x1 ∈ PΛ(H1), x2 ∈ PΛ(H2), and y ∈ PΛ(H1#H2), we consider the space of
solutions of the Floer equation on the pair-of-pants surface

M
Λ
Υ (x1, x2; y) :=

{
u ∈ C∞(ΣΛ

Υ, T
∗M)

∣∣∣ ∂J,H(u) = 0, lim
s→−∞

u(s, t− 1) = x1(t),

lim
s→−∞

u(s, t) = x2(t), lim
s→+∞

u(s, 2t− 1) = y(t), uniformly in t ∈ [0, 1]
}
.

The following result is proved in section 5.10.

3.4. Proposition. For a generic choice of H1 and H2 as above, the sets M Ω
Υ (x1, x2; y) and

M Λ
Υ (x1, x2; y) - if non-empty - are manifolds of dimension

dimM
Ω
Υ (x1, x2; y) = µΩ(x1) + µΩ(x2)− µΩ(y), dimM

Λ
Υ (x1, x2; y) = µΛ(x1) + µΛ(x2)− µΛ(y)− n.

These manifolds carry coherent orientations.

The energy identity (38) implies that every map u in M Ω
Υ (x1, x2; y) or in M Λ

Υ (x1, x2; y) satisfies
∫ ∫

(R×]−1,1[)\]−∞,0]×{0})
|∂su(s, t)|2 ds dt = AH1

(x1) + AH2
(x2)− AH1#H2

(y). (41)

As a consequence, we obtain the following compactness result, which is proved in section 6.1.

3.5. Proposition. Assume that the Hamiltonians H1 and H2 satisfy (H1), (H2). Then the
spaces M Ω

Υ (x1, x2; y) and M Λ
Υ (x1, x2; y) are pre-compact in C∞

loc.

When µΩ(y) = µΩ(x1) + µΩ(x2), M Ω
Υ (x1, x2; y) is a finite set of oriented points, and we

denote by nΩ
Υ(x1, x2; y) the algebraic sum of the corresponding orientation signs. Similarly, when

µΛ(y) = µΛ(x1) + µΛ(x2) − n, M Λ
Υ (x1, x2; y) is a finite set of oriented points, and we denote

by nΛ
Υ(x1, x2; y) the algebraic sum of the corresponding orientation signs. These integers are the

coefficients of the homomorphisms

ΥΩ : FΩ
h (H1)⊗ FΩ

k (H2)→ FΩ
h+k(H1#H2), x1 ⊗ x2 7→

∑

y∈P
Ω(H1#H2)

µΩ(y)=h+k

nΩ
Υ(x1, x2; y) y,

ΥΛ : FΛ
h (H1)⊗ FΛ

k (H2)→ FΛ
h+k−n(H1#H2), x1 ⊗ x2 7→

∑

y∈P
Λ(H1#H2)

µΛ(y)=h+k−n

nΛ
Υ(x1, x2; y) y.
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A standard gluing argument shows that the homomorphisms ΥΩ and ΥΛ are chain maps. There-
fore, they define products

ΥΩ : HFΩ
h (T ∗M)⊗HFΩ

k (T ∗M)→ HFΩ
h+k(T ∗M),

ΥΛ : HFΛ
h (T ∗M)⊗HFΛ

k (T ∗M)→ HFΛ
h+k−n(T ∗M),

in homology. By standard gluing arguments, it could be shown that these products have a unit
element, are associative, and the second one is commutative. These facts will actually follow from
the fact that these products correspond to the Pontrjagin and the loop products on H∗(Ω(M, q0))
and H∗(Λ(M)).

3.4 Floer homology for figure-8 loops

The pair-of-pants product on cotangent bundles - unlike on an arbitrary symplectic manifold -
has a natural factorization. Indeed, we will show that it factors through the Floer homology of
figure-8 loops. The aim of this sections is to define this Floer homology.

Let H1, H2 ∈ C∞([0, 1] × T ∗M) be two Hamiltonians satisfying (H1) and (H2). We are now
interested in the set PΘ(H1 ⊕H2) of pairs of orbits (x1, x2) of XH1

and XH2
such that

π ◦ x1(0) = π ◦ x2(0) = π ◦ x1(1) = π ◦ x2(1), x1(1)− x1(0) + x2(1)− x2(0) = 0.

This is the Hamiltonian version of the problem PΘ(L1 ⊕ L2), introduced in section 2.5. It is a
non-local Lagrangian boundary value problem on the symplectic manifold (T ∗M × T ∗M,ω × ω),
that is on the cotangent bundle of M2 = M ×M endowed with its standard symplectic structure.
Indeed, consider the following n-dimensional submanifold of M4 = M ×M ×M ×M ,

∆Θ
M := {(q, q, q, q) | q ∈M} ,

and denote by N∗∆Θ
M its conormal bundle, that is

N∗∆Θ
M :=

{
ζ ∈ T ∗M4|∆Θ

M
| ζ|T∆Θ

M
= 0

}

=
{
(ζ1, ζ2, ζ3, ζ4) ∈ (T ∗M)4 | π(ζ1) = π(ζ2) = π(ζ3) = π(ζ4), ζ1 + ζ2 + ζ3 + ζ4 = 0

}
.

We are looking at orbits x = (x1, x2) of the Hamiltonian vector field XH1⊕H2
on T ∗M2 such that

(x(0),−x(1)) belongs to N∗∆Θ
M . In other words, we are looking at the intersection of the graph

of −φH1⊕H2(1, ·) - a Lagrangian7 submanifold of T ∗M2 × T ∗M2 = T ∗M4 - with the Lagrangian
submanifold N∗∆Θ

M . The corresponding non-degeneracy condition is then the following:

(H0)Θ every solution x = (x1, x2) ∈PΘ(H1⊕H2) is non-degenerate, meaning that the graph of
the map −φH1⊕H2(1, ·) is transverse to the submanifold N∗∆Θ

M at the point (x(0),−x(1)).

Let x = (x1, x2) ∈PΘ(H1 ⊕H2). By means of a unitary trivialization

[0, 1]× R4n → x∗(TT ∗M2),

mapping (0) × R2n into the vertical subbundle T vT ∗M2, we can transform the differential of
φH1⊕H2(t, ·) at x(0) into a path Φ : [0, 1] → Sp(4n) into the symplectic group of R4n, such
that Φ(0) = I. Denoting by C ∈ L(R4n,R4n) the anti-symplectic involution C(q, p) = (q,−p),
condition (H0)Θ states that the graph of CΦ(1) has intersection (0) with the Lagrangian subspace
of R4n × R4n,

N∗∆ΘRn :=
{
(z1, z1, z3, z4) ∈ (R2n)4 | πz1 = πz2 = πz3 = πz4, (I − π)(z1 + z2 + z3 + z4) = 0

}
,

π : R2n = Rn × Rn → Rn denoting the projection onto the first factor.

7Usually a non-local Lagrangian boundary value problem on the symplectic manifold (P, ω) is given by fixing a
Lagrangian submanifold L of (P × P, ω ⊕ (−ω)) and considering its intersection with the graph of a Hamiltonian
diffeomorphism of P , which is a Lagrangian submanifold of (P × P, ω ⊕ (−ω)). Here P is the cotangent bundle of
a manifold, and so is P × P . Therefore we prefer to consider always the standard symplectic structure ω ⊕ ω on
P × P , and not the flipped one, ω ⊕ (−ω). With this choice, φ is a symplectic diffeomorphism of P if and only if
the graph of −φ is a Lagrangian submanifold of P × P . See also section 5.1 for the consequences of adopting this
sign convention.
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3.6. Definition. The Maslov index µΘ(x) ∈ Z of x = (x1, x2) ∈PΘ(H1 ⊕H2) is the integer

µΘ(x) := µ(N∗∆ΘRn , graphCΦ)− n

2
.

Since the intersection of the Lagrangian subspaces N∗∆ΘRn and graphCΦ(0) = graphC has
dimension 3n, the relative Maslov index µ(N∗∆ΘRn , graphCΦ) differs from 3n/2 by an integer (see
[RS93], Corollary 4.12), so µΘ(x) is an integer. The fact that this definition does not depend
on the choice of the trivialization is proved in [APS08], in the more general setting of arbitrary
non-local conormal boundary conditions.

By (30), the elements of PΘ(H1 ⊕H2) are critical points of the action functional AH1⊕H2
=AH1

⊕AH2
on the space of pairs of curves x1, x2 : [0, 1]→ T ∗M whose four end points have the same

projection on M . We endow M ×M with the product metric, and T ∗M2 with the corresponding
almost complex structure, still denoted by J . Let x− = (x−1 , x

−
2 ) and x+ = (x+

1 , x
+
2 ) be two

elements of PΘ(H1 ⊕H2), and let M Θ
∂ (x−, x+) be the space of maps u ∈ C∞(R × [0, 1], T ∗M2)

which solve the Floer equation

∂J,H1⊕H2
(u) = 0,

together with the boundary and asymptotic conditions

(u(s, 0),−u(s, 1)) ∈ N∗∆Θ
M , ∀s ∈ R,

lim
s→±∞

uj(s, ·) = x±j , ∀j = 1, 2.

The following result is proved in section 5.10.

3.7. Proposition. For a generic choice of H1 and H2 the set M Θ
∂ (x−, x+) is a smooth manifold

of dimension µΘ(x−)− µΘ(x+). These manifolds can be oriented in a coherent way.

Let us deal with compactness issues. Lemma 3.1 together with assumption (H0)Θ implies that
for every A ∈ R the set of (x1, x2) ∈PΘ(H1 ⊕H2) with AH1

(x1) + AH2
(x2) ≤ A is finite.

Assumptions (H1) and (H2) allow to prove the following compactness result for solutions of
the Floer equation (see section 6.1).

3.8. Proposition. Assume that H1 and H2 satisfy (H1), (H2). Then for every x−, x+ ∈
PΘ(H1 ⊕H2), the space M Θ

∂ (x−, x+) is pre-compact in C∞
loc(R× [0, 1], T ∗M2).

If we now assume that H1 and H2 satisfy (H0)Θ, (H1), and (H2), we can define the Floer
complex in the usual way. Indeed, for x−, x+ ∈PΘ(H1⊕H2) such that µΘ(x−)−µΘ(x+) = 1, we
define nΘ

∂ (x−, x+) ∈ Z to be the algebraic sum of the orientation sign associated to the elements
of M Θ

∂ (x−.x+), and we consider the boundary operator

∂ : FΘ
k (H1 ⊕H2)→ FΘ

k−1(H1 ⊕H2), x− 7→
∑

x+∈P
Θ(H1⊕H2)

µΘ(x+)=k−1

nΘ
∂ (x−, x+)x+,

where FΘ
k (H1⊕H2) denotes the free Abelian group generated by the elements x ∈PΘ(H1⊕H2)

with µΘ(x) = k.
The resulting chain complex FΘ(H1⊕H2, J) is the Floer complex associated to figure-8 loops.

If we change the metric on M - hence the almost complex structure J on T ∗M2 - and the ori-
entation data, the Floer complex FΘ(H1 ⊕H2, J) changes by an isomorphism. If we change the
Hamiltonians H1 and H2, the Floer complex changes by a chain homotopy. In particular, the ho-
mology of the Floer complex does not depend on the metric, on H1, on H2, and on the orientation
data. This fact allows us to denote this graded Abelian group as HFΘ

∗ (T ∗M). We will show in
section 4.1 that the Floer homology for figure-8 loops is isomorphic to the singular homology of
the space of figure-8 loops Θ(M),

HFΘ
k (T ∗M) ∼= Hk(Θ(M)).
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3.5 Factorization of the pair-of-pants product

Let H1, H2 ∈ C∞(T× T ∗M) be two Hamiltonians satisfying (H0)Λ, (H1), and (H2). We assume
that H1(0, ·) = H2(0, ·) with all time derivatives, so that the Hamiltonian H1#H2 defined in (39)
also belongs to C∞(T× T ∗M). We assume that H1#H2 satisfies (H0)Λ, while H1 ⊕H2 satisfies
(H0)Θ. The aim of this section is to construct two chain maps

E : FΛ
h (H1, J)⊗ FΛ

k (H2, J)→ FΘ
h+k−n(H1 ⊕H2, J),

G : FΘ
k (H1 ⊕H2, J)→ FΛ

k (H1#H2, J),

such that the composition G ◦ E is chain homotopic to the pair-of-pants chain map ΥΛ.
The homomorphisms E is defined by counting solutions of the Floer equation on the Riemann

surface ΣE which is the disjoint union of two closed disks with an inner and a boundary point
removed. The homomorphism G is defined by counting solutions of the Floer equation on the
Riemann surface ΣG obtained by removing one inner point and two boundary points from the
closed disk. Again, we find it useful to represent these Riemann surfaces as suitable quotients of
strips with slits.

≃

≃

Figure 3: A component of ΣE : the cylinder with a slit.

The surface ΣE can be described starting from the disjoint union of two strips,

(R× [−1, 0]) ⊔ (R× [0, 1]),

by making the following identifications:

(s,−1) ∼ (s, 0−), (s, 0+) ∼ (s, 1) for s ≤ 0.

The complex structure of ΣE is constructed by considering the holomorphic coordinate

{
ζ ∈ C | Im ζ ≥ 0, |ζ| < 1/

√
2
}
→ ΣE , ζ 7→

{
ζ2 − i if Re ζ ≥ 0,
ζ2 if Re ζ ≤ 0,

(42)

at (0,−1) ∼ (0, 0−), and the holomorphic coordinate

{
ζ ∈ C | Im ζ ≥ 0, |ζ| < 1/

√
2
}
→ ΣE , ζ 7→

{
ζ2 + i if Re ζ ≥ 0,
ζ2 if Re ζ ≤ 0,

(43)

at (0, 0+) ∼ (0, 1). The resulting object is a Riemann surface consisting of two disjoint components,
each of which is a cylinder with a slit: each component has one cylindrical end (on the left-hand
side), one strip-like end and one boundary line (on the right-hand side). See figure 3. The
global holomorphic coordinate z = s + it has two singular points, at (0, 0−) ∼ (0,−1), and at
(0, 0+) ∼ (0, 1).
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The Riemann surface ΣG is obtained from the disjoint union of two strips (R× [−1, 0])⊔ (R×
[0, 1]) by making the identifications:

{
(s, 0−) ∼ (s, 0+)
(s,−1) ∼ (s, 1)

for s ≥ 0.

A holomorphic coordinate at (0, 0) is the one given by (36), and a holomorphic coordinate at
(0,−1) ∼ (0, 1) is:

{ζ ∈ C | Re ζ ≥ 0, |ζ| < 1} → ΣG, ζ 7→
{
ζ2 − i if Im ζ ≥ 0,
ζ2 + i if Im ζ ≤ 0,

(44)

We obtain a Riemann surface with two boundary lines and two strip-like ends (on the left-hand
side), and a cylindrical end (on the right-hand side). The global holomorphic coordinate z = s+ it
has two singular points, at (0, 0), and at (0,−1) ∼ (0, 1).

Let H ∈ C∞(R/2Z × T ∗M) be defined by (40). Given x1 ∈ PΛ(H1), x2 ∈ PΛ(H2), y =
(y1, y2) ∈ PΘ(H1 ⊕H2), and z ∈ PΛ(H1#H2), we consider the following spaces of maps. The
set ME(x1, x2; y) is the space of solutions u ∈ C∞(ΣE , T

∗M) of the Floer equation

∂J,H(u) = 0,

satisfying the boundary conditions
{
πu(s,−1) = πu(s, 0−) = πu(s, 0+) = πu(s, 1),
u(s, 0−)− u(s,−1) + u(s, 1)− u(s, 0+) = 0,

∀s ≥ 0,

and the asymptotic conditions

lim
s→−∞

u(s, t− 1) = x1(t), lim
s→−∞

u(s, t) = x2(t), lim
s→+∞

u(s, t− 1) = y1(t), lim
s→+∞

u(s, t) = y2(t),

uniformly in t ∈ [0, 1]. The set MG(y, z) is the set of solutions u ∈ C∞(ΣG, T
∗M) of the same

equation, the same boundary but for s ≤ 0, and the asymptotic conditions

lim
s→−∞

u(s, t− 1) = y1(t), lim
s→−∞

u(s, t) = y2(t), lim
s→+∞

u(s, 2t− 1) = z(t),

uniformly in t ∈ [0, 1]. The following result is proved in section 5.10.

3.9. Proposition. For a generic choice of H1 and H2, the spaces ME(x1, x2; y) and MG(y, z)
- if non-empty - are manifolds of dimension

dimME(x1, x2; y) = µΛ(x1) + µΛ(x2)− µΘ(y)− n, dimMG(y, z) = µΘ(y)− µΛ(z).

These manifolds carry coherent orientations.

The energy identities are now
∫ ∫R×]−1,1[

|∂su(s, t)|2 ds dt = AH1
(x1) + AH2

(x2)− AH1⊕H2
(y), (45)

for every u ∈ME(x1, x2; y), and

∫ ∫R×]−1,1[

|∂su(s, t)|2 ds dt = AH1⊕H2
(y)− AH1#H2

(z), (46)

for every u ∈MG(y, z). As usual, they imply the following compactness result (proved in section
6.1).

3.10. Proposition. Assume that H1, H2 satisfy (H1), (H2). Then the spaces ME(x1, x2; y) and
MG(y, z) are pre-compact in C∞

loc.
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When µΘ(y) = µΛ(x1) + µΛ(x2) − n, ME(x1, x2; y) is a finite set of oriented points, and
we denote by nE(x1, x2; y) the algebraic sum of the corresponding orientation signs. Similarly,
when µΛ(z) = µΘ(y), MG(y, z) is a finite set of oriented points, and we denote by nG(y, z) the
algebraic sum of the corresponding orientation signs. These integers are the coefficients of the
homomorphisms

E : FΛ
h (H1)⊗ FΛ

k (H2)→ FΘ
h+k−n(H1 ⊕H2), x1 ⊗ x2 7→

∑

y∈P
Θ(H1⊕H2)

µΘ(y)=h+k−n

nE(x1, x2; y) y,

G : FΘ
k (H1 ⊕H2)→ FΛ

k (H1#H2), y 7→
∑

z∈P
Λ(H1#H2)

µΛ(z)=k

nG(y, z) z.

A standard gluing argument shows that these homomorphisms are chain maps. The main result
of this section states that the pair-of-pants product on T ∗M factors through the Floer homology
of figure-8 loops:

3.11. Theorem. The chain maps

ΥΛ, G ◦ E :
(
FΛ(H1, J)⊗ FΛ(H2, J)

)
k

=
⊕

j+h=k

FΛ
j (H1, J)⊗ FΛ

h (H2, J)→ FΛ
k−n(H1#H2, J)

are chain homotopic.

In order to prove the above theorem, we must construct a homomorphism

PΥ
GE :

(
FΛ(H1, J)⊗ FΛ(H2, J)

)
k
→ FΛ

k−n+1(H1#H2, J),

such that

(ΥΛ −G ◦ E)(α⊗ β) = ∂Λ
J,H1#H2

◦ PΥ
GE(α⊗ β) + PΥ

GE

(
∂Λ

J,H1
α⊗ β + (−1)hα⊗ ∂Λ

J,H2
β
)
, (47)

for every α ∈ FΛ
h (H1) and β ∈ FΛ

j (H2). The chain homotopy PΥ
GE is defined by counting solutions

of the Floer equation on a one-parameter family of Riemann surfaces with boundary ΣΥ
GE(α),

α ∈]0,+∞[, obtained by removing two open disks from the pair-of-pants.
More precisely, given α ∈]0,+∞[, we define ΣΥ

GE(α) as the quotient of the disjoint union
(R× [−1, 0]) ⊔ (R× [0, 1] under the identifications

{
(s,−1) ∼ (s, 0−)
(s, 0+) ∼ (s, 1)

if s ≤ 0,

{
(s,−1) ∼ (s, 1)
(s, 0−) ∼ (s, 0+)

if s ≥ α.

This object is a Riemann surface with boundary, with the holomorphic coordinates (42) and (43)
at (0,−1) ∼ (0, 0−) and at (0, 0+) ∼ (0, 1), with the holomorphic coordinates (36) and (44)
(translated by α) at (α, 0) and at (α,−1) ∼ (α, 1). The resulting object is a Riemann surface with
three cylindrical ends, and two boundary circles.

Given x1 ∈ PΛ(H1), x2 ∈ PΛ(H2), and z ∈ PΛ(H1#H2), we define M Υ
GE(x1, x2; z) to be

the space of pairs (α, u), with α > 0 and u ∈ C∞(ΣΥ
GE(α), T ∗M) solution of

∂J,H(u) = 0,

with boundary conditions
{
πu(s,−1) = πu(s, 0−) = πu(s, 0+) = πu(s, 1),
u(s, 0−)− u(s,−1) + u(s, 1)− u(s, 0+) = 0,

∀s ∈ [0, α],

and asymptotic conditions

lim
s→−∞

u(s, t− 1) = x1(t), lim
s→−∞

u(s, t) = x2(t), lim
s→+∞

u(s, 2t− 1) = z(t),

uniformly in t ∈ [0, 1]. The following result is proved in section 5.10.
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3.12. Proposition. For a generic choice of H1 and H2, M Υ
GE(x1, x2; z) - if non-empty - is a

manifold of dimension

dimM
Υ
GE(x1, x2; z) = µΛ(x1) + µΛ(x2)− µΛ(z)− n+ 1.

The projection (α, u) 7→ α is smooth on M Υ
GE(x1, x2; z). These manifolds carry coherent orienta-

tions.

Energy estimates together with (H1) and (H2) again imply compactness. When µΛ(z) =
µΛ(x1)+µ

Λ(x2)−n+1, M Υ
GE(x1, x2; z) is a finite set of oriented points. Denoting by nΥ

GE(x1, x2; z)
the algebraic sum of the corresponding orientation signs, we define the homomorphism

PΥ
GE : FΛ

h (H1)⊗ FΛ
k (H2)→ FΛ

h+k−n+1(H1#H2), x1 ⊗ x2 7→
∑

z∈P
Λ(H1#H2)

µΛ(z)=h+k−n+1

nΥ
GE(x1, x2; z) z.

Then Theorem 3.11 follows from the following:

3.13. Proposition. The homomorphism PΥ
GE is a chain homotopy between ΥΛ and G ◦ E.

The proof of the above result is contained in section 6.3.

3.6 The homomorphisms C, Ev, and I!

Let us define the Floer homological counterparts of the the homomorphisms

c∗ : Hk(M)→ Hk(Λ(M)), ev∗ : Hk(Λ(M))→ Hk(M).

Let f be a smooth Morse function on M , and assume that the vector field −gradf satisfies the
Morse-Smale condition. Let H ∈ C∞(T× T ∗M) be a Hamiltonian satisfying (H0)Λ, (H1), (H2).
We shall define two chain maps

C : Mk(f, 〈·, ·〉)→ Fk(H, J), Ev : Fk(H, J)→Mk(f, 〈·, ·〉).

Given x ∈ crit(f) and y ∈PΛ(H), consider the following spaces of maps

MC(x, y) =
{
u ∈ C∞([0,+∞[×T, T ∗M)

∣∣∣ ∂J,H(u) = 0, π ◦ u(0, t) ≡ q ∈Wu(x) ∀t ∈ T,
lim

s→+∞
u(s, t) = y(t) uniformly in t ∈ T}

,

and

MEv(y, x) =
{
u ∈ C∞(]−∞, 0]× T, T ∗M)

∣∣∣ ∂J,H(u) = 0, u(0, t) ∈ OM ∀t ∈ T,
u(0, 0) ∈ W s(x), lim

s→−∞
u(s, t) = y(t) uniformly in t ∈ T}

,

where OM denotes the zero section in T ∗M .
The following result is proved in section 5.10.

3.14. Proposition. For a generic choice of H, MC(x, y) and MEv(y, x) are manifolds with

dimMC(x, y) = m(x)− µΛ(y), MEv(y, x) = µΛ(y)−m(x).

These manifolds carry coherent orientations.

If u belongs to MC(x, y) or MEv(y, x), the fact that u(0, ·) takes value either on the fiber of
some point q ∈M or on the zero section of T ∗M implies thatAH(u(0, ·)) = −

∫ 1

0

H(t, u(0, t)) dt.
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Therefore, we have the energy estimates
∫ ∫

]0,+∞[×]0,1[

|∂su(s, t)|2 ds dt ≤ − min
(t,q)∈T×M

H(t, q, 0)− AH(y),

for every u ∈MC(x, y), and

∫ ∫

]−∞,0[×]0,1[

|∂su(s, t)|2 ds dt ≤ AH(y) + max
(t,q)∈T×M

H(t, q, 0),

for every u ∈MEv(y, x). These energy estimates allow to prove the following compactness result:

3.15. Proposition. The spaces MC(x, y) and MEv(y, x) are pre-compact in C∞
loc([0,+∞[×T, T ∗M)

and C∞
loc(]−∞, 0]× T, T ∗M).

When µΛ(y) − m(x), MC(x, y) and MEv(y, x) consist of finitely many oriented points. The
algebraic sums of these orientation signs, denoted by nC(x, y) and nEv(y, x), define the homomor-
phisms

C : Mk(f, 〈·, ·〉)→ FΛ
k (H, J), x 7→

∑

y∈P
Λ(H)

µΛ(y)=k

nC(x, y) y,

Ev : FΛ
k (H, J)→Mk(f, 〈·, ·〉), y 7→

∑

x∈crit(f)
m(x)=k

nEv(y, x)x.

A standard gluing argument shows that C and Ev are chain maps.

We conclude this section by defining the Floer homological counterpart of the homomorphism

i! : Hk(Λ(M))→ Hk−n(Ω(M, q0)).

Let ΣI! be a cylinder with a slit. More precisely, ΣI! is obtained from the strip R × [0, 1] by the
identifications (s, 0) ∼ (s, 1) for every s ≤ 0. At the point (0, 0) ∼ (0, 1) we have the holomorphic
coordinate

{
ζ ∈ C | Re ζ ≥ 0, |ζ| < 1/

√
2
}
→ ΣI! , ζ 7→

{
ζ2 if Im ζ ≥ 0,
ζ2 + i if Im ζ ≤ 0.

It is a Riemann surface with one cylindrical end (on the right-hand side), one strip-like end and
one boundary line (on the left-hand side). It is the copy of one component of ΣE , see Figure 3.

Consider now a Hamiltonian H ∈ C∞(T×T ∗M) satisfying (H0)Λ, (H0)Ω, (H1), (H2). We also
assume

x ∈P
Λ(H) =⇒ x(0) /∈ T ∗

q0
M. (48)

Given x ∈PΛ(H) and y ∈PΩ(H), we introduce the space of maps

MI!(x, y) =
{
u ∈ C∞(ΣI! , T

∗M)
∣∣∣u solves (35), u(s, 0) ∈ T ∗

q0
M, u(s, 1) ∈ T ∗

q0
M ∀s ≥ 0,

lim
s→−∞

u(s, t) = x(t), lim
s→+∞

u(s, t) = y(t) uniformly in t ∈ [0, 1]
}
.

The following result is proved in section 5.10):

3.16. Proposition. For a generic H satisfying (48), the space MI!(x, y) is a manifold, with

dimMI!(x, y) = µΛ(x) − µΩ(y)− n.

These manifolds carry coherent orientations.
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The following compactness statement follows from the general discussion of section 6.1.

3.17. Proposition. The space MI!(x, y) is pre-compact in C∞
loc(ΣI! , T

∗M).

When µΩ(y) = µΛ(x) − n, the space MI!(x, y) consists of finitely many oriented points. The
algebraic sum of these orientations is denoted by nI!(x, y), and defines the homomorphism

I! : FΛ
k (H, J)→ FΩ

k−n(H, J), x 7→
∑

y∈P
Ω(H)

µΩ(y)=k−n

nI!(x, y) y.

A standard gluing argument shows that I! is a chain map.

4 Isomorphisms between Morse and Floer complexes

4.1 The chain complex isomorphisms

Let L ∈ C∞([0, 1]× T ∗M) or L ∈ C∞(T × T ∗M) be a Lagrangian satisfying (L1) and (L2). Let
H be the Fenchel transform of L, that is

H(t, q, p) := max
v∈TqM

(
p(v)− L(t, q, v)

)
.

It is easy to see that H satisfies (H1) and (H2). If v(t, q, p) ∈ TqM is the (unique) vector where
the above maximum is achieved, the map

[0, 1]× T ∗M → [0, 1]× TM, (t, q, p) 7→ (t, q, v(t, q, p)),

is a diffeomorphism, called the Legendre transform associated to the Lagrangian L. The Legendre
transform induces a one-to-one correspondence x 7→ π ◦ x between the orbits of the Hamiltonian
vector field XH and the solutions of the second order Lagrangian equation given by L. When H
is the Fenchel transform of L, we have the fundamental inequality between the Hamiltonian and
the Lagrangian action functionals:AH(x) ≤ SL(π ◦ x), ∀x : [0, 1]→ T ∗M, (49)

with the equality holding if and only if x is related to (π ◦ x, (π ◦ x)′) by the Legendre transform.
In particular, the equality holds if x is an orbit of the Hamiltonian vector field XH . In this section
we recall the definition of the isomorphisms

ΦΩ
L : Mk(SΩ

L, g
Ω)→ FΩ

k (H, J), ΦΛ
L : Mk(SΛ

L, g
Λ)→ FΛ

k (H, J),

between the Morse complex of the Lagrangian action functional and the Floer complex of the
corresponding Hamiltonian system. See [AS06b] for detailed proofs.

We assume that L satisfies (L0)Ω, resp. (L0)Λ, equivalently that H satisfies (H0)Ω, resp. (H0)Λ.
Consider a Riemannian metric gΩ, resp. gΛ, on Ω1(M, q0), resp. Λ1(M), such that the Lagrangian
action functional SL satisfies the Palais-Smale and the Morse-Smale conditions. Given γ ∈PΩ(L)
and x ∈PΩ(H), we denote by M Ω

Φ (γ, x) the space of maps u ∈ C∞([0,+∞[×[0, 1], T ∗M) which
solve the Floer equation

∂J,H(u) = 0, (50)

and satisfy the boundary conditions

u(s, 0) ∈ T ∗
q0
M, u(s, 1) ∈ T ∗

q0
M, ∀s ≥ 0,

π ◦ u(0, ·) ∈Wu(γ,−gradSΩ
L),
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and the asymptotic condition

lim
s→+∞

u(s, t) = x(t), (51)

uniformly in t ∈ [0, 1]. Similarly, for γ ∈ PΛ(L) and x ∈ PΛ(H), we denote by M Λ
Φ (γ, x)

the space of maps u ∈ C∞([0,+∞[×T, T ∗M) solving the Floer equation (50) with the boundary
condition

π ◦ u(0, ·) ∈Wu(γ,−gradSΛ
L),

and the asymptotic conditon (51) uniformly in t ∈ T. For a generic choice of H , these spaces of
maps are manifolds of dimension

dim M
Ω
Φ (γ, x) = mΩ(γ)− µΩ(x), dimM

Λ
Φ (γ, x) = mΛ(γ)− µΛ(x).

The inequality (49) provides us with the energy estimates which allow to prove suitable compact-
ness properties for the spaces M Ω

Φ (γ, x) and M Λ
Φ (γ, x). When µΩ(x) = mΩ(γ), resp. µΛ(x) =

mΛ(γ), the space M Ω
Φ (γ, x), resp. M Λ

Φ (γ, x), consists of finitely many oriented points, which add
up to the integers nΩ

Φ(γ, x), resp. nΛ
Φ(γ, x). These integers are the coefficients of the homomor-

phisms

ΦΩ
L : Mk(SΩ

L, g
Ω)→ FΩ

k (H, J), γ 7→
∑

x∈P
Ω(H)

µΩ(x)=k

nΩ
Φ(γ, x)x,

ΦΛ
L : Mk(SΛ

L, g
Λ)→ FΛ

k (H, J), γ 7→
∑

x∈P
Λ(H)

µΛ(x)=k

nΛ
Φ(γ, x)x,

which are shown to be chain maps. The inequality (49) together with its differential version implies
that nΦ(γ, x) = 0 if AH(x) ≥ SL(γ) and γ 6= π ◦ x, while nΦ(γ, x) = ±1 if γ = π ◦ x. These facts
imply that ΦΩ and ΦΛ are isomorphisms. We summarize the above facts into the following:

4.1. Theorem. For a generic metric gΩ, resp. gΛ, on the based loop space Ω1(M, q0), resp. on the
free loop space Λ1(M), and for a generic Lagrangian L ∈ C∞([0, 1]×TM), resp. L ∈ C∞(T×TM),
satisfying (L0)Ω, resp. (L0)Λ, (L1), (L2), the above construction produces an isomorphism

ΦΩ
L : Mk(SΩ

L, g
Ω)→ FΩ

k (H, J), resp. ΦΛ
L : Mk(SΛ

L, g
Λ)→ FΛ

k (H, J),

from the Morse complex of the Lagrangian action functional to the Floer complex of (H, J), where
H is the Fenchel transform of L.

The same idea produces an isomorphism

ΦΘ
L1⊕L2

: Mk(SΘ
L1⊕L2

, gΘ)→ FΘ
k (H1 ⊕H2, J),

between the Morse and the Floer complex associated to the figure-8 problem (see sections 2.5 and
3.4). Indeed, given γ ∈PΘ(L1 ⊕ L2) and x ∈PΘ(H1 ⊕H2), we consider the space M Θ

Φ (γ, x) of
maps u ∈ C∞([0,+∞[×[0, 1], T ∗M2) solving the Floer equation

∂J,H1⊕H2
(u) = 0,

with non-local boundary conditions

(u(s, 0),−u(s, 1)) ∈ N∗∆Θ
M , ∀s ≥ 0,

π ◦ u(0, ·) ∈ Wu(γ,−gradSΘ
L1⊕L2

),

and asymptotic condition

lim
s→+∞

u(s, t) = x(t),

uniformly in t ∈ [0, 1]. The following fact is proved in section 5.10:
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4.2. Proposition. For a generic choice of gΘ, H1, H2, the space M Θ
Φ (γ, x) - if non-empty - is a

manifold of dimension

dimM
Θ
Φ (γ, x) = mΘ(γ)− µΘ(x).

These manifolds carry coherent orientations.

The inequality (49) implies the energy estimate which can be used to prove C∞
loc compactness of

the space M Θ
Φ (γ, x). When µΘ(x) = mΘ(γ), the space M Θ

Φ (γ, x) consists of finitely many oriented
points, which define an integer nΘ

Φ(γ, x). These integers are the coefficients of a homomorphism

ΦΘ
L1⊕L2

: Mk(SΘ
L1⊕L2

, gΘ)→ Fk(H1 ⊕H2, J), γ 7→
∑

x∈P
Θ(H1⊕H2)

µΘ(x)=k

nΘ
Φ(γ, x)x.

This is a chain complex isomorphism. See [APS08] for the construction of this isomorphism for
arbitrary non-local conormal boundary conditions.

4.2 The Ω ring isomorphism

Let L1, L2 ∈ C∞([0, 1]× TM) be two Lagrangians such that L1(1, ·) = L2(0, ·) with all the time
derivatives, and such that L1 and L2 satisfy (L0)Ω, (L1), (L2), and (24). Assume also that the
Lagrangian L1#L2 defined by (23) satisfies (L0)Ω. Let H1 and H2 be the Fenchel transforms of
L1 and L2, so that H1#H2 is the Fenchel transform of L1#L2, and the three Hamiltonians H1,
H2, and H1#H2 satisfy (H0)Ω, (H1), (H2).

In section 2.6 we have shown how the Pontrjagin product can be expressed in a Morse theo-
retical way. In other words, we have constructed a homomorphism

M# : Mh(SL1
, g1)⊗Mj(SL2

, g2) −→Mh+j(SL1#L2
, g)

such that the upper square in the following diagram commutes

Hh(Ω(M, q0))⊗Hj(Ω(M, q0)) //#

��
∼=

Hh+j(Ω(M, q0))

��
∼=

HMh(SΩ
L1
, g1)⊗HMj(SΩ

L2
, g2) //

HM#

��
HΦΩ

L1
⊗HΦΩ

L2

HMh+j(SΩ
L1#L2

, g)

��
HΦΩ

L1#L2

HFΩ
h (H1, J)⊗HFΩ

j (H2, J) //HΥΩ

HFΩ
h+j(H1#H2, J)

The aim of this section is to show that also the lower square commutes. Actually, we will show
more, namely that the diagram

(
M(SΩ

L1
, g1)⊗M(SΩ

L2
, g2)

)
k

//
M#

��
ΦΩ

L1
⊗ΦΩ

L2

Mk(SΩ
L1#L2

, g)

��
ΦΩ

L1#L2

(
FΩ(H1, J)⊗ FΩ(H2, J)

)
k

//ΥΩ

FΩ
k (H1#H2, J)

is chain-homotopy commutative. Instead than constructing a direct homotopy between ΦΩ
L1#L2

◦
M# and ΥΩ ◦ΦΩ

L1
⊗ΦΩ

L2
, we shall prove that both chain maps are homotopic to a third one, that

we name KΩ, see Figure 4.
The definition of KΩ is based on the following space of solutions of the Floer equation for the

Hamiltonian H defined in (40): given γ1 ∈ PΩ(L1), γ2 ∈ PΩ(L2), and x ∈ PΩ(H1#H2), let
M Ω

K(γ1, γ2;x) be the space of solutions of the Floer equation

∂J,H(u) = 0,

40



α

≃

ΥΩ ◦ ΦΩ
L1
⊗ ΦΩ

L2

KΩ

≃

α

ΦΩ
L1#L2

◦M#

Figure 4: The homotopy through KΩ.

with boundary conditions

π ◦ u(s,−1) = π ◦ u(s, 1) = q0, ∀s ≥ 0,

π ◦ u(0, · − 1) ∈ Wu(γ1,−gradSΩ
L1

), π ◦ u(0, ·) ∈Wu(γ2,−gradSΩ
L2

),

and the asymptotic behavior

lim
s→+∞

u(s, 2t− 1) = x(t),

uniformly in t ∈ [0, 1]. Theorem 3.2 in [AS06b] (or the arguments of section 5.10) implies that
for a generic choice of g1, g2, H1, and H2, M Ω

K(γ1, γ2;x) - if non-empty - is a smooth manifold of
dimension

dimM
Ω
K(γ1, γ2;x) = mΩ(γ1;L1) +mΩ(γ2;L2)− µΩ(x;H1#H2).

These manifolds carry coherent orientations. The energy identity is now
∫

]0,+∞[×]−1,1[

|∂su(s, t)|2 ds dt = AH1
(x1) + AH2

(x2)− AH1#H2
(x),

where x1(t) = u(0, t − 1) and x2(t) = u(0, t). Since π ◦ x1 is in the unstable manifold of γ1 and
π ◦ x2 is in the unstable manifold of γ2, the inequality (49) implies thatAH1

(x1) ≤ SL1
(γ1), AH2

(x2) ≤ SL2
(γ2),

so the elements u of M Ω
K(γ1, γ2;x) satisfy the energy estimate

∫

]0,+∞[×]−1,1[

|∂su(s, t)|2 ds dt ≤ SL1
(γ1) + SL2

(γ2)− AH1#H2
(x). (52)

When mΩ(γ1;L1) + mΩ(γ2;L2) = µΩ(x;H1 ⊕ H2), the space M Ω
K(γ1, γ2;x) is a compact zero-

dimensional oriented manifold. If nΩ
K(γ1, γ2;x) is the algebraic sum of its points, we can define

the homomorphism

KΩ :
(
M(SΩ

L1
, g1)⊗M(SΩ

L2
, g2)

)
k
→ FΩ

k (H1#H2, J), γ1 ⊗ γ2 7→
∑

x∈P
Ω(H1#H2)

µΩ(x)=k

nΩ
K(γ1, γ2;x)x.
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A standard gluing argument shows that KΩ is a chain map.
It is easy to construct a homotopy P#

K between ΦΩ
L1#L2

◦M# and KΩ. In fact, it is enough
to consider the space of pairs (α, u), where α is a positive number and u is a solution of the
Floer equation on [0,+∞[×[−1, 1] converging to x for s → +∞, and such that the curve t 7→
π ◦ u(0, 2t− 1) belongs to the evolution at time α of

Γ
(
Wu(γ1;−grad g1

SΩ
L1

)×Wu(γ2;−grad g2
SΩ

L2
)
)
,

by flow of −gradSΩ
L1#L2

. Here Γ is the concatenation map defined in section 2.6. More precisely,
set

M
#
K (γ1, γ2;x) :=

{
(α, u)

∣∣∣α > 0, u ∈ C∞([0,+∞[×[−1, 1], T ∗M) solves (32),

π ◦ u(s,−1) = π ◦ u(s, 1) = q0 ∀s ≥ 0, lim
s→+∞

u(s, 2t− 1) = x(t), uniformly in t ∈ [0, 1],

π ◦ u(0, 2 · −1) ∈ φΩ
α

(
Γ(Wu(γ1,−gradSΩ

L1
)×Wu(γ2,−gradSΩ

L2
))

)}
,

where φΩ
s denotes the flow of−gradSΩ

L1#L2
. For a generic choice of g1, g2, H1, andH2, M

#
K (γ1, γ2;x)

- if non-empty - is a smooth manifold of dimension

dimM
#
K (γ1, γ2;x) = mΩ(γ1;L1) +mΩ(γ2;L2)− µΩ(x;H1#H2) + 1,

and these manifolds carry coherent orientations. The energy estimate is again (52). By counting
the elements of the zero-dimensional manifolds, we obtain a homomorphism

P#
K :

(
M(SΩ

L1
, g1)⊗M(SΩ

L2
, g2)

)
k
→ FΩ

k+1(H1#H2, J).

A standard gluing argument shows that P#
K is a chain homotopy between ΦΩ

L1#L2
◦M# and KΩ.

The homotopy PK
Υ between KΩ and ΥΩ ◦ (ΦΩ

L1
⊗ ΦΩ

L2
) is defined by counting solutions of the

Floer equation on a one-parameter family of Riemann surfaces ΣK
Υ (α), obtained by removing a

point from the closed disk. More precisely, given α > 0 we define ΣK
Υ (α) as the quotient of the

disjoint union [0,+∞[×[−1, 0]⊔ [0,+∞[×[0, 1] under the identification

(s, 0−) ∼ (s, 0+) for s ≥ α.

This object is a Riemann surface with boundary: its complex structure at each interior point and
at each boundary point other than (α, 0) is induced by the inclusion, whereas the holomorphic
coordinate at (α, 0) is given by the map

{ζ ∈ C | Re ζ ≥ 0, |ζ| < ǫ} → ΣK
Υ (α), ζ 7→ α+ ζ2,

where the positive number ǫ is smaller than 1 and
√
α. Given γ1 ∈ P(L1), γ2 ∈ P(L2), and

x ∈ P(H1#H2), we consider the space of pairs (α, u) where α is a positive number, and u(s, t)
is a solution of the Floer equation on ΣK

Υ (α) which converges to x for s → +∞, lies above some
element in the unstable manifold of γ1 for s = 0 and −1 ≤ t ≤ 0, lies above some element in
the unstable manifold of γ2 for s = 0 and 0 ≤ t ≤ 1, and lies above q0 at all the other boundary
points. More precisely, M K

Υ (γ1, γ2;x) is the set of pairs (α, u) where α is a positive number and
u ∈ C∞(ΣK

Υ (α), T ∗M) is a solution of

∂J,H(u) = 0,

satisfying the boundary conditions

π ◦ u(s,−1) = π ◦ u(s, 1) = q0, ∀s ≥ 0,

π ◦ u(s, 0−) = π ◦ u(s, 0+) = q0, ∀s ∈ [0, α],

π ◦ u(0, · − 1) ∈ Wu(γ1,−gradSΩ
L1

), π ◦ u(0, ·) ∈Wu(γ2,−gradSΩ
L2

),
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and the asymptotic condition

lim
s→+∞

u(s, 2t− 1) = x(t),

uniformly in t ∈ [0, 1]. The following result is proved in section 5.10.

4.3. Proposition. For a generic choice of H1, H2, g1 and g2, M K
Υ (γ1, γ2;x) - if non-empty -

is a smooth manifold of dimension

dimM
K
Υ (γ1, γ2;x) = mΩ(γ1;L1) +mΩ(γ2;L2)− µΩ(x;H1#H2) + 1.

These manifolds carry coherent orientations.

As before, the elements (α, u) of M K
Υ (γ1, γ2;x) satisfy the energy estimate

∫R×]−1,1[\{0}×[0,α]

|∂su(s, t)|2 ds dt ≤ SL1
(γ1) + SL2

(γ2)− AH1#H2
(x),

which allows to prove compactness. By counting the zero-dimensional components, we define a
homomorphism

PK
Υ :

(
M(SΩ

L1
, g1)⊗M(SΩ

L2
, g2)

)
k
→ FΩ

k+1(H1#H2, J).

The conclusion follows from the following:

4.4. Proposition. The homomorphism PK
Υ is a chain homotopy between KΩ and ΥΩ ◦ (ΦΩ

L1
⊗

ΦΩ
L2

).

The proof of the above proposition is contained in section 6.4. It is again a compactness-
cobordism argument. The analytical tool is the implicit function theorem together with a suitable
family of conformal transformations of the half-strip.

4.3 The Λ ring homomorphism

Let L1, L2 ∈ C∞(T × TM) be two Lagrangians such that L1(0, ·) = L2(0, ·) with all the time
derivatives, and such that L1 and L2 satisfy (L0)Λ, (L1), (L2), and (25), or equivalently (26).
Assume also that the Lagrangian L1#L2 defined by (23) satisfies (L0)Λ. Let H1 and H2 be the
Fenchel transforms of L1 and L2, so that H1#H2 is the Fenchel transform of L1#L2, and the
three Hamiltonians H1, H2, and H1#H2 satisfy (H0)Λ, (H1), (H2).

The loop product is the compositions of two non-trivial homomorphism: the first one is the
exterior homology product followed by the Umkehr map, the second one is the homomorphism
induced by concatenation. In section 2.7 we have shown how these two homomorphisms can be
expressed in a Morse theoretical way. In other words, we have constructed homomorphisms

M! : Mh(SΛ
L1
, g1)⊗Mj(SΛ

L2
, g2) −→Mh+j−n(SΘ

L1⊕L2
, gΘ),

MΓ : Mj(SΘ
L1⊕L2

, gΘ)→Mj(SΛ
L1#L2

, gΛ)

such that the upper squares in the following diagram commute

Hh(Λ(M))⊗Hj(Λ(M)) //e!◦×

��
∼=

Hh+j−n(Θ(M))

��
∼=

//Γ∗
Hh+j−n(Λ(M))

��
∼=

HMh(SΛ
L1

,g1)⊗HMj(SΛ
L2

,g2) //HM!

��
HΦΛ

L1
⊗HΦΛ

L2

HMh+j−n(SΘ
L1⊕L2

,gΘ)

��
HΦΘ

L1⊕L2

//HMΓ
HMh+j−n(S Λ

L1#L2
,gΛ)

��
HΦΛ

L1#L2

HFΛ
h (H1,J)⊗HFΛ

j (H2,J) //HE
HFΘ

h+j−n(H1⊕H2,J) //HG
HFΛ

h+j−n(H1#H2,J)
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In the following two sections we will show that also the lower two squares commute. By Theorem
3.11, the composition of the two lower arrows is the pair-of-pants product. We conclude that the
pair-of-pants product corresponds to the loop product.

Again, the commutativity of the two lower squares will be seen at the chain level, by proving
that the two squares below

(
M(SΛ

L1
,g1)⊗M(SΛ

L2
,g2)

)
k

//M!

��
ΦΛ

L1
⊗ΦΛ

L2

Mk−n(SΘ
L1⊕L2

,gΘ)

��

ΦΘ
L1⊕L2

//MΓ
Mk−n(S Λ

L1#L2
,gΛ)

��

ΦΛ
L1#L2

(
FΛ(H1,J)⊗HFΛ(H2,J)

)
k

//E
FΘ

k−n(H1⊕H2,J) //G
FΛ

k−n(H1#H2,J)

(53)

commute up to chain homotopies.

4.4 The left-hand square is homotopy commutative

In this section we show that the chain maps ΦΘ
L1⊕L2

◦M! and E ◦ (ΦΛ
L1
⊗ΦΛ

L2
) are homotopic. We

start by constructing a one-parameter family of chain maps

KΛ
α :

(
M(SΛ

L1
, g1)⊗M(SΛ

L2
, g2)

)
∗ −→ FΘ

∗−n(H1 ⊕H2, J1 ⊕ J2),

where α is a non-negative number. The definition of KΛ
α is based on the solution spaces of the

Floer equation on the Riemann surface ΣK
α consisting of a half-cylinder with a slit. More precisely,

when α is positive ΣK
α is the quotient of [0,+∞[×[0, 1] modulo the identifications

(s, 0) ∼ (s, 1) ∀s ∈ [0, α].

with the holomorphic coordinate at (α, 0) ∼ (α, 1) obtained from (43) by a translation by α.
When α = 0, ΣK

α = ΣK
0 is just the half-strip [0,+∞[×[0, 1]. Fix γ1 ∈ PΛ(L1), γ2 ∈ PΛ(L2),

and x ∈ PΘ(H1 ⊕H2). Let M K
α (γ1, γ2;x) be the space of solutions u ∈ C∞(ΣK

α , T
∗M2) of the

equation

∂H1⊕H2,J(u) = 0,

satisfying the boundary conditions

π ◦ u(0, ·) ∈Wu(γ1;−grad g1
SΛ

L1
)×Wu(γ2;−grad g2

SΛ
L2

), (54)

(u(s, 0),−u(s, 1)) ∈ N∗∆Θ
M , ∀s ≥ α, (55)

lim
s→+∞

u(s, ·) = x. (56)

Let us fix some α0 ≥ 0. The following result is proved in section 5.10:

4.5. Proposition. For a generic choice of g1, g2, H1, and H2, M K
α0

(γ1, γ2;x) - if non-empty -
is a smooth manifold of dimension

dimM
K
α0

(γ1, γ2;x) = mΛ(γ1;L1) +mΛ(γ2;L2)− µΘ(x)− n.

These manifolds carry coherent orientations.

Compactness is again a consequence of the energy estimate
∫

]0,+∞[×]0,1[

|∂su(s, t)|2 dsdt ≤ SL1
(γ1) + SL2

(γ2)− AH1⊕H2
(x), (57)

implied by (49). When mΛ(γ1;L1) + mΛ(γ2;L2) = k and µΘ(x;H1 ⊕ H2) = k − n, the space
M K

α0
(γ1, γ2;x) is a compact zero-dimensional oriented manifold. The usual counting process defines

the homomorphism

KΛ
α0

:
(
M(SΛ

L1
, g1)⊗M(SΛ

L2
, g2)

)
k
→ FΘ

k−n(H1 ⊕H2, J),
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and a standard gluing argument shows that KΛ
α0

is a chain map.
Now assume α0 > 0. By standard compactness and gluing arguments, the family of solutions

M K
α for α varying in the interval [α0,+∞[ allows to define a chain homotopy between KΛ

α0
and

the composition E ◦ (ΦΛ
L1
⊗ ΦΛ

L2
).

Similarly, a compactness and cobordism argument on the Morse side shows that KΛ
0 is chain

homotopic to the composition ΦΘ
L1⊕L2

◦M!. See Figure 5.

α

Θ

E ◦ (ΦΛ
L1
⊗ ΦΛ

L2
) ≃ KΛ

α

!≃ KΛ
0 ≃ ΦΘ

L1⊕L2
◦M!

Θ

Figure 5: The homotopy through KΛ
α and KΛ

0 .

There remains to prove that KΛ
α0

is homotopic to KΛ
0 . Constructing a homotopy between these

chain maps by using the spaces of solutions M K
α for α ∈ [0, α0] presents analytical difficulties: if

we are given a solution u of the limiting problem M K
0 , the existence of a (unique) one-parameter

family of solutions ”converging” to u is problematic, because we do not expect u to be C0 close
to the one-parameter family of solutions, due to the jump in the boundary conditions.

Therefore, we use a detour, starting from the following algebraic observation. If two chain
maps ϕ, ψ : C → C′ are homotopic, so are their tensor products ϕ⊗ψ and ψ⊗ϕ. The converse is
obviously not true, as the example of ϕ = 0 and ψ non-contractible shows. However, it becomes
true under suitable conditions on ϕ and ψ. Denote by (Z, 0) the graded group which vanishes at
every degree, except for degree zero where it coincides with Z. We see (Z, 0) as a chain complex
with the trivial boundary operator. We have the following:

4.6. Lemma. Let (C, ∂) and (C′, ∂) be chain complexes, bounded from below. Let ϕ, ψ : C → C′ be
chain maps. Assume that there is an element ǫ ∈ C0 with ∂ǫ = 0 and a chain map δ : C′ → (Z, 0)
such that

δ(ϕ(ǫ)) = δ(ψ(ǫ)) = 1.

If ϕ⊗ ψ is homotopic to ψ ⊗ ϕ then ϕ is homotopic to ψ

Proof. Let π be the chain map

π : C′ ⊗ C′ → C′ ⊗ (Z, 0) ∼= C′, π = id⊗ δ.

Let H : C ⊗ C → C′ ⊗ C′ be a chain homotopy between ϕ⊗ ψ and ψ ⊗ ϕ, that is

ϕ⊗ ψ − ψ ⊗ ϕ = ∂H +H∂.

If we define the homomorphism h : C → C′ by

h(a) := π ◦H(a⊗ ǫ), ∀a ∈ C,

we have

∂h(a) + h∂a = ∂π(H(a⊗ ǫ)) + π(H∂(a⊗ ǫ)) = π(∂H(a⊗ ǫ) +H∂(a⊗ ǫ))
= π(ϕ(a)⊗ ψ(ǫ)− ψ(a)⊗ ϕ(ǫ)) = ϕ(a)⊗ δ(ψ(ǫ))− ψ(a)⊗ δ(ϕ(ǫ)) = ϕ(a)− ψ(a).

Hence h is the required chain homotopy.
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We shall apply the above lemma to the complexes

Ck =
(
M(SΛ

L1
, g1)⊗M(SΛ

L2
, g2)

)
k+n

, C′
k = FΘ

k (H1 ⊕H2, J1 ⊕ J2),

and to the chain maps KΛ
0 and KΛ

α0
. The tensor products KΛ

0 ⊗KΛ
α0

and KΛ
α0
⊗KΛ

0 are represented
by the coupling - in two different orders - of the corresponding elliptic boundary value problems.

4.7. Proposition. The chain maps KΛ
0 ⊗KΛ

α0
and KΛ

α0
⊗KΛ

0 are homotopic.

Constructing a homotopy between the coupled problems is easier than dealing with the original
ones: we can keep α0 fixed and rotate the boundary condition on the initial part of the half-strip.
This argument is similar to an alternative way, due to Hofer, to prove the gluing statements in
standard Floer homology. Details of the proof of Proposition 4.7 are contained in section 6.5
below.

Here we just construct the cycle ǫ and the chain map δ required in Lemma 4.6. Since changing
the LagrangiansL1 and L2 (and the corresponding Hamiltonian) changes the chain maps appearing
in diagram (53) by a chain homotopy, we are free to choose the Lagrangians so to make the
construction easier.

We consider a Lagrangian of the form

L1(t, q, v) :=
1

2
〈v, v〉 − V1(t, q),

where the potential V1 ∈ C∞(T×M) satisfies

V1(t, q) < V1(t, q0) = 0, ∀t ∈ T, ∀q ∈M \ {q0}, (58)

HessV1(t, q0) < 0, ∀t ∈ T. (59)

The corresponding Euler-Lagrange equation is

∇tγ
′(t) = −gradV1(t, γ(t)), (60)

where ∇t denotes the covariant derivative along the curve γ. By (58) and (59), the constant curve
q0 is a non-degenerate minimizer for the action functional SΛ

L1
on the free loop space (actually, it

is the unique global minimizer), so

mΛ(q0, L1) = 0.

Notice also that the equilibrium point q0 is hyperbolic and unstable. We claim that there exists
ω > 0 such that

every solution γ of (60) such that γ(0) = γ(1), other than γ(t) ≡ q0, satisfies SL1
(γ) ≥ ω. (61)

Assuming the contrary, there exists a sequence (γh) of solutions of (60) with γh(0) = γh(1) and
0 < SL1

(γh) → 0. The space of solutions of (60) with action bounded from above is compact -
for istance in C∞([0, 1],M) - so a subsequence of (γh) converges to a solution of (60) with zero
action. Since q0 is the only solution with zero action, we find non-constant solutions γ of (60) with
γ(0) = γ(1) in any C∞-neighborhood of the constant curve q0. But this is impossible: the fact
that the local stable and unstable manifolds of the hyperbolic equilibrium point (q0, 0) ∈ T ∗M are
transverse to the vertical foliation

{
T ∗

q M | q ∈M
}

easily implies that if (xh) is a sequence in the
phase space T ∗M tending to (q0, 0) such that the Hamiltonian orbit of xh at time Th is on the
leaf T ∗

π(xh)M containing xh, then the sequence (Th) must diverge.

A generic choice of the potential V1 satisfying (58) and (59) produces a Lagrangian L1 whose
associated action functional is Morse on Λ1(M).

Next we consider an autonomous Lagrangian of the form

L̃2(q, v) :=
1

2
〈v, v〉 − V2(q),

where

46



(i) V2 is a smooth Morse function on M ;

(ii) 0 = V2(q0) < V2(q) < ω/2 for every q ∈M \ {q0};

(iii) V2 has no local minimizers other than q0;

(iv) ‖V2‖C2(M) < ǫ.

Here ǫ is a small positive constant, whose size is to be specified. The critical points of V2 are
equilibrium solutions of the Euler-Lagrange equation associated to L̃2. The second differential of
the action at such an equilibrium solution q is

d2SΛ
L̃2

(q)[ξ, ξ] =

∫ 1

0

(
〈ξ′(t), ξ′(t)〉 − 〈HessV2(q) ξ(t), ξ(t)〉

)
dt.

If 0 < ǫ < 2π, (iv) implies that q is non-degenerate critical point of SL̃2
with Morse index

mΛ(q, L̃2) = n−m(q, V2),

a maximal negative subspace being the space of constant vector fields at q taking values into the
positive eigenspace of HessV2(q).

The infimum of the energy

1

2

∫ 1

0

|γ′(t)|2 dt

over all non-constant closed geodesics is positive. It follows that if ǫ in (iv) is small enough,

inf
{SL̃2

(γ) | γ ∈P
Λ(L̃2), γ non-constant

}
> 0. (62)

Since the Lagrangian L̃2 is autonomous, non-constant periodic orbits cannot be non-degenerate
critical points of SL̃2

. ItW ∈ C∞(T×M) is a generic C2-small time-dependent potential satisfying:

(v) 0 ≤W (t, q) < ω/2 for every (t, q) ∈ T×M ;

(vi) W (t, q) = 0, gradW (t, q) = 0, HessW (t, q) = 0 for every t ∈ T and every critical point q of
V1;

then the action functional associated to the Lagrangian

L2(t, q, v) :=
1

2
〈v, v〉 − V2(q)−W (t, q),

is Morse on Λ1(M). By (vi), the critical points of V1 are still equilibrium solutions of the Euler-
Lagrange equation

∇tγ
′(t) = −grad

(
V2(t, γ(t)) +W (t, γ(t)

)
, (63)

and

mΛ(q, L2) = n−m(q, V2) ∀q ∈ critV2. (64)

Moreover, (62) implies that if the C2 norm of W is small enough, then

inf
{SL2

(γ) | γ ∈P
Λ(L2), γ non-constant

}
> 0. (65)

Up to a generic perturbation of the potential W , we may also assume that the equilibrium solution
q0 is the only 1-periodic solution of (63) with γ(0) = γ(1) = q0 (generically, the set of periodic
orbits is discrete, and so is the set of their initial points).
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Since the inclusion c : M →֒ Λ1(M) induces an injective homomorphism between the singular
homology groups, the image c∗([M ]) of the fundamental class of the oriented manifold M does not
vanish in Λ1(M). By (ii) and (v), the action SL2

of every constant curve in M does not exceed 0.
So we can regard c∗([M ]) as a non vanishing element of the homology of the sublevel {SL2

≤ 0}.
The singular homology of {SL2

≤ 0} is isomorphic to the homology of the subcomplex of the
Morse complex M∗(SΛ

L2
, g2) generated by the critical points of SΛ

L2
whose action does not exceed

0. By (65), these critical points are the equilibrium solutions q, with q ∈ critV2. By (ii), (iii), and
(64), the only critical point of index n in this sublevel is q0. It follows that the Morse homological
counterpart of c∗([M ]) is ±q0. In particular, q0 ∈Mn(SL2

) is a cycle. Since SΛ
L2

(q0) = 0,SΛ
L2

(γ) ≤ 0, ∀γ ∈Wu(q0,−gradSΛ
L2

). (66)

We now regard the pair (q0, q0) as an element of PΘ(L1 ⊕ L2). We claim that if ǫ is small
enough, (iv) implies that (q0, q0) is a non-degenerate minimizer for SL1⊕L2

on the space of figure-8
loops Θ1(M). The second differential of SΘ

L1⊕L2
at (q0, q0) is the quadratic form

d2SΘ
L1⊕L2

(q0, q0)[(ξ1, ξ2)]
2 =

∫ 1

0

(
〈ξ′1, ξ′1〉 − 〈HessV1(t, q0) ξ1, ξ1〉+ 〈ξ′2, ξ′2〉 − 〈HessV2(q0) ξ2, ξ2〉

)
dt,

on the space of curves (ξ1, ξ2) in the Sobolev space W 1,2(]0, 1[, Tq0
M × Tq0

M) satisfying the
boundary conditions

ξ1(0) = ξ1(1) = ξ2(0) = ξ2(1).

By (59) we can find α > 0 such that that

HessV1(t, q0) ≤ −αI.

By comparison, it is enough to show that the quadratic form

Qǫ(u1, u2) :=

∫ 1

0

(u′1(t)
2 + αu1(t)

2 + u′2(t)
2 − ǫu2(t)

2) dt

is coercive on the space

{
(u1, u2) ∈W 1,2(]0, 1[,R2) | u1(0) = u1(1) = u2(0) = u2(1)

}
.

When ǫ = 0, the quadratic form Q0 is non-negative. An isotropic element (u1, u2) for Q0 would
solve the boundary value problem

−u′′1(t) + αu1(t) = 0, (67)

−u′′2(t) = 0, (68)

u1(0) = u1(1) = u2(0) = u2(1), (69)

u′1(1)− u′1(0) = u′2(0)− u′2(1). (70)

By (68) u2 is constant, so by (69) and (70) u1 is a periodic solution of (67). Since α is positive, u1

is zero and by (69) so is u2. Since the bounded self-adjoint operator associated to Q0 is Fredholm,
we deduce that Q0 is coercive. By continuity, Qǫ remains coercive for ǫ small. This proves our
claim.

Let H1 and H2 be the Hamiltonians which are Fenchel dual to L1 and L2. In order to sim-
plify the notation, let us denote by (q0, q0) also the constant curve in T ∗M2 identically equal to
((q0, 0), (q0, 0)). Then (q0, q0) is a non-degenerate element of PΘ(H1 ⊕ H2), and it has Maslov
index

µΘ(q0, q0) = 0.
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Let x be an element in PΘ(H1⊕H2), and let γ be its projection onto M×M . By the definition
of the Euler-Lagrange problem for figure-8 loops (see equation (19)), γ1 is a solution of (60), γ2 is
a solution of (63), and

γ1(0) = γ1(1) = γ2(0) = γ2(1), γ′2(1)− γ′2(0) = γ′1(0)− γ′1(1). (71)

If γ1 is the constant orbit q0, then (71) implies that γ2 is a 1-periodic solution of (63) such that
γ2(0) = γ2(1) = q0, and we have assumed the only curve with these properties is γ2 ≡ q0. If γ1 is
not the constant orbit q0, (61) implies thatSL1

(γ1) ≥ ω.

By (ii) and (v), the infimum of SL2
is larger than −ω, so we deduce thatAH1⊕H2

(x) = AH1
(x1) + AH2

(x2) = SL1
(γ1) + SL2

(γ2) > 0, ∀x ∈P
Θ(H1 ⊕H2) \ {(q0, q0)}.

(72)

Now we choose ǫ in the n-th degree component of the chain complex M(SΛ
L1
, g1)⊗M(SΛ

L2
, g2)

to be the cycle

ǫ = q0 ⊗ q0 ∈M0(SΛ
L1

)⊗Mn(SΛ
L2

).

We choose the chain map

δ : FΘ(H1 ⊕H2, J)→ (Z, 0)

to be the augmentation, that is the homomorphism mapping every 0-degree generator x ∈PΘ
0 (H1⊕

H2) into 1. We must show that

δ(KΛ
0 (q0 ⊗ q0)) = δ(KΛ

α0
(q0 ⊗ q0)) = 1. (73)

Let x ∈PΘ(H1 ⊕H2), and let u be an element of either

M
K
0 (q0, q0;x) or M

K
α0

(q0, q0;x).

By the boundary condition (54), the curve u(0, ·) projects onto a closed curve in M ×M whose
first component is the constant q0 and whose second component is in the unstable manifold of q0
with respect to the negative gradient flow of SΛ

L2
. By the fundamental inequality (49) between

the Hamiltonian and the Lagrangian action and by (66) we haveAH1⊕H2
(x) ≤ AH1⊕H2

(u(0, ·)) ≤ SL1⊕L2
(π ◦ u(0, ·)) = SΛ

L1
(q0) + SΛ

L2
(π ◦ u2(0, ·)) ≤ 0.

By (72), x must be the constant curve (q0, q0), and all the inequalities in the above estimate are
equalities. It follows that u is constant, u(s, t) ≡ (q0, q0).

Therefore, the spaces M K
0 (q0, q0;x) and M K

α0
(q0, q0;x) are non-empty if and only if x = (q0, q0),

and in the latter situation they consist of the unique constant solution u ≡ (q0, q0). Automatic
transversality holds for such solutions (see [AS06b, Proposition 3.7]), so such a picture survives
to the generic perturbations which are necessary to achieve a Morse-Smale situation. Taking also
orientations into account, it follows that

KΛ
0 (q0 ⊗ q0) = (q0, q0), KΛ

α (q0 ⊗ q0) = (q0, q0).

In particular, (73) holds.
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4.5 The right-hand square is homotopy commutative

In this section we prove that the chain maps ΦΛ
L1#L2

◦MΓ and G ◦ΦΘ
L1⊕L2

are both homotopic to

a third chain map, named KΘ. This fact implies that the right-hand square in the diagram (53)
commutes up to chain homotopy.

The chain map KΘ is defined by using the following spaces of solutions of the Floer equation
on the half-cylinder for the Hamiltonian H1#H2: given γ ∈PΘ(L1 ⊕L2) and x ∈PΛ(H1#H2),
set

M
Θ
K (γ;x) :=

{
u ∈ C∞([0,+∞[×T, T ∗M)

∣∣∣ ∂J,H1#H2
(u) = 0,

π ◦ u(0, ·) ∈ Γ
(
Wu(γ;−grad gΘSΘ

L1⊕L2
)
)
, lim

s→+∞
u(s, ·) = x uniformly in t

}
.

By Theorem 3.2 in [AS06b] (or by the arguments of section 5.10), the space M Θ
K (γ;x) is a smooth

manifold of dimension

dimM
Θ
K (γ;x) = mΘ(γ)− µΛ(x),

for a generic choice of gΘ, H1, and H2. These manifolds carry coherent orientations.
Compactness follows from the energy estimate

∫

]0,+∞[×T |∂su(s, t)|2 dsdt ≤ SL1⊕L2
(γ)− AH1#H2

(x),

implied by (49). Counting the elements of the zero-dimensional spaces, we define a homomorphism

KΘ : Mj(SΘ
L1⊕L2

, gΘ)→ FΛ
j (H1#H2, J),

which is shown to be a chain map.
It is easy to construct a chain homotopy PΓ

K between ΦΛ
L1#L2

◦MΓ and KΘ by considering the
space

M
Γ
K(γ;x) :=

{
(α, u) ∈]0,+∞[×C∞([0,+∞[×T, T ∗M)

∣∣∣ ∂J,H1#H2
(u) = 0,

φΛ
−α(π ◦ u(0, ·)) ∈ Γ

(
Wu(γ;−grad gΘSΘ

L1⊕L2
)
)
, lim

s→+∞
u(s, ·) = x uniformly in t

}
.

where φΛ
s denotes the flow of −gradSΛ

L1#L2
on Λ1(M). As before, we find that generically

M Γ
K(γ1, γ2;x) is a manifold of dimension

dimM
Γ
K(γ;x) = mΛ(γ)− µΘ(x) + 1.

Compactness holds, so an algebraic count of the zero-dimensional spaces produces the homomor-
phism

PΓ
K : Mj(SΘ

L1⊕L2
, gΘ)→ FΛ

j+1(H1#H2, J).

A standard gluing argument shows that PΓ
K is the required homotopy.

Finally, the construction of the chain homotopy PK
G between KΘ and G ◦ ΦΘ

L1⊕L2
is based

on the one-parameter family of Riemann surfaces ΣK
G (α), α > 0, defined as the quotient of the

disjoint union [0,+∞[×[−1, 0]⊔ [0,+∞[×[0, 1] under the identifications

(s, 0−) ∼ (s, 0+) and (s,−1) ∼ (s, 1) for s ≥ α.

This object is a Riemann surface with boundary, the holomorphic structure at (α, 0) being given
by the map

{ζ ∈ C | Re ζ ≥ 0, |ζ| < ǫ} → ΣK
G (α), ζ 7→ α+ ζ2,
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and the holomorphic structure at (α,−1) ∼ (α, 1) being given by the map

{ζ ∈ C | Re ζ ≥ 0, |ζ| < ǫ} → ΣK
G (α), ζ 7→

{
α− i+ ζ2 if Im ζ ≥ 0,
α+ i+ ζ2 if Im ζ ≤ 0.

Here ǫ is a positive number smaller than 1 and
√
α.

Given γ ∈PΘ(L1⊕L2) and x ∈PΛ(H1#H2), we consider the space M K
G (γ, x) of pairs (α, u)

where α is a positive number and u ∈ C∞(ΣK
G (α), T ∗M) solves the equation

∂J,H1#H2
(u) = 0,

satisfies the boundary conditions

{
π ◦ u(s,−1) = π ◦ u(s, 0−) = π ◦ u(s, 0+) = π ◦ u(s, 1),
u(s, 0−)− u(s,−1) + u(s, 1)− u(s, 0+) = 0,

∀s ∈ [0, α],

(π ◦ u(0, · − 1), π ◦ u(0, ·)) ∈ Wu(γ,−gradSΘ
L1⊕L2

),

and the asymptotic condition

lim
s→+∞

u(s, 2t− 1) = x(t),

uniformly in t ∈ [0, 1]. The following result is proved in section 5.10.

4.8. Proposition. For a generic choice of J1, J2, and gΘ, M K
G (γ, x) - if non-empty - is a smooth

manifold of dimension

dim M
K
G (γ, x) = mΘ(γ;L1 ⊕ L2)− µΛ(x;H1#H2) + 1.

The projection (α, u) 7→ α is smooth on M K
G (γ, x). These manifolds carry coherent orientations.

The elements (α, u) of M K
G (γ, x) satisfy the energy estimate

∫R×]−1,1[\{0}×[0,α]

|∂su(s, t)|2 ds dt ≤ SL1⊕L2
(γ)− AH1#H2

(x).

This provides us with the compactness which is necessary to define the homomorphism

PK
G : Mj(SΘ

L1⊕L2
, gΘ) −→ FΛ

j+1(H1#H2, J),

by the usual counting procedure applied to the spaces M K
G . A standard gluing argument shows

that PK
G is a chain homotopy between KΘ and G ◦ ΦΘ

L1⊕L2
.

4.6 Comparison between C, EV, I! and c, ev, i!

In section 2.5 we have shown that the two upper squares in the diagram

Hj(M) //c∗

��

∼=

Hj(Λ(M)) //ev∗

��

∼=

Hj(M)

��

∼=

HjM(f, gM ) //HMc

''HC PPPPPPPPPPPP
HjM(SΛ

L, g
Λ)

��
HΦΛ

L

//HMev
HjM(f, gM )

HjF
Λ(H, J)

77

HEv

nnnnnnnnnnnn

51



commute. Our first aim in this section is to show that the lower two triangles commute. We
actually work at the chain level, showing that the triangles

Mj(f, gM ) //Mc

&&C NNNNNNNNNNN
Mj(SΛ

L, g
Λ)

��
ΦΛ

L

//Mev
Mj(f, gM )

FΛ
j (H, J)

88

Ev

ppppppppppp

commute up to chain homotopies.
Indeed, a homotopy PC between C and ΦΛ

L ◦Mc is defined by the following spaces: given
x ∈ crit(f) and y ∈PΛ(H), set

M
C
P (x, y) :=

{
(α, u) ∈]0,+∞[×C∞([0,+∞[×T, T ∗M)

∣∣∣ ∂J,H(u) = 0,

φΛ
−α(π ◦ u(0, ·)) ≡ q ∈Wu(x)

}
,

where φΛ is the flow of −gradSΛ
L on Λ1(M).

Similarly, the definition of the homotopy PEv between Ev ◦ΦΛ
L and Mev is obtained from the

composition of 3 homotopies based on the following spaces: Given γ ∈ PΛ(L) and x ∈ crit(f),
set

M
Ev
P1

(γ, x) :=
{

(α, u)
∣∣∣α ∈ [1,+∞[, u ∈ C∞([0, α]× T, T ∗M)

solves ∂J,H(u) = 0, u(α, t) ∈ OM ∀t ∈ T,
u(α, 0) ∈W s(x),

π ◦ u(0, ·) ∈Wu(γ;−gradSΛ
L)

}
,

M
Ev
P2

(γ, x) :=
{

(α, u)
∣∣∣α ∈ [0, 1], u ∈ C∞([0, 1]× T, T ∗M)

solves ∂J,H(u) = 0, u(1, t) ∈ OM ∀t ∈ T,
u(α, 0) ∈W s(x),

π ◦ u(0, ·) ∈Wu(γ;−gradSΛ
L)

}
, and

M
Ev
P3

(γ, x) :=
{

(α, u)
∣∣∣α ∈]0, 1], u ∈ C∞([0, α]× T, T ∗M)

solves ∂J,H(u) = 0, u(α, t) ∈ OM ∀t ∈ T,
u(0, 0) ∈W s(x),

π ◦ u(0, ·) ∈Wu(γ;−gradSΛ
L)

}
.

Moreover, recalling the following space on which Mev is based,

MMev(γ, x) = Wu(γ;−gradSΛ
L) ∩ ev−1

(
W s(x;−grad f)

)
,

we make the following observation.

4.9. Proposition. Given the finite set MMev(γ, x), there exists αo > 0 such that for each c ∈
MMev(γ, x) and α ∈ (0, αo] the problem

u ∈ [0, α]× T→ T ∗M, ∂J,Hu = 0,

u(α, t) ∈ OM ∀t ∈ T, π ◦ u(0, ·) = c,
(74)

has a unique solution with the same coherent orientation as c.
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Proof. We give a sketch of the proof, details are left to the reader.
First, given a sequence αn → 0 and associated solutions un : [0, αn]×T→ T ∗M of (74), one can

show that un → (c, 0) ∈ ΛT ∗M uniformly. Here, it is again essential to make a case distinction for
the three cases of potential gradient blow-up, Rn = |∇un(zn)| → ∞, namely, modulo subsequence,
αn ·Rn → 0 or →∞ or → k > 0.

The most interesting case is αn ·Rn → k > 0 which is dealt with by rescaling vn = un(αn·, αn·)
as in the proof of Lemma 6.6.

For the converse, we need a Newton type method which is hard to implement for the shrinking
domains [0, α]× T with α→ 0. Instead, we consider the conformally rescaled equivalent problem.
Let v(s, t) = u(αs, αt) and consider the corresponding problem for α→ 0,

v : [0, 1]× Tα−1 → T ∗M, ∂J,Hα
v = 0,

π(v(0, t)) = c(αt), v(1, t) ∈ OM ∀t ∈ Tα−1 ,
(75)

where Hα(t, ·) = αH(αt, ·) and Tα−1 = R/α−1Z. The proof is now based on the Newton method
which requires to show that:

(a) for vo(s, t) = 0 ∈ T ∗
c(αt)M we have ∂J,Hvo → 0 as α→ 0, which is obvious, and

(b) the linearization Dα of ∂J,Hα
at vo is invertible for small α > 0 with uniform bound on

‖D−1
α ‖Op as α→ 0.

We sketch now the proof of this uniform bound.
After suitable trivializations, the linearization Dα of ∂J,Hα

at vo with the above Lagrangian
boundary conditions can be viewed as an operator Dα on

H1,p
iRn,Rn(α) :=

{
v : [0, 1× Tα−1 → Cn | v(0, ·) ∈ iRn, v(1, ·) ∈ Rn

}
,

with norm ‖ · ‖1,p;α. Assuming that D−1
α is not uniformly bounded as α→ 0 means that we would

have αn → 0 and vn ∈ H1,p
iRn,Rn(αn) with ‖vn‖1,p;αn

= 1 such that ‖Dαn
vn‖0,p;αn

→ 0. The limit

operator to compare to is the standard ∂-operator on maps

v : [0, 1]× R→ Cn, s.t. v(0, t) ∈ iRn, v(1, t) ∈ Rn ∀t ∈ R .
This comparison operator is clearly an isomorphism (from which one easily shows that Dαn

has
to be invertible for αn small).

Let β ∈ C∞(R, [0, 1]) be a cut-off function such that

β(t) =

{
1, t ≤ 0,

0, t ≥ 1,
β′ ≤ 0,

and set βn(t) = β(αnt− 1) · β(−αnt), hence

βn|[0, α−1
n ] ≡ 1 and suppβn ⊂ [−α−1

n , 2α−1
n ] .

We have

‖vn‖1,p;αn
≤ ‖βnvn‖1,p;R ≤ c1‖vn‖1,p;αn

.

Since the linearization Dα is of the form

Dαv = ∂sv + i∂tv + αA(s, t)v

with some matrix A(s, t), we observe that

‖∂(βnvn)−Dαn
(βnvn)‖0,p;R = αn‖Aβnvn‖0,p;R → 0 .
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Moreover,

‖Dαn
(βnvn)‖0,p;R ≤ ‖iβ′

nvn‖0,p;R + ‖βnDαn
vn‖0,p;R

≤ c2αn‖vn‖0,p;[−α−1
n ,0]∪[α−1

n ,2α−1
n ] + 3‖Dαn

vn‖0,p;αn

≤ c2αn2‖vn‖1,p;αn
+ 3‖Dαn

vn‖0,p;αn
→ 0 .

Hence, we find a subsequence such that βnk
vnk
→ vo ∈ ker∂ = {0}which means that ‖vnk

‖1,p;αnk
→

0 in contradiction to ‖vn‖ = 1.
Similarly, we see that the coherent orientation for the determinant of Dαn

equals that of ∂
which is canonically 1. This completes the proof of the proposition.

From the cobordisms M Ev
Pi

(γ, x), i = 1, 2, 3, we now obtain the chain homotopy as claimed.

Finally, there remains to prove that the right-hand square in the diagram

Hj(Λ(M)) //
∼=

��
i!

HjM(SΛ
L, g

Λ) //
HΦΛ

L

��
HMi!

HjF (H, J)

��
HI!

Hj−n(Ω(M, q0)) //
∼=

Hj−nM(SΩ
L, g

Ω) //
HΦΩ

L

Hj−nF
Ω(H, J)

commutes, the commutativity of the left-hand square having been established in section 2.5. Again,
we work at the chain level, proving that the diagram

Mj(SΛ
L, g

Λ) //
ΦΛ

L

��
Mi!

Fj(H, J)

��
I!

Mj−n(SΩ
L, g

Ω) //
ΦΩ

L
FΩ

j−n(H, J)

is homotopy commutative. Indeed, we can show that both I! ◦ΦΛ
L and ΦΩ

L ◦Mi! are homotopic to
the same chain map K !. The definition of K ! makes use of the following spaces: given γ ∈PΛ(L)
and x ∈PΩ(H), set

M
!
K(γ, x) :=

{
u ∈ C∞([0,+∞[×[0, 1], T ∗M)

∣∣∣ ∂J,H(u) = 0,

π ◦ u(s, 0) = π ◦ u(s, 1) = q0 ∀s ≥ 0, π ◦ u(0, ·) ∈ Wu(γ;−gradSΛ
L),

lim
s→+∞

u(s, ·) = x uniformly in t
}
.

Again, details are left to the reader.

5 Linear theory

5.1 The Maslov index

Let η0 be the Liouville one-form on T ∗Rn = Rn×(Rn)∗, that is the tautological one-form η0 = p dq:

η0(q, p)[(u, v)] = p[u], for q, u ∈ Rn, p, v ∈ (Rn)∗.

Its differential ω0 = dη0 = dp ∧ dq,

ω0[(q1, p1), (q2, p1)] = p1[q2]− p2[q1], for q1, q2 ∈ Rn, p1, p2 ∈ (Rn)∗,

is the standard symplectic form on T ∗Rn.
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The symplectic group, that is the group of linear automorphisms of T ∗Rn preserving ω0, is
denoted by Sp(2n). Let L (n) be the Grassmannian of Lagrangian subspaces of T ∗Rn, that is the
set of n-dimensional linear subspaces of T ∗Rn on which ω0 vanishes. The relative Maslov index
assigns to every pair of Lagrangian paths λ1, λ2 : [a, b]→ L (n) a half integer µ(λ1, λ2). We refer
to [RS93] for the definition and for the properties of the relative Maslov index.

Another useful invariant is the Hörmander index of four Lagrangian subspaces (see [Hör71],
[Dui76], or [RS93]):

5.1. Definition. Let λ0, λ1, ν0, ν1 be four Lagrangian subspaces of T ∗Rn. Their Hörmander in-
dex is the half integer

h(λ0, λ1; ν0, ν1) := µ(ν, λ1)− µ(ν, λ0),

where ν : [0, 1]→ L (n) is a Lagrangian path such that ν(0) = ν0 and ν(1) = ν1.

Indeed, the quantity defined above does not depend on the choice of the Lagrangian path ν
joining ν0 and ν1.

If V is a linear subspace of Rn, N∗V ⊂ T ∗Rn denotes its conormal space, that is

N∗V := {(q, p) ∈ Rn × (Rn)∗ | q ∈ V, V ⊂ ker p} = V × V ⊥,

where V ⊥ denotes the set of covectors in (Rn)∗ which vanish on V . Conormal spaces are Lagrangian
subspaces of T ∗Rn.

Let C : T ∗Rn → T ∗Rn be the linear involution

C(q, p) := (q,−p) ∀(q, p) ∈ T ∗Rn.

The involution C is anti-symplectic, meaning that

ω0(Cξ,Cη) = −ω0(ξ, η) ∀ξ, η ∈ T ∗Rn.

In particular, C maps Lagrangian subspaces into Lagrangian subspaces. Since the Maslov index
is natural with respect to symplectic transformations and changes sign if we change the sign of
the symplectic structure, we have the identity

µ(Cλ,Cν) = −µ(λ, ν), (76)

for every pair of Lagrangian paths λ, ν : [a, b]→ L (n). Since conormal subspaces are C-invariant,
we deduce that

µ(N∗V,N∗W ) = 0, (77)

for every pair of paths V,W into the Grassmannian of Rn. Let V0, V1,W0,W1 be four linear
subspaces of Rn, and let ν : [0, 1] → L (n) be a Lagrangian path such that ν(0) = N∗W0 and
ν(1) = N∗W1. By (76),

h(N∗V0, N
∗V1;N

∗W0, N
∗W1) = µ(ν,N∗V1)− µ(ν,N∗V0) = −µ(Cν,N∗V1) + µ(Cν,N∗V0).

But also the Lagrangian path Cν joins N∗W0 and N∗W1, so the latter quantity equals

−h(N∗V0, N
∗V1;N

∗W0, N
∗W1).

We deduce the following:

5.2. Proposition. Let V0, V1,W0,W1 be four linear subspaces of Rn. Then

h(N∗V0, N
∗V1;N

∗W0, N
∗W1) = 0.
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We identify the product T ∗Rn×T ∗Rn with T ∗R2n, and we endow it with its standard symplectic
structure. In other words, we consider the product symplectic form, not the twisted one used in
[RS93]. Note that the conormal space of the diagonal ∆Rn in Rn × Rn is the graph of C,

N∗∆Rn = graphC ⊂ T ∗Rn × T ∗Rn = T ∗R2n.

The linear endomorphism Ψ of T ∗Rn belongs to the symplectic group Sp(2n) if and only if the
graph of the linear endomorphism ΨC is a Lagrangian subspace of T ∗R2n, if and only if the graph
of CΨ is a Lagrangian subspace of T ∗R2n. If λ1, λ2 are paths of Lagrangian subspaces of T ∗Rn

and Ψ is a path in Sp(2n), Theorem 3.2 of [RS93] leads to the identities

µ(Ψλ1, λ2) = µ(graph (ΨC), Cλ1 × λ2) = −µ(graph (CΨ), λ1 × Cλ2). (78)

The Conley-Zehnder index µCZ(Ψ) of a symplectic path Ψ : [0, 1] → Sp(2n) is related to the
relative Maslov index by the formula

µCZ(Ψ) = µ(N∗∆Rn , graphCΨ) = µ(graphΨC,N∗∆Rn). (79)

We conclude this section by fixing some standard identifications, which allow to see T ∗Rn as
a complex vector space. By using the Euclidean inner product on Rn, we can identify T ∗Rn withR2n. We also identify the latter space to Cn, by means of the isomorphism (q, p) 7→ q + ip. In
other words, we consider the complex structure

J0 :=

(
0 −I
I 0

)

on R2n. With these identifications, the Euclidean inner product u · v, respectively the symplectic
product ω0(u, v), of two vectors u, v ∈ T ∗Rn ∼= R2n ∼= Cn is the real part, respectively the
imaginary part, of their Hermitian product 〈·, ·〉,

〈u, v〉 :=
n∑

j=1

ujvj = u · v + i ω0(u, v).

The involution C is the complex conjugacy. By identifying V ⊥ with the Euclidean orthogonal
complement, we have

N∗V = V ⊕ iV ⊥ =
{
z ∈ Cn | Re z ∈ V, Im z ∈ V ⊥}

.

If λ : [0, 1]→ L (n) is the path

λ(t) = eiαtR, α ∈ R,
the relative Maslov index of λ with respect to R is the half integer

µ(λ,R) =

{
− 1

2 − ⌊α
π ⌋ if α ∈ R \ πZ,

−α
π if α ∈ πZ. (80)

Notice that the sign is different from the one appearing in [RS93] (localization axiom in Theorem
2.3), due to the fact that we are using the opposite symplectic form on R2n. Our sign convention
here also differs from the one used in [AS06b], because we are using the opposite complex structure
on R2n.

5.2 Elliptic estimates on the quadrant

We recall that a real linear subspace V of Cn is said totally real if V ∩iV = (0). Denote by H the up-
per half-plane {z ∈ C | Im z > 0}, and by H+ the upper-right quadrant {z ∈ C | Re z > 0, Im z > 0}.
We shall make use of the following Calderon-Zygmund estimates for the Cauchy-Riemann operator
∂ = ∂s + i∂t:
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5.3. Theorem. Let V be an n-dimensional totally real subspace of Cn. For every p ∈]1,+∞[,
there exists a constant c = c(p, n) such that

‖Du‖Lp ≤ c‖∂u‖Lp

for every u ∈ C∞
c (C,Cn), and for every u ∈ C∞

c (Cl(H),Cn) such that u(s) ∈ V for every s ∈ R.

We shall also need the following regularity result for weak solutions of ∂. Denoting by ∂ :=
∂s − i∂t the anti-Cauchy-Riemann operator, we have:

5.4. Theorem. (Regularity of weak solutions of ∂) Let V be an n-dimensional totally real sub-
space of Cn, and let 1 < p <∞, k ∈ N.

(i) Let u ∈ Lp
loc(C,Cn), f ∈W k,p

loc (C,Cn) be such that

Re

∫C〈u, ∂ϕ〉 dsdt = −Re

∫C〈f, ϕ〉 dsdt,
for every ϕ ∈ C∞

c (C,Cn). Then u ∈ W k+1,p
loc (C,Cn) and ∂u = f .

(ii) Let u ∈ Lp(H,Cn), f ∈W k,p(H,Cn) be such that

Re

∫H〈u, ∂ϕ〉 dsdt = −Re

∫H〈f, ϕ〉 dsdt,
for every ϕ ∈ C∞

c (C,Cn) such that ϕ(R) ⊂ V . Then u ∈ W k+1,p(H,Cn), ∂u = f , and the
trace of u on R takes values into the ω0-orthogonal complement of V ,

V ⊥ω0 := {ξ ∈ Cn | ω0(ξ, η) = 0 ∀η ∈ V } .

5.5. Remark. If we replace the upper half-plane H in (ii) by the right half-plane {Re z > 0} and
the test mappings ϕ ∈ C∞

c (C,Cn) satisfy ϕ(iR) ⊂ V , then the trace of u on iR takes value into
V ⊥, the Euclidean orthogonal complement of V in R2n.

Two linear subspaces V,W of Rn are said to be partially orthogonal if the linear subspaces
V ∩ (V ∩W )⊥ and W ∩ (V ∩W )⊥ are orthogonal, that is if their projections into the quotientRn/V ∩W are orthogonal.

5.6. Lemma. Let V and W be partially orthogonal linear subspaces of Rn. For every p ∈]1,+∞[,
there exists a constant c = c(p, n) such that

‖Du‖Lp ≤ c‖∂u‖Lp (81)

for every u ∈ C∞
c (Cl(H+),Cn) such that

u(s) ∈ N∗V ∀s ∈ [0,+∞[, u(it) ∈ N∗W ∀t ∈ [0,+∞[. (82)

Proof. Since V and W are partially orthogonal, Rn has an orthogonal splitting Rn = X1 ⊕X2 ⊕
X3 ⊕X4 such that

V = X1 ⊕X2, W = X1 ⊕X3.

Therefore,

N∗V = X1 ⊕X2 ⊕ iX3 ⊕ iX4, N∗W = X1 ⊕X3 ⊕ iX2 ⊕ iX4.

Let U ∈ U(n) be the identity on (X1 ⊕X2) ⊗ C, and the multiplication by i on (X3 ⊕X4) ⊗ C.
Then

UN∗V = Rn, UN∗W = X1 ⊕X4 ⊕ iX2 ⊕ iX3 = N∗(X1 ⊕X4).
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Up to multiplying u by U , we can replace the boundary conditions (82) by

u(s) ∈ Rn ∀s ∈ [0,+∞[, u(it) ∈ Y ∀t ∈ [0,+∞[, (83)

where Y is a totally real n-dimensional subspace of Cn such that Y = Y . Define a Cn-valued map
v on the right half-plane {Re z ≥ 0} by Schwarz reflection,

v(z) :=

{
u(z) if Im z ≥ 0,

u(z) if Im z ≤ 0.

By (83) and by the fact that Y is self-conjugate, v belongs to W 1,p({Re z > 0},Cn), and satisfies

v(it) ∈ Y ∀t ∈ R.
Moreover,

‖∇v‖pLp({Re z>0}) = 2‖∇v‖pLp({Re z>0, Im z>0}),

and since ∂v(z) = ∂u(z) for Im z ≤ 0,

‖∂v‖pLp({Re z>0}) = 2‖∂v‖pLp({Re z>0, Im z>0}).

Then (81) follows from the Calderon-Zygmund estimate on the half plane with totally real bound-
ary conditions (Theorem 5.3).

Similarly, Theorem 5.4 has the following consequence about regularity of weak solutions of ∂
on the upper right quadrant H+:

5.7. Lemma. Let V and W be partially orthogonal linear subspaces of Rn. Let u ∈ Lp(H+,Cn),
f ∈ Lp(H+,Cn), 1 < p <∞, be such that

Re

∫H+

〈u, ∂ϕ〉 dsdt = −Re

∫H+

〈f, ϕ〉 dsdt,

for every ϕ ∈ C∞
c (C,Cn) such that ϕ(R) ⊂ N∗V , ϕ(iR) ⊂ N∗W . Then u ∈ W 1,p(H+,Cn),

∂u = f , the trace of u on R takes values into N∗V , and the trace of u on iR takes values into
(N∗W )⊥ = N∗(W⊥) = iN∗W .

Proof. By means of a linear unitary transformation, as in the proof of Lemma 5.6, we may assume
that V = N∗V = Rn. A Schwarz reflection then allows to extend u to a map v on the right
half-plane {Re z > 0} which is in Lp and is a weak solution of ∂v = g ∈ Lp, with boundary
condition in iN∗W on iR. The thesis follows from Theorem 5.4.

We are now interested in studying the operator ∂ on the half-plane H, with boundary conditions

u(s) ∈ N∗V, u(−s) ∈ N∗W ∀s > 0,

where V and W are partially orthogonal linear subspaces of Rn. Taking Lemmas 5.6 and 5.7 into
account, the natural idea is to obtain the required estimates by applying a conformal change of
variable mapping the half-plane H onto the the upper right quadrant H+. More precisely, let R

and T be the transformations

R : Map(H,Cn)→ Map(H+,Cn), (Ru)(ζ) = u(ζ2), (84)

T : Map(H,Cn)→ Map(H+,Cn), (T u)(ζ) = 2ζu(ζ2), (85)

where Map denotes some space of maps. Then the diagram

Map(H,Cn)
∂−−−−→ Map(H,Cn)

yR T

y

Map(H+,Cn)
∂−−−−→ Map(H+,Cn)

(86)
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commutes. By the elliptic estimates of Lemma 5.6, suitable domain and codomain for the operator
on the lower horizontal arrow are the standard W 1,p and Lp spaces, for 1 < p <∞. Moreover, if
u ∈Map(H,Cn) then

‖Ru‖pLp(H+) =
1

4

∫H 1

|z| |u(z)|
p dsdt, (87)

‖D(Ru)‖pLp(H+) = 2p−2

∫H |Du(z)|p|z|p/2−1 dsdt, (88)

‖T u‖pLp(H+) = 2p−2

∫H |u(z)|p|z|p/2−1 dsdt. (89)

Note also that by the generalized Poincaré inequality, the W 1,p norm on H+∩Dr, where Dr denotes
the open disk of radius r, is equivalent to the norm

‖v‖p
W̃ 1,p(H+∩Dr)

:= ‖Dv‖pLp(H+∩Dr) +

∫H+∩Dr

|v(ζ)|p|ζ|p dσdτ, (90)

and the W̃ 1,p norm of Ru is

‖Ru‖p
W̃ 1,p(H+∩Dr)

=
1

4

∫H∩D
r2

|u(z)|p|z|p/2−1 dsdt+ 2p−2

∫H∩D
r2

|Du(z)|p|z|p/2−1 dsdt. (91)

So when dealing with bounded domains, both the transformations R and T involve the appearance
of the weight |z|p/2−1 in the Lp norms. Note also that when p = 2, this weight is just 1, reflecting
the fact that the L2 norm of the differential is a conformal invariant.

By the commutativity of diagram (86) and by the identities (88), (89), Lemma 5.6 applied to
Ru implies the following:

5.8. Lemma. Let V and W be partially orthogonal linear subspaces of Rn. For every p ∈]1,+∞[,
there exists a constant c = c(p, n) such that

∫H |∇u(z)|p|z|p/2−1 ds dt ≤ cp
∫H |∂u(z)|p|z|p/2−1 ds dt

for every compactly supported map u : Cl(H)→ Cn such that ζ 7→ u(ζ2) is smooth on Cl(H+), and

u(s) ∈ N∗V ∀s ∈]−∞, 0], u(s) ∈ N∗W ∀s ∈ [0,+∞[.

5.3 Strips with jumping conormal boundary conditions

Let us consider the following data: two integers k, k′ ≥ 0, k + 1 linear subspaces V0, . . . , Vk ofRn such that Vj−1 and Vj are partially orthogonal, for every j = 1, . . . , k, k′ + 1 linear subspaces
V ′

0 , . . . , V
′
k of Rn such that V ′

j−1 and V ′
j are partially orthogonal, for every j = 1, . . . , k′, and real

numbers

−∞ = s0 < s1 < · · · < sk < sk+1 = +∞, −∞ = s′0 < s′1 < · · · < s′k′ < −s′k′+1 = +∞.

Denote by V the (k + 1)-uple (V0, . . . , Vk), by V ′ the (k′ + 1)-uple (V ′
0 , . . . , V

′
k), and set

S := {s1, . . . , sk, s
′
1 + i, . . . , s′k′ + i}.

Let Σ be the closed strip

Σ := {z ∈ C | 0 ≤ Im z ≤ 1} .

The space C∞
S

(Σ,Cn) is the space of maps u : Σ→ Cn which are smooth on Σ \S , and such that
the maps ζ 7→ u(sj + ζ2) and ζ 7→ u(s′j + i− ζ2) are smooth in a neighborhood of 0 in the closed
upper-right quadrant

Cl(H+) = {ζ ∈ C | Re ζ ≥ 0, Im ζ ≥ 0} .
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The symbol C∞
S ,c indicates bounded support.

Given p ∈ [1,+∞[, we define the Xp norm of a map u ∈ L1
loc(Σ,Cn) by

‖u‖pXp(Σ) := ‖u‖pLp(Σ\Br(S )) +
∑

w∈S

∫

Σ∩Br(w)

|u(z)|p|z − w|p/2−1 ds dt,

where r < 1 is less than half of the minimal distance between pairs of distinct points in S . This is
just a weighted Lp norm, where the weight |z −w|p/2−1 comes from the identities (88), (89), and
(91) of the last section. Note that when p > 2 the Xp norm is weaker than the Lp norm, when
p < 2 the Xp norm is stronger than the Lp norm, and when p = 2 the two norms are equivalent.

The space Xp
S

(Σ,Cn) is the space of locally integrable Cn-valued maps on Σ whose Xp norm
is finite. The Xp norm makes it a Banach space. We view it as a real Banach space.

The space X1,p
S

(Σ,Cn) is defined as the completion of the space C∞
S ,c(Σ,Cn) with respect to

the norm

‖u‖pX1,p(Σ) := ‖u‖pXp(Σ) + ‖Du‖pXp(Σ).

It is a Banach space with the above norm. Equivalently, it is the space of maps in Xp(Σ,Cn)
whose distributional derivative is also in Xp. The space X1,p

S ,V ,V ′(Σ,Cn) is defined as the closure

in X1,p
S

(Σ,Cn) of the space of all u ∈ C∞
S ,c(Σ,Cn) such that

u(s) ∈ N∗Vj ∀s ∈ [sj , sj+1], j = 0, . . . , k,
u(s+ i) ∈ N∗V ′

j ∀s ∈ [s′j , s
′
j+1], j = 0, . . . , k′.

(92)

Equivalently, it can be defined in terms of the trace of u on the boundary of Σ.
Let A : R × [0, 1] → L(R2n,R2n) be continuous and bounded. For every ∈ [1,+∞[, the linear

operator

∂A : X1,p
S

(Σ,Cn)→ Xp
S

(Σ,Cn), ∂Au := ∂u+Au,

is bounded. Indeed, ∂ is a bounded operator because of the inequality |∂u| ≤ |Du|, while the
multiplication operator by A is bounded because

‖Au‖Xp(Σ) ≤ ‖A‖∞‖u‖Xp(Σ).

We wish to prove that if p > 1 and A(z) satisfies suitable asymptotics for Re z → ±∞ the
operator ∂A restricted to the space X1,p

S ,V ,V ′(Σ,Cn) of maps satisfying the boundary conditions
(92) is Fredholm.

Assume that A ∈ C0(R × [0, 1],L(R2n,R2n)) is such that A(±∞, t) ∈ Sym(2n,R) for every
t ∈ [0, 1]. Define Φ+,Φ− : [0, 1]→ Sp(2n) to be the solutions of the linear Hamiltonian systems

d

dt
Φ±(t) = iA(±∞, t)Φ±(t), Φ±(0) = I. (93)

Then we have the following:

5.9. Theorem. Assume that Φ−(1)N∗V0 ∩ N∗V ′
0 = (0) and Φ+(1)N∗Vk ∩ N∗V ′

k′ = (0). Then
the bounded R-linear operator

∂A : X1,p
S ,V ,V ′(Σ,Cn)→ Xp

S
(Σ,Cn), ∂Au = ∂u+Au,

is Fredholm of index

ind ∂A = µ(Φ−N∗V0, N
∗V ′

0)− µ(Φ+N∗Vk, N
∗V ′

k′ )

−1

2

k∑

j=1

(dim Vj−1 + dimVj − 2 dimVj−1 ∩ Vj)−
1

2

k′∑

j=1

(dim V ′
j−1 + dimV ′

j − 2 dimV ′
j−1 ∩ V ′

j ).

(94)
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The proof of the Fredholm property for Cauchy-Riemann type operators is based on local
estimates. By a partition of unity argument, the proof that ∂A is Fredholm reduces to the
Calderon-Zygmund estimates of Lemmas 5.6, 5.8, and to the invertibility of ∂A when A does
not depend on Re z and there are no jumps in the boundary conditions. Details are contained
in the next section. The index computation instead is based on homotopy arguments together
with a Liouville type result stating that in a particular case with one jump the operator ∂A is an
isomorphism.

5.4 The Fredholm property

The elliptic estimates of section 5.2 have the following consequence:

5.10. Lemma. For every p ∈]1,+∞[, there exist constants c0 = c0(p, n,S ) and c1 = c1(p, n, k +
k′) such that

‖Du‖Xp ≤ c0‖u‖Xp + c1‖∂u‖Xp ,

for every u ∈ C∞
S ,c(Σ,Cn) such that

u(s) ∈ N∗Vj ∀s ∈ [sj−1, sj ], u(s+ i) ∈ N∗V ′
j ∀s ∈ [s′j−1, s

′
j ]

for every j.

Proof. Let {ψ1, ψ2} ∪ {ϕj}k+k′

j=1 be a smooth partition of unity on C satisfying:

suppψ1 ⊂ {z ∈ C | Im z < 2/3} \Br/2(S ),
suppψ2 ⊂ {z ∈ C | Im z > 1/3} \Br/2(S ),
suppϕj ⊂ Br(sj) ∀j = 1, . . . , k,
suppϕk+j ⊂ Br(s

′
j + i) ∀j = 1, . . . , k′.

(95)

By Lemma 5.8,

‖D(ϕju)‖Xp(Σ) ≤ c(p, n)‖∂(ϕju)‖Xp(Σ) ≤ c(p, n)(‖∂ϕj‖∞‖u‖Xp(Σ) + ‖∂u‖Xp(Σ)), 1 ≤ j ≤ k + k′.

Since the Xp norm is equivalent to the Lp norm on the subspace of maps whose support does not
meet Br/2(S ), the standard Calderon-Zygmund estimates on the half-plane (see Theorem 5.3)
imply

‖D(ψju)‖Xp(Σ) ≤ c(p, n)‖∂(ψju)‖Xp(Σ) ≤ c(p, n)(‖∂ψj‖∞‖u‖Xp(Σ) + ‖∂u‖Xp(Σ)), ∀j = 1, 2.

We conclude that

‖Du‖Xp ≤ ‖D(ψ1u)‖Xp(Σ) + ‖D(ψ2u)‖Xp(Σ) +

k+k′∑

j=1

‖D(ϕju)‖Xp(Σ) ≤ c0‖u‖Xp(Σ) + c1‖∂u‖Xp(Σ),

with

c0 := c(p, n)
(
‖∂ψ1‖∞ + ‖∂ψ2‖∞ +

k+k′+1∑

j=0

‖∂ϕj‖∞
)
, c1 := (k + k′ + 2)c(p, n),

as claimed.

The next result we need is the following theorem, proved in [RS95, Theorem 7.1]. Consider
two continuously differentiable Lagrangian paths λ, ν : R → L (n), assumed to be constant on
[−∞,−s0] and on [s0,+∞], for some s0 > 0. Denote by W 1,p

λ,ν (Σ,Cn) the space of maps u ∈
W 1,p(Σ,Cn) such that u(s, 0) ∈ λ(s) and u(s, 1) ∈ ν(s), for every s ∈ R (in the sense of traces).
Let A ∈ C0(R × [0, 1],L(R2n,R2n)) be such that A(±∞, t) ∈ Sym(2n,R) for any t ∈ [0, 1], and
define Φ−,Φ+ : [0, 1]→ Sp(2n) by (93).

61



5.11. Theorem. (Cauchy-Riemann operators on the strip) Let p ∈]1,+∞[, and assume that

Φ−(1)λ(−∞) ∩ ν(−∞) = (0), Φ+(1)λ(+∞) ∩ ν(+∞) = (0).

(i) The bounded R-linear operator

∂A : W 1,p
λ,ν (Σ,Cn)→ Lp(Σ,Cn), ∂Au = ∂u+Au,

is Fredholm of index

ind ∂A = µ(Φ−λ(−∞), ν(−∞))− µ(Φ+λ(+∞), ν(+∞)) + µ(λ, ν).

(ii) If furthermore A(s, t) = A(t), λ(s) = λ, and ν(s) = ν do not depend on s, the operator ∂A

is an isomorphism.

Note that under the assumptions of (ii) above, the equation ∂u + Au can be rewritten as
∂su = −LAu, where LA is the unbounded R-linear operator on L2(]0, 1[,Cn) defined by

domLA = W 1,2
λ,ν (]0, 1[,Cn) =

{
u ∈ W 1,2(]0, 1[,Cn) | u(0) ∈ λ, u(1) ∈ ν

}
, LA = i

d

dt
+A.

The conditions on A imply that LA is self-adjoint and invertible. These facts lead to the following:

5.12. Proposition. Assume that A, λ, and ν satisfy the conditions of Theorem 5.11 (ii), and
set δ := minσ(LA) ∩ [0,+∞[> 0. Then for every k ∈ N there exists ck such that

‖u(s, ·)‖Ck([0,1]) ≤ ck‖u(0, ·)‖L2(]0,1[)e
−δs, ∀s ≥ 0,

for every u ∈ W 1,p(]0,+∞[×]0, 1[,Cn), p > 1, such that u(s, 0) ∈ λ, u(s, 1) ∈ ν for every s ≥ 0,
and ∂u+Au = 0.

Next we need the following easy consequence of the Sobolev embedding theorem:

5.13. Proposition. Let s > 0 and let χs be the characteristic function of the set {z ∈ Σ | |Re z| ≤ s}.
Then the linear operator

X1,p
S

(Σ,Cn)→ Xq
S

(Σ,Cn), u 7→ χsu,

is compact for every q <∞ if p ≥ 2, and for every q < 2p/(2− p) if 1 ≤ p < 2.

Proof. Let (uh) be a bounded sequence in X1,p
S

(Σ,Cn). Let {ψ1, ψ2} ∪ {ϕj}k+k′

j=1 be a smooth
partition of unity of C satisfying (95). Then the sequences (ψ1uh), (ψ2uh) and (ϕjuh), for 1 ≤
j ≤ k+ k′ are bounded in X1,p(Σ,Cn). We must show that each of these sequences is compact in
Xq

S
(Σ,Cn).
Since the Xq and X1,p norms on the space of maps supported in Σ \ Br/2(S ) are equivalent

to the Lq and W 1,p norms, the Sobolev embedding theorem implies that the sequences (χsψ1uh)
and (χsψ2uh) are compact in Xq

S
(Σ,Cn).

Let 1 ≤ j ≤ k. If u is supported in Br(sj), set v(z) := u(sj + z), so that by (87)

‖u‖qXq(Σ) =

∫

Br(sj)∩Σ

|u(z)|q|z|q/2−1 dsdt ≤
∫

Br(sj)∩Σ

1

|z| |u(z)|
q dsdt = 4‖Ru‖qLq(H+∩D√

r). (96)

Set vh(z) := ϕj(sj + z)uh(sj + z). By (91), the sequence (Rvh) is bounded in W 1,p(H+ ∩ D√
r),

hence it is compact in Lq(H+ ∩ D√
r) for every q < ∞ if p ≥ 2, and for every q < 2p/(2 − p) if

1 ≤ p < 2. Then (96) implies that (ϕjuh) is compact in Xq
S

(Σ,Cn). A fortiori, so is (χsϕjuh).
The same argument applies to j ≥ k + 1, concluding the proof.

Putting together Lemma 5.10, statement (ii) in Theorem 5.11, and the Proposition above we
obtain the following:
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5.14. Proposition. Let 1 < p < ∞. Assume that the paths of symmetric matrices A(±∞, ·)
satisfy the assumptions of Theorem 5.9. Then

∂A : X1,p
S ,V ,V ′(Σ,Cn)→ Xp

S
(Σ,Cn)

is semi-Fredholm with ind ∂A := dimker ∂A − dim coker ∂A < +∞.

Proof. We claim that there exist c ≥ 0 and s ≥ 0 such that, for any u ∈ X1,p
S ,V ,V ′(Σ,Cn), there

holds

‖u‖X1,p(Σ) ≤ c
(
‖(∂ +A)u‖Xp(Σ) + ‖χsu‖Xp(Σ)

)
, (97)

where χs is the characteristic function of the set {z ∈ Σ | |Re z| ≤ s}.
By Theorem 5.11 (ii), the asymptotic operators

∂ +A(−∞, ·) : W 1,p
N∗V0,N∗V ′

0
(Σ,Cn)→ Lp(Σ,Cn),

∂ +A(+∞, ·) : W 1,p
N∗Vk,N∗V ′

k′
(Σ,Cn)→ Lp(Σ,Cn),

are invertible. Since invertibility is an open condition in the operator norm, there exist s >
max |Re S | + 2 and c1 > 0 such that for any u ∈ X1,p

S ,V ,V ′(Σ,Cn) with support disjoint from
{|Re z| ≤ s− 1} there holds

‖u‖X1,p(Σ) = ‖u‖W 1,p(Σ) ≤ c1‖(∂ +A)u‖Lp(Σ) = c1‖(∂ +A)u‖Xp(Σ). (98)

By Proposition 5.10, there exists c2 > 0 such that for every u ∈ X1,p
S ,V ,V ′(Σ,Cn) with support in

{|Re z| ≤ s} there holds

‖u‖X1,p(Σ) ≤ c2(‖u‖Xp(Σ) + ‖∂u‖Xp(Σ))

≤ (c2 + ‖A‖∞)‖u‖Xp(Σ) + c2‖(∂ +A)u‖Xp(Σ).
(99)

The inequality (97) easily follows from (98) and (99) by writing any u ∈ X1,p
S ,V ,V ′(Σ,Cn) as

u = (1 − ϕ)u + ϕu, for ϕ a smooth real function on Σ having support in {|Re z| < s} and such
that ϕ = 1 on {|Re z| ≤ s− 1}.

Finally, by Proposition 5.13 the linear operator

X1,p
S ,V ,V ′(Σ,Cn)→ Xp

S
(Σ,Cn), u 7→ χsu,

is compact. Therefore the estimate (97) implies that ∂A has finite dimensional kernel and closed
range, that is it is semi-Fredholm with index less than +∞.

It would not be difficult to use the regularity of weak solutions of the Cauchy-Riemann operator
to prove that the cokernel of ∂A is finite-dimensional, so that ∂A is Fredholm. However, this will
follow directly from the index computation presented in the next section.

5.5 A Liouville type result

Let us consider the following particular case in dimension n = 1:

k = 1, k′ = 0, S = {0}, V0 = (0), V1 = R, V ′
0 = R, A(z) = α,

with α a real number. In other words, we are looking at the operator ∂+α on a space of C-valued
maps u on Σ such that u(s) is purely imaginary for s ≤ 0, u(s) is real for s ≥ 0, and u(s + i) is
real for every s ∈ R. Notice that Φ−(t) = Φ+(t) = eiαt, so

eiαiR ∩ R = (0) ∀α ∈ R \ (π/2 + πZ), eiαR ∩ R = (0) ∀α ∈ R \ πZ,
so the assumptions of Theorem 5.9 are satisfied whenever α is not an integer multiple of π/2. In
order to simplify the notation, we set

Xp(Σ) := Xp
{0}(Σ,C), X1,p(Σ) := X1,p

{0},((0),R),(R)(Σ,C).

We start by studying the regularity of the elements of the kernel of ∂α:
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5.15. Lemma. Let p > 1 and α ∈ R \ (π/2)Z. If u belongs to the kernel of

∂α : X1,p(Σ)→ Xp(Σ),

then u is smooth on Σ \ {0}, it satisfies the boundary conditions pointwise, and the function
(Ru)(ζ) = u(ζ2) is smooth on Cl(H+) ∩ D1. In particular, u is continuous at 0, and Du(z) =
O(|z|−1/2) for z → 0.

Proof. The regularity theory for weak solutions of ∂ on C and on the half-plane H (Theorem 5.4)
implies - by a standard bootstrap argument - that u ∈ C∞(Σ \ {0}). We just need to check the
regularity of u at 0.

Consider the function f(ζ) := eαζ
2
/2u(ζ2) on H+ ∩ D1. Since

∂f(ζ) = 2ζeαζ
2
/2

(
∂u(ζ2) + αu(ζ2)

)
= 0,

f is holomorphic on H+ ∩D1. Moreover, by (91) the function f belongs to W 1,p(H+ ∩D1), and in
particular it is square integrable. The function f is real on R+ and purely imaginary on iR+, so a
double Schwarz reflection produces a holomorphic extension of f to D1 \ {0}. Such an extension
of f is still square integrable, so the singularity 0 is removable and the function is holomorphic on
the whole D1. It follows that

(Ru)(ζ) = u(ζ2) = e−αζ
2
/2f(ζ)

is smooth on Cl(H+) ∩ D1, as claimed.

The real Banach space Xp(Σ) is the space of Lp functions with respect to the measure defined
by the density

ρp(z) :=

{
1 if z ∈ Σ \ Dr,

|z|p/2−1 if z ∈ Σ ∩ Dr.

So the dual of Xp(Σ) can be identified with the real Banach space
{
v ∈ L1

loc(Σ,C) |
∫

Σ

|v|qρp(z) dsdt < +∞
}
, where

1

p
+

1

q
= 1, (100)

by using the duality paring

(
Xp(Σ)

)∗ ×Xp(Σ)→ R, (v, u) 7→ Re

∫

Σ

〈v, u〉ρp(z) dsdt.

We prefer to use the standard duality pairing

(
Xp(Σ)

)∗ ×Xp(Σ)→ R, (w, u) 7→ Re

∫

Σ

〈w, u〉 dsdt. (101)

With the latter choice, the dual of Xp(Σ) is identified with the space of functions w = ρp(z)v,
where v varies in the space (100). From 1/p+ 1/q = 1 we get the identity

‖w‖qXq =

∫

Σ\Dr

|w|q dsdt+

∫

Σ∩Dr

|w|q |z|q/2−1 dsdt

=

∫

Σ\Dr

|v|q dsdt+

∫

Σ∩Dr

|v|q|z|(p/2−1)q|z|q/2−1 dsdt

=

∫

Σ\Dr

|v|q dsdt+

∫

Σ∩Dr

|v|q|z|p/2−1 dsdt =

∫

Σ

|v|qρp(z) dsdt,

which shows that the standard duality paring (101) produces the identification

(
Xp(Σ)

)∗ ∼= Xq(Σ), for
1

p
+

1

q
= 1.

Therefore, we view the cokernel of ∂α : X1,p(Σ) → Xp(Σ) as a subspace of Xq(Σ). Its elements
are a priori less regular at 0 than the elements of the kernel:
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5.16. Lemma. Let p > 1 and α ∈ R\(π/2)Z. If v ∈ Xq(Σ), 1/p+1/q = 1, belongs to the cokernel
of

∂α : X1,p(Σ)→ Xp(Σ),

then v is smooth on Σ \ {0}, it solves the equation ∂v − αv = 0 with boundary conditions

v(s) ∈ R, v(−s) ∈ iR ∀s > 0,
v(s+ i) ∈ R ∀s ∈ R, (102)

and the function (T v)(ζ) = 2ζv(ζ2) is smooth on Cl(H+) ∩ D1. In particular, v(z) = O(|z|−1/2)
and Dv(z) = O(|z|−3/2) for z → 0.

Proof. Since v ∈ Xq(Σ) annihilates the image of ∂α, there holds

Re

∫

Σ

〈v(z), ∂u(z) + αu(z)〉 ds dt = 0, (103)

for every u ∈ X1,p(Σ). By letting u vary among all smooth functions in X1,p(Σ) which are
compactly supported in Σ \ {0}, the regularity theory for weak solutions of ∂ (the analogue of
Theorem 5.4) and a bootstrap argument show that v is smooth on Σ\{0} and it solves the equation
∂v − αv = 0 with boundary conditions (102). There remains to study the regularity of v at 0.

Set w(ζ) := (T v)(ζ) = 2ζv(ζ2). By (89), the function w is in Lq(H+ ∩ D1). Let ϕ ∈
C∞

c (Cl(H+) ∩ D1) be real on R+ and purely imaginary on iR+. Then the function u defined by
u(ζ2) = ϕ(ζ) belongs to X1,p(Σ), and by (103) we have

0 = Re

∫

Σ

〈v, ∂u+ αu〉 dsdt = 4Re

∫H+∩D1

|ζ2|〈 1

2ζ
w(ζ),

1

2ζ
∂ϕ(ζ) + αϕ(ζ)〉 dσdτ

= Re

∫H+∩D1

〈w(ζ), ∂ϕ(ζ) + 2αζϕ(ζ)〉 dσdτ.

The above identity can be rewritten as

Re

∫H+∩D1

〈w(ζ), ∂ϕ(ζ)〉 dσdτ = −Re

∫H+∩D1

〈2αζw(ζ), ϕ(ζ)〉 dσdτ,

so w is a weak solution of ∂w = 2αζw on Cl(H+)∩D1 with real boundary conditions. Since w is in
Lq(H+ ∩D1), Lemma 5.7 implies that w is in W 1,q(H+ ∩D1). In particular, w is square integrable
on H+ ∩ D1, and so is the function

f(ζ) := e−αζ2/2w(ζ).

The function f is anti-holomorphic, it takes real values on R+ and on iR+, so by a double Schwarz
reflection it can be extended to an anti-holomorhic function on D1\{0}. Since f is square integrable,
the singularity 0 is removable and f is anti-holomorphic on D1. Therefore

(T v)(ζ) = w(ζ) = eαζ2/2f(ζ)

is smooth on Cl(H+) ∩ D1, as claimed.

We can finally prove the following Liouville type result:

5.17. Proposition. If 0 < α < π/2, the operator

∂α : X1,p(Σ)→ Xp(Σ)

is an isomorphism, for every 1 < p <∞.
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Proof. By Proposition 5.14 the operator ∂α is semi-Fredholm, so it is enough to prove that its
kernel and co-kernel are both (0).

Let u ∈ X1,p(Σ) be an element of the kernel of ∂α. By Proposition 5.12, u(z) has exponential
decay for |Re z| → +∞ together with all its derivatives. By Lemma 5.15, u is smooth on Σ \ {0},
it is continuous at 0, and Du(z) = O(|z|−1/2) for z → 0. Then the function w := u2 belongs to
W 1,q(Σ,C) for every q < 4. Moreover, w is real on the boundary of Σ, and it satisfies the equation

∂w + 2αw = 0.

Since 0 < 2α < π, e2αiR ∩ R = (0), so the assumptions of Theorem 5.11 (ii) are satisfied, and the
operator

∂2α : W 1,qR,R(Σ,C)→ Lq(Σ,C)

is an isomorphism. Therefore w = 0, hence u = 0, proving that the operator ∂α has vanishing
kernel.

Let v ∈ Xq(Σ), 1/p + 1/q = 1, be an element of the cokernel of ∂α. By Lemma 5.16, v is
smooth on Σ \ {0}, v(s) ∈ iR for s < 0, v(s) ∈ R for s > 0, v solves ∂v− αv = 0, and the function

w(ζ) := 2ζv(ζ2) (104)

is smooth in Cl(H+) ∩ D1 and real on the boundary of H+. In particular, v(z) = O(|z|−1/2) and
Dv(z) = O(|z|−3/2) for z → 0. Furthermore, by Proposition 5.12, v and Dv decay exponentially
for |Re z| → +∞. More precisely, since the spectrum of the operator Lα on L2(]0, 1[,C),

domLα = W 1,2R,R(]0, 1[,C) =
{
u ∈W 1,2(]0, 1[,C) | u(0), u(1) ∈ R}

, Lα = i
d

dt
+ α,

is α+ πZ, we have min σ(Lα) ∩ [0,+∞) = α, hence

|v(z)| ≤ ce−α|Re z|, for |Re z| ≥ 1. (105)

If w(0) = 0, the function v vanishes at 0, and Dv(z) = O(|z|−1) for z → 0, so v2 belongs to
W 1,qR,R(Σ,C) for any q < 2, it solves ∂v2−2αv2 = 0, and as before we deduce that v = 0. Therefore,
we can assume that the real number w(0) is not zero.

Consider the function

f : Σ \ {0} → C, f(z) := e−αz/2v(z).

Since ∂v = αv,

∂f(z) = −αe−αz/2v(z) + e−αz/2∂v(z) = e−αz/2(−αv(z) + αv(z)) = 0,

so f is holomorphic on the interior of Σ. Moreover, f is smooth on Σ \ {0}, and

f(s) = e−αs/2v(s) ∈ iR for s < 0, f(s) = e−αs/2v(s) ∈ R for s > 0, (106)

f(s+ i) = e−αs/2v(s+ i)eαi/2 ∈ eαi/2R for every s ∈ R. (107)

Denote by
√
z the determination of the square root on C \ R− such that

√
z is real and positive

for z real and positive, so that
√
z =
√
z. By (104),

f(z) = −e−αz/2 1√
z
w(
√
z) =

w(0)√
z

+ o(|z|−1/2) for z → 0. (108)

Finally, by (105),

lim
|Re z|→+∞

f(z) = 0. (109)
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We claim that a holomorphic function with the properties listed above is necessarily zero. By
(108), setting z = ρeθi with ρ > 0 and 0 ≤ θ ≤ π,

f(z) =
w(0)√
ρ
e−θi/2 + o(|ρ|−1/2) for ρ→ 0.

Since w(0) is real and not zero, the above expansion at 0 shows that there exists ρ > 0 such that

f(z) ∈
⋃

θ∈]−π/2−α/4,α/4[

eθiR, ∀z ∈ (Bρ(0) ∩Σ) \ {0}. (110)

If f = 0 on R + i, then f is identically zero (by reflection and by analytic continuation), so we
may assume that f(R + i) 6= {0}. By (107) the set f(R + i) is contained in Reαi/2. Since f is
holomorphic on Int(Σ), it is open on such a domain, so we can find γ ∈]α/4, α/2[∪]α/2, 3α/4[ such
that f(Int(Σ)) ∩ Reγi 6= {0}. By (109) and (110) there exists z ∈ Σ \Bρ(0) such that

f(z) ∈ Reγi, |f(z)| = sup |f(Σ \ {0}) ∩ Reγi| > 0. (111)

By (106) and (107), z belongs to Int(Σ), but since f is open on Int(Σ) this fact contradicts (111).
Hence f = 0. Therefore v vanishes on Σ, concluding the proof of the invertibility of the operator
∂α.

If we change the sign of α and we invert the boundary conditions on R we still get an isomor-
phism. Indeed, if we set v(s, t) := u(−s, t) we have

∂−αv(s, t) = ∂v(s, t)− αv(s, t) = −∂u(−s, t) + αu(−s, t) = −∂αu(−s, t),

so the operators

∂α : X1,p
{0},((0),R),(R)(Σ,C) → Xp

{0}(Σ,C),

∂−α : X1,p
{0},(R,(0)),(R)(Σ,C) → Xp

{0}(Σ,C)

are conjugated. Therefore Proposition 5.17 implies:

5.18. Proposition. If 0 < α < π/2, the operator

∂−α : X1,p
{0},(R,(0)),(R)(Σ,C)→ Xp

{0}(Σ,C)

is an isomorphism.

5.6 Computation of the index

The computation of the Fredholm index of ∂A is based on the Liouville type results proved in the
previous section, together with the following additivity formula:

5.19. Proposition. Assume that A,A1, A2 ∈ C0(R× [0, 1],L(R2n,R2n)) satisfy

A1(+∞, t) = A2(−∞, t), A(−∞, t) = A1(−∞, t), A(+∞, t) = A2(+∞, t), ∀t ∈ [0, 1].

Let V1 = (V0, . . . , Vk), V2 = (Vk, . . . , Vk+h), V ′
1 = (V ′

0 , . . . , V
′
k′ ), V ′

2 = (Vk′ , . . . , V ′
k′+h′) be finite

ordered sets of linear subspaces of Rn such that Vj and Vj+1, V
′
j and V ′

j+1 are partially orthogo-
nal, for every j. Set V = (V0, . . . , Vk, Vk+1, . . . , Vk+h) and V ′ = (V ′

0 , . . . , V
′
k′ , V ′

k′+1, . . . , V
′
k′+h′).

Assume that (A1,V1,V
′

1 ) and (A2,V2,V
′
2 ) satisfy the assumptions of Theorem 5.9. Let S1 be a

set consisting of k points in R and k′ points in i+ R, let S2 be a set consisting of h points in R
and h′ points in i + R, and let S be a set consisting of k + h points in R and k′ + h′ points in
i+ R. For p ∈]1,+∞[ consider the semi-Fredholm operators

∂A1
: X1,p

S1,V1,V ′
1
(Σ,Cn)→ Xp

S1
(Σ,Cn), ∂A2

: X1,p
S2,V2,V ′

2
(Σ,Cn)→ Xp

S2
(Σ,Cn)

∂A : X1,p
S ,V ,V ′(Σ,Cn)→ Xp

S
(Σ,Cn).
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Then

ind ∂A = ind ∂A1
+ ind ∂A1

.

The proof is analogous to the proof of Theorem 3.2.12 in [Sch95], and we omit it. When there
are no jumps, that is S = ∅ and V = (V ), V ′ = (V ′), Theorem 5.11 shows that the index of the
operator

∂A : X1,p
∅,(V ),(V ′)(Σ,Cn) = W 1,p

N∗V,N∗V ′(Σ,Cn)→ Lp(Σ,Cn) = Xp
∅ (Σ,Cn)

is

ind ∂A = µ(Φ−N∗V,N∗V ′)− µ(Φ+N∗V,N∗V ′).

In the general case, Proposition 5.19 shows that

ind (∂A : X1,p
S ,V ,V ′(Σ,Cn)→ Xp

S
(Σ,Cn))

= µ(Φ−N∗V0, N
∗V ′

0)− µ(Φ+N∗Vk, N
∗V ′

k′ ) + c(V0, . . . , Vk;V ′
0 , . . . , V

′
k′ ),

(112)

where the correction term c satisfies the additivity formula

c(V0, . . . , Vk+h;V ′
0 , . . . , V

′
k′+h′) = c(V0, . . . , Vk;V ′

0 , . . . , V
′
k′) + c(Vk, . . . , Vk+h;V ′

k′ , . . . , V ′
k′+h′).

(113)

Since the Maslov index is in general a half-integer, and since we have not proved that the cokernel
of ∂A is finite dimensional, the correction term c takes values in (1/2)Z ∪ {−∞}. Actually, the
analysis of this section shows that c is always finite, proving that ∂A is Fredholm.

Clearly, we have the following direct sum formula

c(V0 ⊕W0, . . . , Vk ⊕Wk;V ′
0 ⊕W ′

0, . . . , V
′
k′ ⊕W ′

k′)

= c(V0, . . . , Vk;V ′
0 , . . . , V

′
k′ ) + c(W0, . . . ,Wk;W ′

0, . . . ,W
′
k′).

(114)

Note also that the index formula of Theorem 5.11 produces a correction term of the form

c(λ; ν) = µ(λ, ν), (115)

where λ and ν are asymptotically constant paths of Lagrangian subspaces on Cn. The Liouville
type results of the previous section imply that

c((0),Rn;Rn) = −n
2

= c(Rn, (0);Rn). (116)

Indeed, by Proposition 5.17 the operator

∂αI : X1,p
{0},((0),Rn),(Rn)(Σ,Cn)→ Xp

{0}(Σ,Cn)

is an isomorphism if 0 < α < π/2. By (80), the Maslov index of the path eiαtRn, t ∈ [0, 1], with
respect to Rn is −n/2. On the other hand, the Maslov index of the path eiαtiRn, t ∈ [0, 1], with
respect to Rn is 0 because the intersection is (0) for every t ∈ [0, 1]. Inserting the information
about the Fredholm and the Maslov index in (112), we find

0 = ind ∂αI =
n

2
+ c((0),Rn; (0)),

which implies the first identity in (116). The second one is proved in the same way by using
Proposition 5.18.
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5.20. Lemma. Let (V0, V1, . . . , Vk) be a (k + 1)-uple of linear subspaces of Rn, with Vj−1 and Vj

partially orthogonal for every j = 1, . . . , k, and let W be a linear subspace of Rn. Then

c(V0, . . . , Vk;W ) = c(W ;V0, . . . , Vk) = −1

2

k∑

j=1

(dimVj−1 + dimVj − 2 dimVj−1 ∩ Vj) .

Proof. Let us start by considering the case W = Rn. By the additivity formula (113),

c(V0, . . . , Vk;Rn) =

k∑

j=1

c(Vj−1, Vj ;Rn).

Since Vj−1 and Vj are partially orthogonal, Rn has an orthogonal splitting Rn = Xj
1⊕Xj

2⊕Xj
3⊕Xj

4

where Vj−1 = Xj
1⊕Xj

2 and Vj = Xj
1⊕Xj

3 . By the direct sum formula (114) and by formula (116),

c(Vj−1, Vj ;Rn) = c(Xj
1 , X

j
1 ;Xj

1) + c(Xj
2 , (0);Xj

2) + c((0), Xj
3 ;Xj

3) + c((0), (0);Xj
4)

= 0− 1

2
dimXj

2 −
1

2
dimXj

3 + 0 = −1

2
dimXj

2 ⊕Xj
3

Since

dimXj
2 ⊕Xj

3 = dimVj−1 + dimVj − 2 dimVj−1 ∩ Vj ,

the formula for c(V0, . . . , Vk;Rn) follows.
Now let λ : R→ L (n) be a continuous path of Lagrangian subspaces such that λ(s) = Rn for

s ≤ −1 and λ(s) = N∗W for s ≥ 1. By an easy generalization of the additivity formula (113) to
the case of non-constant Lagrangian boundary conditions,

c(N∗V0;λ) + c(V0, . . . , Vk;W ) = c(V0, . . . , Vk;Rn) + c(N∗Vk;λ). (117)

By (115), c(N∗V0;λ) = −µ(λ,N∗V0) and c(N∗Vk;λ) = −µ(λ,N∗Vk), so (117) leads to

c(V0, . . . , V
k;W ) = c(V0, . . . , V

k;Rn)− (µ(λ,N∗Vk)− µ(λ,N∗V0))

= c(V0, . . . , V
k;Rn)− h(N∗V0, N

∗Vk;Rn, N∗W ),

where h is the Hörmander index. By Lemma 5.2, the above Hörmander index vanishes, so we get
the desired formula for c(V0, . . . , Vk;W ). The formula for c(W ;V0, . . . , Vk) follows by considering
the change of variable v(s, t) = u(s, 1− t).

The additivity formula (113) leads to

c(V0, . . . , Vk;V ′
0 , . . . , V

′
k′) = c(V0, . . . , Vk;V ′

0) + c(Vk;V ′
0 , . . . , V

′
k′),

and the index formula in the general case follows from (112) and the above lemma. This concludes
the proof of Theorem 5.9.

5.7 Half-strips with jumping conormal boundary conditions

This section is devoted to the analogue of Theorem 5.9 on the half-strips

Σ+ := {z ∈ C | 0 ≤ Im z ≤ 1, Re z ≥ 0} and Σ− := {z ∈ C | 0 ≤ Im z ≤ 1, Re z ≤ 0} .

In the first case, we fix the following data. Let k, k′ ≥ 0 be integers, let

0 = s0 < s1 < · · · < sk < sk+1 = +∞, 0 = s′0 < s′1 < · · · < s′k′ < s′k′+1 = +∞,

be real numbers, and let W , V0, . . . , Vk, V ′
0 , . . . , V

′
k′ be linear subspaces of Rn such that Vj−1 and

Vj , V
′
j−1 and V ′

j , W and V0, W and V ′
0 , are partially orthogonal. We denote by V the (k+1)-uple

69



(V0, . . . , Vk), by V ′ the (k′ +1)-uple (V ′
0 , . . . , V

′
k′ ), and by S the set {s1, . . . , sk, s

′
1 + i, . . . , s′k′ + i}.

The Xp andX1,p norms on Σ+ are defined as in section 5.3, and so are the spacesXp
S

(Σ+,Cn) and

X1,p
S

(Σ+,Cn). Let X1,p
S ,W,V ,V ′(Σ+,Cn) be the completion of the space of maps u ∈ C∞

S ,c(Σ
+,Cn)

satisfying the boundary conditions

u(it) ∈ N∗W ∀t ∈ [0, 1], u(s) ∈ N∗Vj ∀s ∈ [sj , sj+1], u(s+ i) ∈ N∗V ′
j ∀s ∈ [s′j , s

′
j+1],

with respect to the norm ‖u‖X1,p(Σ+).
Let A ∈ C0([0,+∞]×[0, 1],L(R2n,R2n)) be such that A(+∞, t) is symmetric for every t ∈ [0, 1],

and denote by Φ+ : [0, 1]→ Sp(2n) the solutions of the linear Hamiltonian system

d

dt
Φ+(t) = iA(+∞, t)Φ+(t), Φ+(0) = I.

Then we have:

5.21. Theorem. Assume that Φ+(1)N∗Vk ∩N∗V ′
k′ = (0). Then the R-linear bounded operator

∂A : X1,p
S ,W,V ,V ′(Σ

+,Cn)→ Xp
S

(Σ+,Cn), ∂Au = ∂u+Au,

is Fredholm of index

ind ∂A =
n

2
− µ(Φ+N∗Vk, N

∗V ′
k′ )− 1

2
(dimV0 + dimW − 2 dimV0 ∩W )

−1

2
(dimV ′

0 + dimW − 2 dimV ′
0 ∩W )− 1

2

k∑

j=1

(dimVj−1 + dimVj − 2 dimVj−1 ∩ Vj)

−1

2

k′∑

j=1

(dim V ′
j−1 + dim V ′

j − 2 dimV ′
j−1 ∩ V ′

j ).

(118)

Proof. The proof of the fact that ∂A is semi-Fredholm is analogous to the case of the full strip,
treated in section 5.4. There remains compute the index. By an additivity formula analogous
to (113), it is enough to prove (118) in the case with no jumps, that is k = k′ = 0, V = (V0),
V ′ = (V ′

0 ). In this case, we have a formula of the type

ind ∂A = −µ(Φ+N∗V0, N
∗V ′

0 ) + c(W ;V0;V
′
0),

and we have to determine the correction term c.
Assume W = (0), so that N∗W = iRn. Let us compute the correction term c when V0

and V ′
0 are either (0) or Rn. We can choose the map A to be the constant map A(s, t) = αI, for

α ∈]0, π/2[, so that Φ+(t) = eiαt. The Kernel and co-kernel of ∂αI are easy to determine explicitly,
by separating the variables in the corresponding boundary value PDE’s:

(i) If V0 = V ′
0 = Rn, the kernel and co-kernel of ∂αI are both (0). Since µ(eiαtRn,Rn) = −n/2,

we have c((0);Rn;Rn) = −n/2.

(ii) If V0 = V ′
0 = (0), the kernel of ∂αI is iRne−αs, while its co-kernel is (0). Since µ(eiαtiRn, iRn) =

−n/2, we have c((0); (0); (0)) = n/2.

(iii) If either V0 = Rn and V ′
0 = (0), or V0 = (0) and V ′

0 = Rn, the kernel and co-kernel of ∂αI are
both (0). Since µ(eiαtRn, (0)) = µ(eiαt(0),Rn) = 0, we have c((0);Rn; (0)) = c((0); (0);Rn) =
0.

Now let W , V0, and V ′
0 be arbitrary (with W partially orthogonal to both V0 and V ′

0). Let
U ∈ U(n) be such that UN∗W = iRn. Then UN∗V0 = N∗W0 and UN∗V ′

0 = N∗W ′
0, where

W0 = (V0 ∩W )⊥ ∩ (V0 +W ), W ′
0 = (V ′

0 ∩W )⊥ ∩ (V ′
0 +W ).
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By using the change of variable v = Uu, we find

c(W ;V0;V
′
0) = c((0);W0;W

′
0), (119)

and we are reduced to compute the latter quantity. By an easy homotopy argument, using the fact
that the Fredholm index is locally constant in the operator norm topology, we can assume that W0

and W ′
0 are partially orthogonal. Then Rn has an orthogonal splitting Rn = X1 ⊕X2 ⊕X3 ⊕X4,

where

W0 = X1 ⊕X2, W ′
0 = X1 ⊕X3,

from which

N∗W0 = X1 ⊕X2 ⊕ iX3 ⊕ iX4, N∗W ′
0 = X1 ⊕ iX2 ⊕X3 ⊕ iX4.

Then the operator ∂αI decomposes as the direct sum of four operators, whose index is computed
in cases (i), (ii), and (iii) above. Indeed,

c((0);W0;W
′
0) =

1

2
dimX4 −

1

2
dimX1

=
1

2
codim(W0 +W ′

0)−
1

2
dimW0 ∩W ′

0 =
1

2
(n− dimW0 − dimW ′

0).

Since

dimW0 = dim(V0 +W )− dim V0 ∩W = dimV0 + dimW − 2 dimW0 ∩W,
dimW ′

0 = dim(V ′
0 +W )− dimV ′

0 ∩W = dimV ′
0 + dimW − 2 dimW ′

0 ∩W,

we find

c((0);W0;W
′
0) =

n

2
− 1

2
(dim V0 + dimW − 2 dimW0 ∩W )− 1

2
(dimV ′

0 + dimW − 2 dimW ′
0 ∩W ).

Together with (119), this proves formula (118).

We conclude this section by considering the case of the left half-strip Σ−. Let k, k′ ≥ 0,
V = (V0, . . . , Vk), and V ′ = (V ′

0 , . . . , V
′
k′ ) be as above. Let

−∞ = sk+1 < sk < · · · < s1 < s0 = 0, −∞ = s′k′+1 < s′k′ < · · · < s′1 < s′0 = 0,

be real numbers, and set S = {s1, . . . , sk, s
′
1 + i, . . . , s′k′ + i}.

Let X1,p
S ,W,V ,V ′(Σ−,Cn) be the completion of the space of maps u ∈ C∞

S ,c(Σ
−,Cn) satisfying

the boundary conditions

u(it) ∈ N∗W ∀t ∈ [0, 1], u(s) ∈ N∗Vj ∀s ∈ [sj+1, sj], u(s+ i) ∈ N∗V ′
j ∀s ∈ [s′j+1, s

′
j],

with respect to the norm ‖u‖X1,p(Σ−).
Let A ∈ C0([−∞, 0]×[0, 1],L(R2n,R2n)) be such that A(−∞, t) is symmetric for every t ∈ [0, 1],

and denote by Φ− : [0, 1]→ Sp(2n) the solutions of the linear Hamiltonian system

d

dt
Φ−(t) = iA(−∞, t)Φ−(t), Φ−(0) = I.

Then we have:

5.22. Theorem. Assume that Φ−(1)N∗Vk ∩N∗V ′
k′ = (0). Then the R-linear operator

∂A : X1,p
S ,W,V ,V ′(Σ

−,Cn)→ Xp
S

(Σ−,Cn), ∂Au = ∂u+Au, (120)
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is bounded and Fredholm of index

ind ∂A =
n

2
+ µ(Φ−N∗Vk, N

∗V ′
k′ )− 1

2
(dimV0 + dimW − 2 dimV0 ∩W )

−1

2
(dimV ′

0 + dimW − 2 dimV ′
0 ∩W )− 1

2

k∑

j=1

(dimVj−1 + dimVj − 2 dimVj−1 ∩ Vj)

−1

2

k′∑

j=1

(dim V ′
j−1 + dim V ′

j − 2 dimV ′
j−1 ∩ V ′

j ).

(121)

Indeed, notice that if u(s, t) = v(−s, t), then

−(∂u(s, t) +A(s, t)u(s, t)) = C(∂v(−s, t)− CA(s, t)Cv(−s, t)),

where C is denotes complex conjugacy. Then the operator (120) is obtained from the operator

∂B : X1,p
−S ,W,V ,V ′(Σ

+,Cn)→ Xp
−S

(Σ+,Cn), ∂Bv = ∂v +Bv,

where B(s, t) = −CA(−s, t)C, by left and right multiplication by isomorphisms. In particular,
the indices are the same. Then Theorem 5.22 follows from Theorem 5.21, taking into account the
fact that the solution Φ+ of

d

dt
Φ+(t) = iB(+∞, t)Φ+(t), Φ+(0) = I,

is Φ+(t) = CΦ−(t)C, so that

µ(Φ+N∗Vk, N
∗V ′

k′ ) = µ(CΦ−CN∗Vk, N
∗V ′

k′) = −µ(Φ−N∗Vk, N
∗V ′

k′ ).

5.8 Non-local boundary conditions

It is useful to dispose of versions of Theorems 5.9, 5.21, and 5.22, involving non-local boundary
conditions. In the case of the full strip Σ, let us fix the following data. Let k ≥ 0 be an integer,
let

−∞ = s0 < s1 < · · · < sk < sk+1 = +∞

be real numbers, and set S := {s1, . . . , sk, s1 + i, . . . , sk + i}. Let W0,W1, . . . ,Wk be linear
subspaces of Rn × Rn such that Wj−1 and Wj are partially orthogonal, for j = 1, . . . , k, and set
W = (W0, . . . ,Wk).

The space X1,p
S ,W (Σ,Cn) is defined as the completion of the space of all u ∈ C∞

S ,c(Σ,Cn) such
that

(u(s), u(s+ i)) ∈ N∗Wj , ∀s ∈ [sj , sj+1], j = 0, . . . , k,

with respect to the norm ‖u‖X1,p(Σ).

Let A ∈ C0(R× [0, 1],L(R2n,R2n)) be such that A(±∞, t) ∈ Sym(2n,R) for every t ∈ [0, 1], and
define the symplectic paths Φ+,Φ− : [0, 1] → Sp(2n) as the solutions of the linear Hamiltonian
systems

d

dt
Φ±(t) = iA(±∞, t)Φ±(t), Φ±(0) = I.

Denote by C the complex conjugacy, and recall from section 5.1 that Φ ∈ L(R2n,R2n) is symplectic
if and only if graphCΦ is a Lagrangian subspace of (R2n×R2n, ω0×ω0). Then we have the following:
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5.23. Theorem. Assume that graphCΦ−(1) ∩ N∗W0 = (0) and graphCΦ+(1) ∩ N∗Wk = (0).
Then for every p ∈]1,+∞[ the R-linear operator

∂A : X1,p
S ,W (Σ,Cn)→ Xp

S
(Σ,Cn), u 7→ ∂u+Au,

is bounded and Fredholm of index

ind ∂A = µ(N∗W0, graphCΦ−)− µ(N∗Wk, graphCΦ+)

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj).

Proof. Given u : Σ→ Cn define ũ : Σ→ C2n by

ũ(z) := (u(z/2), u(z/2 + i)).

The map u 7→ ũ determines a linear isomorphism

F : X1,p
S ,W (Σ,Cn)

∼=−→ X1,p
S ′,W ,W ′(Σ,C2n),

where S ′ = {2s1, . . . , 2sk, 2s1 + i, . . . , 2sk + i}, W ′ is the (k + 1)-uple (∆Rn , . . . ,∆Rn), and we
have used the identity

N∗∆Rn = graphC = {(w,w) | w ∈ Cn} .

The map v 7→ ṽ/2 determines an isomorphism

G : Xp
S

(Σ,Cn)
∼=−→ Xp

S ′(Σ,C2n).

The composition G ◦ ∂A ◦ F−1 is the operator

∂Ã : X1,p
S ′,W ,W ′(Σ,C2n) −→ Xp

S ′(Σ,C2n), u 7→ ∂u+ Ãu,

where

Ã(z) :=
1

2
(A(z/2)⊕ CA(z/2 + i)C) .

Since

Ã(±∞, t) =
1

2
(A(±∞, t/2)⊕ CA(±∞, 1− t/2)C) ,

we easily see that the solutions Φ̃± of

d

dt
Φ̃±(t) = iÃ(±∞, t)Φ̃±(t), Φ̃±(0) = I,

are given by

Φ̃±(t) = Φ±(t/2)⊕ CΦ±(1− t/2)Φ(1)−1C.

The above formula implies

Φ̃±(t)−1N∗∆Rn = graphCΦ±(1)Φ±(1− t/2)−1Φ±(t/2). (122)

For t = 1 we get

Φ̃−(1)N∗W0 ∩N∗∆Rn = Φ̃−(1)[N∗W0 ∩ graphCΦ−(1)] = (0),

Φ̃+(1)N∗Wk ∩N∗∆Rn = Φ̃+(1)[N∗Wk ∩ graphCΦ+(1)] = (0),
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so the transversality hypotheses of Theorem 5.9 are fulfilled. By this theorem, the operator
∂A = G−1 ◦ ∂Ã ◦ F is Fredholm of index

ind ∂A = ind ∂Ã = µ(Φ̃−N∗W0, N
∗∆Rn)− µ(Φ̃+N∗Wk, N

∗∆Rn)

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj).
(123)

The symplectic paths t 7→ Φ±(1)Φ±(1 − t/2)−1Φ±(t/2) and t 7→ Φ±(t) are homotopic by means
of the symplectic homotopy

(λ, t) 7→ Φ±(1)Φ±
(

1 + λ

2
− 1− λ

2
t

)−1

Φ±
(

1 + λ

2
t

)
,

which fixes the end-points I and Φ±(1). By the symplectic invariance and the homotopy invariance
of the Maslov index we deduce from (122) that

µ(Φ̃−N∗W0, N
∗∆Rn) = µ(N∗W0, Φ̃

−(·)−1N∗∆Rn)

= µ(N∗W0, graphCΦ−(1)Φ−(1 − ·/2)−1Φ−(·/2)) = µ(N∗W0, graphCΦ−).
(124)

Similarly,

µ(Φ̃+N∗Wk, N
∗∆Rn) = µ(N∗Wk, graphCΦ+). (125)

The conclusion follows from (123), (124), and (125).

In the case of the right half-strip Σ+, we fix an integer k ≥ 0, real numbers

0 = s0 < s1 < · · · < sk < sk+1 = +∞,

a linear subspace V0 ⊂ Rn and a (k + 1)-uple W = (W0, . . . ,Wk) of linear subspaces of Rn × Rn,
such that W0 and V0×V0 are partially orthogonal, and so are Wj−1 and Wj , for every j = 1, . . . , k.

Set S = {s1, . . . , sk, s1 + i, . . . , sk + i}, and let X1,p
S ,V0,W (Σ+,Cn) be the completion of the space

of maps u ∈ C∞
S ,c(Σ

+,Cn) such that

u(it) ∈ V0 ∀t ∈ [0, 1], (u(s), u(s+ i)) ∈ N∗Wj , ∀s ∈ [sj , sj+1], j = 0, . . . , k,

with respect to the norm ‖u‖X1,p(Σ+).
Let A ∈ C0([0,+∞] × [0, 1],L(R2n,R2n)) be such that A(+∞, t) ∈ Sym(2n,R) for every t ∈

[0, 1], and let Φ+ : [0, 1]→ Sp(2n) be the solution of the linear Hamiltonian systems

d

dt
Φ+(t) = iA(+∞, t)Φ+(t), Φ+(0) = I.

Then we have:

5.24. Theorem. Assume that graphCΦ+(1) ∩ N∗Wk = (0). Then for every p ∈]1,+∞[ theR-linear operator

∂A : X1,p
S ,V0,W (Σ+,Cn)→ Xp

S
(Σ+,Cn), u 7→ ∂u+Au,

is bounded and Fredholm of index

ind ∂A =
n

2
− µ(N∗Wk, graphCΦ+)− 1

2
(dimW0 + 2 dimV0 − 2 dimW0 ∩ (V0 × V0))

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj).
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Proof. By the same argument used in the proof of Theorem 5.23, the operator ∂A is Fredholm
and has the same index of the operator

∂Ã : X1,p
S ′,V0×V0,W ,W ′(Σ

+,C2n)→ Xp
S ′(Σ

+,C2n), u 7→ ∂u+ Ãu,

where S ′ := {2s1, . . . , 2sk, 2s1 + i, . . . , 2sk + i}, W ′ is the (k + 1)-uple (∆Rn , . . . ,∆Rn), and

Ã(z) :=
1

2
(A(z/2)⊕ CA(z/2 + i)C).

By Theorem 5.21 and by (125), the index of this operator is

ind ∂Ã = n− µ(N∗Wk, graphCΦ+)− 1

2
(dim ∆Rn + dimV0 × V0 − 2 dim∆Rn ∩ (V0 × V0))

−1

2
(dimW0 + dimV0 × V0 − 2 dimW0 ∩ (V0 × V0))

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj)

= n− µ(N∗Wk, graphCΦ+)− n

2
− 1

2
(dimW0 + 2 dimV0 − 2 dimW0 ∩ (V0 × V0))

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj).

The desired formula follows.

In the case of the left half-strip Σ−, let k, V0, W be as above, and let S = {s1, . . . , sk, s1 +
i, . . . , sk + i} with

0 = s0 > s1 > · · · > sk > sk+1 = −∞.

Let X1,p
S ,V0,W (Σ−,Cn) the completion of the space of all maps u ∈ C∞

S ,c(Σ
−,Cn) such that

u(it) ∈ V0 ∀t ∈ [0, 1], (u(s), u(s+ i)) ∈ N∗Wj , ∀s ∈ [sj+1, sj ], j = 0, . . . , k,

with respect to the norm ‖u‖X1,p(Σ−).
Let A ∈ C0([−∞, 0]×[0, 1],L(R2n,R2n)) be such that A(−∞, t) is symmetric for every t ∈ [0, 1],

and let Φ− : [0, 1]→ Sp(2n) be the solution of the linear Hamiltonian systems

d

dt
Φ−(t) = iA(−∞, t)Φ+(t), Φ−(0) = I.

Then we have:

5.25. Theorem. Assume that graphCΦ−(1) ∩ N∗Wk = (0). Then for every p ∈]1,+∞[ theR-linear operator

∂A : X1,p
S ,V0,W (Σ−,Cn)→ Xp

S
(Σ−,Cn), u 7→ ∂u+Au,

is bounded and Fredholm of index

ind ∂A =
n

2
+ µ(N∗Wk, graphCΦ−)− 1

2
(dimW0 + 2 dimV0 − 2 dimW0 ∩ (V0 × V0))

−1

2

k∑

j=1

(dimWj−1 + dimWj − 2 dimWj−1 ∩Wj).
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5.9 Coherent orientations

As noticed in [AS06b, section 1.4], the problem of giving coherent orientations for the spaces of
maps arising in Floer homology on cotangent bundles is somehow simpler than in the case of a
general symplectic manifolds, treated in [FH93]. This fact remains true if we deal with Cauchy-
Riemann type operators on strips and half-strips with jumping conormal boundary conditions.
We briefly discuss this issue in the general case of nonlocal boundary conditions on the strip, the
case of the half-strip being similar (see [AS06b, section 3.2]).

We recall that the space Fred(E,F ) of Fredholm linear operators from the real Banach space E
to the real Banach space F is the base space of a smooth real non-trivial line-bundle det(Fred(E,F )),
with fibers

det(A) := Λmax(kerA)⊗ (Λmax(cokerA))∗, ∀A ∈ Fred(E,F ),

where Λmax(V ) denotes the component of top degree in the exterior algebra of the finite-dimensional
vector space V (see [Qui85]).

Let us recall the setting from section 5.8. We fix the data k ≥ 0, S = {s1, . . . , sk, s1+i, . . . , sk+
i}, with s1 < · · · < sk, and W = (W0, . . . ,Wk), where W0, . . . ,Wk are linear subspaces of Rn×Rn,
such that Wj−1 is partially orthogonal to Wj , for j = 1, . . . , k. Let A± : [0, 1] → Sym(Rn) be
continuous paths of symmetric matrices such that the linear problems

{
w′(t) = iA−(t)w(t),
(w(0), Cw(1)) ∈ N∗W0,

{
w′(t) = iA+(t)w(t),
(w(0), Cw(1)) ∈ N∗Wk,

have only the trivial solution w = 0. Such paths are refereed to as non-degenerate paths (with
respect to W0 and Wk, respectively). Fix some p > 1, and let DS ,W (A−, A+) be the space of
operators of the form

∂A : X1,p
S ,W (Σ,Cn)→ Xp

S
(Σ,Cn), u 7→ ∂u+Au,

where A ∈ C0(R × [0, 1],L(R2n,R2n)) is such that A(±∞, t) = A±(t) for every t ∈ [0, 1]. By
Theorem 5.23, DS ,W (A−, A+) is a subset of Fred(X1,p

S ,W (Σ,Cn), Xp
S

(Σ,Cn)). It is actually a

convex subset, so the restriction of the determinant bundle to DS ,W (A−, A+) - that we denote
by det(DS ,W (A−, A+)) - is trivial.

Let S be the family of all subsets of Σ consisting of exactly k pairs of opposite boundary
points. It is a k-dimensional manifold, diffeomorphic to an open subsets of Rk. An orientation
of det(DS ,W (A−, A+)) for a given S in S uniquely determines an orientation for all choices of
S ′ ∈ S. Indeed, the disjoint unions

⊔

S∈S

X1,p
S ,W (Σ,Cn),

⊔

S∈S

Xp
S

(Σ,Cn),

define locally trivial Banach bundles over S, and the operators ∂A define a Fredholm bundle-
morphism between them. Since S is connected and simply connected, an orientation of the
determinant space of this operator between the fibers of a given point S induces an orientation
of the determinant spaces of the operators over each S ′ ∈ S.

The space of all Fredholm bundle-morphisms between the above Banach bundles induced by
operators of the form ∂A with fixed asymptotic paths A− and A+ is denoted by DW (A−, A+). An
orientation of the determinant bundle over this space of Fredholm bundle-morphisms is denoted
by oW (A−, A+).

Let W = (W0, . . . ,Wk), W ′ = (Wk, . . . ,Wk+k′ ) be vectors consisting of consecutively partially
orthogonal linear subspaces of Rn × Rn, and set

W #W
′ := (W0, . . . ,Wk+k′ ).
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Let A0, A1, A2 be non-degenerate paths with respect to W0, Wk, and Wk+k′ , respectively. Then
orientations oW (A0, A1) and oW ′(A1, A2) of det(DW (A0, A1)) and det(DW ′(A1, A2)), respectively,
determine in a canonical way a glued orientation

oW (A0, A1)# oW ′(A1, A2)

of det(DW #W ′(A0, A2)). The construction is analogous to the one described in [FH93, section
3]. This way of gluing orientations is associative. A coherent orientation is a set of orientations
oW (A−, A+) for each choice of compatible data such that

oW #W ′(A0, A1) = oW (A0, A1)# oW ′(A1, A2),

whenever the latter glued orientation is well-defined. The proof of the existence of a coherent
orientation is analogous to the proof of Theorem 12 in [FH93].

The choice of such a coherent orientation in this linear setting determines orientations for all
the nonlinear objects we are interested in, and such orientations are compatible with gluing. As
mentioned above, the fact that we are dealing with the cotangent bundle of an oriented manifold
makes the step from the linear setting to the nonlinear one easier. The reason is that we can
fix once for all special symplectic trivializations of the bundle x∗(TT ∗M), for every solution x of
our Hamiltonian problem. In fact, one starts by fixing an orthogonal and orientation preserving
trivialization of (π ◦x)∗(TM), and then considers the induced unitary trivialization of x∗(TT ∗M).
Let u be an element in some space M (x, y), consisting of the solutions of a Floer equation on
the strip Σ which are asymptotic to two Hamiltonian orbits x and y and satisfy suitable jumping
co-normal boundary conditions. Then we can find a unitary trivialization of u∗(TT ∗M) which
converges to the given unitary trivializations of x∗(TT ∗M) and y∗(TT ∗M). We may use such a
trivialization to linearize the problem, producing a Fredholm operator in DS ,W (A−, A+). Here
A−, A+ are determined by the fixed unitray trivializations of x∗(TT ∗M) and y∗(TT ∗M). The
orientation of the determinant bundle over DS ,W (A−, A+) then induced an orientation of the
tangent space of M (x, y) at u, that is an orientation of M (x, y). See [AS06b, section 1.4] for more
details.

When the manifold M is not orientable, one cannot fix once for all trivializations along the
Hamiltonian orbits, and the construction of coherent orientations requires understanding the effect
of changing the trivialization, as in [FH93, Lemma 15]. The Floer complex and the pair-of-pants
product are still well-defined over integer coefficients, whereas the Chas-Sullivan loop product
requires Z2 coefficients.

5.10 Linearization

In this section we recall the nonlinear setting which allows to see the various spaces of solutions of
the Floer equation considered in this paper as zeroes of sections of Banach bundles. By showing
that the fiberwise derivatives of such sections are conjugated to linear perturbed Cauchy-Riemann
operators on a strip with jumping conormal boundary conditions, we prove that these spaces of
solutions are generically manifolds, and we compute their dimension. We treat with some details
the case of M Ω

Υ , the space of solutions of the Floer equation on the holomorphic triangle, defining
the triangle product on Floer homology. The functional setting for the other spaces of solutions
is similar, so in the other cases we mainly focus on the dimension computation.

The space M Ω
Υ . Let us consider the model case of M Ω

Υ (x1, x2; y), where x1 ∈ PΩ(H1), x2 ∈
PΩ(H2), and y ∈PΩ(H1#H2) (see section 3.3). This is a space of solutions of the Floer equation
on the Riemann surface with boundary ΣΩ

Υ, described as a strip with a slit in section 3.2.
Let us fix some p ∈]2,+∞[, and let us consider the space W Ω

Υ = W Ω
Υ (x1, x2; y) of maps

u : ΣΩ
Υ → T ∗M mapping the boundary of ΣΩ

Υ into T ∗
q0
M , which are of Sobolev class W 1,p on
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compact subsets of ΣΩ
Υ, for which there exists s0 > 0 such that

u(s, t− 1) = expx1(t) ζ1(s, t), ∀(s, t) ∈]−∞,−s0[×[0, 1],

u(s, t) = expx2(t) ζ2(s, t), ∀(s, t) ∈]−∞,−s0[×[0, 1],

u(s, 2t− 1) = expy(t) ζ(s, t), ∀(s, t) ∈]s0,+∞[×[0, 1],

for suitable W 1,p sections ζ1, ζ2, ζ of the vector bundles

x∗1(TT
∗M)→]−∞,−s0[×[0, 1], x∗2(TT

∗M)→]−∞,−s0[×[0, 1], y ∗ (TT ∗M)→]s0,+∞[×[0, 1].

Here “exp” is the exponential map given by some metric on T ∗M , but the space W Ω
Υ does not

depend on the choice of this metric. Notice also that when we say “of Sobolev class W 1,p on
compact subsets of ΣΩ

Υ”, we consider ΣΩ
Υ endowed with its smooth structure (and not with the

structure endowed by the singular coordinate z = s+ it). Since p > 2, the space W Ω
Υ is an infinite

dimensional manifold modeled on the real Banach space

W 1,p
iRn(ΣΩ

Υ,Cn) = W 1,p
0 (ΣΩ

Υ,Rn)⊕W 1,p(ΣΩ
Υ, iRn).

Notice that by our definition of the smooth structure of ΣΩ
Υ, a Banach norm of W 1,p

iRn(ΣΩ
Υ,Cn) is

‖v‖p1 :=

∫

|Im z|<1, |z|>1

(|v(z)|p + |Dv(z)|p) ds dt+
∫

|z|<1

( |v(z)|p
|z| + |Dv(z)|p|z|p/2−1

)
ds dt.

(126)

Let E Ω
Υ be the Banach bundle over W Ω

Υ whose fiber at u is the space of u∗(TT ∗M)-valued
J-anti-linear one-forms on ΣΩ

Υ of class Lp. A smooth trivialization (with suitable asymptotics and

boundary conditions) of u∗(TT ∗M) allows to identify the fiber of E Ω
Υ at u with Ω0,1

Lp (ΣΩ
Υ,Cn), the

Banach space of Cn-valued complex anti-linear one-forms on ΣΩ
Υ of class Lp. Again, if an element

of w ∈ Ω0,1
Lp (ΣΩ

Υ,Cn) is expressed in terms of the singular global coordinate z = s+ it as

w = w0(z)ds− iw0(z)dt = w0(z) dz, w0 : ΣΩ
Υ → Cn,

its Lp-norm on ΣΩ
Υ is equivalent to

‖w‖p0 :=

∫

|Im z|<1, |z|>1

|w0(z)|p ds dt+
∫

|z|<1

|w0(z)|p|z|p/2−1 ds dt. (127)

The perturbed Cauchy-Riemann operator

u 7→ DJu+ FJ,H(u),

defines a smooth section DJ,H of the Banach bundle E Ω
Υ . Elliptic regularity (Theorem 5.3) and

exponential estimates at infinity (Proposition 5.12) allow to prove that M Ω
Υ is the set of zeroes of

the section DJ,H : W Ω
Υ → E Ω

Υ .
By choosing a unitary trivialization of u∗(TT ∗M), the fiberwise derivative of DJ,H at u ∈M Ω

Υ

is easily shown to be conjugated to an operator of the form

D +G : W 1,p
iRn(ΣΩ

Υ,Cn)→ Ω0,1
Lp (ΣΩ

Υ,Cn), v 7→ 1

2
(Dv + iDv ◦ j) +Gv,

j denoting the complex structure on ΣΩ
Υ. Using the singular coordinate z = s + it, the Cauchy-

Riemann operator D and the multiplication operator G take the form

Dv =
1

2
(∂sv + i∂tv) ds−

i

2
(∂sv + i∂tv) dt, (Gv)(z) =

1

2
A(z)v(z)ds− i

2
A(z)v(z)dt,
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where A is a smooth map taking value into L(R2n,R2n). Since u(s, t − 1) converges to x1(t) for
s → −∞, u(s, t) converges to x2(t) for s → −∞, and u(s, 2t− 1) converges to y(t) for s → +∞,
for any t ∈ [0, 1], the L(R2n,R2n)-valued function A has the following asymptotics:

A(s+ (t− 1)i)→ A−
1 (t), A(s+ ti)→ A−

2 (t) for s→ −∞, A(s+ (2t− 1)i)→ A+(t), for s→ +∞,

for any t ∈ [0, 1], where A−
1 (t), A−

2 (t), and A+(t) are symmetric matrices such that the solutions
of the linear Hamiltonian systems

d

dt
Ψ−

1 (t) = iA−
1 (t)Ψ−

1 (t),
d

dt
Ψ−

2 (t) = iA−
2 (t)Ψ−

2 (t),

d

dt
Ψ+(t) = 2iA+(t)Ψ+(t), Ψ−

1 (0) = Ψ−
2 (0) = Ψ+(0) = I,

are conjugated to the differential of the Hamiltonian flows along x1, x2, and y:

Ψ−
1 (t) ∼ Dxφ

H1(1, x1(0)), Ψ−
2 (t) ∼ Dxφ

H2 (1, x2(0)), Ψ+(t) ∼ Dxφ
H1#H2(1, y(0)).

Then, by the definition of the Maslov index µΩ in terms of the relative Maslov index µ, we have

µΩ(x1) = µ(Ψ−
1 iRn, iRn)− n

2
, µΩ(x2) = µ(Ψ−

2 iRn, iRn)− n

2
, µΩ(y) = µ(Ψ+iRn, iRn)− n

2
.

(128)

We claim that the linear operator

D +G : W 1,p
iRn(ΣΩ

Υ,Cn)→ Ω0,1
Lp (ΣΩ

Υ,Cn).

is Fredholm of index

ind (D +G) = µΩ(x1) + µΩ(x2)− µΩ(y).

In order to deduce this claim from Theorem 5.9, we show that the operator D +G is conjugated
to a linear perturbed Cauchy-Riemann operator on a strip with jumping Lagrangian boundary
conditions, in the sense of section 5.3.

Indeed, given v : ΣΩ
Υ → Cn let us consider the C2n-valued map ṽ on Σ = {0 ≤ Im z ≤ 1}

defined as

ṽ(z) := (v(z), v(z)).

The map v 7→ ṽ gives us an isomorphism

W 1,p
iRn(ΣΩ

Υ,Cn) ∼= X1,p
S ,V ,V ′(Σ,C2n),

where

S = {0}, V = ((0),∆Rn), V
′ = (0),

∆Rn being the diagonal subspace of Rn×Rn, and (0) being the zero subspace of R2n. This follows
from comparing the norm (126) to the X1,p

S
norm by means of (87), (88), (90) and (91). On

the other hand, by comparing the norm (127) to the Xp
S

norm by (89), we see that the map

w 7→ 2w̃[∂s] gives us an isomorphism

Ω0,1
Lp (ΣΩ

Υ,Cn) ∼= Xp
S

(Σ,C2n).

It is easily seen that composing the operator D + G by these two isomorphisms produces the
operator

∂Ã : X1,p
S ,V ,V ′(Σ,C2n)→ Xp

S
(Σ,C2n), u 7→ ∂u+ Ãu,
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where Ã(z) = CA(z)C ⊕A(z), C denoting complex conjugacy on Cn.
By Theorem 5.9, the above operator ∂Ã - hence the original operator D +G - is Fredholm of

index

ind (∂Ã) = µ(Φ−iR2n, iR2n)− µ(Φ+N∗∆Rn , iR2n)− n

2
, (129)

where Φ−,Φ+ : [0, 1]→ Sp(4n) solve the linear Hamiltonian systems

d

dt
Φ−(t) = iÃ(−∞, t)Φ−(t),

d

dt
Φ+(t) = iÃ(+∞, t)Φ+(t), Φ−(0) = Φ+(0) = I.

Since Ã(−∞, t) = CA1(−t)C ⊕A2(t), we have Φ−(t) = CΨ−
1 (−t)C ⊕Ψ2(t), and

µ(CΨ−
1 (−·)CiRn, iRn) = µ(CΨ−

1 (−·)iRn, iRn) = −µ(Ψ−
1 (−·)iRn, CiRn)

= −µ(Ψ−
1 (−·)iRn, iRn) = µ(Ψ−

1 iRn, iRn),

where we have used the fact that C is a symplectic isomorphism from (R2n, ω0) to (R2n,−ω0),
and the fact that the Maslov index changes sign when changing the sign of the symplectic form,
or when reversing the parameterization of the Lagrangian paths. By the additivity of the Maslov
index and by (128) we get

µ(Φ−iR2n, iR2n) = µ(CΨ−
1 (−·)CiRn, iRn) + µ(Ψ2iRn, iRn)

= µ(Ψ−
1 iRn, iRn) + µ(Ψ−

2 iRn, iRn) = µΩ(x1) + µΩ(x2) + n.
(130)

On the other hand, Ã(+∞, t) = CA+((1− t)/2)C ⊕A((t+ 1)/2), which implies

Φ+(t) = CΨ+((1 − t)/2)Ψ+(1/2)−1C ⊕Ψ+((1 + t)/2)Ψ+(1/2)−1.

Since N∗∆Rn = graphC = {(z, z) | z ∈ Cn}, we easily find

Φ+(t)N∗∆Rn = graphΓ(t)C, with Γ(t) := Ψ+

(
1 + t

2

)
Ψ+

(
1− t

2

)−1

. (131)

The symplectic paths Γ and Ψ+ are homotopic by the symplectic homotopy

(λ, t) 7→ Ψ+

(
t+

λ

2
(1− t)

)
Ψ+

(
λ

2
(1− t)

)−1

,

which leaves the end-points Γ(0) = Ψ+(0) = I and Γ(1) = Ψ+(1) fixed. Therefore, by the
homotopy invariance of the Maslov index, by (78) and by (128) we have

µ(Φ+N∗∆Rn , iR2n) = µ(graphΓC, iR2n) = µ(graphΨ+C, iR2n)

= µ(Ψ+iRn, iRn) = µΩ(y) +
n

2
.

(132)

Therefore, by (129), (130), and (132), we conclude that

ind (∂Ã) = µΩ(x1) + µΩ(x2) + n−
(
µΩ(y) +

n

2

)
− n

2
= µΩ(x1) + µΩ(x2)− µΩ(y).

Hence we have proved that the fiberwise derivative of the section DJ,H : W Ω
Υ → E Ω

Υ is a Fredholm
operator of index µΩ(x1) + µΩ(x2)− µΩ(y).

For a generic choice of the ω-compatible almost complex structure J , the section DJ,H is
transverse to the zero-section (the proof of transversality results of this kind is standard, see
[FHS96]). Let us fix such an almost complex structure J . Then, M Ω

Υ - if non-empty - is a smooth
submanifold of W Ω

Υ of dimension µΩ(x1)+µΩ(x2)−µΩ(y). This proves the Ω part of Proposition
3.4.
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The space M Λ
Υ . Let us study the space of solutions M Λ

Υ (x1, x2; y), where x1 ∈PΛ(H1), x2 ∈
PΛ(H2), and y ∈ PΛ(H1#H2) (see section 3.3). It is a space of solutions of the Floer equation
on the pair-of-pants Riemann surface ΣΛ

Υ, described as a quotient of a strip with a slit in section
3.2.

Arguing as in the case of M Ω
Υ , it is easily seen that the space M Λ

Υ is the set of zeroes of a
smooth section of a Banach bundle, whose fiberwise derivative at some u ∈M Λ

Υ is conjugated to
an operator of the form

D +G : W 1,p(ΣΛ
Υ,Cn)→ Ω0,1

Lp (ΣΛ
Υ,Cn), v 7→ 1

2
(Dv + iDv ◦ j) +Gv,

where

(Gv)(z) =
1

2
A(z)v(z) ds− i

2
A(z)v(z) dt.

The smooth map A : ΣΛ
Υ → L(R2n,R2n) has the following asymptotics

A(s+ (t− 1)i)→ A−
1 (t), A(s+ ti)→ A−

2 (t) for s→ −∞, A(s+ (2t− 1)i)→ A+(t), for s→ +∞,

for any t ∈ [0, 1], where A−
1 (t), A−

2 (t), and A+(t) are symmetric matrices such that the solutions
of the linear Hamiltonian systems

d

dt
Ψ−

1 (t) = iA−
1 (t)Ψ−

1 (t),
d

dt
Ψ−

2 (t) = iA−
2 (t)Ψ−

2 (t),

d

dt
Ψ+(t) = 2iA+(t)Ψ+(t), Ψ−

1 (0) = Ψ−
2 (0) = Ψ+(0) = I,

are conjugated to the differential of the Hamiltonian flows along x1, x2, and y:

Ψ−
1 (t) ∼ Dxφ

H1(1, x1(0)) Ψ−
2 (t) ∼ Dxφ

H2 (1, x2(0)) Ψ+(t) ∼ Dxφ
H1#H2(1, y(0)).

Then, by the relationship (79) between the Conley-Zehnder index and the relative Maslov index,
we have

µΛ(x1) = µCZ(Ψ−
1 ) = µ(N∗∆, graphCΨ−

1 ), µΛ(x2) = µCZ(Ψ−
2 ) = µ(N∗∆, graphCΨ−

2 ), (133)

µΛ(y) = µCZ(Ψ+) = µ(N∗∆, graphCΨ+). (134)

Using again the transformation ṽ(z) := (v(z), v(z)), the operator D + G is easily seen to be
conjugated to the operator

∂Ã : X1,p
S ,W (Σ,C2n)→ Xp

S
(Σ,C2n), u 7→ ∂u+ Ãu,

where

S = {0, i}, W = (W0,W1) = (∆R2n ,∆Rn ×∆Rn), Ã(z) = CA(z)C ⊕A(z).

Notice that the intersection

W0 ∩W1 = {(ξ, ξ, ξ, ξ) | ξ ∈ Rn}

is an n-dimensional linear subspace of R4n. Then by Theorem 5.23, the operator ∂Ã is Fredholm
of index

ind ∂Ã = µ(N∗W0, graphCΦ−)− µ(N∗W1, graphCΨ+)− n, (135)

where the symplectic paths Φ−, Φ+ : [0, 1]→ Sp(4n) are related to Ψ−
1 , Ψ−

2 , Ψ+ by the identities

Φ−(t) = CΨ−
1 (−t)C ⊕Ψ−

2 (t), Φ+(t) = CΨ+((1 − t)/2)Ψ+(1/2)−1C ⊕Ψ+((1 + t)/2)Ψ+(1/2)−1.
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By the additivity property of the Maslov index with respect to the symplectic splitting of C4n

given by Cn × (0)× Cn × (0) times (0)× Cn × (0)× Cn, by the fact that the action of C changes
the sign of the Maslov index and leaves any conormal space invariant, and by (133), we have

µ(N∗W0, graphCΦ−) = µ(N∗∆R2n , graphCΦ−) = µ(N∗∆Rn , graphΨ−
1 (−·)C)

+µ(N∗∆Rn , graphCΨ−
2 ) = µ(N∗∆Rn , graphCΨ−

1 ) + µ(N∗∆Rn , graphCΨ−
2 )

= µΛ(x1) + µΛ(x2).

(136)

We recall from (131) that Φ+(t)N∗Rn is the graph of Γ(t)C, where the symplectic path Γ is ho-
motopic to Ψ+ by a symplectic homotopy which fixes the end-points. Together with the skew-
symmetry of the Maslov index, and identities (78), (79), (134), this implies

µ(N∗W1, graphCΦ+) = µ(N∗∆Rn ×N∗∆Rn , graphCΦ+) = −µ(graphCΦ+, N∗∆Rn ×N∗∆Rn)

= µ(Φ+N∗∆Rn , N∗∆Rn) = µ(graphΓC,N∗∆Rn) = µ(graphΨ+C,N∗∆Rn) = µΛ(y).

(137)

Identities (135), (136), and (137), allow to conclude that

ind ∂Ã = µΛ(x1) + µΛ(x2)− µΛ(y)− n.

A standard transversality argument then shows that for a generic choice of J the set M Λ
Υ (x1, x2; y)

- if non-empty - is a smooth manifold of dimension µΛ(x1) + µΛ(x2)− µΛ(y)− n, concluding the
proof of Proposition 3.4.

The space M Θ
∂ . Let x− and x+ be elements of PΘ(H1 ⊕ H2) (see section 3.4). The space

M Θ
∂ (x−, x+) is easily seen to be the set of zeroes of a section of a Banach bundle whose fiberwise

derivative at some u ∈M Θ
∂ is conjugated to the operator

∂A : W 1,p

N∗∆ΘRn
(Σ,C2n) =

{
v ∈ W 1,p(Σ,C2n) | (u(s), u(s+ i)) ∈ N∗∆ΘRn ∀s ∈ R}

→ Lp(Σ,C2n),

where

∆ΘRn = ∆ΘRn = {(ξ, ξ, ξ, ξ) | ξ ∈ Rn} ⊂ R4n, (138)

and the smooth map A : Σ→ L(R4n,R4n) has asymptotics

A(s, t)→ A−(t) ∈ Sym(4n) for s→ −∞, A(s, t)→ A+(t) ∈ Sym(4n) for s→ +∞,

such that the symplectic paths Φ−,Φ+ solving

d

dt
Φ±(t) = iA±(t)Φ±(t), Φ±(0) = I,

are conjugated to the differential of the flow φH1⊕H2 along x− and x+,

Φ−(t) ∼ Dxφ
H1⊕H2(t, x−(0)), Φ−(t) ∼ Dxφ

H1⊕H2(t, x−(0)).

In particular,

µ(N∗∆ΘRn , graphCΦ−) = µΘ(x−) +
n

2
, µ(N∗∆ΘRn , graphCΦ+) = µΘ(x+) +

n

2
. (139)

Theorem 7.1 in [RS95] (or Theorem 5.23 in the special case of no jumps) implies that ∂A is a
Fredholm operator of index

ind ∂A = µ(N∗∆ΘRn , graphCΦ−)− µ(N∗∆ΘRn , graphCΦ+) = µΘ(x−)− µΘ(x+).

Together with a standard transversality argument, this implies Proposition 3.7.
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The space ME. Let (x1, x2) ∈ PΛ(H1) ×PΛ(H2) and y ∈ PΘ(H1 ⊕ H2) (see section 3.5).
The study of the space of solutions ME(x1, x2; y) reduces to the study of an operator of the form

∂A : X1,p
S ,W (Σ,C2n)→ Xp

S
(Σ,C2n),

where

S = {0, i}, W = (∆R2n ,∆ΘRn),

the space ∆ΘRn being defined in (138). Theorem 5.23 implies that this operator is Fredholm of
index

ind ∂A = µ(N∗∆R2n , graphCΦ−)− µ(N∗∆ΘRn , graphCΦ+)− n

2
. (140)

Arguing as in the study of M Λ
Υ (identity (136)), we see that

µ(N∗∆R2n , graphCΦ−) = µΛ(x1) + µΛ(x1).

Arguing as in the study of M Θ
∂ (identities (139), we get

µ(N∗∆ΘRn , graphCΦ+) = µΘ(y) +
n

2
.

We conclude that

ind ∂A = µΛ(x1) + µΛ(x1)− µΘ(y)− n.

The ME part of Proposition 3.9 follows.

The space MG. Let y ∈ PΘ(H1 ⊕H2) and z ∈ PΛ(H1#H2) (see section 3.5). The study of
the space of solutions MG(y, z) reduces to the study of an operator of the form

∂A : X1,p
S ,W (Σ,C2n)→ Xp

S
(Σ,C2n),

where

S = {0, i}, W = (∆ΘRn ,∆Rn ×∆Rn).

By Theorem 5.23 this operator is Fredholm of index

ind ∂A = µ(N∗∆ΘRn , graphCΦ−)− µ(N∗(∆Rn ×∆Rn), graphCΦ+)− n

2
. (141)

As in the study of M Θ
∂ , we have

µ(N∗∆ΘRn , graphCΦ−) = µΘ(y) +
n

2
.

As in the study of M Λ
Υ (identity (137)), we see that

µ(N∗(∆Rn ×∆Rn), graphCΦ+) = µΛ(z), (142)

and (141) gives us

ind ∂A = µΘ(y)− µΛ(z).

This concludes the proof of Proposition 3.9.
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The space M Υ
GE. Let x1 ∈ P(H1), x2 ∈ P(H2), and z ∈ PΛ(H1#H2) (see the proof of

Theorem 3.11). The space M Υ
GE(x1, x2; z) is the set of pairs (α, u) where α is a real positive

parameter and u is a solution of the Floer equation on the Riemann surface ΣΥ
GE(α) with suitable

asymptotics and suitable non-local boundary conditions. Linearizing this Floer equation for a
fixed α ∈]0,+∞[ yields an operator of the form

∂A : X1,p
S ,W (Σ,C2n)→ Xp

S
(Σ,C2n),

where

S = {−α, α,−α+ i, α+ i}, W = (∆R2n ,∆ΘRn ,∆Rn ×∆Rn).

By Theorem 5.23 this operator is Fredholm of index

ind ∂A = µ(N∗∆R2n , graphCΦ−)− µ(N∗(∆Rn ×∆Rn), graphCΦ+)− n.

As in the discussion of M Λ
Υ (identities (136) and (137)),

µ(N∗∆R2n , graphCΦ−) = µΛ(x1) + µΛ(x2), µ(N∗(∆Rn ×∆Rn), graphCΦ+) = µΛ(z).

Therefore,

ind ∂A = µΛ(x1) + µΛ(x2)− µΛ(z)− n.

Considering also the parameter α, we see that for a generic choice of J the space M Υ
GE(x1, x2; z)

is a smooth manifold of dimension µΛ(x1)+µΛ(x2)−µΛ(z)−n+1. This proves Proposition 3.12.

The spaces MC and MEv. Let f be a Morse function on M , let x be a critical point of f , and
let y ∈P(Λ)(H). Given q ∈M , let

M̃C(x, y, q) :=
{
u ∈ C∞([0,+∞[×T, T ∗M)

∣∣∣u solves (32), π ◦ u(0, t) ≡ q ∀t ∈ T,
lim

s→+∞
u(s, t) = y(t) uniformly in t ∈ T}

.

The study of such a space involves the study of an operator of the form

∂A : X1,p
∅,(0),(∆Rn)(Σ

+,Cn)→ Xp
∅ (Σ+,Cn).

By Theorem 5.24, the Fredholm index of the above operator is

ind ∂A =
n

2
− µ(N∗∆Rn , graphCΦ+)− n

2
= −µΛ(y).

Therefore, the space

MC(x, y) =
⋃

q∈W u(x)

M̃C(x, y, q),

has dimension

dimMC(x, y) = dimWu(x) − µΛ(y) = m(x) − µΛ(y),

for a generic choice of J and g, proving the first part of Proposition 3.14.
Consider the space of maps

M̃Ev(y) :=
{
u ∈ C∞(]−∞, 0]× T, T ∗M)

∣∣∣u solves (32), u(0, t) ∈ OM ∀t ∈ T,
lim

s→−∞
u(s, t) = y(t) uniformly in t ∈ T}

.
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The study of the this space reduces to the study of an operator of the form

∂A : X1,p
∅,Rn,(∆Rn)(Σ

−,Cn)→ Xp
∅ (Σ−,Cn),

which has index

ind ∂A =
n

2
+ µ(N∗∆Rn , graphCΦ−)− 1

2
(n+ 2n− 2n) = µΛ(y),

by Theorem 5.25. For a generic choice of J , M̃Ev(y) is then a manifold of dimension

dim M̃Ev(y) = µΛ(y).

For a generic choice of the Riemannian metric g on M , the map

M̃Ev(y)→M, u 7→ π ◦ u(0, 0),

is transverse to the submanifold W s(x). For these choices of J and g, the space

MEv(y, x) =
{
u ∈ M̃Ev(y) | π ◦ u(0, 0) ∈W s(x)

}

is a manifold of dimension

dimMEv(y, x) = dim M̃Ev(y)− codimW s(x) = µΛ(y)−m(x),

proving the second part of Proposition 3.14.

The space MI! . Let x ∈ PΛ(H) and y ∈ PΩ(H) (see section 3.6). The study of the space
MI!(x, y) involves the study of an operator of the form

∂A : X1,p
S ,W (Σ,Cn)→ Xp

S
(Σ,Cn),

where

S = {0, i}, W = (∆Rn , (0)).

By Theorem 5.23 this operator is Fredholm of index

ind ∂A = µ(N∗∆Rn , graphCΦ−)− µ(iR2n, graphCΦ+)− n

2
. (143)

By (79),

µ(N∗∆Rn , graphCΦ−) = µCZ(Φ−) = µΛ(x). (144)

By the skew-symmetry of the Maslov index, by the fact that the action of C changes the sign of
the Maslov index and leaves iR2n invariant, and by (78),

µ(iR2n, graphCΦ+) = −µ(graphCΦ+, iR2n) = µ(graphΦ+C, iRn × iRn)

= µ(Φ+iRn, iRn) = µΩ(y) +
n

2
.

(145)

Therefore by (143), (144), and (145),

ind ∂A = µΛ(x)− µΩ(y)− n.

This proves Proposition 3.16.
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The space M Θ
Φ . Let γ ∈ PΘ(L1 ⊕ L2), and let x ∈ PΘ(H1 ⊕ H2). The study of the space

M Θ
Φ (γ, x) reduces to the study of an operator of the form

∂A : X1,p

∅,(0),(∆ΘRn)
(Σ+,C2n)→ Xp

∅ (Σ+,C2n).

Indeed, for a generic choice of J , M Θ
Φ (γ, x) is a manifold of dimension mΘ(γ) plus the Fredholm

index of the above operator. By Theorem 5.24, the index of this operator is

ind ∂A = n− µ(N∗∆ΘRn , graphCΦ+)− 1

2
dim∆ΘRn =

n

2
− µ(N∗∆ΘRn , graphCΦ+).

Since µ(N∗∆ΘRn , graphCΦ+) = µΘ(x) + n/2, we conclude that

dimM
Θ
Φ (γ, x) = mΘ(γ)− µΘ(x),

proving Proposition 4.2.

The space M K
Υ . Let γ1 ∈PΩ(L1), γ2 ∈PΩ(L2), and x ∈PΩ(H1#H2) (see section 4.2). The

space M K
Υ (γ1, γ2;x) consists of pairs (α, u) where α is a positive number and u(s, t) is a solution

of the Floer equation on the Riemann surface ΣK
Υ (α), which is asymptotic to x for s→ +∞, lies

above some element in the unstable manifold of γ1 (resp. γ2) for s = 0 and −1 ≤ t ≤ 0− (resp.
0+ ≤ t ≤ 1), and lies above q0 at the other boundary points. Linearizing the Floer equation for a
fixed positive α and for fixed elements in the unstable manifolds of γ1 and γ2 yields an operator
of the form

∂A : X1,p
S ,W,V ,V ′(Σ

+,C2n)→ Xp
S

(Σ+,C2n),

where

S = {α}, W = (0), V = ((0),∆Rn), V
′ = (0).

See the analysis for M Ω
Υ . By Theorem 5.21, the above operator is Fredholm of index

ind ∂A = n− µ(Φ+N∗∆Rn , iR2n)− n

2
=
n

2
− µ(Φ+N∗∆Rn , iR2n).

Hence, by (132), we have

ind ∂A = −µΩ(x;H1#H2).

Letting the elements of the unstable manifolds of γ1 and γ2 vary, we increase the index by
mΩ(γ1;L1) + mΩ(γ2;L2). Letting also α vary we further increase the index by 1, and we find
the formula

dimM
K
Υ (γ1, γ2;x) = mΩ(γ1;L1) +mΩ(γ2;L2)− µΩ(x;H1#H2) + 1.

See [AS06b], section 3.1, for more details on how to deal with this kind of boundary data. This
proves Proposition 4.3.

The space M K
α0

. Let γ1 ∈ PΛ(L1), γ2 ∈ PΛ(L2), and x ∈ PΘ(H1 ⊕ H2) (see section 4.4).
The space M K

α0
(γ1, γ2;x) consists of solutions u = (u1, u2) of the Floer equation on the Riemann

surface ΣK
α0

, which is asymptotic to x for s → +∞, u1 and u2 lie above some elements in the
unstable manifolds of γ1 and γ2 for s = 0, and u satisfies the figure-8 boundary condition for
s ≥ α0. Linearizing the Floer for a fixed pair of curves in the unstable manifolds of γ1 and γ2

yields an operator of the form

∂A : X1,p
S ,V0,W (Σ+,C2n)→ Xp

S
(Σ+,C2n),
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where

S = {α0, α0 + i}, V0 = (0), W = (∆R2n ,∆ΘRn).

See the analysis for ME . By Theorem 5.24, the above operator is Fredholm of index

ind ∂A = n− µ(N∗∆ΘRn , graphCΦ+)− n− n

2
= −µ(N∗∆ΘRn , graphCΦ+)− n

2
.

Then, by (139), we have

ind ∂A = −µΘ(x) − n.

Letting the elements of the unstable manifolds of γ1 and γ2 vary, we increase the index by
mΛ(γ1;L1) +mΛ(γ2;L2), and we find the formula

dimM
K
α0

(γ1, γ2;x) = mΛ(γ1;L1) +mΛ(γ2;L2)− µΘ(x)− n.

This proves Proposition 4.5.

The space M K
G . Let γ ∈ PΘ(L1 ⊕ L2) and x ∈ PΛ(H1#H2) (see section 4.5). The space

M K
G (γ, x) consists of pairs (α, u) where α is a positive number and u(s, t) is a solution of the

Floer equation on the Riemann surface ΣK
G (α), which is asymptotic to x for s→ +∞, lies above

some element in the unstable manifold of γ for s = 0, and satisfies the figure-8 boundary condition
for s ∈ [0, α]. Linearizing the Floer equation for a fixed positive α and for a fixed curve in the
unstable manifold of γ yields an operator of the form

∂A : X1,p
S ,V0,W (Σ+,C2n)→ Xp

S
(Σ+,C2n),

where

S = {α, α+ i}, V0 = (0), W = (∆ΘRn ,∆Rn ×∆Rn).

See the analysis for MG. By Theorem 5.24, the above operator is Fredholm of index

ind ∂A = n− µ(N∗(∆Rn ×∆Rn), graphCΦ+)− n

2
− n

2
= −µ(N∗(∆Rn ×∆Rn), graphCΦ+).

Hence, by (142), we have

ind ∂A = −µΛ(x;H1#H2).

Letting the elements of the unstable manifold of γ vary, we increase the index by mΘ(γ;L1⊕L2).
Letting also α vary we further increase the index by 1, and we find the formula

dim M
K
G (γ, x) = mΘ(γ;L1 ⊕ L2)− µΛ(x;H1#H2) + 1.

This proves Proposition 4.8.

6 Compactness and cobordism

6.1 Compactness in the case of jumping conormal boundary conditons

Compactness in the C∞
loc topology of all the spaces of solutions of the Floer equation considered

in this paper can be proved within the following general setting. Let Q be a compact Riemannian
manifold, and let Q0, Q1, . . . , Qk be submanifolds of Q×Q. We assume that there is an isometric
embedding Q →֒ RN and linear subspaces V0, V1, . . . , Vk of RN × RN , such that Vj−1 is partially
orthogonal to Vj , for every j = 1, . . . , k, and

Qj = Vj ∩ (Q×Q).
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The embedding Q →֒ RN induces an embedding T ∗Q →֒ T ∗RN ∼= R2N ∼= CN . Since the embedding
Q →֒ RN is isometric, the standard complex structure J0 of R2N restricts to the metric almost
complex structure J on T ∗Q. If z = (q, p) is an element of T ∗Q, we denote by z the element
(q,−p). This notation is justified by the fact that in the embedding T ∗Q ⊂ R2N ∼= CN the map
z 7→ z is the complex conjugacy.

Let H ∈ C∞([0, 1]× T ∗Q) be a Hamiltonian satisfying (H1) and (H2). Fix real numbers

−∞ = s0 < s1 < · · · < sk < sk+1 = +∞,

and let u : R× [0, 1]→ T ∗Q be a solution of the Floer equation

∂su+ J(u)(∂tu−XH(t, u)) = 0, (146)

satisfying the non-local boundary conditions

(u(s, 0), u(s, 1)) ∈ N∗Qj ∀s ∈ [sj−1, sj ], (147)

for every j = 0, . . . , k.
The map u satisfies the energy identity

∫ b

a

∫ 1

0

|∂su(s, t)|2 dt ds = AH(u(a, ·))− AH(u(b, ·)) +

∫

[a,b]

(u(·, 1)∗η − u(·, 0)∗η)

= AH(u(a, ·))− AH(u(b, ·)),
(148)

for every a < b, where the integral over [a, b] vanishes because η ⊕ (−η) vanishes on N∗Qj . The
following result is proven in [AS06b, Lemma 1.12] (in that lemma different boundary conditions are
considered, but the proof makes use only of the energy identity (148) coming from those boundary
conditions).

6.1. Lemma. For every a > 0 there exists c > 0 such that for every solution u : R× [0, 1]→ T ∗Q
of (146), (147), and

∫ ∫R×]0,1[

|∂su(s, t)|2 ds dt ≤ a,

we have the following estimates:

‖u‖L2(I×]0,1[) ≤ c|I|1/2, ‖∇u‖L2(I×]0,1[) ≤ c(1 + |I|1/2),

for every interval I.

The proof of the following result follows the argument of [AS06b, Theorem 1.14], using the
above lemma together with the elliptic estimates of Proposition 5.10.

6.2. Proposition. For every a > 0 there is c > 0 such that for every solution u : R×[0, 1]→ T ∗Q
of (146), (147), with energy bound

∫ ∫R×]0,1[

|∂su(s, t)|2 ds dt ≤ a,

we have the following uniform estimate:

‖u‖L∞(R×]0,1[) ≤ c.

Proof. By using the above embedding, the Floer equation (146) can be rewritten as

∂u = J0XH(t, u). (149)
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We can pass to local boundary conditions by considering the map

v : R× [0, 1]→ T ∗(Q×Q) ⊂ C2N , v(z) := (u(z/2), u(z/2 + i)).

The map v satisfies the boundary conditions

v(s, 0) ∈ N∗Qj ⊂ N∗Vj , if s ∈ [2sj−1, 2sj], v(s, 1) ∈ N∗∆Q ⊂ N∗∆RN , ∀s ∈ R. (150)

Moreover,

∂v(z) =
1

2

(
∂u(z/2), ∂(z/2 + i)

)
,

so by (149) and by the fact that XH(t, q, p) has quadratic growth in |p| by (29), there is a constant
c such that

|∂v(z)| ≤ c(1 + |v(z)|2). (151)

Let χ be a smooth function such that χ(s) = 1 for s ∈ [0, 1], χ(s) = 0 outside [−1, 2], and
0 ≤ χ ≤ 1. Given h ∈ Z set

w(s, t) := χ(s− h)v(s, t).

Fix some p > 2, and consider the norm ‖ · ‖Xp introduced in section 5.3, with S = {2s1, . . . , 2sk}.
The map w has compact support and satisfies the boundary conditions (150), so by Proposition
5.10 we have the elliptic estimate

‖∇w‖Xp ≤ c0‖w‖Xp + c1‖∂w‖Xp .

Since

∂w = χ′(s− h)v + χ(s− h)∂v =
χ′

χ
w + χ(s− h)∂v,

we obtain, together with (151),

‖∇w‖Xp ≤ (c0 + c1‖χ′/χ‖∞) ‖w‖Xp + c1‖χ(· − h)∂v‖Xp

≤ (c0 + c1‖χ′/χ‖∞) ‖w‖Xp + c1c‖χ(· − h)(1 + |v|2)‖Xp .

Therefore, we have an estimate of the form

‖∇w‖Xp ≤ a‖w‖Xp + b‖χ(· − h)(1 + |v|2)‖Xp . (152)

Since w has support in the set [h− 1, h+ 2]× [0, 1], we can estimate its Xp norm in terms of its
X1,2 norm, by Proposition 5.13. The X1,2 norm is equivalent to the W 1,2 norm, and the latter
norm is bounded by Lemma 6.1. We conclude that ‖w‖Xp is uniformly bounded. Similarly, the
Xp norm of χ(· − h)(1 + |v|2) is controlled by its W 1,2 norm, which is also bounded because of
Lemma 6.1. Therefore, (152) implies that w is uniformly bounded in X1,p. Since p > 2, we deduce
that w is uniformly bounded in L∞. The integer h was arbitrary, hence we conclude that v is
uniformly bounded in L∞, and so is u.

Let us explain how all the solution spaces M considered in this paper can be viewed in terms
of the above general setting. We describe explicitly the reduction in the case of the spaces M Λ

Υ

associated to the pair-of-pants product as described in sections 3.2 and 3.3, the argument being
analogous for all the other solution spaces. The pair-of-pants Riemann surface ΣΛ

Υ is described
as the quotient of the disjoint union of two strips R ∪ [−1, 0] and R × [0, 1] with respect to the
identifications

(s,−1) ∼ (s, 0−), (s, 0+) ∼ (s, 1) ∀s ≤ 0, (153)

(s,−1) ∼ (s, 1), (s, 0−) ∼ (s, 0+) ∀s ≥ 0. (154)
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Given periodic orbits x1 ∈ P(H1), x2 ∈ P(H2), and y ∈ P(H1#H2), the space M Λ
Υ (x1, x2; y)

consists of maps

u : ΣΛ
Υ → T ∗M,

solving the Floer equation ∂J,H(u) = 0, with asymptotics

lim
s→−∞

u(s, t− 1) = x1(t), lim
s→−∞

u(s, t) = x2(t), lim
s→+∞

u(s, 2t− 1) = y(t).

We can associate to a map u : ΣΛ
Υ → T ∗M the map v : Σ := R× [0, 1]→ T ∗M2 by setting

v(s, t) :=
(
−u(s,−t), u(s, t)

)
.

The identifications (153) on the left-hand side of the domain of u are translated into the fact that
v(s, t) is 1 periodic in t for s ≤ 0, or equivalently into the nonlocal boundary condition

(v(s, 0),−v(s, 1)) ∈ N∗∆M2 ∀s ≤ 0, (155)

where ∆M2 denotes the diagonal in M4 = M2 ×M2. The identifications (154) on the right-hand
side of the domain of u are translated into the local boundary conditions

v(s, 0) ∈ N∗∆M , v(s, 1) ∈ N∗∆M ∀s ≥ 0. (156)

The map u solves the Floer equation ∂J,H(u) = 0 if and only if v solves the Floer equation
∂J,K(v) = 0, where K : T× T ∗M2 → R is the Hamiltonian

K(t, x1, x2) := H1(−t,−x1) +H2(t, x2) ∀(t, x1, x2) ∈ T× T ∗M2,

which satisfies the growth conditions (H1) and (H2). The asymptotic conditions for u are equiva-
lent to

lim
s→−∞

v(s, t) = (−x1(−t), x2(t)), lim
s→+∞

v(s, t) =
(
−y((1− t)/2), y((1 + t)/2)

)
. (157)

Finally, since

|∇v(s, t)|2 = |∇u(s,−t)|2 + |∇u(s, t)|2,

the energy of u equals the energy of v,

E(u) :=

∫

ΣΛ
Υ

|∇u|2 dsdt =

∫

Σ

|∇v|2 dsdt =: E(v).

We conclude that M Λ
Υ (x1, x2; y) can be identified with the space of maps v : Σ → T ∗M2 which

solve the Floer equation for the Hamiltonian K, satisfy the boundary conditions (155), (156), and
the asymptotic conditons (157).

By Nash theorem, we can find an isometric embedding M →֒ RN for N large enough. The
induced embedding M2 →֒ R2N is such that

∆M2 = M2 ∩∆R2N , ∆M ×∆M = M2 ∩
(
∆RN ×∆RN

)
.

Note that the linear subspaces ∆R2N and ∆RN ×∆RN are partially orthogonal in R4N . Therefore,
the problem M Λ

Υ reduces to the above setting, with Q = M2, k = 1, s1 = 0, Q0 = ∆M2 ,
Q1 = ∆M ×∆M , V0 = ∆R2N , and V1 = ∆RN ×∆RN .

The energy of solutions in M Λ
Υ (x1, x2; y) is bounded above fromAH1

(x1) + AH2
(x2)− AH1#H2

(y),

so Proposition 6.2 implies that these solutions have a uniform L∞ bound.
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For the remaining part of the argument leading to C∞
loc compactness of M Λ

Υ (x1, x2; y) it is more
convenient to use the original definition of this solutions space and the smooth structure of ΣΛ

Υ.
Then the argument is absolutely standard: If by contradiction there is no uniform C1 bound, a
concentration argument (see e.g. [HZ94, Theorem 6.8]) produces a non-constant J-holomorphic
sphere. However, there are no non-constant J-holomorphic spheres on cotangent bundles, because
the symplectic form ω is exact. This contradiction proves the C1 bound. Then the Ck bounds for
arbitrary k follow from elliptic bootstrap, as in [HZ94, section 6.4].

Other solutions spaces, such as the space M Ω
Υ for the traingle products, involve Riemann

surfaces with boundary, and the solutions take value on some conormal subbundle of T ∗M . In
this case the concentration argument for proving the C1 bound could produce a non-constant
J-holomorphic disk with boundary on the given conormal subbundle. However, the Liouville one-
form vanishes on conormal subbundles, so such J-holomorphic disks do not exist. Again we find
a contradition, leading to C1 bounds and - by elliptic bootstrap - to Ck bounds for every k.

6.2 Removal of singularities

Removal of singularities results state that isolated singularities of a J-holomorphic map with
bounded energy can be removed (see for instance [MS04, section 4.5]). In Proposition 6.4 below,
we prove a result of this sort for corner singularities. The fact that we are dealing with cotangent
bundles, which can be isometrically embedded into CN , allows to reduce such a statement to the
following easy linear result, where Dr is the open disk of radius r in C, and H+ is the quarter plane
{Re z > 0, Im z > 0}.
6.3. Lemma. Let V0 and V1 be partially orthogonal linear subspaces of Rn. Let u : Cl(D1 ∩H+) \
{0} → Cn be a smooth map such that

u ∈ Lp(D1 ∩ H+,Cn), ∂u ∈ Lp(D1 ∩ H+,Cn),

for some p > 2, and

u(s) ∈ N∗V0 ∀ s > 0, u(it) ∈ N∗V1 ∀ t > 0.

Then u extends to a continuous map on Cl(D1 ∩H+).

Proof. Since V0 and V1 are partially orthogonal, by applying twice the Schwarz reflection argument
of the proof of Lemma 5.6 we can extend u to a continuous map

u : D1 \ {0} → Cn,

which is smooth on D1 \ (R ∪ iR), has finite Lp norm on D1, and satisfies

∂u ∈ Lp(D1).

Since p > 2, the L2 norm of u on D1 is also finite, and by the conformal change of variables
z = s+ it = eζ = eρ+iθ, this norm can be written as

∫D1

|u(z)|2 dsdt =

∫ 0

−∞

∫ 2π

0

|u(eρ+iθ)|2e2ρ dθdρ.

The fact that this quantity is finite implies that there is a sequence ρh → −∞ such that, setting
ǫh := eρh , we have

lim
h→∞

ǫ2h

∫ 2π

0

|u(ǫheiθ)|2dθ = lim
h→∞

e2ρh

∫ 2π

0

|u(eρh+iθ)|2 dθ = 0. (158)

If ϕ ∈ C∞
c (D1,CN ), an integration by parts using the Gauss formula leads to

∫D1

〈u, ∂ϕ〉 dsdt =

∫Dǫh

〈u, ∂ϕ〉 dsdt+
∫D1\Dǫh

〈u, ∂ϕ〉 dsdt

=

∫Dǫh

〈u, ∂ϕ〉 dsdt−
∫D1\Dǫh

〈∂u, ϕ〉 dsdt+ i

∫

∂Dǫh

〈u, ϕ〉 dz.
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Since u and ∂u are integrable over D1, the the first integral in the latter expression tends to zero,
while the second one tends to

−
∫D1

〈∂u, ϕ〉 dsdt.

As for the last integral, we have
∫

∂Dǫh

〈u, ϕ〉 dz = iǫh

∫ 2π

0

〈u(ǫheiθ), ϕ(ǫhe
iθ)〉eiθ dθ,

so by the Cauchy-Schwarz inequality,
∣∣∣∣∣

∫

∂Dǫh

〈u, ϕ〉 dz
∣∣∣∣∣ ≤ ǫh

(∫ 2π

0

|u(ǫheiθ)|2 dθ
)1/2 (∫ 2π

0

|ϕ(ǫhe
iθ)|2 dθ

)1/2

≤
√

2π ǫh

(∫ 2π

0

|u(ǫheiθ)|2 dθ
)1/2

‖ϕ‖∞.

Then (158) implies that the latter quantity tends to zero for h→∞. Therefore,
∫D1

〈u, ∂ϕ〉 dsdt = −
∫D1

〈∂u, ϕ〉 dsdt,

for every test function ϕ ∈ C∞
c (D1,Cn). Since ∂u ∈ Lp, by the regularity theory of the weak

solutions of ∂ (see Theorem 5.4 (i)), u belongs to W 1,p(D1,Cn). Since p > 2, we conclude that u
is continuous at 0.

Let Q0 and Q1 be closed submanifolds of Q, and assume that there is an isometric embedding
Q →֒ RN such that

Q0 = Q ∩ V0, Q1 ∩ V1,

where V0 and V1 are partially orthogonal linear subspaces of RN .

6.4. Proposition. Let X : D1 ∩H+×T ∗Q→ TT ∗Q be a smooth vector field such that X(z, q, p)
grows at most polynomially in p, uniformly in (z, q). Let u : Cl(D1∩H+)\{0} → T ∗Q be a smooth
solution of the equation

∂Ju(z) = X(z, u(z)) ∀z ∈ Cl(D1 ∩ H+) \ {0}, (159)

such that

u(s) ∈ N∗Q0 ∀ s > 0, u(it) ∈ N∗Q1 ∀ t > 0.

If u has finite energy,
∫D1∩H+

|∇u|2 dsdt < +∞, (160)

then u extends to a continuous map on Cl(D1 ∩ H+).

Proof. By means of the above isometric embedding, we may regard u as a CN -valued map, satis-
fying the equation (159) with ∂J = ∂, the energy estimate (160), and the boundary condition

u(s) ∈ N∗V0 ∀ s > 0, u(it) ∈ N∗V1 ∀ t > 0.

By the energy estimate (160), u belongs to Lp(D1 ∩H+,CN ) for every p < +∞: for instance, this
follows from the Poincaré inequality and the Sobolev embedding theorem on D1, after applying a
Schwarz reflection twice and after multiplying by a cut-off function vanishing on ∂D1 and equal
to 1 on a neighborhood of 0. The polynomial growth of X then implies that

X(·, u(·)) ∈ Lp(D1 ∩H+,CN ) ∀p < +∞. (161)

Therefore, Lemma 6.3 implies that u extends to a continuous map on Cl(D1 ∩H+).
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The corresponding statement for jumping conormal boundary conditions is the following:

6.5. Proposition. Let X : D1 ∩ H× T ∗Q→ TT ∗Q be a smooth vector field such that X(z, q, p)
grows at most polynomially in p, uniformly in (z, q). Let u : Cl(D1 ∩H) \ {0} → T ∗Q be a smooth
solution of the equation

∂Ju(z) = X(z, u(z)) ∀z ∈ Cl(D1 ∩ H) \ {0},

such that

u(s) ∈ N∗Q0 ∀ s > 0, u(s) ∈ N∗Q1 ∀ s < 0.

If u has finite energy,
∫D1∩H |∇u|2 dsdt < +∞,

then u extends to a continuous map on the closed half-disk Cl(D1 ∩H).

Proof. The energy is invariant with respect to conformal changes of variable. Therefore, it is
enough to apply Proposition 6.4 to the map v(z) = u(z2), with z ∈ D1 ∩H+.

6.3 Proof of Proposition 3.13

Let x1 ∈P(H1), x2 ∈P(H2), and z ∈P(H1#H2) be such that

µΛ(x1) + µΛ(x2)− µΛ(z) = n, (162)

so that the manifold M Υ
GE(x1, x2; z) is one-dimensional. By standard arguments, Proposition 3.13

is implied by the following two statements:

(i) for every y ∈PΘ(H1 ⊕H2) such that

µΘ(y) = µΛ(z) = µΛ(x1) + µΛ(x2)− n,

and every pair (u1, u2) with u1 ∈ ME(x1, x2; y) and u2 ∈ MG(y, z), there is a unique
connected component of M Υ

GE(x1, x2; z) containing a curve α 7→ (α, uα) which - modulo
translations in the s variable - converges to (+∞, u1) and to (+∞, u2);

(ii) for every u ∈ M Λ
Υ (x1, x2; z), there is a unique connected component of M Υ

GE(x1, x2; z)
containing a curve α 7→ (α, uα) which converges to (0, u).

The first statement follows from standard gluing arguments. Here we prove the second statement,
by reducing it to an implicit function type argument. At first the difficulty consists in a parameter
dependence of the underlying domain for the elliptic PDE. Using the special form of the occuring
conormal type boundary conditions and a suitable localization argument we equivalently translate
this parameter dependence into a continuous family of elliptic operators with fixed boundary
conditions.

If (α, v) ∈M Υ
GE(x1, x2; z), we define u : Σ = R× [0, 1]→ T ∗M2 as

u(s, t) := (−v(s,−t), v(s, t)),

and the Hamiltonian K on T× T ∗M2 by

K(t, x1, x2) := H1(−t,−x1) +H2(t, x2).

By this identification, we can view the space M Υ
GE(x1, x2; z) as the space of pairs (α, u), where

α > 0 and u : Σ→ T ∗M2 solves the Floer equation

∂J,K(u) = 0, (163)
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with non-local boundary conditions

(u(s, 0),−u(s, 1)) ∈





N∗∆M2 if s ≤ 0,
N∗∆Θ

M if 0 ≤ s ≤ α,
N∗(∆M ×∆M ) if s ≥ α,

(164)

and asymptotics

lim
s→−∞

u(s, t) =
(
−x1(−t), x2(t)

)
, lim

s→+∞
u(s, t) =

(
−z((1− t)/2), z((1 + t)/2)

)
. (165)

Similarly, we can view the space M Λ
Υ (x1, x2; z) as the space of maps u : Σ → T ∗M2 solving the

equation (163) with asymptotics (165) and non-local boundary conditions

(u(s, 0),−u(s, 1)) ∈
{
N∗∆M2 if s ≤ 0,
N∗(∆M ×∆M ) if s ≥ 0.

(166)

Compactness. We start with the following compactness results, which also clarifies the sense
of the convergence in (ii):

6.6. Lemma. Let (αh, uh) be a sequence in M Υ
GE(x1, x2; z) with αh → 0. Then there exists

u0 ∈ M Λ
Υ (x1, x2; z) such that up to a subsequence uh converges to u0 in C∞

loc(Σ \ {0, i}), in
C∞(Σ ∩ {|Re z| > 1}), and uniformly on Σ.

Proof. Since the sequence of maps (uh) has uniformly bounded energy, Proposition 6.2 implies a
uniform L∞ bound. Then, the usual non-bubbling-off analysis for interior points and boundary
points away from the jumps in the boundary condition implies that, modulo subsequence, we have

uh → u0 in C∞
loc(Σ \ {0, i}, T ∗M2),

where u0 is a smooth solution of equation (163) on Σ \ {0, i} with bounded energy and satisfying
the boundary condions (166), except possibly at 0 and i. By Proposition 6.5, the singularities
0 and i are removable, and u0 satisfies the boundary condition also at 0 and i. By the index
formula (162) and transversality, the sequence uh cannot split, so u0 satisfies also the asymptotic
conditions (165), and uh → u0 in C∞(Σ ∩ {|Re z| > 1}). Therefore, u0 belongs to M Λ

Υ (x1, x2; z),
and there remain to prove that uh → u uniformly on Σ.

We assume by contraposition that (uh) does not converge uniformly on Σ. By Ascoli-Arzelà
theorem, there must be some blow-up of the gradient. That is, modulo subsequence, we can find
zh ∈ Σ converging either to 0 or to i such that

Rh := |∇uh(zh)| = ‖∇uh‖∞ →∞.

For sake of simplicity, we only consider the case where zh = (sh, 0) → 0, 0 < sh < αh → 0. The
general case follows along analogous arguments using additional standard bubbling-off arguments.
For more details, see e.g. [HZ94, section 6.4].

We now have to make a case distinction concerning the behaviour of the quantity 0 < Rh ·αh <
∞:

(a) The case of a diverging subsequence Rhj
· αhj

→ ∞ can be handled by conformal rescaling
vj(s, t) := uhj

(shj
+s/Rhj

, t/Rhj
) which provides us with a finite energy disk with boundary

on a single Lagrangian submanifold of conormal type. This has to be constant due to the
vanishing of the Liouville 1-form on conormals, contradicting the convergence of |∇vj(0)| = 1.

(b) The case of convergence of a subsequence Rhj
· αhj

→ 0 can be dealt with by rescaling
vj(s, t) := uhj

(shj
+ αhj

, αhj
t). Now vk has to converge uniformly on compact subsets

towards a constant map, since ‖∇vj‖∞ = |∇vj(0)| = Rhj
· αhj

→ 0. This in particular
implies that uhj

(·, 0)|[0,αhj
] converges uniformly to a point contradicting the contraposition

assumption.
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(c) There remains to study the case Rh · αh → c > 0. Again we rescale vh(s, t) = uh(αhs, αht),
which now has to converge to a non-constant J-holomorphic map v on the upper half plane.
After applying a suitable conformal coordinate change and transforming the non-local bound-
ary conditions into local ones, we can view v as a map on the half strip v : Σ+ → T ∗M4,
satisfying the boundary conditions

v(0, t) ∈ N∗∆Θ
M for t ∈ [0, 1],

v(s, 0) ∈ N∗(∆M ×∆M ) for s ≥ 0,

v(s, 1) ∈ N∗∆M2 for s ≥ 0.

Applying again the removal of singularities for s → ∞ we obtain v as a J-holomorphic tri-
angle with boundary on three conormals. Hence, v would have to be constant, contradicting
again the rescaling procedure.

This shows the uniform convergence of a subsequence of (uh).

Localization. It is convenient to transform the nonlocal boundary conditions (164) and (166)
into local boundary conditions, by the usual method of doubling the space: given u : Σ→ T ∗M2

we define ũ : Σ→ T ∗M4 as

ũ(s, t) :=
(
u(s/2, t/2),−u(s/2, 1− t/2

)
.

Then u solves (163) if and only if ũ solves the equation

∂J,K̃(ũ) = 0, (167)

with upper boundary condition

ũ(s, 1) ∈ N∗∆M2 ∀s ∈ R, (168)

where the Hamiltonian K̃ : [0, 1]× T ∗M4 → R is defined by

K̃(t, x1, x2, x3, x4) :=
1

2
K(t/2, x1, x2) +

1

2
K(1− t/2,−x3,−x4).

Moreover, u satisfies (164) if and only if ũ satisfies

ũ(s, 0) ∈





N∗∆M2 if s ≤ 0,
N∗∆Θ

M if 0 ≤ s ≤ 2α,
N∗(∆M ×∆M ) if s ≥ 2α,

(169)

whereas u satisfies (166) if and only if ũ satisfies

ũ(s, 0) ∈
{
N∗∆M2 if s ≤ 0,
N∗(∆M ×∆M ), if s ≥ 0.

(170)

Finally, the asymptotic condition (165) is translated into

lim
s→−∞

ũ(s, t) =
(
−x1(−t/2), x2(t/2), x1(t/2− 1),−x2(1− t/2)

)
,

lim
s→+∞

ũ(s, t) =
(
−z(1/2− t/4), z(1/2 + t/4), z(t/4),−z(1− t/4)

)
.

(171)

Let u0 ∈ M Λ
Υ (x1, x2; z). We must prove that there exists a unique connected component of

M Υ
GE(x1, x2; z) containing a curve α 7→ (α, uα) which converges to (0, u0), in the sense of Lemma

6.6.
Let ũ0 be the map from Σ to T ∗M4 associated to u0: ũ0 solves (167) with boundary conditions

(168), (170), and asymptotic conditions (171). Since we are looking for solutions which converge
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to ũ0 uniformly on Σ, we may localize the problem and assume that M = Rn. More precisely, if
the projection of ũ0(z) onto M4 is (q1, q2, q3, q4)(z), we construct open embeddings

Σ× Rn → Σ×M, (z, q) 7→ (z, ϕj(z, q)), j = 1, . . . , 4,

such that ϕj(z, 0) = qj(z) and D2ϕj(z, 0) is an isometry, for every z ∈ Σ (for instance, by
composing an isometric trivialization of q∗j (TM) by the exponential mapping). The induced open
embeddings

Σ× T ∗Rn → Σ× T ∗M, (z, q, p) 7→ (z, ψj(z, q, p)) :=
(
z, ϕj(z, q), (D2ϕj(z, q)

∗)−1p
)
, j = 1, . . . , 4,

are the components of the open embedding

Σ× T ∗R4n → Σ× T ∗M4, (z, ξ) 7→ (z, ψ(z, ξ)) :=
(
z, ψ1(z, ξ1), . . . , ψ4(z, ξ4)

)
.

Such an embedding allow us to associate to any ũ : Σ → T ∗M4 which is C0-close to ũ0 a map
w : Σ→ T ∗R4n = C4n, by setting

ũ(z) = ψ(z, w(z)).

Then ũ solves (167) if and only if w solves an equation of the form

D(w) := ∂sw(z) + J(z, w(z))∂tw(z) +G(z, w(z)) = 0, (172)

where J is an almost complex structure on C4n parametrized on Σ and such that J(z, 0) = J0

for any z ∈ Σ, whereas G : Σ × C4n → C4n is such that G(z, 0) = 0 for any z ∈ Σ. Moreover, ũ
solves the asymptotic conditions (171) if and only if w(s, t) tends to 0 for s → ±∞. The maps
ψj(z, ·) preserve the Liouville form, so they map conormals into conormals. It easily follows that
the boundary condition (168) on ũ is translated into

w(s, 1) ∈ N∗∆R2n ∀s ∈ R. (173)

Moreover, ũ satisfies the boundary conditon (169) if and only if w satisfies

w(s, 0) ∈





N∗∆R2n if s ≤ 0,
N∗∆ΘRn if 0 ≤ s ≤ 2α,
N∗(∆Rn ×∆Rn) if s ≥ 2α.

(174)

Similarly, ũ satisfies the boundary condition (170) if and only if w satisfies

w(s, 0) ∈
{
N∗∆R2n if s ≤ 0,
N∗(∆Rn ×∆Rn) if s ≥ 0.

(175)

The element u0 ∈M Λ
Υ (x1, x2; z) corresponds to the solution w0 = 0 of (172)-(175). By using the

functional setting introduced in section 5, we can view the nonlinear operator D defined in (172)
as a continuously differentiable operator

D : X1,p
S ,V ,V ′(Σ,C4n)→ Xp

S
(Σ,C4n)

where S := {0}, V := (∆R2n ,∆Rn × ∆Rn), V ′ := (∆R2n), and p is some number larger than 2.
Since J(z, 0) = J0, the differential of D at w0 = 0 is a linear operator of the kind studied in section
5, and by the transversality assumption it is an isomorphism.

Consider the orthogonal decompositionR4n = W1 ⊕W2 ⊕W3 ⊕W4,

where

W1 := ∆ΘRn = ∆R2n ∩ (∆Rn ×∆Rn), ∆R2n = W1 ⊕W2, ∆Rn ×∆Rn = W1 ⊕W3,
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and denote by Pj the the orthogonal projection of C4n onto N∗Wj = Wj ⊕ iW⊥
j . If Tα is the

translation operator mapping some w : Σ→ C4n into

(Tαw)(s, t) :=
(
P1w(s, t), P2w(s, t), P3w(s− 2α, t), P4w(s, t)

)
,

we easily see that w satisfies the boundary condions (175) if and only if Tαw satisfies the boundary
conditions (174). Therefore, if we define the operator

Dα : X1,p
S ,V ,V ′(Σ,C4n)→ Xp

S
(Σ,C4n), Dα = D ◦Tα,

we have that w ∈ X1,p
S ,V ,V ′(Σ,C4n) solves Dα(w) = 0 if and only if Tαw is a solution of (172)

satisfying the boundary conditions (173) and (174). The operator

[0,+∞[×X1,p
S ,V ,V ′(Σ,C4n)→ Xp

S
(Σ,C4n), (α,w) 7→ Dα(w),

is continuous on the product, it is continuously differentiable with respect to the second variable,
and this partial differential is continuous on the product. Moreover, DD0(0) = DD(0) is an
isomorphism, so the parametric inverse mapping theorem implies that there are a number α0 > 0
and a neighborhood U of 0 in X1,p

S ,V ,V ′(Σ,C4n), such that the set of zeroes in [0, α0[×U of the
above operator consists of a continuous curve [0, α0[∋ α → (α,wα) starting at w0 = 0. Then
α → (α,Tαwα) provides us with the unique curve in M Υ

GE(x1, x2; z) converging to (0, u0). This
concludes the proof of Proposition 3.13.

6.4 Proof of Proposition 4.4

Fix some γ1 ∈PΩ(L1), γ2 ∈PΩ(L2), and x ∈PΩ(H1#H2) such that

mΩ(γ1;L1) +mΩ(γ2;L2)− µΩ(x;H1#H2) = 0.

By a standard argument in Floer homology, the claim that PK
Υ is a chain homotopy between KΩ

and ΥΩ ◦ (ΦΩ
L1
⊗ ΦΩ

L2
) is implied by the following statements:

(i) For every (u1, u2) ∈M Ω
Φ (γ1, y1)×M Ω

Φ (γ2, y2) and every u ∈M Ω
Υ (y1, y2;x), where (y1, y2) ∈

PΩ(H1)×PΩ(H2) is such that

µΩ(y1;H1) + µΩ(y2;H2) = µΩ(x;H1#H2),

there exists a unique connected component of M K
Υ (γ1, γ2;x) containing a curve (α, uα) such

that α→ +∞, uα(·, ·− 1) and uα converge to u1 and u2 in C∞
loc([0,+∞[×[0, 1], T ∗M), while

uα(·+σ(α), 2 ·−1) converges to u in C∞
loc(R× [0, 1], T ∗M), for a suitable function σ diverging

at +∞.

(ii) For every u ∈ M Ω
K(γ1, γ2;x) there exists a unique connected component of M K

Υ (γ1, γ2;x)
containing a curve α 7→ (α, uα) which converges to (0, u).

Statement (i) can be proved by the standard gluing arguments in Floer theory. Here we prove
statement (ii).

Given u : [0,+∞[×[−1, 1]→ T ∗M , we define ũ : Σ+ → T ∗M2 by

ũ(s, t) := (−u(s,−t), u(s, t)).

If we define x̃ : [0, 1]→ T ∗M2 and H̃ ∈ C∞([0, 1]× T ∗M2) by

x̃(t) :=
(
−x((1 − t)/2), x((1 + t)/2)

)
, H̃(t, x1, x2) := H1(1 − t, x1) +H2(t, x2),
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we see that associating ũ to u produces a one-to-one correspondence between M Ω
K(γ1, γ2;x) and

the space M̃ Ω
K(γ1, γ2;x) consisting of the maps ũ : [0,∞[×[0, 1]→ T ∗M2 solving ∂J,H̃(ũ) = 0 with

boundary conditions

ũ(s, 0) ∈ N∗∆M ∀s ≥ 0, (176)

ũ(s, 1) ∈ T ∗
q0
M × T ∗

q0
M ∀s ≥ 0, (177)

π ◦ ũ1(0, 1− ·) ∈Wu(γ1), π ◦ ũ2(0, ·) ∈Wu(γ2), (178)

lim
s→+∞

ũ(s, ·) = x̃. (179)

Similarly, we have a one-to-one correspondence between M K
Υ (γ1, γ2;x) and the space M̃ K

Υ (γ1, γ2;x)
consisting of pairs (α, ũ) where α is a positive number and ũ : Σ+ → T ∗M2 is a solution of the
problem above, with (176) replaced by

ũ(s, 0) ∈ T ∗
q0
M × T ∗

q0
M ∀s ∈ [0, α], ũ(s, 0) ∈ N∗∆M ∀s ≥ α. (180)

Fix some ũ0 ∈ M̃ Ω
K(γ1, γ2;x). Since we are looking for solutions near ũ0, we can localize the

problem as follows. Let k = mΩ(γ1;L1) +mΩ(γ2;L2). Let q : Rk ×Σ+ →M2 be a map such that

q(0, s, t) = π ◦ ũ0(s, t) ∀(s, t) ∈ Σ+, q(λ, s, ·)→ π ◦ x̃ for s→ +∞, ∀λ ∈ Rk,

and such that the map Rk ∋ λ 7→ (q1(λ, 0, 1− ·), q2(λ, 0, ·)) ∈ Ω1(M2)

is a diffeomorphism onto a neighborhood of π ◦ (x̃1(−·), x̃2) in Wu(γ1)×Wu(γ2). By means of a
suitable trivialization of q∗(TM2) and using the usual W 1,p Sobolev setting with p > 2, we can
transform the problem of finding mas ũ solving ∂J,H̃(ũ) = 0 together with (177), (178) and (179)

and being close to ũ0, into the problem of finding pairs (λ, u) ∈ Rk×W 1,p(Σ+, T ∗R2n), solving an
equation of the form

∂u(z) + f(λ, z, u(z)) = 0 ∀z ∈ Σ+, (181)

with boundary conditions

u(0, t) ∈ N∗(0) ∀t ∈ [0, 1], u(s, 1) ∈ N∗(0) ∀s ≥ 0. (182)

Then the boundary conditon (176) is translated into

u(s, 0) ∈ N∗∆Rn ∀s ≥ 0, (183)

and the solution ũ0 corresponds to the solution λ = 0 and u ≡ 0 of (181), (182), and (183). On

the other hand, the problem M̃ K
Υ (γ1, γ2;x) of finding (α, ũα) solving ∂J,H̃(ũα) = 0 together with

(177), (178), (179) and (180) corresponds to the problem of finding (λ, u) ∈ Rk×W 1,p(Σ+, T ∗R2n)
solving (181) with boundary conditions (182) and

u(s, 0) ∈ N∗(0) ∀s ∈ [0, α], u(s, 0) ∈ N∗∆Rn ∀s ≥ α. (184)

In order to find a common functional setting, it is convenient to turn the boundary condition (184)
into (183) by means of a suitable conformal change of variables on the half-strip Σ+.

The holomorphic function z 7→ cos z maps the half strip {0 < Re z < π, Im z > 0} biholo-
morphically onto the upper half-plane H = {Im z > 0}. It is also a homeomorphism between
the closure of these domains. We denote by arccos the determination of the arc-cosine which is
the inverse of this function. Then the function z 7→ (1 + cos(iπz))/2 is a biholomorphism from
the interior of Σ+ to H, mapping 0 into 1 and i into 0. Let ǫ > 0. If we conjugate the linear
automorphism z 7→ (1 + ǫ)z of H by the latter biholomorphism, we obtain the following map:

ϕǫ(z) =
i

π
arccos

(
(1 + ǫ) cos(iπz) + ǫ

)
.
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The map ϕǫ is a homeomorphism of Σ+ onto itself, it is biholomophic in the interior, it preserves
the upper part of the boundary i+ R+, while it slides the left part i[0, 1] and the lower part R+

by moving the corner point 0 into the real positive number

α(ǫ) := − i
π

arccos(1 + 2ǫ).

The function ǫ 7→ α(ǫ) is invertible, and we denote by α 7→ ǫ(α) its inverse. Moreover, ϕǫ converges
to the identity uniformly on compact subsets of Σ+ for ǫ → 0. An explicit computation shows
that

ϕ′
ǫ − 1→ 0 in Lp(Σ+), if 1 < p < 4. (185)

If u : Σ+ → T ∗R2n and α > 0, we define

v(z) := u(ϕǫ(α)(z)).

Since ϕǫ is holomorphic, ∂(u ◦ ϕǫ) = ϕ′
ǫ · ∂u ◦ ϕǫ. Therefore, u solves the equation (181) if and

only if v solves the equation

∂v(z) + ϕ′
ǫ(α)(z)f(λ, ϕǫ(α)(z), v(z)) = 0. (186)

Given 2 < p < 4, we set

W 1,p
∗ (Σ+, T ∗R2n) =

{
v ∈ W 1,p(Σ+, T ∗R2n) | v(s, 0) ∈ N∗∆Rn ∀s ≥ 0,

v(s, 1) ∈ N∗(0) ∀s ≥ 0, v(0, t) ∈ N∗(0) ∀t ∈ [0, 1]
}
,

and we consider the operator

F : [0,+∞[×Rk ×W 1,p
∗ (Σ+, T ∗R2n)→ Lp(Σ+, T ∗R2n), F (α, λ, v) = ∂v + ϕ′

ǫ(α)f(λ, ϕǫ(α)(·), v),

where ϕ0 = id. The problem of finding (α, ũ) in M̃ K
Υ (γ1, γ2;x) with ũ close to ũ0 is equivalent

to finding zeroes of the operator F of the form (α, λ, v) with α > 0. By (185), the operator
F is continuous, and its differential D(λ,v)F with respect to the variables (λ, v) is continuous.

The transversality assumption that ũ0 is a non-degenerate solution of problem M̃ Ω
K(γ1, γ2;x) is

translated into the fact that D(λ,v)F (0, 0, 0) is an isomorphism. Then the parametric inverse
maping theorem implies that there is a unique curve α 7→ (λ(α), v(α)), 0 < α < α0, converging to
(0, 0) for α → 0, and such that (λ(α), v(α)) is the unique zero of F (α, ·, ·) in a neighborhood of
(0, 0). This concludes the proof of statement (ii).

6.5 Proof of Proposition 4.7

The setting. We recall the setting of section 4.4. Let γ1 ∈ P(L1), γ2 ∈ P(L2), and x ∈
PΘ(H1⊕H2). If α ≥ 0, M K

α (γ1, γ2;x) is the space of solutions u : [0,+∞[×[0, 1]→ T ∗M2 of the
equation

∂H1⊕H2,J(u) = 0, (187)

satisfying the boundary conditions

π ◦ u(0, ·) ∈Wu(γ1;−grad g1
SΛ

L1
)×Wu(γ2;−grad g2

SΛ
L2

), (188)

(u(s, 0),−u(s, 1)) ∈ N∗∆M×M if 0 ≤ s < α, (189)

(u(s, 0),−u(s, 1)) ∈ N∗∆Θ
M if s ≥ α, (190)

lim
s→+∞

u(s, ·) = x. (191)
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The energy of a solution u ∈M K
α (γ1, γ2;x) is uniformly bounded:

E(u) :=

∫

]0,+∞[×]0,1[

|∂su|2 ds dt ≤ SL1
(γ1) + SL2

(γ2)− AH1⊕H2
(x). (192)

Let α0 > 0. For a generic choice of g1, g2, J1, and J2, both M K
0 (γ1, γ2;x) and M K

α0
(γ1, γ2;x) are

smooth oriented manifolds of dimension

mΛ(γ1, L1) +mΛ(γ2, L2)− µΘ(x) − n,

for every γ1 ∈ PΛ(L1), γ2 ∈ PΛ(L2), x ∈ PΘ(H1 ⊕ H2) (see Proposition 4.5). The usual
counting process defines the chain maps

KΛ
0 , K

Λ
α0

: (M(SΛ
L1
, g1)⊗M(SΛ

L2
, g2))∗ −→ FΘ

∗−n(H1 ⊕H2, J1 ⊕ J2),

and we wish to prove that KΛ
0 ⊗KΛ

α0
is chain homotopic to KΛ

α0
⊗KΛ

0 . Since KΛ
α0

is homotopic
to KΛ

α1
for α0, α1 ∈]0,+∞[, we may as well assume that α0 is small. Moreover, since the chain

maps KΛ
0 and KΛ

α0
preserve the filtrations of the Morse and Floer complexes given by the action

sublevels SΛ
L1

(γ1) + SΛ
L2

(γ2) ≤ A, AH1⊕H2
(x) ≤ A,

we can work with the subcomplexes corresponding to a fixed (but arbitrary) action bound A. We
also choose the Lagrangians L1 and L2 to be non-negative, so that every orbit has non-negative
action.

Convergence. Fix some γ1 ∈P(L1), γ2 ∈P(L2), and x ∈PΘ(H1 ⊕H2), such that

mΛ(γ1) +mΛ(γ2)− µΘ(x) = n. (193)

Let (αh) be an infinitesimal sequence of positive numbers, let uh be an element of M K
αh

(γ1, γ2;x),
and let ch be the projection onto M ×M of the closed curve u(0, ·). By (188), ch is an element of
Wu(γ1;−grad g1

SΛ
L1

)×Wu(γ2;−grad g2
SΛ

L2
). The latter space is pre-compact in W 1,2([0, 1],M ×

M). By the argument of breaking gradient flow lines, up to a subsequence we may assume that
(ch) converges in W 1,2 to a curve c in Wu(γ̃1;−grad g1

SΛ
L1

) × Wu(γ̃2;−grad g2
SΛ

L2
), for some

γ̃1 ∈P(L1) and γ̃2 ∈P(L1) such that

either mΛ(γ̃1) +mΛ(γ̃2) < mΛ(γ1) +mΛ(γ2) or (γ̃1, γ̃2) = (γ1, γ2). (194)

Similarly, the upper bound (192) on the energy E(uh) implies that (uh) converges in C∞
loc on

[0,+∞[×[0, 1]\ {(0, 0), (0, 1)}, using the standard argument excluding bubbling off of spheres and
disks. In particular,

(u(s, 0),−u(s, 1)) ∈ N∗∆Θ
M , ∀s > 0, (195)

and

π ◦ u(0, t) = c(t), ∀t ∈]0, 1[. (196)

The limit u satisfies equation (187), and

lim
s→+∞

u(s, ·) = x̃,

with x̃ in PΘ(H1 ⊕H2) such that

either µΘ(x̃) > µΘ(x) or x̃ = x, (197)
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by the argument of breaking Floer trajectories. Due to finite energy,

E(u) ≤ lim inf
h→+∞

E(uh) ≤ SL1
(γ1) + SL2

(γ2)− AH1⊕H2
(x),

we find by removal singularities (Proposition 6.4) a continuous extension of u to the corner points
(0, 0) and (0, 1). By (195) and (196) we have

(u(0, 0),−u(0, 1)) ∈ N∗∆Θ
M , π ◦ u(0, 0) = π ◦ u(0, 1) = c(0) = c(1).

It follows that the two components of the closed curve c coincide at the starting point, so they
describe a figure-eight loop, and u belongs to M K

0 (γ̃1, γ̃2; x̃). Since the latter space is empty
whenever

mΛ(γ̃1) +mΛ(γ̃2))− µΘ(x̃) < n,

the index assumption (193) together with (194) and (197) implies that γ̃1 = γ1, γ̃2 = γ2, and
x̃ = x. We conclude that

u ∈M
K
0 (γ1, γ2;x).

We can also say a bit more about the convergence of (uh) towards u:

6.7. Lemma. Let dh : [0, 1]→M ×M be the curve

dh(s) := π ◦ uh(αhs, 0) = π ◦ uh(αs, 1).

Then (dh) converges uniformly to the constant curve c(0) = c(1).

Proof. It is convenient to replace the non-local boundary conditions (189), (190) by local ones, by
setting

ũh : [0,+∞[×[0, 1/2]→ T ∗M4, uh(s, t) := (uh(s, t),−uh(s, 1− t)).
Then ũh solves an equation of the form

∂J,H̃(ũh) = 0,

for a suitable Hamiltonian H̃ on [0, 1/2]× T ∗M4, and boundary conditions

π ◦ ũh(0, t) = (ch(t), ch(1 − t)) for 0 ≤ t ≤ 1/2, (198)

ũh(s, 0) ∈ N∗∆M×M for 0 ≤ s ≤ αh, (199)

ũh(s, 0) ∈ N∗∆Θ
M for s ≥ αh, (200)

ũh(s, 1/2) ∈ N∗∆M×M for s ≥ 0, (201)

lim
s→+∞

ũh(s, t) = (x(t),−x(1 − t)). (202)

Then the rescaled map

vh : [0,+∞[×[0, 1/(2αh)]→ T ∗M4, vh(s, t) = ũh(αhs, αht),

solves the equation

∂Jvh = αhJXH̃ = O(αh) for h→ 0,

with boundary conditions

π ◦ vh(0, t) = (ch(αht), ch(1 − αht)) for 0 ≤ t ≤ 1/(2αh), (203)

vh(s, 0) ∈ N∗∆M×M for 0 ≤ s ≤ 1, (204)

vh(s, 0) ∈ N∗∆Θ
M for s ≥ 1, (205)

vh(s, 1/(2αh)) ∈ N∗∆M×M for s ≥ 0, (206)

lim
s→+∞

vh(s, t) = (x(αht),−x(1− αht)). (207)
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Since we have applied a conformal rescaling, the energy of vh is uniformly bounded, so (vh) con-
verges up to a subsequence to some J-holomorphic map v in the C0

loc([0,+∞[×[0,+∞[, T ∗M4)
topology (more precisely, we have C∞

loc convergence once the domain [0,+∞[×[0,+∞[ is trans-
formed by a conformal mapping turning the portion near the boundary point (1, 0) into a neigh-
borhood of (0, 0) in the upper-right quarter H+ =]0,+∞[×]0,+∞[). The J-holomorphic map has
finite energy, so by removal singularities it has a continuous extension at∞ (again, by Proposition
6.4 together with a suitable conformal change of variables). By (203), (204), and (205) it satisfies
the boundary conditions

π ◦ v(0, t) = (c(0), c(0)) for t ≥ 0, (208)

v(s, 0) ∈ N∗∆M×M for 0 ≤ s ≤ 1, (209)

v(s, 0) ∈ N∗∆Θ
M for s ≥ 1. (210)

Since the boundary conditions are of conormal type and the Liouville one-form η vanishes on
conormals, we have

∫H+

|∇v|2 ds dt =

∫H+

v∗(ω) =

∫H+

v∗(dη) =

∫H+

dv∗(η) =

∫

∂H+

v∗(η) = 0,

so v is constant. By (208), π ◦ v = (c(0), c(0)). In particular,

lim
h→+∞

π ◦ vh(s, 0) = (c(0), c(0)) uniformly in s ∈ [0, 1].

Since

π ◦ vh(s, 0) = π ◦ ũh(αhs, 0) = (π ◦ uh(αhs, 0), π ◦ uh(s, 1)) = (dh(s), dh(s)),

the thesis follows.

Localization. We fix a positive number A, playing the role of the upper bound for the action.
Then the union of all spaces of solution M K

0 (γ1, γ2;x), where γ1 ∈ PΛ(L1), γ2 ∈ PΛ(L2), and
x ∈PΘ(H1 ⊕H2) satisfy the index identity (193) and the action estimatesSL1

(γ1) + SL2
(γ2) ≤ A, AH1⊕H2

(x) ≤ A, (211)

is a finite set. Let us denote by qi, i ∈ {1, . . . ,m}, the points in M such that π ◦ ui(0, 0) =
π ◦ ui(0, 1) = (qi, qi) for some u in the above finite set. We choose the indexing in such a way that
the points qi are pair-wise distinct, and we fix a positive number δ such that

Bδ(qi) ∩Bδ(qj) = ∅, ∀ i 6= j.

We may assume that the positive constant δ chosen above is so small that Bδ(qi) ⊂ M is diffeo-
morphic to Rn. Lemma 6.7 implies the following localization result:

6.8. Lemma. There exists a positive number α(A) such that for every α ∈]0, α(A)], every γ1 ∈
PΛ(L1), γ2 ∈ PΛ(L2), x ∈ PΘ(H1 ⊕ H2) satisfying the index identity (193) and the action
bounds (195), each solution u ∈M K

α (γ1, γ2;x) satisfies

π ◦ u([0, α]× {0}) = π ◦ u([0, α]× {1}) ⊂ Bδ/2(qi)×Bδ/2(qi),

for some i ∈ {1, . . . ,m}.

The chain homotopy. Since the Grassmannian of subspaces of some given dimension in Rn is
connected and since the δ-ball around each qi is diffeomorphic to Rn, there exist smooth isotopies

ϕij : [0, 1]× R3n → Bδ(qi)
4 ×Bδ(qj)

4 ⊂M8, ∀i, j ∈ {1, . . . ,m},
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such that, setting V λ
ij := ϕij({λ} × R3n), we have that each V λ

ij is relatively closed in Bδ(qi)
4 ×

Bδ(qj)
4 and

(∆Θ
M ×∆Θ

M ) ∩ (Bδ(qi)×Bδ(qj)) ⊂ V λ
ij , ∀λ ∈ [0, 1], (212)

V λ
ij ⊂ (∆M×M ×∆M×M ) ∩ (Bδ(qi)×Bδ(qj)), ∀λ ∈ [0, 1], (213)

V 0
ij = (∆Θ

M ×∆M×M ) ∩ (Bδ(qi)×Bδ(qj)), (214)

V 1
ij = (∆M×M ×∆Θ

M ) ∩ (Bδ(qi)×Bδ(qj)). (215)

Let γ1, γ3 ∈PΛ(L1), γ2, γ4 ∈PΛ(L2), and x1, x2 ∈PΘ(H1 ⊕H2) satisfy the index identity

mΛ(γ1) +mΛ(γ2) +mΛ(γ3) +mΛ(γ4)− µΘ(x1)− µΘ(x2) = 2n, (216)

and the action boundsSL1
(γ1) + SL2

(γ2) + SL1
(γ3) + SL2

(γ4) ≤ A, AH1⊕H2
(x1) + AH1⊕H2

(x2) ≤ A. (217)

Given α > 0, we define

M
P
α (γ1, γ2, γ3, γ4;x1, x2)

to be the set of pairs (λ, u) where λ ∈ [0, 1] and u : [0,+∞[×[0, 1] → T ∗M4 is a solution of the
equation

∂H1⊕H2⊕H1⊕H2,J(u) = 0, (218)

satisfying the boundary conditions

π ◦ u(0, ·) ∈Wu(γ1)×Wu(γ2)×Wu(γ3)×Wu(γ4), (219)

(u(s, 0),−u(s, 1)) ∈
m⋃

i,j=1

N∗V λ
ij if 0 ≤ s ≤ α, (220)

(u(s, 0),−u(s, 1)) ∈ N∗(∆Θ
M ×∆Θ

M ) if s ≥ α, (221)

lim
s→+∞

u(s, ·) = (x1, x2). (222)

Notice that if (0, u) belongs to M P
α (γ1, γ2, γ3, γ4;x1, x2), then writing u = (u1, u2) where u1 and

u2 take values into T ∗M2, we have

u1 ∈M
K
0 (γ1, γ2;x1), u2 ∈M

K
α (γ3, γ4;x2).

If transversality holds, we deduce the index estimates

mΛ(γ1) +mΛ(γ2)− µΘ(x1) ≥ n, mΛ(γ3) +mΛ(γ4)− µΘ(x2) ≥ n.

But then (216) implies that the above inequalities are indeed identities. Similarly, if (1, u) belongs
to M P

α (γ1, γ2, γ3, γ4;x1, x2), we deduce that

u1 ∈M
K
α (γ1, γ2;x1), u2 ∈M

K
0 (γ3, γ4;x2).

and

mΛ(γ1) +mΛ(γ2)− µΘ(x1) = n, mΛ(γ3) +mΛ(γ4)− µΘ(x2) = n.

Conversly, we would like to show that pairs of solutions in M K
0 ×M K

α (or M K
α ×M K

0 ) correspond
to elements of M P

α of the form (0, u) (or (1, u)), at least if α is small. The key step is the following:
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6.9. Lemma. There exists a positive number α(A) such that for every α ∈]0, α(A)], for every
γ1, γ3 ∈ PΛ(L1), γ2, γ4 ∈ PΛ(L2), x1, x2 ∈ PΘ(H1 ⊕ H2) satisfying (216) and (217) and for
every u ∈M P

α (γ1, γ2, γ3, γ4;x1, x2) there holds

π ◦ u([0, α]× {0}) = π ◦ u([0, α]× {1}) ∈ Bδ/2(qi)
2 ×Bδ/2(qj)

2,

for suitable i, j ∈ {1, . . . ,m}.

Proof. By contradiction, we assume that there are an infinitesimal sequence of positive numbers
(αh) and elements (λh, uh) ∈M P

αh
(γ1, γ2, γ3, γ4;x1, x2) where γ1, γ2, γ3, γ4, x1, x2 satisfy (216) and

(217), and

π ◦ uh(shαh, 0) = π ◦ uh(shαh, 1) /∈
m⋃

i,j=1

Bδ/2(qi)
2 ×Bδ/2(qj)

2, (223)

for some sh ∈ [0, 1]. Let ch : [0, 1] → M4 be the closed curve defined by ch(t) = π ◦ uh(0, t).
Arguing as in the Convergence paragraph above, we see that up to subsequences

λh → λ ∈ [0, 1],

ch → c ∈Wu(γ1)×Wu(γ2)×Wu(γ3)×Wu(γ4) in W 1,2([0, 1],M4)

uh → u ∈M
K
0 (γ1, γ2;x1)×M

K
0 (γ3, γ4;x2) in C∞

loc([0,+∞[×[0, 1] \ {(0, 0), (0, 1)}, T ∗M4).

Since the space M K
0 (γ1, γ2;x1)×M K

0 (γ3, γ4;x2) is not empty, we have the index estimates

mΛ(γ1) +mΛ(γ2)− µΘ(x1) ≥ n, mΛ(γ3) +mΛ(γ4)− µΘ(x2) ≥ n.

Together with (216) this implies that

mΛ(γ1) +mΛ(γ2)− µΘ(x1) = n, mΛ(γ3) +mΛ(γ4)− µΘ(x2) = n. (224)

Moreover, (217) and the fact that the action of every orbit is non-negative implies thatSL1
(γ1) + SL2

(γ2) ≤ A, AH1⊕H2
(x1) ≤ A, (225)SL1

(γ3) + SL2
(γ4) ≤ A, AH1⊕H2

(x2) ≤ A. (226)

Furthermore, arguing as in the proof of Lemma 6.7, we find that the curve

dh : [0, 1]×M4, dh(s) = π ◦ uh(αhs, 0) = π ◦ uh(αhs, 1),

converges uniformly to the constant c(0) = c(1). By (224), (225) and (226),

c(0) = c(1) = π ◦ u(0, 0) = π ◦ u(0, 1)

is of the form (qi, qi, qj , qj), for some i, j ∈ {1, . . . ,m}. But then the uniform convergence of (dh)
to c(0) contradicts (223).

We fix some α0 ∈]0, α(A)], and we choose the generic data g1, g2, H1, H2 in such a way that
transversality holds for the problems M K

0 , M K
α0

, and M P
α0

. Then each M P
α0

(γ1, γ2, γ3, γ4;x1, x2)
is a smooth manifold whose boundary - if non-empty - is precisely the intersection with the regions
{λ = 0} and {λ = 1}. In particular, when (216) and (217) hold, M K

α0
(γ1, γ2, γ3, γ4;x1, x2) is a

one-dimensional manifold with possible boundary points at λ = 0 and λ = 1, and Lemma 6.9
implies that

M
P
α0

(γ1, γ2, γ3, γ4;x1, x2) ∩ {λ = 0} = M
K
0 (γ1, γ2;x1)×M

K
α0

(γ3, γ4;x2), (227)

M
P
α0

(γ1, γ2, γ3, γ4;x1, x2) ∩ {λ = 1} = M
K
α0

(γ1, γ2;x1)×M
K
0 (γ3, γ4;x2). (228)
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We denote by MA the subcomplex of

M(SΛ
L1
, g1)⊗M(SΛ

L2
, g2)⊗M(SΛ

L1
, g1)⊗M(SΛ

L2
, g2)

spanned by generators γ1 ⊗ γ2 ⊗ γ3 ⊗ γ4 withSL1
(γ1) + SL2

(γ2) + SL1
(γ3) + SL2

(γ4) ≤ A.

Similarly, we denote by FA the subcomplex of

FΘ(H1 ⊕H2, J)⊗ FΘ(H1 ⊕H2, J)

spanned by generators x1 ⊗ x2 withAH1⊕H2
(x1) + AH1⊕H2

(x2) ≤ A.

We define a homomorphism

P : MA
∗ → FA

∗−2n+1

by counting the elements of M P
α0

(γ1, γ2, γ3, γ4;x1, x2) in the zero-dimensional case:

mΛ(γ1) +mΛ(γ2) +mΛ(γ3) +mΛ(γ4)− µΘ(x1)− µΘ(x2) = 2n− 1.

Using the identities (227) and (228) we see that P is a chain homotopy between the restrictions
of KΛ

0 ⊗KΛ
α0

and KΛ
α0
⊗KΛ

α to the above subcomplexes. This concludes the proof of Proposition
4.7.
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[Sch95] M. Schwarz, Cohomology operations from S1-cobordisms in Floer homology, Ph.D. the-
sis, Swiss Federal Inst. of Techn. Zurich, Zurich, Diss. ETH No. 11182, 1995.

[Sma65] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965),
861–866.

[Sul03] D. Sullivan, Open and closed string field theory interpreted in classical algebraic geom-
etry, arXiv:math.QA/0302332, 2003.

[Sul07] D. Sullivan, String topology: Background and present state, arXiv: 0710.4141v1

[math.GT] (2007).

[tDKP70] T. tom Dieck, K. H. Kamps, and D. Puppe, Homotopietheorie, Springer, Berlin-
Heidlberg-New York, 1970.

[Vit95] C. Viterbo, The cup-product on the Thom-Smale-Witten complex, and Floer cohomol-
ogy, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995,
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