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The Hijazi inequality on conformally parabolic manifolds

Nadine Große

Abstract

We prove the Hijazi inequality, an estimate for Dirac eigenvalues, for com-
plete manifolds of finite volume. Under some additional assumptions on the
dimension and the scalar curvature, this inequality is also valid for elements of
the essential spectrum. This allows to prove the conformal version of the Hijazi
inequality on conformally parabolic manifolds if the spin analog to the Yamabe
invariant is positive.

1 Introduction

On a closed n-dimensional Riemannian spin manifold (M, g, σ) with scalar cur-
vature sg, Friedrich [6, Thm. A] gave an estimate for an eigenvalue λ of the
classical Dirac operator Dg:

λ2 ≥
n

4(n− 1)
inf
M
sg.

This inequality was improved by Hijazi [9] for dimension n ≥ 3

λ2 ≥
n

4(n− 1)
µ,

where µ is the smallest eigenvalue of the conformal Laplacian Lg =4n−1
n−2∆g +sg.

On closed manifolds, there is a conformal version of the Hijazi inequality that
relates the corresponding conformal quantities, that means the Yamabe invariant

Q(M, g) = inf

{

∫

M

vLgvdvolg

∣

∣

∣
‖v‖ 2n

n−2
= 1, v ∈ C∞

c (M)

}

with the λ+
min-invariant

λ+
min(M, g, σ) = inf

g0∈[g], vol(M,g0)<∞
λ+

1 (M, g0, σ)vol(M, g0)
1
n
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where

λ+
1 (M, g, σ)=inf

{

‖Dgφ‖
2

(Dgφ, φ)

∣

∣

∣

∣

∣

0<(Dgφ, φ), φ ∈ C∞
c (M,S)

}

and [g] is the set of all metrics conformal to g. Furthermore, C∞
c (M,S) denotes

the compactly supported smooth spinors on (M, g, σ) and ‖.‖ := ‖.‖L2 .
The conformal Hijazi inequality reads

λ+
min(M, g, σ)2 ≥

n

4(n− 1)
Q(M, g).

This can be seen immediately since on closed manifolds λ+
1 is just the lowest

positive Dirac eigenvalue, and for Q ≥ 0 we have

Q(M, g) = inf
g0∈[g], vol(M,g0)<∞

µ(g0)vol(M, g0)
2
n (1)

where µ(g0) is the infimum of the spectrum of Lg0
.

We note, that the λ+
min-invariant can also be defined as a variational problem

similar to the Yamabe invariant [2].

Since both the Yamabe and the λ+
min-invariant can also be considered on open

manifolds, cf. [10], [8], it is interesting to know whether the conformal Hijazi
inequality also holds on these manifolds.
In this paper, we examine this question for conformally parabolic manifolds, i.e.
those that admit a complete metric of finite volume in their conformal class.

At first, we obtain an Hijazi equality for Riemannian manifolds equipped with
a complete metric of finite volume.

Theorem 1.1. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume and dimension n > 2. Moreover, let λ be an eigenvalue of its Dirac op-
erator Dg, and let µ be the infimum of the spectrum of the conformal Laplacian.
Then the following inequality holds:

λ2 ≥
n

4(n− 1)
µ.

If equality is attained, the manifold admits a real Killing spinor and has to be
Einstein and closed.

On complete manifolds, the Dirac operator is essentially self-adjoint and, in
general, its spectrum consists of eigenvalues and the essential spectrum. For
elements of the essential spectrum, we also obtain an Hijazi-type inequality:

Theorem 1.2. Let (M, g, σ) be a complete Riemannian spin manifold of dimen-
sion n ≥ 5 with finite volume. Furthermore, let the scalar curvature of (M, g)
be bounded from below. If λ is in the essential spectrum of the Dirac operator
σess(Dg), then

λ2 ≥
n

4(n− 1)
µ.

These two Hijazi inequalities allow to prove the conformal version:
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Theorem 1.3. Let (M, g, σ) be a conformally parabolic Riemannian spin ma-
nifold of dimension n > 2. Let one of the following assumptions be fulfilled:

(i) There is a complete conformal metric g of finite volume such that 0 6∈
σess(Dg).

(ii) The dimension is n ≥ 5, and there is a complete conformal metric g of
finite volume whose scalar curvature is bounded from below.

Then the conformal Hijazi inequality holds:

λ+
min(M, g, σ)2 ≥

n

4(n− 1)
Q(M, g).

A manifold that does not fulfill the assumption (i) possesses a vanishing λ+
min-

invariant, cf. Lem. 3.3.iii. Thus, we obtain

Corollary 1.4. Let (M, g, σ) be a conformally parabolic Riemannian spin ma-
nifold of dimension n > 2 and with λ+

min > 0. Then the conformal Hijazi
inequality is valid.

We give a brief outline of the paper: In Sect. 2, we review some notations for the
identification of spinor bundles of conformally equivalent metrics. Furthermore,
we give a refined Kato inequality that will be used in the proof of Theorem 1.2.
In Sect. 3, we give some properties of λ+

1 and λ+
min on conformally parabolic

manifolds. With these preparations, the Theorems 1.1, 1.2 and 1.3 can be shown
in Sect. 4.

2 Preliminaries

In this section, we first review the identification of spinor bundles of conformally
equivalent metrics to fix notations. Then we give the refined Kato inequality
that we use to prove Theorem 1.2.

Spinor bundles of conformally related metrics

Let g = f2g with 0 < f ∈ C∞(M). Having fixed a spin structure σ on (M, g)
with corresponding spinor bundle Sg, there always exists a corresponding spinor
bundle Sg on (M, g) and a vector bundle isomorphism

A : Sg → Sg, ψ 7→ ψ := A(ψ)

that is fibrewise an isometry [9, Sect. 4.1], i.e. < ψ,ψ >g=< ψ,ψ >g. In the
following, we write for both spinor bundles just S.

Using this isometry, it is possible to compare the corresponding Dirac operators
D := Dg and D := Dg [9, Prop. 4.3.1]:

D(f−
n−1

2 ψ) = f−
n+1

2 Dψ.

Refined Kato inequalities

The Kato inequality states that for any section φ of a Riemannian or Hermitian
vector bundle E endowed with a metric connection ∇ on a Riemannian manifold
(M, g) we have

2|φ||d|φ|| = |d|φ|2| = 2| < ∇φ, φ > | ≤ 2|φ||∇φ|, (2)
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i.e. |d|φ|| ≤ |∇φ| away from the zero set of φ. For this estimate it is used that
< ∇Xφ, φ >∈ R for all X ∈ TM .
In [5], refined Kato inequalities were obtained for sections in the kernel of first-
order elliptic differential operators. They are of the form

|d|φ|| ≤ kP |∇φ|

where kP is a constant depending on the operator P .

We sketch the set-up used in [5]: Let E be an irreducible natural vector bundle
E over an n-dimensional Riemannian (spin) manifold (M, g) with scalar product
< ., . > and a metric connection ∇. Irreducible natural means that the vector
bundle is obtained either from the orthonormal frame bundle of M or from the
spinor frame bundle with an irreducible representation of SO(n) or Spin(n) on
a vector space V . We will denote this representation by λ. Further, let τ be
the standard representation of SO(n) or Spin(n) on R

n. Then the real tensor
product τ ⊗ λ splits into irreducible components as

τ ⊗ λ =
N

⊕

j=1

µj , R
n ⊗ V =

N
⊕

j=1

Wj .

This induces a decomposition of T ∗M ⊗E into irreducible subbundles Fj asso-
ciated to µj . Further, let Πj denote the projection onto the jth summand of
R

n ⊗ V and T ∗M ⊗ E, respectively.

Let P be a first-order linear differential operator of the form P =
∑

i∈I Πi ◦

∇ where I ⊆ {1, . . . , N}. Moreover, we denote ΠI :=
∑

i∈I Πi and Î :=
{1, . . . , N} \ I.

Following the ansatz for the refined Kato inequalities we obtain the estimate:

Lemma 2.1. Let P be an operator as defined above. Then we have away from
the zero set of φ

|d|φ|| ≤ |Pφ|+ kP |∇φ|

where kP := sup|α|=|v|=1 |ΠÎ(α⊗ v)|.

The proof is done analogously to the one of [5] without the assumption that
φ ∈ kerP . That’s why the additional summand |Pφ| appears and why the
constant kP remains the same.

For the shifted (classical) Dirac operator D − λ we have k =
√

n−1
n

[5, (3.9)].

3 The invariant on conformally parabolic mani-

folds

Firstly, we give a characterization of conformally parabolic manifolds and con-
sider the example of the Euclidean space.
In the rest of this section, we provide some properties of λ+

1 for complete metrics
with finite volume.
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Definition 3.1. [11, Sect. 3] A Riemannian manifold is conformally parabolic
if and only if its conformal class contains a complete metric of finite volume.

Example 3.2. Let (Mm, gM ) be a closed m-dimensional Riemannian manifold.
Then (M×R, g = gM +dt2) is conformally parabolic, since the conformal metric
g = 1

t2
g is complete and of finite volume.

Furthermore, for the new metric and for dimension n > 2 the scalar curvature

is calculated as (where h = t−
n−2

2 and n = m+ 1)

sg = 4
n− 1

n− 2
h−

n+2
n−2 ∆gh+ sgh

− 4
n−2

= −4
n− 1

n− 2
t

n+2
2

(

1−
n

2

) (

−
n

2

)

t−
n+2

2 + sM t2

= −(n− 1)n+ sM t2.

Next we give some properties of λ+
1 :

Lemma 3.3.

i) If λ+
1 (M, g, σ) = 0 and vol(M, g) <∞, then λ+

min(M, g, σ) = 0.
ii) If (M, g) is complete and λ > 0 is an eigenvalue of D or an element of its
essential spectrum, then λ+

1 (M, g, σ) ≤ λ.
iii) A complete Riemannian spin manifold of finite volume for which there exists
a λ > 0 in the essential spectrum of its Dirac operator has a vanishing λ+

min-
invariant.

Proof. i) is seen immediately from the definition of λ+
min.

ii) There exists a sequence φi ∈ C
∞
c (M,S) with ‖Dφi−λφi‖ → 0 and ‖φi‖ → 1:

If λ is in the essential spectrum, this is obvious. If λ is an eigenvalue with
eigenspinor φ ∈ C∞(M,S)∩L2(M,S), we choose φi = ηiφ where ηi is a smooth
cut-off function such that ηi ≡ 1 on Bi(p) (p ∈ M fixed), ηi ≡ 0 on M \ B2i(p)
and in between |∇ηi| ≤

2
i
. This is always possible since (M, g) is complete.

Then φi is the sequence in demand since ‖(D − λ)φi‖ = ‖∇ηi · φ‖ ≤
2
i
‖φ‖.

Thus, in both cases
‖Dφi‖

2

(Dφi, φi)
→ λ

which proves the claim.
iii) Since the essential spectrum is a property of the manifold at infinity, see
[4, Prop. 1], there is a sequence φi ∈ C∞

c (M \ Bi(p), S) (p ∈ M fixed) with
‖(D − λ)φi‖ → 0 and ‖φi‖ = 1. Thus, as in ii) we find

λ+
min(M \Br(p), g, σ) ≤ λ vol(M \Br(p), g)→ 0

for r →∞. With λ+
min(M, g, σ) ≤ λ+

min(M \Br(p), g, σ) [8, Lem. 2.1], we have
λ+

min(M, g, σ) = 0.

Lemma 3.4. Let (M, g, σ) be a complete Riemannian spin manifold. Then

λ+
1 (M, g, σ) = inf{σ(D) ∩ (0,∞)}

where σ(D) denotes the Dirac spectrum.
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Proof. Since (M, g) is complete, D is essentially self-adjoint and has no residual
spectrum, cf. [7, Chapt. 4]. By the spectral theorem for unbounded self-adjoint
operators, we obtain that for every φ ∈ C∞

c (M,S) with (Dφ, φ) > 0

‖Dφ‖2

(Dφ, φ)
=

∫

σ(D)
λ2 d < Eλφ, φ >

∫

σ(D)
λ d < Eλφ, φ >

≥

∫

σ(D)∩(0,∞)
λ2 d < Eλφ, φ >

∫

σ(D)∩(0,∞)
λ d < Eλφ, φ >

≥
λ0

∫

σ(D)∩(0,∞)
λ d < Eλφ, φ >

∫

σ(D)∩(0,∞)
λ d < Eλφ, φ >

= λ0

where λ0 = inf{σ(D) ∩ (0,∞)}. Note that (Dφ, φ) > 0 and, thus, the de-
nominator

∫

σ(D)∩(0,∞)
λ d < Eλφ, φ > is always positive. Hence, we have

λ+
1 ≥ inf{σ(D) ∩ (0,∞)}.

The converse inequality is obtained by Lemma 3.3.ii.

From Lemma 3.3.iii and Lemma 3.4, we have

Corollary 3.5. Let (M, g, σ) be a complete Riemannian spin manifold of finite
volume with λ+

min > 0. Then σ(D) ∩ (0,∞) consists only of eigenvalues.

The next Lemma shows that for defining the λ+
min-invariant on conformally

parabolic manifolds we do not need the infimum over all conformal metrics.

Lemma 3.6. Let (M, g, σ) be a conformally parabolic Riemannian spin ma-
nifold. Then there exists a sequence of complete conformal metrics gi of unit
volume such that λ+

1 (gi)→ λ+
min(g) and gi ≡ g1 near infinity, i.e.

λ+
min(M, g, σ) = inf{λ+

1 (M, g, σ) | g ≡ g1 near infinity, vol(M, g) = 1},

where “near infinity” refers to the existence of a compact subset U ⊂ M such
that f ≡ 1 on M \ U .

Proof. Assume that g = g1 is already complete and of unit volume. Let gi = f2
i g

be a sequence of conformal metrics of unit volume with λ+
1 (gi) → λ+

min for
i→∞. Thus, there is a sequence φi ∈ C

∞
c (M,S) such that

F (φi, gi) :=
‖ Dgi

φi ‖
2
gi

(Dgi
φi, φi)gi

→ λ+
min

Now, we choose the conformal factor hi such that hi is equal to fi on the support
of φi, hi = 1 near infinity and

∫

M
hn

i dvolg = 1. Then, F (φi, h
2
i g) = F (φi, gi)→

λ+
min, and the metrics h2

i g are complete, since g is complete, and they have unit
volume.

4 Proof of Hijazi inequalities

Firstly, we follow the main idea of the proof of the original Hijazi inequality, but
we fix the used conformal factor with the help of an eigenspinor. This results in
a conformal metric on the manifold without the zero-set of the eigenspinor and
we have to use cut-off functions near this zero-set and near infinity to obtain
compactly supported test functions.
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Theorem 1.1. Let ψ ∈ C∞(M,S)∩L2(M,S) be an eigenspinor satisfying Dψ =
λψ and ‖ψ‖ = 1. Its zero-set Ω is closed and contained in a closed count-
able union of smooth (n− 2)-dimensional submanifolds which has locally finite
(n− 2)-dimensional Hausdorff measure [3, p. 189].

We fix a point p ∈ M . Since M is complete, there exists a cut-off function
ηi : M → [0, 1] which is zero on M \ B2i(p) and one on Bi(p). In between the
function is chosen such that |∇ηi| ≤

4
i

and ηi ∈ C
∞
c (M).

While ηi cuts off ψ at infinity, we define another cut-off near the zeros of ψ.
For this purpose, we can assume without loss of generality that Ω is itself the
countable union of (n− 2)-submanifolds described above.

Let now ρa,ǫ be defined as

ρa,ǫ(x) =

{

0 for r < aǫ

1− δ ln ǫ
r

for aǫ ≤ r ≤ ǫ
1 for ǫ < r

where r = d(x,Ω) is the distance from x to Ω. The constant a < 1 is chosen

such that ρa,ǫ(aǫ) = 0, i.e. a = e−
1
δ . Then ρa,ǫ is continuous, constant outside

a compact set and Lipschitz. Hence, for φ ∈ C∞(M,S) the spinor ρa,ǫφ is an
element in Hr

1 (M,S) for all 1 ≤ r ≤ ∞.

Now, let ψia := ηiρa,ǫψ ∈ H
r
1 (M,S) be defined. These spinors are compactly

supported on M \ Ω. Furthermore, g = e2ug = h
4

n−2 g with h = |ψ|
n−2
n−1 is a

metric on M \ Ω. Setting φia := e−
n−1

2 uψia (φ = e−
n−1

2 uψ), the Lichnerowicz-
type formula [9, (5.4)] implies

‖(D−λe−u)φia‖
2
g = ‖∇

λe−u

φia‖
2
g +

∫

M\Ω

(

s

4
−
n− 1

n
λ2e−2u

)

|φia|
2dvolg

−
n− 1

n
(2λe−u(D − λe−u)φia + λe−ugrad e−u · φia, φia)g

= ‖∇
λe−u

φia‖
2
g +

∫

M

(

s

4
−
n− 1

n
λ2e−2u

)

eu|ψia|
2dvolg

− 2
n− 1

n
((D − λ)ψia, λe

−uψia)g

= ‖∇
λe−u

φia‖
2
g +

1

4

∫

M

h−1Lh e−u|ψia|
2dvolg

−
n− 1

n
λ2

∫

M

e−u|ψia|
2dvolg − 2

n− 1

n
((D − λ)ψia, λe

−uψia)g,

where ∇f
Xφ := ∇Xφ + f

n
X · φ for f = λe−u ∈ C∞(M) is the Friedrich con-

nection. For the second line we used |φia|
2dvolg = eu|ψia|

2dvolg, and the term

(λe−ugrade−u · φia, φia)g vanishes since < ∇f · φ, φ >∈ iR, cf. [9, Lem. 3.1].
The last line is obtained by replacing se2u = h−1Lh.
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With Dψ = λψ and < ∇f · ψ,ψ >∈ iR, we obtain

((D − λ)ψia, λe
−uψia)g = (∇(ηiρa,ǫ)ψ, λe

−uηiρa,ǫψ)g = 0.

Inserting this result, Dφ = λe−uφ and ‖∇
λe−u

φia‖
2
g ≥ 0 into the formula from

above we further have

‖∇(ηiρa,ǫ)φ‖
2
g ≥

∫

M

(

1

4
η2

i ρ
2
a,ǫ|ψ|

n−2
n−1L|ψ|

n−2
n−1 −

n− 1

n
λ2η2

i ρ
2
a,ǫ|ψ|

2 n−2
n−1

)

dvolg.

Moreover, we have

‖∇(ηiρa,ǫ)φ‖
2
g =

∫

M

|e−u∇(ηiρa,ǫ) · φ|
2dvolg =

∫

M

|∇(ηiρa,ǫ) · ψ|
2e−udvolg.

Thus, with eu = |ψ|
2

n−1 the above inequality reads

∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 dvolg ≥

1

4

∫

M

ηiρa,ǫ|ψ|
n−2
n−1L(ηiρa,ǫ|ψ|

n−2
n−1 )dvolg

−
n− 1

n− 2

∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 dvolg −

n− 1

n
λ2

∫

M

η2
i ρ

2
a,ǫ|ψ|

2 n−2
n−1 dvolg.

Hence, we obtain

2n− 3

n− 2

∫

M

|∇(ηiρa,ǫ)|
2|ψ|2

n−2
n−1 dvolg ≥

(

µ

4
−
n− 1

n
λ2

)
∫

M

η2
i ρ

2
a,ǫ|ψ|

2 n−2
n−1 dvolg,

where µ is the infimum of the spectrum of the conformal Laplacian. With
(a+ b)2 ≤ 2a2 + 2b2 we have

k

∫

M

(η2
i |∇ρa,ǫ|

2 + ρ2
a,ǫ|∇ηi|

2)|ψ|2
n−2
n−1 dvolg ≥

(

µ

4
−
n− 1

n
λ2

)

‖ηiρa,ǫ|ψ|
n−2
n−1 ‖2

where k = 22n−3
n−2 .

Next, we want a tend to zero:
Recall that Ω ∩ B2i(p) is bounded, closed, (n − 2)-C∞-rectifiable and has still
locally finite (n− 2)-dimensional Hausdorff measure. For fixed i we estimate

∫

M

|∇ρa,ǫ|
2η2

i |ψ|
2 n−2

n−1 dvolg ≤ sup
B2i(p)

|ψ|2
n−2
n−1

∫

B2i(p)

|∇ρa,ǫ|
2dvolg.

Furthermore, we set B2
ǫ (p) := {x ∈ Bǫ | d(x, p) = d(x,Ω)} with Bǫ := {x ∈

M | d(x,Ω) ≤ ǫ}. For ǫ sufficiently small each B2
ǫ (p) is star shaped. Moreover,

there is an inclusion B2
ǫ (p) →֒ Bǫ(0) ⊂ R

2 via the normal exponential map.
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Then we can calculate
∫

Bǫ∩B2i(p)

|∇ρa,ǫ|
2dvolg ≤ voln−2(Ω ∩B2i(p)) sup

x∈Ω∩B2i(p)

∫

B2
ǫ (x)\B2

aǫ(x)

|∇ρa,ǫ|
2dvolg2

≤ cvoln−2(Ω ∩B2i(p))

∫

Bǫ(0)\Baǫ(0)

|∇ρa,ǫ|
2dvolgE

≤ c′
ǫ

∫

aǫ

δ2

r
dr = −c′δ2 ln a = c′δ → 0 for a→ 0

where voln−2 denotes the (n − 2)-dimensional volume and g2 = g|B2
ǫ (p)

. The

positive constants c and c′ arise from voln−2(Ω∩B2i(p)) and the comparison of
dvolg2

with the volume element of the Euclidean metric.

Furthermore, by the monotone convergence theorem, we obtain
∫

B2i(p)

ρ2
a,ǫ|∇ηi|

2|ψ|2
n−2
n−1 dvolg →

∫

B2i(p)

|∇ηi|
2|ψ|2

n−2
n−1 dvolg

as a→ 0 and, thus,

k

∫

M

|∇ηi|
2|ψ|2

n−2
n−1 dvolg ≥

(

µ

4
−
n− 1

n
λ2

)
∫

M

η2
i |ψ|

2 n−2
n−1 dvolg.

Next we want to establish the limit for i→∞:
Since M has finite volume and ‖ψ‖ = 1, the Hölder inequality ensures that
∫

M

|ψ|2
n−2
n−1 dvolg is bounded. With |∇ηi| ≤

4
i

we get

λ2 ≥
n

4(n− 1)
µ.

Equality is attained if and only if ‖∇
λe−u

φia‖
2
g → 0 for i→∞ and a→ 0. We

have

0←‖∇
λe−u

φia‖g = ‖ηiρa,ǫ∇
λe−u

φ+∇(ηiρa,ǫ)φ‖g

≥ ‖ηiρa,ǫ∇
λe−u

φ‖g − ‖∇(ηiρa,ǫ)φ‖g.

With ‖∇(ηiρa,ǫ)φ‖g → 0, see above, ∇
λe−u

φ has to vanish on M \ Ω. With
[9, Cor. 3.6] this implies that e−u is constant. Thus, (M, g) is Einstein and
possesses a real Killing spinor, cf. [7, p. 118]. Furthermore, its Einstein constant
is positive. Thus, the Ricci curvature is a positive constant and, hence, due to
the Theorem of Bonnet-Myers M is already closed.

Next, we want to prove Theorem 1.2 using the refined Kato inequality:

Theorem 1.2. We may assume vol(M, g) = 1. If λ is in the essential spectrum of
D, then 0 is in the essential spectrum of D−λ and of (D−λ)2. Thus, there is a
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sequence φi ∈ C
∞
c (M,S) such that ‖(D−λ)2φi‖ → 0 and ‖(D−λ)φi‖ → 0 while

‖φi‖ = 1. We may assume that |φi| ∈ C
∞
c (M). That can always be achieved by

a small perturbation.

Now let 1
2 ≤ β ≤ 1. Then |φi|

β ∈ H2
1 (M). Firstly, we will show that the

sequence ‖d|φi|
β‖ is bounded:

By the Hölder inequality we have

0← ‖φi‖
2β−1‖(D − λ)2φi‖ ≥ ‖|φi|

2β−1‖{|φi|6=0}‖(D − λ)2φi‖

≥
∣

∣

∣

∫

|φi|6=0

|φi|
2β−2 < (D − λ)2φi, φi > dvolg

∣

∣

∣
.

Using the Lichnerowicz formula [9, (5.4)], we obtain

‖(D − λ)2φi‖ ≥
∣

∣

∣

∫

|φi|6=0

|φi|
2β−2 < ∆λφi, φi > dvolg

+

∫
(

s

4
−
n− 1

n
λ2

)

|φi|
2βdvolg

− 2
n− 1

n

∫

|φi|6=0

|φi|
2β−2 < (D − λ)φi, λφi > dvolg

∣

∣

∣

≥

∫

|φi|6=0

|φi|
2β−2|∇λφi|

2dvolg +2(β − 1)

∫

|φi|6=0

|φi|
2β−3< d|φi|·φi,∇

λφi>dvolg

+

∫
(

s

4
−
n− 1

n
λ2

)

|φi|
2βdvolg − 2

n− 1

n
λ‖|φi|

2β−1‖{|φi|6=0}‖(D − λ)φi‖

With the Hölder inequality (recall that β ≤ 1) and the Kato inequality for the
connection ∇λ, see (2), we have

0← ‖(D − λ)2φi‖

≥ (2β − 1)

∫

|φi|6=0

|φi|
2β−2|d|φi|||∇

λφi|dvolg +

∫
(

s

4
−
n− 1

n
λ2

)

|φi|
2βdvolg

− 2
n− 1

n
λ‖φi‖

2β−1‖(D − λ)φi‖

≥ (2β − 1)

∫

|φi|6=0

|φi|
2β−2|d|φi||

2dvolg +

∫
(

s

4
−
n− 1

n
λ2

)

|φi|
2βdvolg

− 2
n− 1

n
λ‖(D − λ)φi‖

≥ (2β − 1)
1

β2

∫

|φi|6=0

|d|φi|
β |2dvolg +

∫
(

s

4
−
n− 1

n
λ2

)

|φi|
2βdvolg

− 2
n− 1

n
λ‖(D − λ)φi‖

Since s is bounded from below,
∫

s|φi|
2βdvolg ≥ inf s ‖φi‖

2β
2β ≥ min{inf s, 0} is

also bounded. Thus, with ‖(D−λ)φi‖ → 0 we see that ‖d|φi|
β‖ is also bounded.
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Next we fix α = n−2
n−1 and obtain

µ

4
−
n− 1

n
λ2 ≤

(

µ

4
−
n− 1

n
λ2

)

‖|φi|
α‖2

≤
1

4

∫

|φi|
αL|φi|

αdvolg −
n− 1

n
λ2‖|φi|

α‖2

=

∫

|φi|
2 n−2

n−1−2

(

n

n− 1
|d|φi||

2 +
1

2
d∗d|φi|

2 +

(

s

4
−
n− 1

n
λ2

)

|φi|
2

)

dvolg

where we used the definition of µ as infimum of the spectrum of L = 4n−1
n−2∆+s.

The third line is obtained from

|φi|
αd∗d|φi|

α =
α

2
|φi|

2α−2d∗d|φi|
2 − α(α− 2)|φi|

2α−2|d|φi||
2.

Next, using

1

2
d∗d < φi, φi >=< ∇∗∇φi, φi > −|∇φi|

2 =< D2φi, φi > −
s

4
|φi|

2 − |∇φi|
2

and

|∇λφi|
2 = |∇φi|

2 − 2Re
λ

n
< (D − λ)φi, φi > −

λ2

n
|φi|

2,

we have

µ

4
−
n− 1

n
λ2 ≤

∫

|φi|
2 n−2

n−1−2

(

n

n− 1
|d|φi||

2 − |∇λφi|
2

)

dvolg

+

∫

|φi|
2 n−2

n−1−2 < (D2 − λ2)φi, φi > dvolg

−

∫

2|φi|
2 n−2

n−1−2Re
λ

n
< (D − λ)φi, φi > dvolg

≤

∫

|φi|
2 n−2

n−1−2

(

n

n− 1
|d|φi||

2 − |∇λφi|
2

)

dvolg

+

∫

|φi|
2 n−2

n−1−2 < (D − λ)2φi, φi > dvolg

+

∫

2

(

1−
1

n

)

λ|φi|
2 n−2

n−1−2Re < (D − λ)φi, φi > dvolg.

The last two summands vanish in the limit since
∣

∣

∣

∣

∫

|φi|
2 n−2

n−1−2 < (D − λ)2φi, φi > dvolg

∣

∣

∣

∣

≤ ‖(D − λ)2φi‖ ‖ |φi|
n−3
n−1 ‖ → 0

and

∣

∣

∣

∫

|φi|
2 n−2

n−1−2Re < (D − λ)φi, φi > dvolg

∣

∣

∣
≤ ‖(D − λ)φi‖ ‖ |φi|

n−3
n−1 ‖ → 0.

For the other summand we use the Kato-type inequality of Lemma 2.1

|d|ψ|| ≤ |(D − λ)ψ|+ k|∇λψ|
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which holds outside the zero set of ψ. Due to [5, (3.9)] we have k =
√

n−1
n

.

Thus, for n ≥ 5 we can estimate

∫

|φi|
2 n−2

n−1−2

(

n

n− 1
|d|φi||

2 − |∇λφi|
2

)

dvolg

=

∫

|φi|
2 n−2

n−1−2(k−1|d|φi|| − |∇
λφi|)(k

−1|d|φi||+ |∇
λφi|)dvolg

≤ k−1

∫

{|d|φi||≥k|∇λφi|}

|φi|
2 n−2

n−1−2|(D − λ)φi|(k
−1|d|φi||+ |∇

λφi|)dvolg

≤ 2k−2

∫

{|d|φi||≥k|∇λφi|}

|φi|
2 n−2

n−1−2|(D − λ)φi||d|φi||dvolg

≤ 2k−2

∫
(

2
n− 2

n− 1
− 1

)−1

|(D − λ)φi||d|φi|
2 n−2

n−1−1|dvolg

≤ 2k−2n− 1

n− 3
‖(D − λ)φi‖ ‖d|φi|

n−3
n−1 ‖.

For n ≥ 5 we have 1 ≥ n−3
n−1 ≥

1
2 and, thus, ‖d|φi|

n−3
n−1 ‖ is bounded. Together

with ‖(D − λ)φi‖ → 0 we obtain the following: For all ǫ > 0 there is an i0 such
that for all i ≥ i0 we have

∫

|φi|
2 n−2

n−1−2

(

n

n− 1
|d|φi||

2 − |∇λφi|
2

)

dvolg ≤ ǫ.

Hence, we have µ
4 ≤

n−1
n
λ2.

With these Hijazi inequalities, we can now prove the conformal Hijazi inequality:

Theorem 1.3. For Q < 0 the inequality is trivially satisfied. Thus, we restrict
ourselves to the case Q ≥ 0:
We may assume that g is itself a complete metric of finite volume satisfying the
condition (i): 0 6∈ σess(Dg). Due to Lemma 3.6 there exists a sequence gi of
complete metrics of unit volume with gi ≡ g near infinity and λ+

1 (gi)→ λ+
min.

We first consider the case that there is an infinite subsequence gij
such that

λ+
1 (gij

) is an eigenvalue of Dgij
. Then we can apply Theorem 1.1 and equality

(1) and obtain

λ+
1 (M, gij

, σ)2 ≥
n

4(n− 1)
µ(M, gij

) ≥
n

4(n− 1)
Q(M, g).

Thus, for j →∞ we obtain the conformal Hijazi inequality.
Now we consider the remaining case – only finitely many λ+

1 (gi) are eigen-
values. Thus, from Lemma 3.4 we know that then there is an infinite subse-
quence gij

such that λ+
1 (gij

) ∈ σess(Dgij
). But if for two metrics gi and gk

we have σess(Dgi
) ∋ λ+

1 (gi) ≥ λ+
1 (gk) ∈ σess(Dgk

), then λ+
1 (gi) already equals

λ+
1 (gk) since gk ≡ gi near infinity and the essential spectrum only depends

on the manifold at infinity. Hence, there has to exist a constant subsequence
λ+

min = λ+
1 (gij

) ∈ σess(Dgij
) = σess(Dg). Lemma 3.3.iii then gives λ+

min = 0

and, thus, 0 ∈ σess(Dg). This is a contradiction to the assumption.
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So we assume now that 0 ∈ σess(D). Then condition (ii) has to be fulfilled and
Theorem 1.2 implies µ ≤ 0 and, thus, Q ≤ 0.

Example 4.1. We consider the n-dimensional Riemannian manifold (M ×
R, gM + dt2) where (M, gM ) is closed, spin and with positive scalar curvature.
Due Example 3.2 M × R is conformally parabolic and the scalar curvature of
g = 1

t2
g is bounded from below. Hence, with Theorem 1.3 we know that at least

for n ≥ 5 the conformal Hijazi inequality is valid Furthermore, for n = 3 and
n = 4 if this inequality turns out to be wrong, λ+

min has to vanish. Note, that
Q(M × R, gM + dt2) > 0 for M having positive scalar curvature [1, Prop. 5.7].
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