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Abstract

We implement the minimax approximation for the decomposition of en-

ergy denominators in Laplace transformed Møller-Plesset perturbation

theories. The best approximation is defined by minimising the Chebyshev

norm of the quadrature error. The application to the Laplace-transformed

second order perturbation theory clearly shows that the present method

is much more accurate than other numerical quadratures. It is also shown

that the error in the energy decays almost exponentially with respect to

the number of quadrature points.

1 Introduction

Development of fast correlated methods with low-order scaling of computational
cost is significantly important in quantum chemistry to widen the realm of the
applicability of accurate electronic structure calculations. The short-range na-
ture of electron correlation can be exploited in many-body perturbation theory
by the use of localised molecular orbitals (LMOs) [1]. Nevertheless, we have
to pay the price of abandoning the simple form of energy denominators of the
canonical orbitals in these class of methods.

In the Laplace-transformed technique introduced by Almlöf [2] the energy
denominators are broken up by the transformation,

1

εa + εb + . . . − εj − εi

=

∫

∞

0

e−s(εa+εb+...−εj−εi)ds, (1.1)

where the indices, i, j, ... and a, b, ... denote occupied and virtual orbitals, re-
spectively. This ansatz has been used in many places like Møller-Plesset second
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order perturbation theory (MP2) [2, 3, 4, 5] computation of connected triples
contribution in MP4 [3] atomic orbital (AO)-MP2 [4, 6, 7] AO-MP2 energy gra-
dient [4, 8] combinations with the resolution of the identity (RI)-MP2 [9, 10]
and the density-matrix-based MP2 [11, 12]. The Laplace-transformed technique
would be useful if the number of quadrature points for the numerical integration
is less than the number of cycles in iterative methods. Häser and Almlöf in-
deed suggested an accurate quadrature minimising the error in the MP2 energy
denominators directly [3]. The scaling of computational cost for the parame-
ters is however unfavorable. Moreover, the quadrature should be constructed
systematically for well-defined approximations.

In this paper, we introduce the minimax approximation in the Laplace-
transformed electronic structure theory. In the following section, we outline
the theory and implementation. We assess the method for Laplace-transformed
MP2 energies of various closed-shell molecules in Sec. 3. Summary will be given
in Sec. 4.

2 Theory

The Laplace transform of a reciprocal 1
x

in a certain interval x ∈ [1, R] can be
approximated by a numerical quadrature,

1

x
≃ Ek (x; {ων}, {αν}) =

k
∑

ν=1

ων exp(−ανx), (2.2)

with the roots {αν} and weights {ων}. The multiplication of 1
A

gives the corre-
sponding approximation in an arbitrary interval y = Ax ∈ [A, B] with B = AR
as

1

y
≃ Ek (y; {ω̄ν}, {ᾱν}) , (2.3)

ω̄ν = ων /A, (2.4)

ᾱν = αν /A. (2.5)

It is well-known that there is a unique sum (2.2) minimising the Chebyshev norm
[13]. The minimax approximation in the semi-infinite range [1,∞) was also
studied by Braess and Hackbusch [14]. The main features of the approximation
is summaried in the following.

In the error distribution function,

ηk (x; {ων}, {αν}) = Ek (x; {ων}, {αν}) −
1

x
, (2.6)

if there exist 2k + 1 points (1 ≤ x0 < x1 < · · · < x2k ≤ R) fulfilling

sign[ηk(xi, {ων}, {αν})] = −sign[ηk(xi+1, {ων}, {αν})],
∀0 ≤ i ≤ 2k − 1,

(2.7)

the set of the points is called an alternant. Using the maximum or Chebyshev
norm of the distribution function in the interval,

δk,[1,R]({ων}, {αν}) = max
x∈[1,R]

|ηk(x, {ων}, {αν})|, (2.8)
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the best possible approximation, Ek (x, {ω∗

k}, {α
∗

k}), is obtained by minimising
the norm with respect to the variation of the parameters,

δk,[1,R]({ω
∗

ν}, {α
∗

ν}) ≤ δk,[1,R]({ων}, {αν}),
∀{ων}, {αν}.

(2.9)

This is known to be the minimax approximation [13]. According to the al-

ternation theorem of Chebyshev, there exist unique 2k + 1 extremum points
(1 = x′

0 < x′

1 < · · · < x′

2k = R∗) which satisfy

ηk(x′

i, {ω
∗

ν}, {α
∗

ν}) = (−1)iδk,[1,R]({ω
∗

ν}, {α
∗

ν}). (2.10)

Further there is a number R∗ which does not exceed a critical value Rk intrinsic
for each k,

R∗ = min(R, Rk). (2.11)

If R > Rk, the error ηk(x′

i, {ω
∗

ν}, {α
∗

ν}) becomes smaller than the maximum
norm δk,[1,R]({ω

∗

ν}, {α
∗

ν}) in the semi-infinite interval [1,∞). Consequently, all
minimax approximations are idential for R > Rk. Elimination of δk,[1,R] in
(2.10) gives

ηk(x′

i, {ω
∗

ν}, {α
∗

ν}) + ηk(x′

i+1, {ω
∗

ν}, {α
∗

ν}) = 0,
∀0 ≤ i ≤ 2k − 1.

(2.12)

It is noted that the maximum norm of the minimax approximation decays ex-
ponentially with respect to k [14].

The application of the alternation theorem leads to the Remez algorithm for
the best approximation of Ek (x, {ω∗

k}, {α
∗

k}). What follows is the procedure for
the quadrature implemented in this work.

1. If R > Rk, skip the optimization and use the parameters for Rk. Oth-
erwise, we calculate 2k − 1 extremum points {x′

i} except for x′

0 = 1 and
x′

2k = R in the initial function Ek (x, {ωk}, {αk}) of pretabulated param-
eters. They should form an alternant.

2. Optimise the parameters {ωk} and {αk} in such a way that (2.12) is
satisfied.

3. Find the nodal points of the solutions of ηk(x0
i , {ων}, {αν}) = 0, (i =

1, · · · , 2k), which are necessary to compose an alternant to define the
intervals Ii =

[

x0
i , x

0
i+1

]

, (i = 1, . . . , 2k − 1).

4. Compute the extremum points {x′

i} in the intervals.

5. Check the convergence using (2.12). If the residual is above a threshold,
go back to the step 2 until the convergence.

The standard Newton-Raphson scheme is used for the nonlinear optimizations
in the above steps.
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Figure 1: Distribution functions of errors from the minimax and Gauss-Legendre
quadratures for k = 5.

3 Results and discussion

The performance of the minimax approximation is investigated by comparing
with other numerical quadratures. The integral (1.1) in [0,∞) can be estimated
by the Gauss-Laguerre quadrature. It is however more accurate for the present
purpose to use the Gauss-Legendre quadrature by changing the variable s =

t
1−t

. We compare the error distributions from the minimax and Gauss-Legendre
quadratures for k = 5 in Fig. 1. The minimax parameters are optimised at
R = 100. The error of the minimax approximation is distributed equally small
in the range x ∈ [1, 100] in accord with the alternation theorem (2.10). The
Gauss-Legendre quadrature is not accurate at both of the the ends of the range.

For the application of the quadrature in the Laplace-transformed MP2 method,
the interval of the MP2 energy denominator is

∆abij ≡ εa + εb − εi − εj ∈ [Emin, Emax], (3.13)

Emin = 2 (εLUMO − εHOMO) , (3.14)

Emax = 2 (εmax − εmin) , (3.15)

where εmax and εmin are the maximum and minimum orbital energies in the
correlated calculation. The parameters in the minimax approximation {ω∗

ν}
and {α∗

ν} are determined for R = Emax

Emin

. Laplace-transformed MP2 energies are

calculated using the scaled parameters {ω̄∗

ν =
ω∗

ν

Emin

} and {ᾱ∗

ν =
α∗ν

Emin

}. All of
the quadrature methods are implemented into the GELLAN quantum chemistry
program [15].

Figs. 2 and 3 show the absolute errors of the valence-shell and all-electron
correlated Laplace-transformed MP2 energies for Benzene using aug-cc-pVTZ
and aug-cc-pCVTZ basis sets [16, 17, 18] respectively. We used the geometrical
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Figure 2: Absolute errors of the valence-shell Laplace-transformed MP2 energies
for Benzene with the aug-cc-pVTZ basis set. The supremum for the optimization
is R = 56.06.

parameters, rCC = 1.399 Å and rCH = 1.087 Å. In the valence-shell correlated
case, the minimax approximation is more accurate than the Gauss-Legendre
quadrature especially for k > 5. The error of the minimax quadrature energy
decreases almost exponentially with respect to the number of the quadrature
points k in accord with the exponential decay of the Chebyshev norm [14].
The Gauss-Laguerre quadrature is much less accurate and is not suitable for
Laplace MP2. More accurate quadratures are needed in all-electron correlated
case. Although the increased range R = 277.97 worsens the convergences, the
minimax quadrature is still accurate. The result of the Gauss-Legendre quadra-
ture at k = 15 is slightly less accurate than 1mEh which is comparable with the
minimax result around k = 5.

In Figs 4 and 5, we compare the basis set dependencies of absolute errors for
Ozone with the geometrical parameters, rOO = 1.266 Å and ∠OOO = 117.2◦,
using the aug-cc-p(C)VXZ basis sets [16, 17, 18] with X=D,T, and Q. The
maximum value R increases with the cardinal number of the basis, and the
result becomes less accurate in general. The minimax approximation requires
only k = 3 for the results accurate to 1mEh in the valence-shell correlated case,
while more than k = 5 is needed to attain a similar accuracy in the all-electron
correlated case. The present method is promising especially when a sufficient
precision is required with a large R.

The computational cost for the minimax quadrature is negligibly small, e.g.
an optimization with 6 iterations for k = 7 takes less than 0.1 sec. Although we
have shown only the result for Benzene and Ozone, the convergence behaviours
are similar for all of the other molecules we have examined. The minimax
approximation will be a useful tool for its accuracy in the previous uses of the
Laplace-transformed technique.

Additionally, we describe another possible application of the technique in
constructing hybrid quantum chemical methods. In the usual MP perturbation
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Figure 3: Absolute errors of the all-electron Laplace-transformed MP2 energies
for Benzene with the aug-cc-pCVTZ basis set. The supremum for the optimiza-
tion is R = 277.97.

theories, a single Hamiltonian partitioning Ĥ = Ĥ0 + V̂ is used. However, a
further splitting of the perturbation V̂ = V̂A+V̂I leads to various hybrid approx-
imations as possible combinations of the Hartree-Fock (HF), MP perturbation,
and coupled-cluster (CC) methods, where V̂A is the perturbation in a small
active region embedded in the entire system. For instance, the amplitude equa-
tion of the CC-MP2 hybrid method is obtained by retaining the higher order
contribution in V̂A but only linear term in V̂I as

〈µ| exp(−T̂ )(Ĥ0 + V̂A) exp(T̂ ) + V̂I |HF〉 = 0, (3.16)

such that the approximation is reduced to MP2 and CC in the limits of V̂A = 0
and V̂A = V̂ , respectively, for E = 〈HF| Ĥ exp(T̂ ) |HF〉. Various choices of V̂A

exisit, e.g. the use of a selection of (localised) molecular orbitals. One conceiv-
able way is to employ orbitals nonorthogonal to the HF canonical orbitals,

V̂A =
1

4

∑

πθρσ

〈πθ||ρσ〉 {a+
π a+

θ aσaρ}, (3.17)

where π, θ, ... denote active orthonomalised orbitals spanned by AOs only with
active atomic centers and the braces {} denote normal ordering with respect to
the Hartree-Fock vacuum [19]. The hybrid CC-MP2 method can be relatively
easily implemented by a small modification of a CC program. It is evident that
the treatment of only V̂A in the CC iteration makes the application of CC to
large molecules feasible retaining the accuracy in the active part. Nevertheless,
when we use a perturbational treatment like the ”golden standard” CCSD(T)
method [20] in V̂A, it is more advantageous to drive objects in the active basis,
π, θ, ... with a much less dimension. This requires the decomposition of energy
denominators for triples amplitudes,

〈µ3| [Ĥ0, T̂3] + (V̂AT̂2)c |HF〉 = 0, (3.18)
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Figure 4: Absolute errors of the valence-shell Laplace-transformed MP2 energies
for Ozone using the aug-cc-pVXZ basis sets (X=D,T, and Q).

without explicit treatment of T̂3 in the full dimension. The GELLAN pro-
gram was originally initiated with the intention of the development of such
hybrid methods [15]. We are going to examine the effectiveness of the Laplace-
transformed technique with the minimax approximation for these purposes.

4 Summary

In this paper, we have introduced the minimax approximation in Laplace-
transformed MP perturbation theories. The best approximation is defined by
minimising the Chebyshev norm of the error in the given interval. We have illus-
trated the optimization scheme based on the alternation theorem. The minimax
approximation was applied to the Laplace-transformed MP2 calculation to ex-
hibit fast convergences with respect to the number of quadrature points k. In
the valence-shell correlated case, the number of quadrature points, k = 5, is gen-
erally sufficient for MP2 energies accurate to a few 10 µEh, while almost k = 10
is needed for a similar accuracy in the all-electron correlated case. Although the
convergence is somewhat slower in the later case, the minimax approximation
is significantly more accurate than the other numerical quadratures examined
in this work.

The optimization code of the minimax quadrature in the Laplace-trans-
formed technique will be available on request.

In addition, various precalculated cases are presented on the web site
http://www.mis.mpg.de/scicomp/EXP SUM/1 x/tabelle.

Acknowledgment. The authors are indebted to Dr. Y. Akinaga for reading
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Figure 5: Absolute errors of the all-electron Laplace-transformed MP2 energy
for Ozone using the aug-cc-pCVXZ basis sets (X=D,T, and Q).
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