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1 Introduction

Quantum entanglement plays a crucial role in the rapidly developing theory of quantum
information [1], since they constitute the most important resource for quantum information
processing. An important theoretical challenge in the theory of quantum entanglement is
to give a proper description and quantification of quantum entanglement of multipartite
quantum systems. Entanglement of formation (EOF) [2, 3] and concurrence [4] are two
well defined quantitative measures of entanglement. For the two-qubit case EOF is a mono-
tonically increasing function of the concurrence and an elegant formula for the concurrence
was derived analytically by Wootters in [5, 6]. It plays an essential role in describing quan-
tum phase transitions in various interacting quantum many-body systems [7, 8] and can be
experimentally measured [9].

In the higher dimensional case, due to the extremizations involved in the calculation, only
a few explicit analytic formulae for EOF and concurrence have been found for some special
symmetric states [10, 11, 12, 13, 14]. Some progress, in particular in the form of practical
algorithms, has been obtained on possible lower bounds of the EOF and concurrence for
qubit-qudit systems [15] and for bipartite systems in arbitrary dimensions [16, 17] using
numerical optimization over a large number of free parameters. In [18, 19] analytic lower
bounds on EOF and concurrence for any dimensional mixed bipartite quantum states have
been presented, which have further been shown to be exact for some special classes of
states and detect many bound entangled states. In [20] another lower bound on EOF for
bipartite states has been presented from a new separability criterion [21]. A lower bound on
concurrence based on a local uncertainty relations(LURs) criterion is obtained in [22] and
this bound is furthermore optimized in [23].
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Although the EOF is only well defined for bipartite systems, the concurrence is well
defined even for multipartite states. The lower bound of concurrence for tripartite states
has been studied in [24]. In this review, we first summarize the results related to the analytic
formulae and the lower bounds on EOF for bipartite systems, as well as to the lower bounds
on concurrence for bipartite and tripartite systems, and then we generalize them to arbitrary
multipartite systems.

2 Entanglement of formation for bipartite systems

Let H1, H2 be N1, N2-dimensional complex Hilbert spaces with orthonormal basis eki , i =
1, ..., Nk, k = 1, 2, respectively. A pure quantum state on H1 ⊗H2 is generally of the form,

|ψ〉 =
N1∑

i=1

N2∑

j=1

aije
1
i ⊗ e2j , aij ∈ C (1)

with normalization
N1∑

i=1

N2∑

j=1

aija
∗
ij = 1 . (2)

The EOF E is defined as the partial entropy with respect to the subsystems [25],

E(|ψ〉) = −Tr (ρ1 log2 ρ1) = −Tr (ρ2 log2 ρ2) , (3)

where ρ1 (resp. ρ2) is the reduced density matrix obtained by tracing |ψ〉〈ψ| (the orthogonal
projector onto |ψ〉) over the second (resp. first) Hilbert space of H1 ⊗H2.

It is evident that E(|ψ〉) vanishes only for product states. This definition can be extended
to mixed states ρ by the convex roof,

E(ρ) ≡ min
{pi,|ψi〉}

∑

i

piE(|ψi〉), (4)

for all possible ensemble realizations

ρ =
∑

i

pi|ψi〉〈ψi|, pi ≥ 0,
∑

i

pi = 1. (5)

Consequently, a state ρ is separable if and only if E(ρ) = 0 and hence can be represented as
a convex combination of product states as ρ =

∑
i piρ

1
i ⊗ ρ2

i , where ρ1
i and ρ2

i are pure state
density matrices associated to the subsystems H1 and H2, respectively [26]. The measure
Eq. (4) satisfies all the essential requirements of a good entanglement measure: convexity,
no increase under local quantum operations and classical communications on average, no
increase under local measurements, asymptotic continuity and other properties [2, 3].

It is a challenge to calculate Eq. (4) for general mixed states due to the extremizations
involved in the calculation. Till now explicit formulae of E(ρ) have been obtained only for
a few special cases.
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2.1 EOF for 2-qubits

In this case, Eq. (3) can be written as E(|ψ〉) = ε(C(|ψ〉)), where the function ε is defined
by

ε(C) = H2(
1 +

√
1 − C2

2
), H2(x) = −x log2 x− (1 − x) log2(1 − x).

C is called concurrence [5]:

C(|ψ〉) = |〈ψ|ψ̃〉| = 2|a11a22 − a12a21|, (6)

where |ψ̃〉 = σy ⊗ σy|ψ∗〉, |ψ∗〉 is the complex conjugate of |ψ〉, σy is the Pauli matrix,

σy =

(
0 −i
i 0

)
.

As E is a monotonically increasing function of C, C can be also taken as a kind of
measure of entanglement. Calculating the minimum in Eq. (4) is reduced to calculating the
corresponding minimum of

C(ρ) = min
{pi,|ψi〉}

∑

i=1

piC(|ψi〉), (7)

which simplifies the computation.

The formula for the entanglement of a pair of qubits in any mixed states ρ is given in
[6]: E(ρ) = ε(C(ρ)), with C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), here the λ′is are the square
roots of the eigenvalues of ρ(σy ⊗ σy)ρ

∗(σy ⊗ σy) in the descending order. The concurrence
is itself a measure of entanglement that provides an analytic formula for the EOF for a pair
of qubits.

The direct experimental measurement of C(|ψ〉) is not possible due to the unphysical
operation of the complex conjugation in equation (6). Nevertheless it has been shown that
any m-th degree polynomial function of a density matrix ρ can be measured on an m-fold
copy of ρ [27]. By considering a twofold copy of the state in question, the concurrence C
of an arbitrary state |ψ〉 can be defined as C = 2

√
PA, where PA = 〈ψ| ⊗ 〈ψ|A|ψ〉 ⊗ |ψ〉 is

the probability of observing the two copies of the first subsystem in an antisymmetric state,
that is, a state that acquires a phase shift of π upon exchange of the constituents, and A is
the corresponding measurement operator [9].

2.2 EOF for isotropic states

The EOF for a class of mixed states in arbitrary dimension N1 = N2 = N , the isotropic
states, was presented by Terhal and Vollbrecht [10]. The isotropic states are invariant under
the transformations U ⊗ U∗, for any unitary transformation U . They have the form

ρF =
1 − F

N2 − 1

(
I − |Ψ+〉〈Ψ+|

)
+ F |Ψ+〉〈Ψ+|, (8)

where |Ψ+〉 ≡
√

1/N
∑N
i=1 |ii〉, F = 〈Ψ+|ρF |Ψ+〉, 0 ≤ F ≤ 1, is the fidelity of ρF . It is

shown that for F ≥ 1/N , the EOF for isotropic states is E(ρF ) = co[R(F )], where R(F ) is
a simple function of F , “co” stands for the convex hull, that is the largest convex function
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bounded above by the given function. For N = 2, 3, the EOF for ρF is given by

E(ρF ) =





0, F ≤ 1
N
,

R1,N−1(F ), F ∈
(

1
N
, 4(N−1)

N2

)
,

N log(N−1)
N−2

(F − 1) + logN, F ∈ [4(N−1)
N2 , 1],

(9)

where
R1,N−1(F ) = H2(γ(F )) + (1 − γ(F )) log (N − 1), (10)

with

γ(F ) =
1

N

(√
F +

√
(N − 1)(1 − F )

)2

. (11)

For general N , the correctness of this formula is proved in [29].

2.3 EOF for Werner states

The Werner states are a class of mixed states for N ×N systems which are invariant under
the transformations U⊗U , for any unitary transformation U [26, 30]. The density matrix
of these states can be expressed as

ρf =
1

N3 −N
(N − f)I + (Nf − 1)P, (12)

where P is the flip operator (or swap operator) defined by P (φ ⊗ ψ) = ψ ⊗ φ. In the
computational basis |ij〉, P is of the form P =

∑N
i,j |ij〉〈ji|. Here f is a constant f = 〈P 〉 ≡

Tr(Pρf) satisfying −1 ≤ f ≤ 1. Werner states are separable if and only if f ≥ 0, as shown
in [26, 30].

The EOF of Werner states has been derived from an extremization procedure [30],

E(ρf ) = H2(
1

2
(1 −

√
1 − f 2)). (13)

Since E(ρf ) is a monotonically increasing function of −f , as seen from Eq. (13), it is expected
[31] that −f plays the role of concurrence, similarly as in the two qubits case [6].

Instead of Eq. (6), the generalized concurrence for a pure state |ψ〉 in the tensor space
H1 ⊗H2 is defined by [4],

C(|ψ〉) =
√

2(1 − Trρ2
1), (14)

where ρ1 is the reduced density matrix. The concurrence (7) of Werner states is given by
[32]

C(ρf) =

{ |f | = −f, for f < 0,

0, for f ≥ 0.
(15)

This shows that the EOF of Werner states is a monotonically increasing function of the
concurrence. Namely, the conjecture [31] that −f plays exactly the role of concurrence is
verified. Furthermore, it is shown that the concurrence and EOF of Werner states have the
same optimal decomposition [32].
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2.4 EOF for a special class of mixed states

For N1 = N2 = N ≥ 3, there is no such concurrence C that entanglement of formation E
as given by (4) is a monotonically increasing function of C. The concurrences discussed in
[4] can be only used to judge whether a pure state is separable (or maximally entangled)
or not [33, 34]. The EOF is no longer a monotonically increasing function of these concur-
rences. Nevertheless, if one considers special classes of quantum states, certain quantities
(generalized concurrence) can be found to simplify the calculation of the corresponding EOF
[11].

Let A denote the matrix with entries given by aij in (1), i, j = 1, . . . , N . The reduced
density matrix ρ1 can be expressed as

ρ1 = AA†. (16)

If AA† has only two non-zero eigenvalues λ1 (resp. λ2) with degeneracy n (resp. m),
n+m ≤ N , we denote D the maximal non-zero diagonal determinant

D = λn1λ
m
2 . (17)

From the normalization of |ψ〉, one has Tr(AA†) = 1, i.e.,

nλ1 +mλ2 = 1 . (18)

λ1 (resp. λ2) takes values (0, 1
n
) (resp. (0, 1

m
)). In this case the EOF of |ψ〉 is given by

E(|ψ〉) = −nλ1 log2 λ1 −mλ2 log2 λ2 . (19)

According to (17) and (18), one has

∂E

∂D =
mλ1−n

1

1 − nλ1 −mλ1

(
1 − nλ1

m

)1−m
log2

1 − nλ1

mλ1
, (20)

which is positive for λ1 ∈ (0, 1
n
). Therefore E(|ψ〉) is a monotonically increasing function of

D. D is a generalized concurrence and can be taken as a kind of measure of entanglement
in this case.

From (18) and (19), the quantum states with the measure of entanglement characterized
by D are generally entangled. They are separated when n = 1, λ1 → 1 (λ2 → 0) or m = 1,
λ2 → 1 (λ1 → 0). For the case n = m > 1, all the pure states in this class are non-separable.
In this case,

E(|ψ〉) = n
(
−x log2 x− (

1

n
− x) log2(

1

n
− x)

)
, (21)

where x = 1
2

(
1
n

+
√

1
n2 (1 − d2)

)
and

d ≡ 2nD 1
2n = 2n

√
λ1λ2. (22)

The generalized concurrence d takes values in [0, 1]. From (21) one can show that E(d) is
a convex function. Instead of calculating E(ρ) directly, one may calculate the minimum
decomposition of D(ρ) or d(ρ) to simplify the calculations.
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Consider a class of pure states (1) with the matrix A given by

A =




0 b a1 b1
−b 0 c1 d1

a1 c1 0 −e
b1 d1 e 0


 , (23)

a1, b1, c1, d1, b, e ∈ C. The matrix AA† has two eigenvalues with degeneracy two, i.e.,
n = m = 2 and |AA†| = |b1c1 − a1d1 + be|4. The generalized concurrence d is given by
d = 4|b1c1 − a1d1 + be|.

Let p be a 16 × 16 matrix with only non-zero entries p1,16 = p2,15 = −p3,14 = p4,10 =
p5,12 = p6,11 = p7,13 = −p8,8 = −p9,9 = p10,4 = p11,6 = p12,5 = p13,7 = −p14,3 = p15,2 = p16,1 =
1. d can be further written as

d = |〈ψ|pψ∗〉|. (24)

Let Ψ denote the set of pure states (1) with A of the form (23). Consider all mixed states
with density matrix ρ such that its decompositions are of the form

ρ =
M∑

i=1

pi|ψi〉〈ψi|,
M∑

i=1

pi = 1, |ψi〉 ∈ Ψ. (25)

All other kind of decompositions, (say decomposition with respect to |ψ′
i〉 6= |ψ〉) |ψ′

i〉, can
be obtained from a unitary linear combination of |ψi〉 [5, 11]. As linear combinations of |ψi〉
do not change the form of the corresponding matrices (23), once ρ has a decomposition with
respect to |ψi〉 ∈ Ψ, all other decompositions |ψ′

i〉, including the minimum decomposition
of the EOF, also satisfy |ψ′

i〉 ∈ Ψ. Then the minimum decomposition of the generalized
concurrence is [11]

d(ρ) = Λ1 −
16∑

i=2

Λi, (26)

where Λi, in decreasing order, are the eigenvalues of the Hermitian matrix R ≡
√√

ρpρ∗p
√
ρ,

or, alternatively, the square roots of the eigenvalues of the non-Hermitian matrix ρpρ∗p.

An important fact used in the derivation of Eq. (26) is that the generalized concurrence
d is a quadratic form of the entries of the matrix A, so that d can be expressed in the form of
(24) in terms of a suitable matrix p. An N -dimensional pure state (1) is called d-computable
if A satisfies the following relations:

|AA†| = ([A][A]∗)N/2, |AA† − λIdN | = (λ2 − ‖A‖λ+ [A][A]∗)N/2, (27)

where [A] and ‖A‖ are quadratic forms of aij, IdN is the N × N identity matrix. Let A
be the set of matrices satisfying (27), which implies that for A ∈ A, AA† has at most two
different eigenvalues, each one has order N/2 and d is a quadratic form of the entries of the
matrix A.

N -dimensional, N = 2k, 2 ≤ k ∈ IN , d-computable states can be constructed as follows

[12]. Set A2 =



a −c
c d


 , where a, c, d ∈ C. For any b1, c1 ∈ C, a 4 × 4 matrix A4 ∈ A
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can be constructed in the following way,

A4 =




B2 A2

−At2 Ct
2


 , (28)

where

B2 = b1J2, C2 = c1J2, J2 =




0 1

−1 0


 ,

where t stands for transpose. It is straightforward to verify that A4 satisfies the relations
in Eq. (27).

For general construction of high dimensional matrices A2k+1 ∈ A, 2 ≤ k ∈ IN , one has

A2k+1 =




B2k A2k

(−1)
k(k+1)

2 At2k Ct
2k


 , (29)

J2k+1 =




0 J2k

(−1)
(k+1)(k+2)

2 J t2k 0


 , (30)

where B2k = bkJ2k , C2k = ckJ2k , bk, ck ∈ C. J2k+1 are called multipliers.

For allN2×N2 density matrices with decompositions on theseN -dimensional d-computable
pure states, their EOF can be calculated by formulae similar to Eq. (26).

The results can be generalized to the case that AA† has n ≥ 3 different non-zero eigenval-
ues [13]. Let λ1, λ2, . . . , λn, each with degeneracy m, mn ≤ N , be the non-zero eigenvalues
of AA†. λi = λi(u, v), i = 1, 2, . . . , n, are differentiable functions of two real variables u and
v. Define D = mn

√
λ1λ2 · · ·λn. If λi = λi(u, v), i = 1, 2, . . . , n, satisfy

∑

i

∂λi
∂D

log2λi < 0, (31)

then D is a measure of entanglement in the sense that the EOF of the corresponding pure
state is a monotonically increasing function of D.

As an example consider the non-zero eigenvalues of AA† to be λ1 = u, λ2 = u + v,
λ3 = u+2v, each with degeneracy m, u and v ∈ IR taking values in (0, 1

3m
). The generalized

concurrence is given by D = 3m
√
u(u+ v)(u+ 2v). It is straightforward to verify that E is

a monotonically increasing function of D, since

∑

i

∂λi
∂D

log2λi =
1

3mv
√

3m
(1 − 9m2v2)1/2log2

1 − 3mv

1 + 3mv
< 0.

Due to the relation

∑

i

1

λi
(
∂λi
∂D

)
2

+
∂2λi
∂D2

lnλi =
1

27m3v3
(6mv + ln

1 − 3mv

1 + 3mv
) < 0,
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E is also a convex function of D.

As E(|ψ〉) is a monotonically increasing and convex function of D, instead of calcu-
lating E(ρ), one may calculate the minimum decomposition (in the sense of (4)), D(ρ) =
min

∑M
a=1 paD(|ψa〉), to simplify the calculations, as long as ρ has all decompositions on

pure states with their eigenvalues of AA† satisfying Eq. (31). Nevertheless, like E(|ψ〉),
generally the expression of D(|ψ〉) = mn

√
λ1λ2 · · ·λn can still be quite complicated.

If the generalized concurrence D = mn
√
λ1λ2 · · ·λn satisfying Eq. (31) can be further

expressed as

D =
mn√

2

√
I2
0 − I1,

where I0 = Tr(AA†) =
N∑

i,j=1
aija

∗
ij , I1 = Tr[(AA†)2] =

N∑
i,j,p,q=1

aipa
∗
iqajqa

∗
jp , the calculation

of the corresponding EOF is then greatly simplified.

Let Ψ denote the set of all pure states of the form (1) such that i) Eq. (31) is satisfied; ii)

the EOF is a convex function of D, i.e.,
∑
i

1
λi

(∂λi

∂D
)
2
+ ∂2λi

∂D2 lnλi < 0; iii) D = mn
√
λ1λ2 · · ·λn =

mn√
2

√
I2
0 − I1. A mixed state ρ given by (5) is called D-computable if all the decompositions

of ρ into pure states belong to Ψ.

Due to the conditions i) and ii), for a D-computable state ρ, calculating E(ρ) is then
reduced to the calculation of the corresponding minimum of D(ρ) = min

∑M
a=1 paD(|ψa〉),

which simplifies the calculation if D(|ψa〉) has a simpler expression than E(|ψa〉). The
condition iii) guarantees that D is a quadratic form of the entries of the matrix A and can
be expressed as D = |〈ψ|Sψ∗〉| in terms of a suitable matrix S, which allows one to find an
explicit analytical expression of the EOF in a way similar to the one used in [5] and [11].

Let Sipjq be a symmetric N2 ×N2 matrix whose elements are all zero except for

Sp+N(i−1),q+N(j−1) = Sq+N(j−1),p+N(i−1) = 1,

Sq+N(i−1),p+N(j−1) = Sp+N(j−1),q+N(i−1) = −1,

where i, j, p, q = 1, ..., N . Let Λipjq
1 , Λipjq

2 , Λipjq
3 and Λipjq

4 , in decreasing order, be the

eigenvalues of the rank four Hermitian matrix
√√

ρSipjqρ∗Sipjq
√
ρ.

For a D-computable state ρ, the minimum decomposition of the generalized concurrence
D(ρ), i.e., the average generalized concurrence of the pure states of the decomposition,
minimized over all decompositions of ρ, is given by

mn

4




N∑

i,j,p,q=1

(Λipjq
1 − Λipjq

2 − Λipjq
3 − Λipjq

4 )2




1
2

. (32)

Due to convex relation between E(|ψ〉) and D(|ψ〉), the EOF of ρ is given by E(D(ρ)).

3 Lower bounds of EOF and concurrence for mixed

states

It is generally difficult to calculate the minimum (4) for arbitrary given (5). Instead of finding
the exact minimum, one may also try to find the lower bound of EOF or concurrence.
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3.1 Lower bounds of EOF for bipartite mixed states

Let H1, H2 be N1, N2-dimensional (N1 ≤ N2) Hilbert spaces respectively. A pure state |ψ〉
in H1 ⊗H2 has a standard Schmidt form

|ψ〉 =
N1∑

i

√
µi|aibi〉, (33)

where
√
µi, i = 1, . . . , N1, are the Schmidt coefficients, |ai〉 and |bi〉 are orthonormal basis

in H1 and H2, respectively.

From Eq. (3), the EOF for |ψ〉 is given by

E(|ψ〉) = −
N1∑

i=1

µi log2 µi = H(~µ), (34)

where ~µ is the Schmidt vector (µ1, µ2, . . . , µN1).

Let ||G|| denote the trace norm of a matrix G defined by ‖G‖ = Tr(GG†)1/2. Set
ρ = |ψ〉 〈ψ|. It is easy to see that

‖ρT1‖ = ‖R(ρ)‖ = (
N1∑

i

√
µi)

2 ≡ λ, (35)

where ρT1 is the partial transposed matrix of ρ with respect to the first subsystem, R(ρ) is
the realigned matrix of ρ defined by R(ρ)ij,kl = ρik,jl, where i and j are the row and column
indices with respect to the first subsystem respectively, while k and l are the corresponding
indices for the second subsystem [35, 36, 37].

Assume that one has already found an optimal decomposition
∑
i piρ

i for ρ to achieve
the infimum of E(ρ), where ρi are pure state density matrices. Then E(ρ) =

∑
i piE(ρi) by

definition. For a given λ, H(~µ) in (34) has a minimum [10],

R(λ) = min
~µ

{
H(~µ) |

( N1∑

k=1

√
µk
)2

= λ
}

= H2[γ(λ)] + [1 − γ(λ)] log2(N1 − 1), (36)

where

γ(λ) =
1

N2
1

[
√
λ+

√
(N1 − 1)(N1 − λ)]2. (37)

Moreover co[R(λ)] is a monotonously increasing, convex function and satisfies co[R(λ)] ≤
H(~µ) for a given λ. Set E(λ) = co[R(λ)], then one thus has

E(ρ) =
∑

i

piE(ρi) =
∑

i

piH(~µi) ≥
∑

i

piE(λi) ≥ E
(∑

i

piλ
i
)
≥




E(‖ρTA‖),

E(‖R(ρ)‖),
(38)

where the monotonicity and convexity properties of E , and convexity of the trace norm
‖ρTA‖ ≤ ∑

i pi‖(ρi)TA‖ and ‖R(ρ)‖ ≤ ∑
i pi‖R(ρi)‖ have been used. Setting Λ = max[‖ρTA‖, ‖R(ρ)‖],

one obtains
E(ρ) ≥ E(Λ) = co[R(Λ)]. (39)
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If the function R(Λ) has only one reflection point, co[R(Λ)] can be obtained explicitly
from R(Λ) [10]. One has then

E(ρ) ≥





0, Λ = 1,

H2[γ(Λ)] + [1 − γ(Λ)] log2(N1 − 1), Λ ∈ [1, 4(N1−1)
N1

],

log2(N1−1)
N1−2

(Λ −N1) + log2N1, Λ ∈ [4(N1−1)
N1

, N1].

(40)

For isotropic states, this lower bound is exact.

It is direct to verify that the function R(Λ) has only one reflection point for N1 = 2, 3.
One can also easily verify this fact by plotting R(Λ) for N1 = 4. To show that the second
derivative of R with respect to Λ has only one zero point for general N1, for simplicity we
replace log2 in (36) by the natural log. Without confusion the notion R(Λ) below is still
used, which, in fact, differs a positive factor log2 e from the R(Λ) above.

First it can be shown that there is one and only one point Λ0 between 1 and N1 −1 such
that R′′(Λ0) = 0 for N1 ≥ 5. The second derivative of R with respect to Λ is

R′′(Λ) = γ′′(Λ) log
1 − γ(Λ)

(N1 − 1)γ(Λ)
− 1

Λ(N1 − Λ)
, (41)

where

γ′′(Λ) = −
√
N1 − 1

2
(Λ(N1 − Λ))−3/2. (42)

Hence R′′(1) = Limǫ→0R
′′(1 + ǫ) = +∞. On the other hand,

R′′(N1 − 1) = − 1

N1 − 1

(
log

N1 − 2

2(N1 − 1)
+ 1

)
,

which is less than 0 for N1 ≥ 5. Therefore for N1 ≥ 5 there exists Λ0 ∈ (1, N1 − 1) such
that R′′(Λ0) = 0. From (41) and (42) Λ0 is the solution of g(Λ) = f(Λ), where

g(Λ) = log
1 − γ(Λ)

(N1 − 1)γ(Λ)
, f(Λ) = −2

√
Λ(N1 − Λ)

N1 − 1
.

As g′(Λ) > 0, g(Λ) is a monotonically increasing function taking values from g(1) = −∞ to

g(N1 − 1) = 2 log
N1 − 2

2(N1 − 1)
> −2.

On the other hand, f(1) = f(N1 − 1) = −2, f ′′(Λ) > 0, i.e., f is convex. Therefore there is
one and only one solution Λ0 to the equation g(Λ) = f(Λ) for Λ ∈ (1, N1 − 1).

Next one can show that there are no solutions to R′′(Λ) = 0 for Λ ∈ (N1 − 1, N1),
i.e. R′′(N1 − 1 + δ) 6= 0, ∀ δ ∈ (0, 1). From (37), (41) and (42) this is equivalent to show
F (δ) ≡ 1

2
B(δ) logA(δ) 6= −1, where,

B(δ) =

√
N1 − 1

(N1 − 1 + δ)(1 − δ)
, A(δ) =

(N1C(δ))2 − 1

N1 − 1
,

and C(δ) = (
√
N1 − 1 + δ+

√
(N1 − 1)(1 − δ))−1. It is straightforward to verify that A(0) >

0. As the derivative C ′(δ) of C(δ) with respect to δ, is stricktly positive, one has A′(δ) > 0.

10



Hence logA(δ) increases as δ increases. Similarly, as the derivative of (N1 − 1)/((N1 − 1 +
δ)(1− δ)) with respect to δ is positive, B(δ) also increases as δ increases. Therefore F (δ) is
an increasing function of δ. Moreover F (0) = log(N1 − 2)/(2(N1 − 1)) ≥ log 3/8 > −1. It
is seen that F (δ) ≥ F (0) > −1, ∀ δ ∈ (0, 1) and N1 ≥ 5. Thus R′′(Λ) = 0 has no solutions
for Λ ∈ (N1 − 1, N1) [29].

From the proof above, one has that both EOF (9) for isotropic states and the tight lower
bound of EOF (40) are valid for arbitrary dimensions.

Another lower bound of EOF for bipartite states on even dimensional Hilbert spaces N
has been presented [20] from a new separability criterion [21]. On even dimensional spaces
there exist antisymmetric unitary operations V T = −V . The corresponding antiunitary
maps V (·)TV , map any pure state to some state that is orthogonal to it. This leads to the
conclusion that the map

Φ(ρ) = Tr(ρ)I − ρ− V (ρ)TV † (43)

is a positive but not completely positive map. It is nondecomposable.

The corresponding entanglement witness WΦ has the form:

WΦ ≡ N(I ⊗ Φ)P0, (44)

where the factor N is introduced for convenience, P0 represents the one-dimensional projec-
tion onto the maximally entangled singlet state. This criterion can detect some of the PPT
entangled states. From this separability criterion a lower bound of EOF can be similarly
obtained, E(ρ) ≥ co[R(Λ)], here Λ ≡ max

{
‖ρT1‖, ‖R(ρ)‖, 1 − tr(WΦρ)

}
.

3.2 Lower bounds of concurrence for bipartite mixed states

The lower bound of the concurrence (7) for bipartite 2⊗N mixed states ρ has been discussed
in [15]. Define the set of N(N−1)/2 symmetric 2N×2N square matrices Sij , 1 ≤ i ≤ N−1,
j > i, to be the matrices whose elements Sijmn are all zero except for:

Siji,j+N = Sijj+N,i = 1, Sijj,i+N = Siji+N,j = −1.

Then one has

C(ρ) ≥

√√√√√
∑

j>i

N−1∑

i=1

C2
ij(ρ), (45)

where Cij(ρ) = max(0, λij1 −∑4
k=2 λ

ij
k ), λijl , l = 1, 2, 3, 4 are the square roots, in decreasing

order, of the four largest eigenvalues of the matrix
√
ρSijρ∗Sij

√
ρ. This bound also gives

rise to a corresponding lower bound for EOF,

ε[

√√√√√
∑

j>i

N−1∑

i=1

C2
ij(ρ)],

where ε[x] is a monotonically increasing convex function of x in its range 0 ≤ x ≤ 1.

In fact for general bipartite states in N1 × N2, the squared concurrence has the form
[38]:

C(|ψ〉)2 =
D1∑

m=1

D2∑

n=1

|Cmn|2 = 4
N1∑

i<j

N2∑

k<l

|aikajl − ailajk|2, (46)
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where D1 = N1(N1 − 1)/2, D2 = N2(N2 − 1)/2, Cmn = 〈ψ|ψ̃mn〉, |ψ̃mn〉 = (Lm ⊗ Ln)|ψ∗〉,
and Lm, m = 1, · · ·, N1(N1 − 1)/2, Ln, n = 1, · · ·, N2(N2 − 1)/2 are the generators of group
SO(N1) and SO(N2) respectively.

From Eq. (46) it is evident that the N1 ⊗ N2 dimensional Hilbert space is decomposed
into N1(N1−1)N2(N2−1)/4 2⊗2 dimensional subspaces, such that the squared concurrence
is just the sum of all squared two-qubit’s concurrences. A pure state is separable iff all these
“two qubits” are separable.

Set |ξi〉 =
√
pi|ψi〉. The concurrence Eq.(7) takes the form:

C(ρ) = min
∑

i



N1(N1−1)/2∑

m=1

N2(N2−1)/2∑

n=1

|〈ξi|Lm ⊗ Ln|ξ∗i 〉|2



1
2

, (47)

by using the fact that any function F =
∑
i

(∑
j x

2
ij

)1/2
subjected to the constraints zj =

∑
i xij with xij real and nonnegative, the inequality

∑
j z

2
j ≤ F 2 holds and the procedure of

extremization adopted in [6, 17], one can prove that for an arbitrary N1 ⊗N2 state (5), the
concurrence C(ρ) satisfies

τ(ρ) ≡
N1(N1−1)/2∑

m=1

N2(N2−1)/2∑

n=1

C2
mn ≤ C2(ρ), (48)

where τ is the lower bound,

Cmn = max {0, λ(1)
mn − λ(2)

mn − λ(3)
mn − λ(4)

mn}, (49)

λ(1)
mn, · · · , λ(4)

mn are the square roots of the four nonzero eigenvalues, in decreasing order, of
the non-Hermitian matrix ρρ̃mn, where ρ̃mn = (Lm ⊗ Ln)ρ∗(Lm ⊗ Ln).

The lower bound τ provides not only an effective separability criterion and an easy
evaluation of entanglement, but also helps to classify mixed-state entanglement. It can be
shown that a bipartite quantum state ρ is distillable if τ(ρ⊗M ) > 0 for some number M . For
any pure tripartite state |φ〉123 in arbitrary N1 ⊗N2 ⊗N3 dimensional spaces, the bound τ
satisfies

τ(ρ12) + τ(ρ13) ≤ τ(ρ1:23), (50)

where ρ12 = Tr3(|φ〉123〈φ|), ρ13 = Tr2(|φ〉123〈φ|), and ρ1:23 = Tr23(|φ〉123〈φ|).
Similar to the case of EOF, the separability criteria positive partial transpose (PPT)

and realignment can also be used to obtain lower bounds of concurrence [18]. From (33)
and (14) one has

C(|ψ〉) = 2
√∑

i<j

µiµj , (51)

which varies smoothly from 0 for separable states to 2(N1 − 1)/N1 for maximally entangled
states.

By summing over all of arithmetic mean inequalities µiµj +µkµl ≥ 2
√
µiµjµkµl for i < j

and k < l, one gets

∑

i<j

∑

k<l

(µiµj + µkµl) ≥ 2
∑

i<j

∑

k<l

√
µiµjµkµl = 2(

∑

i<j

√
µiµj)

2. (52)
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There are N1(N1 − 1) terms of µiµj on the left hand side of Eq. (52). Therefore

4
∑

i<j

µiµj ≥
2

N1(N1 − 1)
((
∑

k

√
µk)

2 − 1)2 =
8

N1(N1 − 1)
(
∑

i<j

√
µiµj)

2. (53)

From (53) one gets C(ρi) ≥
√

2/(N1(N1 − 1))(‖(ρi)TA‖−1) andC(ρi) ≥
√

2/(N1(N1 − 1))(‖R(ρi)‖−
1) for any pure state ρi, as from (35) one has ‖R(ρi)‖ = ‖(ρi)TA‖ = (

∑
k
√
µk)

2, where
√
µk

are the Schmidt coefficients for the pure state ρi.

Now assume
∑
i piρ

i is an optimal decomposition for ρ to achieve the infimum of C(ρ),
where ρi are pure state density matrices. Then C(ρ) =

∑
i piC(ρi) by definition. Noticing

that ‖ρTA‖ ≤ ∑
i pi‖(ρi)TA‖ and ‖R(ρ)‖ ≤ ∑

i pi‖R(ρi)‖ due to the convexity property of
the trace norm, one can prove that for any N1 ⊗N2 (N1 ≤ N2) mixed quantum state ρ, the
concurrence C(ρ) satisfies

C(ρ) ≥
√

2

N1(N1 − 1)

(
max(‖ρT1‖, ‖R(ρ)‖) − 1

)
. (54)

For the U ⊗ U∗ invariant mixed isotropic states with N1 = N2 = N [39, 40], the bound
(54) gives the exact value of the concurrence derived in [14].

If one takes the separability criterion (44) into account, the above bound can be improved
[20]. Set fppt(ρ) = ||ρT1 || − 1, frealign(ρ) = ||R(ρ)|| − 1, fWΦ

(ρ) = −tr(WΦρ), where WΦ is
defined in Eq. (44). Then

C(ρ) ≥
√

2

N1(N1 − 1)
max{fppt(ρ), frealign(ρ), fWΦ

(ρ)},

holds for any N1 ⊗N2 (N1 ≤ N2) mixed quantum state ρ.

An interesting separability criterion called local uncertainty relations (LURs) criterion is
based on uncertainty relations [41]. It can detect some of the PPT entangled states [42, 43].
It says that if {Ai} and {Bi} are observables acting on H1 and H2 respectively, fulfilling
the uncertainty relations

∑
i ∆

2
ρ(Ai) ≥ CA and

∑
i ∆

2
ρ(Bi) ≥ CB (CA, CB ≥ 0), then,

∑

i

∆2
ρ(Ai ⊗ I + I ⊗ Bi) ≥ CA + CB (55)

holds for separable states [41]. The variance ∆2 is given by ∆2
ρ(M) = 〈M2〉ρ− 〈M〉2ρ, where

〈M〉ρ = Tr(ρM) is the expectation value of the observable M . A particularly interest-
ing choice of the observables is the local orthogonal observables (LOOs) [44], that is, the

orthonormal bases of B(H1) and B(H2), denoted by {GA
i }

N2
1

i=1 and {GB
i }

N2
2

i=1. Since

N2
1∑

i=1

∆2
ρ(G

A
i ) ≥ N1 − 1,

N2
2∑

i=1

∆2
ρ(G

B
i ) ≥ N2 − 1, (56)

in this case Eq. (55) reads [43]

N2
2∑

i=1

∆2
ρ(G

A
i ⊗ I + I ⊗GB

i ) ≥ N1 +N2 − 2. (57)
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For any set of LOOs {GA
i } and {GB

i } and any N1 × N2 (N1 ≤ N2) pure state |ψ〉 with
Schmidt decomposition (33), using Eq. (56), one can obtain that

∑

i

∆2
ψ(GA

i ⊗ I + I ⊗GB
i ) ≥ N1 +N2 − 2 + 2

∑

i

(〈GA
i ⊗GB

i 〉ψ − 〈GA
i 〉ρA

〈GB
i 〉ρB

).

Furthermore, due to the fact that
∑
i(〈GA

i ⊗GB
i 〉ψ −〈GA

i 〉ρA
〈GB

i 〉ρB
) ≥ −2

∑
j<k

√
µjµk, one

has
N2

2∑

i=1

∆2
ψ(GA

i ⊗ I + I ⊗GB
i ) ≥ N1 +N2 − 2 − 4

∑

j<k

√
µjµk. (58)

Let
∑
n pn|ψn〉〈ψn| be the decomposition of ρ for which the minimum in Eq. (7) is

attained, so that, C(ρ) =
∑
n pnC(ψn). From Eq. (51) and (58), a lower bound of concurrence

based on LURs criterion is obtained [22]: For any N1 ×N2 (N1 ≤ N2) quantum state ρ,

C(ρ) ≥ N1 +N2 − 2 −∑
i ∆

2
ρ(G

A
i ⊗ I + I ⊗GB

i )
√

2N1(N1 − 1)
(59)

for any set of LOOs {GA
i } and {GB

i }.

The bound (59) depends on the choice of the local orthonormal observables. In [23],
this bound is optimized. For a given state ρ, one can choose an arbitrary complete set
of LOOs {GA

k }, {GB
k }. The other orthonormal normalized basis of the local orthonormal

observable space can be obtained from {GA
k } and {GB

k } by unitary transformations U and

V : G̃A
k =

∑
l UklG

A
l , G̃B

k =
∑
m VkmG

B
m. Select U and V so that τ = U †ΛV is the singular

value decomposition of the matrix τ defined by τlm = 〈GA
l ⊗GB

m〉−〈GA
l ⊗I〉〈I⊗GB

m〉. Then

the new observables can be written as G̃A
k =

∑
l
Uil{GA

l }, G̃B
k = −∑

m
V ∗
jm{GA

m}. One has

∑

k

△2
ρ(G̃

A
k ⊗ I + I ⊗ G̃B

k ) = N1 − Trρ2
A +N2 + Trρ2

B − 2
∑

k

σk(τ), (60)

where σk(τ) stands for the kth singular value of τ .

Since the entanglement criterion based on local uncertainty relations is strictly stronger
than the realignment criterion [43], one has the following inequality [23]:

C(ρ) ≥
√

2

N1(N1 − 1)
(max(‖ρTA‖,Lmax(ρ)) − 1), (61)

for any N1 ⊗ N2 (N1 ≤ N2) mixed quantum state ρ, where Lmax =
∑
k σk(τ) + (Trρ2

A +
Trρ2

B)/2.

In [45] a separability criterion based on the Bloch representation of density matrices has
been presented. This correlation matrix criterion says that for bipartite separable states ρ,

||T || ≤
√
N1N2(N1 − 1)(N2 − 1)

4
, (62)

where T is an (N2
1 − 1) × (N2

2 − 1) matrix with Tij = N1N2/4 · Tr(ρλAi ⊗ λBj ), λAk and λBk
are the generators of SU(N1) and SU(N2) respectively, satisfying Trλ

(A/B)
k λ

(A/B)
l = 2δkl.
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Based on the correlation matrix criterion a lower bound of concurrence is obtained in
[22]. For any N1 ×N2 (N1 ≤ N2) quantum state ρ, one has

C(ρ) ≥
√

8

N3
1N

2
2 (N1 − 1)

(||T || −KN1N2), (63)

where KN1N2 =
√
N1N2(N1 − 1)(N2 − 1)/2.

Example 1: Consider the 3 × 3 bound entangled state [46],

ρ =
1

4
(I9 −

4∑

i=0

|ξi〉〈ξi|), (64)

where I9 is the 9 × 9 identity matrix, |ξ0〉 = 1√
2
|0〉(|0〉 − |1〉), |ξ1〉 = 1√

2
(|0〉 − |1〉)|2〉,

|ξ2〉 = 1√
2
|2〉(|1〉−|2〉), |ξ3〉 = 1√

2
(|1〉−|2〉)|0〉, |ξ4〉 = 1

3
(|0〉+ |1〉+ |2〉)(|0〉+ |1〉+ |2〉). Choose

the local orthonormal observables to be the normalized generators of SU(3). Eq. (63) gives
C(ρ) ≥ 0.0205. Eq. (54) gives C(ρ) ≥ 0.050. Eq. (59) gives C(ρ) ≥ 0.052 [22], while Eq. (61)
yields a better lower bound C(ρ) ≥ 0.055.

Example 2: Consider the 4 × 4 bound entangled states [47],

ρ =




1 − ε

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
ε

8
0 0 − ε

8
0 0 0 0 0 0 0 0 0 0 0

0 0
ε

8
0 0 0 0 0 − ε

8
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 − ε

8
0 0

ε

8
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
1 − ε

4
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

ε

8
0 0 0 0 0 − ε

8
0 0

0 0 − ε

8
0 0 0 0 0

ε

8
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
1 − ε

4
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
ε

8
0 0 − ε

8
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − ε

8
0 0 0 0 0

ε

8
0 0

0 0 0 0 0 0 0 0 0 0 0 − ε

8
0 0

ε

8
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 − ε

4




, (65)

where 0 ≤ ε ≤ 1
2
. Eq. (54), (61), (63) give the same result: C(ρ) ≥ 0. This result shows that

the realignment, LURs and correlation matrix criteria fail to detect this bound entangled
state.

3.3 Lower bounds of concurrence for tripartite systems

Let H1, H2, · · ·, HM be M(≥ 2) N1, N2, ..., NM -dimensional Hilbert spaces respectively.
The concurrence for a general pure multipartite state |ψ〉 ∈ H1 ⊗H2 ⊗ · · · ⊗HM is defined
by

C(|ψ〉) =

√√√√m−
m∑

α=1

Trρ2
α , (66)
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where m = 2M−1 − 1 is the number of all possible bipartite separations of an M-partite
system, the reduced density matrix ρα, α = 1, ..., m, is obtained by tracing over one part of
the subsystems associated with the α-th bipartite separation.

For the multipartite case, a Schmidt expression like (33) does not exist. To get a lower
bound of the multipartite concurrence, one needs the operations of generalized partial trans-
pose and realignment. Let us first recall some notations used in various matrix operations
[48, 49]. A generic matrix G can always be written as G =

∑

i,j

aij 〈j| ⊗ |i〉, where |i〉 , |j〉 are

vectors of a suitably selected normalized real orthogonal basis. The operations Tr (resp. Tc)
are defined to be the row transposition (resp. column transposition) of G which transposes
the second (resp. first) vector in the above tensor product expression of G:

Tr(G) =
∑

i,j

aij 〈j| ⊗ 〈i| , Tc(G) =
∑

i,j

aij |j〉 ⊗ |i〉 . (67)

It is easily verified that TcTr(G) = TrTc(G) = GT , where T denotes matrix transposition.

In the following Trk (resp. Tck) are defined to be the row (resp. column) transpositions
with respect to the subsystem k. For instance, Tr12 stands for the row transpositions with
respect to the subsystems 1 and 2. Let Y = {x1, x2, ...} be a set of such operations on a
density matrix ρ. Set ρTY = TY(ρ) = Tx1Tx2 ...(ρ), e.g. ρT{c1,r2,r3} ≡ T{c1}T{r2}T{r3}(ρ).

The concurrence for a general pure tripartite state |ψ〉 ∈ H1 ⊗H2 ⊗H3 is defined by

C(|ψ〉) =
√

3 − Tr(ρ2
1 + ρ2

2 + ρ2
3), (68)

where the reduced density matrix ρ1 (resp. ρ2, ρ3) is obtained by tracing over the subsystems
2 and 3 (resp. 1 and 3, 1 and 2). In [34] a special class of Y is discussed: Yi = {ci, ri},
i = 1, 2, 3, Y4 = {c1, r23}, Y5 = {c12, r3}, Y6 = {c13, r2}. As ρTYi = ρTi , i = 1, 2, 3, where Ti
stands for the partial transposition with respect to the subsystem i, the operations Y1, Y2

and Y3 correspond to the partial transpositions of ρ.

For the most simple tripartite system, the three qubits case, a state |Ψ〉 can be written
in terms of the generalized Schmidt decomposition [50],

|Ψ〉 = λ0|000〉 + λ1e
iφ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (69)

with normalization condition λi ≥ 0, 0 ≤ φ ≤ π,
∑
i λ

2
i = 1. The corresponding density

matrix ρ = |Ψ〉〈Ψ| has the following properties:

Trρ2
1 = 1 − 2µ0(1 − µ0 − µ1),

T rρ2
2 = 1 − 2µ0(1 − µ0 − µ1 − µ2) − 2∆,

T rρ2
3 = 1 − 2µ0(1 − µ0 − µ1 − µ3) − 2∆,

where ∆ ≡ |λ1λ4e
iφ − λ2λ3|2, µi = λ2

i , i = 0, 1, ..., 4. Therefore from (68) one has

C2(ρ) = 2µ0(3 − 3µ0 − 3µ1 − µ2 − µ3) + 4∆, (70)

which varies smoothly from 0, for pure product states, to 3/2 for maximally entangled pure
states.
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On the other hand, under the operations of Yi, i = 1, 2, 3, one gets

||ρTY1 || = 1 + 2
√
µ0(µ2 + µ3 + µ4),

||ρTY2 || = 1 + 2
√

∆ + µ0(µ3 + µ4),

||ρTY3 || = 1 + 2
√

∆ + µ0(µ2 + µ4).

(71)

Combining (70) and (71) one can obtain

C(ρ) ≥ (‖ρTYj ‖ − 1), j = 1, 2, 3. (72)

A three-qubit (2 ⊗ 2 ⊗ 2) system can be viewed as three different bipartite (2 ⊗ 4 or
4 ⊗ 2) systems. From the results for bipartite systems in section 3.2, these three bipartite
separations give rise to, respectively

1 − Tr((ρ1)
2) ≥ 1

2
(||ρT{c1,r23}|| − 1)2,

1 − Tr((ρ2)
2) ≥ 1

2
(||ρT{c13,r2}|| − 1)2,

1 − Tr((ρ3)
2) ≥ 1

2
(||ρT{c12,r3}|| − 1)2.

Therefore

C(ρ) ≥ 1√
2
max

{
||ρTYj || − 1

}
, j = 4, 5, 6. (73)

Hence if one assumes that
∑
i piρ

i is the optimal decomposition of ρ such that C(ρ) =∑
i piC(ρi), where ρi are pure state density matrices, taking into account that ‖ρTY‖ ≤∑
i pi‖(ρi)TY‖, from (72) and (73) one gets that for any three-qubit mixed quantum state ρ,

the concurrence C(ρ) satisfies

C(ρ) ≥ max

{
‖ρTYi‖ − 1,

1√
2

(‖ρTYj ‖ − 1)

}
, (74)

where i = 1, 2, 3, j = 4, 5, 6.

For higher dimensional tripartite systems, an expression like (69) does not exist. The
related lower bound of concurrence will be discussed in the next section for arbitrary mul-
tipartite systems.

3.4 Lower bounds of concurrence for multipartite systems

3.4.1 Generalized Greenberger-Horne-Zeilinger state

Concerning multipartite (M > 3) systems, let us first consider the M-partite generalized
Greenberger-Horne-Zeilinger (GHZ) state,

|Φ〉 = cos θ|00 · · ·0〉 + sin θ|11 · · ·1〉. (75)

For ρ = |Φ〉〈Φ|, one gets ρi = Tr{1,···,i−1,i+1,···,M}ρ = cos2 θ|0〉〈0| + sin2 θ|1〉〈1|. Therefore
Trρ2

i = cos4 θ + sin4 θ = 1 − 2 sin2 θ cos2 θ, i = 1, 2, ...,M . In fact, one can prove that
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Trρ2
i1i2···im = 1 − 2 sin2 θ cos2 θ for all i1 6= i2 6= · · · 6= im ∈ {1, 2, ...,M}, 1 ≤ m ≤M . Hence

from (66) one has

C(ρ) =
√

2d sin2 θ cos2 θ. (76)

On the other hand, the partial transpose of ρ with respect to the ith qubit space gives
rise to

ρTi = cos2 θ|0 · · ·0i · · · 0〉〈0 · · ·0i · · · 0| + cos θ sin θ|0 · · ·1i · · · 0〉〈1 · · ·0i · · · 1|
+ cos θ sin θ|1 · · ·0i · · · 1〉〈0 · · ·1i · · ·0| + sin2 θ|1 · · ·1i · · · 1〉〈1 · · ·1i · · · 1|,

i = 1, 2, · · · ,M . As ρTi is Hermitian, its singular values are simply given by the square root
of the eigenvalues of (ρTi)2. The trace norm of ρTi takes the form ‖ρTi‖ = 1+2

√
sin2 θ cos2 θ.

The trace norms of partial transposed ρ with respect to the other sub-qubit spaces can be
similarly calculated. All together one gets

‖ρTi1i2···im‖ = 1 + 2
√

sin2 θ cos2 θ, (77)

where i1 6= i2 6= · · · 6= im ∈ {1, 2, ...,M}, 1 ≤ m ≤M .

Now consider the norm of ρ under bipartite realignment. If a bipartite realignment
with respect to the subsystems i and j, 1 ≤ i 6= j ≤ M is made, while leaving the other
subsystems untouched, one has

Ri|j(ρ) = cos2 θ|0 · · · 0i · · · 0j · · · 0〉〈0 · · ·0i · · · 0j · · · 0|
+ cos θ sin θ|0 · · ·0i · · · 1j · · · 0〉〈1 · · ·0i · · · 1j · · · 1|
+ cos θ sin θ|1 · · ·1i · · · 0j · · · 1〉〈0 · · ·1i · · · 0j · · ·0|
+ sin2 θ|1 · · ·1i · · · 1j · · · 1〉〈1 · · ·1i · · · 1j · · · 1|.

Therefore ||Ri|j(ρ)|| = 1 + 2
√

sin2 θ cos2 θ. Let Θ1 and Θ2 be two different subsystems. One
can similarly verify that

||RΘ1|Θ2
(ρ)|| = 1 + 2

√
sin2 θ cos2 θ. (78)

From (76), (77) and (78) one can prove that for any M-qubit mixed state with decomposition
ρ =

∑
i pi|Ψi〉〈Ψi|, if |Ψi〉 can be written in the form (75) for all i, then the concurrence

C(ρ) satisfies
C(ρ) ≥ max{||ρTΘ ||, ||RΘ1|Θ2

(ρ)||} − 1, (79)

where Θ,Θ1,Θ2 are subsets of the indices {1, 2, ...,M}, such that Θ1
⋂

Θ2 = ∅.

Remark: Once a density matrix has a decomposition with all the pure states of the form
(75), then all other possible decompositions of it will also have the form (75), since other de-
compositions can be obtained from the unitarily linear combinations of this decomposition,
and any linear combinations of the type (75) still have the form (75).

3.4.2 Generalized W-state

We consider now another M-qubit state, the generalized W-state,

|Ψ〉 = a1|10 · · ·0〉 + a2|01 · · ·0〉 + · · · + aM |00 · · ·1〉. (80)

18



Let ρ = |Ψ〉〈Ψ|, then ρi = Tr{1,···,i−1,i+1,···,M}ρ = |ai|2|1〉〈1| + (
∑
j 6=i |aj|2)|0〉〈0|. Therefore

Trρ2
i = |ai|4 + (

∑
j 6=i |aj |2)2, i = 1, 2, ...,M . Generally one can prove that Trρ2

i1i2···im =
(|ai1|2 + ai2|2 + · · ·+ aim |2)2 + (

∑
k 6={i1,i2,···,im} |ak|2)2 for all i1 6= i2 6= · · · 6= im ∈ {1, 2, ...,M},

1 ≤ m ≤ M . Hence from (66)

C(ρ) =
√

2M−1
∑

i<j

|aiaj|2. (81)

From a direct calculation, the trace norm of the partial transposed matrix ρTi of ρ with

respect to the ith qubit space is given by ‖ρTi‖ = 1 + 2
√∑

j 6=i |aiaj |2. The trace norms of
the partial transposed ρ with respect to the other sub-qubit spaces can also be similarly
calculated,

‖ρTi1i2···im‖ = 1 + 2

√√√√√
∑

l 6={i1,i2,···,im}

im∑

k=i1

|akal|2, (82)

where i1 6= i2 6= · · · 6= im ∈ {1, 2, ...,M}, 1 ≤ m ≤M .

An M-qubit W state can be viewed as m different bipartite systems. Let Γ1
α, Γ2

α denote
two subsets of the indices {1, 2, ...,M}, Γ1

α

⋂
Γ2
α = ∅, Γ1

α

⋃
Γ2
α = {1, 2, ...,M}, α = 1, · · · , m.

From the results for bipartite systems, these m bipartite separations give rise to, respectively

1 − Tr((ρΓ1
α
)2) ≥ 1

2
(||RΓ1

α|Γ2
α
(ρ)|| − 1)2, α = 1, · · · , m.

Hence

C(ρ) =

√√√√m−
m∑

α=1

Tr(ρ2
Γ1

α
) ≥ 1√

2
max

{
||RΓ1

α|Γ2
α
(ρ)|| − 1, α = 1, · · · , m

}
. (83)

Therefore for any M-qubit mixed state with decomposition with respect to the general-
ized W states, ρ =

∑
i pi|Ψi〉〈Ψi|, such that |Ψi〉 can be written in the form (80) for all i,

the concurrence C(ρ) satisfies

C(ρ) ≥ max

{
||ρTΓ1

α || − 1,
1√
2

(||RΓ1
α|Γ2

α
(ρ)|| − 1), α = 1, · · · , m

}
. (84)

From (79) and (84), it is seen that the lower bound for the class of mixed states with
decompositions with respect to the generalized GHZ states is weaker than the one for the
class of mixed states with decompositions with respect to the generalized W states, in the
sense that in (79) the realignment is associated with two arbitrary subsystems Θ1 and Θ2

such that Θ1
⋂

Θ2 = ∅, but not necessary Θ1
⋃

Θ2 = {1, 2, ...,M}. While in (84) we simply
treat the realignment associated with bipartite separations, so that the two subsystems Γ1

α

and Γ2
α satisfy both Γ1

α

⋂
Γ2
α = ∅ and Γ1

α

⋃
Γ2
α = {1, 2, ...,M}.

3.4.3 Schmidt-correlated state

The Schmidt-correlated (SC) states are the mixtures of pure states, sharing the same
Schmidt bases. For any classical measurement related to the SC states, two observers will
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always obtain the same result [51]. Such SC states naturally appear in a bipartite system
dynamics with additive integrals of motion [52].

An M-partite state ρ in CN ⊗ CN ⊗ · · · ⊗ CN is called a Schmidt-correlated state if it
can be expressed as

ρ =
N−1∑

m,n=0

amn|m · · ·m〉〈n · · ·n|, (85)

where
∑N−1
m=0 amm = 1. The SC state (85) can and can only be realized by an ensemble

{pi, |Φi〉}, |Φi〉 =
∑

m

√
amme

iΘ
(i)
m |m · · ·m〉, with amm given in (85) [53].

Let GHZ(M,N) denote the M-partite maximally entangled state

GHZ(M,N) =
1√
N

(|0 · · ·0〉 + |1 · · ·1〉 + · · · + |N − 1, · · · , N − 1〉).

Then |Φi〉 is equivalent to either a fully separable state or GHZ(M, t) (0 < t ≤ N) under
stochastic local operation and classical communication (SLOCC) [54, 55].

For a multipartite SC state ρ,

ρ =
N−1∑

m,n=0

amn|m · · ·m〉〈n · · ·n| =
∑

i

pi|Ψi〉〈Ψi|, (86)

where |Ψi〉 takes the form |Ψi〉 =
∑
m c

(i)
m |m · · ·m〉, ∑m |c(i)m |2 = 1, amn =

∑
i pic

(i)
m c

(i)∗
n . It is

easily seen that the concurrences of |Ψi〉 are the same for all reduced density matrices in
bipartite decompositions. Due to the fact that ρ1 = Tr2···k(|Ψi〉〈Ψi|) =

∑
m |c(i)m |2|m〉〈m|,

one has

C(|Ψi〉) =

√
2(1 −

∑

m

|c(i)m |4),

C(ρ) = min
{pi,|Ψi〉}

∑

i

pi

√
2(1 −

∑

m

|c(i)m |4) = 2 min
{pi,|Ψi〉}

∑

i

pi

√∑

m<n

|c(i)m c(i)n |2.

Taking into account that
∑
m |c(i)m |2 = 1, one has 0 ≤ C(ρ) ≤

√
2(1 − 1

N
). For the state

GHZ(M,N), C(GHZ(M,N)) =
√

2(1 −∑N−1
m=0

1
N2 ) =

√
2(1 − 1

N
).

Instead of bipartite decompositions, one may also directly use the concurrence formula

Eq. (66) for multipartite states. Similarly one can get 0 ≤ C(ρ) ≤
√
m(1 − 1

N
) from the

Lagrange multipliers method. Applying this to the state GHZ(M,N), one has similarly

C(GHZ(M,N)) =
√
m(1 − 1

N
).

For general multipartite systems, one can deal with them as bipartite separations Γ1
α

and Γ2
α, which give rise to

1 − Tr((ρΓ1
α
)2) ≥ 1

Dα(Dα − 1)
max{(||ρTΓ1

α || − 1)2, (||RΓ1
α|Γ2

α
(ρ)|| − 1)2}, α = 1, · · · , m,

where Dα = min(dim(Γ1
α), dim(Γ2

α)), dim(Γ1
α) (resp. dim(Γ2

α)) is the dimension associated
with the subsystems contained in Γ1

α (resp. Γ2
α).
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Therefore for any N1⊗N2⊗· · ·⊗NM M-partite mixed quantum state ρ, the concurrence
C(ρ) satisfies

C(ρ) ≥ K
{

max
(
||ρTΓ1

α ||, ||RΓ1
α|Γ2

α
(ρ)||

)
− 1, α = 1, ..., m

}
, (87)

where K = 1/
√
Dα(Dα − 1).

Here for general mixed states, it is difficult to find the relation between the concurrence
of a pure state and the corresponding norm of the partial transposed state with respect
to certain subsystems, like the one between (76) and (77). The bound (87) is obtained by
bipartite separations of the system, and there is an extra factor K, which makes this bound
weaker than (84), when it is applied to the special class of mixed states with decompositions
with respect to the generalized W states.

4 Summary and conclusions

We have given a review on the measures of quantum entanglement: entanglement of forma-
tion and concurrence. As it is difficult to calculate the EOF and concurrence for general
mixed states due to the extremization involved in the calculation, analytic formulae for the
EOF and concurrence are only obtained for a few special classes of mixed states. Fortu-
nately many strong separability criteria have been found. From these separability criteria
many tight lower bounds of the EOF and concurrence have been obtained, which can detect,
in particular, some bound entangled states.
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 Loziński A, Buchleitner A, Życzkowski K, et al. Entanglement of 2 × K quantum
systems. Europhys Lett, 2003, 62: 168

[16] Audenaert K, Verstraete F, Moor B De. Variational characterisations of separability
and entanglement of formation. Phys Rev A, 2001, 64: 052304.
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