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Abstract

This paper discusses several algorithmic ways of constructing integrable evolution
equations based on Lie algebraic structure. We derive, in a pedagogical style, a large
class of two component peakon type dual systems from their two component soliton
equations counter part. We study the essential aspects of Hamiltonian flows on coadjoint

orbits of the centrally extended semidirect product group ̂Diff(S1) ⋉ C∞(S1) to give a
systematic derivation of the dual counter parts of various two component of integrable
systems, viz., the dispersive water wave equation, the Kaup-Boussinesq system and
the Broer-Kaup system, using moment of inertia operators method and the (frozen)
Lie-Poisson structure. This paper essentially gives Lie algebraic explanation of Olver-
Rosenau’s paper [31].

Mathematics Subject Classifications (2000): 53A07, 53B50.

Key Words : geodesic flow, diffeomorphism, Virasoro orbit, Sobolev norm, dual
equation, frozen Lie-Poisson structure.

1 Introduction

Recently a 2-component generalization of the Camassa–Holm equation has drawn a lot
of interest among scientists. The integrable system group at SISSA, Dubrovin and his
coworkers have been working on multi-component analogues, using reciprocal transfor-
mations and studying their effect on the Hamiltonian structures, [9, 10, 27]. They show
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that the 2-component system cited above admits peakons, albeit of a different shape
owing to the difference in the corresponding Green’s functions.

It has been shown [22] that a 2-component generalization of the Camassa–Holm
equation and its supersymmetric analogue also follow from the geodesic motion with
respect to the H1 metric on the semidirect product space Diff (S1) ⋉ C∞(S1) and its
supergroup respectively. In fact it is known that numerous coupled KdV equations
[19, 20, 21] follow from the geodesic flows of the right invariant L2 metric on the ex-

tended semidirect product group ̂Diff (S1) ⋉ C∞(S1) [1, 28]. Since 80’s, the coupled
KdV systems are considered to be important mathematical models. These set of equa-
tions are used in various physical phenomena. In 1981, Fuchssteiner [15] made a detailed
study of four coupled KdV equation and formulated the bihamiltonian structure of them.
Later Antonowicz and Fordy [2] gave first systematic derivations of a large number of
coupled KdV systems.

About ten years ago, Rosenau, [33], introduced a class of solitary waves with com-
pact support as solutions of certain wave equations with nonlinear dispersion. It was
found that the solutions of such systems unchanged from collision and were thus called
compactons. Later Olver and Rosenau showed [31] that a simple scaling argument shows
that most integrable bihamiltonian systems are governed by tri-Hamiltonian structures.
They formulated a method of “tri-Hamiltonian duality”, in which a recombination of
the Hamiltonian operators leads to integrable hierarchies endowed with nonlinear dis-
persion that supports compactons or peakons. A related construction can be found in
the contemporaneous paper of Fuchssteiner [16]. The spirit of the Olver and Rosenau
method, i.e., algorithmic ways to derive integrable generalizations of the standard in-
tegrable systems was given in [17, 12] in the early 1980’s. However it was not until
these models reappeared in physical problems, and their novel solutions such as com-
pactons and peakons were discovered, that the method achieved recognition. It should
be emphasized that a large class of Hamiltonian structures was obtain in [13] using a
Backlund transformation, from which it is immediately obvious that the relevant systems
are tri-Hamiltonian (without the need for a scaling argument). Among the equations
obtained in [13] is the so called Camassa-Holm equation (this is the reason that several
authors refer to this equation as the Fuchssteiner-Fokas-Camassa-Holm (FFCH) equa-
tion). Furthermore, the ”tri-Hamiltonian” approach was used in [11] when in addition
to the FFCH, similar analogues for the NLS and sG were derived. In fact, in a more
recent paper Fokas el al [14] discusses several algorithmic ways of constructing integrable
evolution equations based on the use of multi-Hamiltonain structures.

The tri-Hamiltonian formalism can be best described through examples. The Korteweg–
deVries equation

ut = uxxx + 3uux, (1)

can be written in bihamiltonian form

ut = J1dH2 = J2dH1

using the two compatible Hamiltonian operators

J1 = D, J2 = D3 + uD + Du where D ≡
d

dx
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and

H1 =
1

2

∫
u2 dx, H2 =

1

2

∫
(−u2

x + u3) dx.

The tri-Hamiltonian duality construction is implemented as follows:
• A simple scaling argument shows that J2 is in fact the sum of two compatible
Hamiltonian operators, namely K2 = D3 and K3 = uD + Du, so that K1 = J1,K2,K3

form a triple of mutually compatible Hamiltonian operators.
• Thus, when we can recombine the Hamiltonian triple as transfer the leading term
D3 from J2 to J1, thereby constructing the Hamiltonian pairs Ĵ1 = K2 ±K1 = D3 ±D.
The resulting self-adjoint operator S = 1 ± D2 is used to define the new field variable
ρ = Su = u ± uxx.
• Finally, the second Hamiltonian structure is constructed by replacing u by ρ in the
remaining part of the original Hamiltonian operator K3, so that Ĵ2 = ρD + Dρ. Note
that this change of variables does not affect Ĵ1.

As a result of this procedure, we recover the tri-Hamiltonian dual of the KdV equa-
tion

ρt = Ĵ1

δĤ2

δρ
= Ĵ2

δĤ1

δρ
, (2)

where

Ĥ1 =
1

2

∫
uρ dx =

1

2

∫
(u2 ∓ u2

x) dx, Ĥ2 =
1

2

∫
(u3 ∓ uu2

x) dx.

In this case, (2) reduces to the celebrated Camassa–Holm equation [4, 5]:

ut ± uxxt = 3uux ±
(
uuxx + 1

2
u2

x

)
x
. (3)

Thus the Camassa-Holm (CH) equation is dual to the KdV equation. It is known that
the KdV and the CH equations have a geometric derivation and both of them are models
of shallow water waves, the two wquations have quite different structural properties.

Similarly one can also study the two component KdV equation, one prototypical
example is the Ito equation [23],

ut = uxxx + 3uux + vvx ,

vt = (uv)x , (4)

which is a protypical example of a two-component KdV equation. The tri-Hamiltonian
dual of Ito equation follows from (2) where the first and second Hamiltonian operators
for the new equation are given by

Ĵ1 =

(
D ± D3 0

0 D

)

Ĵ2 =

(
ρ D + Dρ vD

Dv 0

)
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with

Ĥ1 =
1

2

∫
(uρ + v2) dx Ĥ2 =

1

2

∫
(u3 + uv2 ∓ uu2

x) dx

The dual system (2) takes the explicit form

ut ± uxxt = 3uux + vvx + uuxx + 1

2

(
uuxx + 1

2
u2

x

)
x

,

vt = (uv)x . (5)

1.1 Result and organization

This paper elucidates the Lie algebraic structure of a well known approach for con-
structing integrable PDEs and employs this approach for constructing a certain two
component integrable system. In this article we construct such dual systems from the
Lie-Poisson method. We study this rearrangement of Hamiltonian operators via the
construction of moment of inertia operator. This moment of inertia operator is tacitly
connected to H1-Sobolev norm, at least for the Ito equation this is readily observable.
Using the moment of inertia operators we compute dual variables. We give a systematic
method to derive such operators from the frozen Lie-Poisson structure. Using these op-
erators we obtain the dual system for various two component tri-hamiltonian systems.
In this algorithmic ways we can derive various new dual extension of known integrable
systems, which can not be derived via traditional H1-metric approach.

Certainly our method can be thought of a Lie theoretic interpretation of Olver-
Rosenau paper [31]. In other words, the duality method of Olver-Rosenau can be mani-
fested in terms of moment of inertial operator related to coadjoint orbit of the centrally

extended semidirect product group ̂Diff(S1) ⋉ C∞(S1). The whole paper discusses
algorithmic ways of constructing dual systems.

The paper is organized as follows. At first we recapitulate the basic definitions of
semidirect product and extension of the Bott-Virasoro group. We compute the coadjoint
orbit and the Hamiltonian operator in Section 2. We introduce frozen Lie-Poisson
structure, moment of inertial operator in Section 3. In Section 4 we construct the
generalized two component peakon type systems using the method of moment of inertia
operator. We also give several examples of dual equations.

2 Semidirect product and extended Bott-Virasoro

group

Let ρ : G → Aut(V ) denotes a Lie group (left) representation of G in the vector space
V , and ρ̃ : g → End(V ) is the induced Lie algebra representation. Let us denote G ⋉ V

the semidirect product group of G with V by ρ with multiplication [8, 30]

(g1, v1)(g2, v2) = (g1g2, v1 + ρ(g1)v2).

Let g ⋉ V be the Lie algebra of G ⋉ V . The Lie bracket on g ⋉ V is given by

[(ξ1, u1), (ξ2, u2)] = ([ξ1, ξ1], ρ̃(ξ1)u2 − ρ̃(ξ2)u1).
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An example of a semidirect product structure is when g is the Lie algebra so(3)
associated with the rotation group SO(3) and u is R3. Their semidirect product is the
algebra of the 6-parameter Galilean group of rotations and translations.

We can build the Lie-Poisson brackets from these algebras. The ± Lie-Poisson
bracket of f, g : (g ⋉ V )∗ → R is given as

{f, g}±(µ, a) = ±
〈
µ, [

δf

δµ
,
δg

δµ
]
〉
±
〈
a, ρ̃(

δf

δµ
) ·

δg

δa

〉
∓
〈
a, ρ̃(

δg

δµ
) ·

δf

δa

〉
,

where δf
δµ

∈ g and δf
δa

∈ V , dual of µ under the pairing <,>: h∗ × h → R.

2.1 Extension of the Bott-Virasoro group

The Lie algebra of Diff (S1) ⋉ C∞(S1) is the semidirect product Lie algebra

g = V ect(S1) ⋉ C∞(S1).

An element of g is a pair

(
f(x)

d

dx
, a(x)

)
, where f(x)

d

dx
∈ V ect(S1), and a(x) ∈ C∞(S1).

It is known that this algebra has a three dimensional central extension given by the
non-trivial cocycles

ω1

((
f(x)

d

dx
, a(x)

)
,

(
g

d

dx
, b

))
=

∫

S1

f ′(x)g′′(x)dx

ω2

((
f(x)

d

dx
, a(x)

)
,

(
g

d

dx
, b

))
=

∫

S1

[ f ′′(x)b(x) − g′′(x)a(x) ]dx

ω3

((
f(x)

d

dx
, a(x)

)
,

(
g

d

dx
, b

))
= 2

∫

S1

a(x)b′(x)dx.

(6)

The first cocycle ω1 is the well-known Gelfand–Fuchs cocycle. The Virasoro algebra

V ir = V ect(S1) ⊕R

is the unique non-trivial central extension of V ect(S1) based on the Gelfand–Fuchs
cocycle. The space C∞(S1) ⊕R is identified as regular part of the dual space to the
Virasoro algebra.

Since the topological dual of the Fréchet space V ect(S1) is too big, we restrict our
attention to the regular dual g∗, the subspace of V ect(S1)∗ defined by linear functionals
of the form

F (u) =< u(x), f(x) >=

∫
2π

0

u(x)f(x)dx, f(x)
d

dx
∈ V ect(S1),
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for some function u(x) ∈ C∞(S1). The regular part of the dual space V ect(S1)∗ is
therefore isomorphic to C∞(S1) via the L2 inner product. We say that a smooth real-
valued function F is a regular function if there exists a smooth map [6, 7] δF : C∞(S1) →
C∞(S1) such that

dF (µ)u =

∫

S1

u · δF (u)dx, µ, u ∈ C∞(S1).

In other words, the Fréchet derivative dF (µ) belongs to the regular dual V ect∗(S1)
and the mapping µ → δF (µ) is smooth. Here δF (µ) stands for variational derivative.
For any functional f : g∗ → R one can define its variational derivative δf

δµ
:

(w,
δf

δµ
) =

d

ds
f(µ + sw)|s=0, µ, w ∈ g

∗.

In the finite-dimensional situation, variational derivative δf
δµ

is always a vector on the
Lie algebra g. In the infinite-dimensional case this is not always true, as not any linear
operator on the dual algebra g∗ can be represented by a smooth vector field from the
Lie algebra g.

Other examples are nonlinear polynomial functionals [25]

F (u) =

∫

S1

N(m)dx,

where N is a polynomial in derivatives of u up to an order n and the corresponding
variational derivative is given by

δF

δu
=

n∑

i=0

(−1)i
di

dxi
(
∂N

∂Xi
(u)),

where Xi are vector fields generated by the Sobolev Hk-metric and the operator E =∑n
i=0

(−D)i ∂
∂Xi

is also known as the Euler operator.

The pairing between this space and the Virasoro algebra is given by:
〈

(u(x), α) ,

(
f(x)

d

dx
, a

)〉
=

∫

S1

u(x)f(x)dx + aα.

Similarly we consider the following extension of g,

ĝ = V ects(S1) ⋉ C∞(S1) ⊕R
3. (7)

The commutation relation in ĝ is given by
[(

f
d

dx
, a, α

)
,

(
g

d

dx
, b, β

)]
:=

(
(fg′ − f ′g)

d

dx
, fb′ − ga′, ω

)
(8)

where α = (α1, α2, α3), β = (β1, β2, β3) ∈ R
3, and where ω = (ω1, ω2, ω3) are the

cocycles.
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Let
ĝ
∗

reg = C∞(S1) ⊕C∞(S1) ⊕R
3

denote the regular part of the dual space ĝ ∗ to the Lie algebra ĝ, under the following
pairing:

〈 û , f̂ 〉 =

∫

S1

[ f(x)u(x) + a(x)v(x) ] dx + α · γ, (9)

where û = (u(x), v, γ) ∈ ĝ ∗
reg, f̂ =

(
f d

dx
, a, α

)
∈ ĝ. Of particular interest are the

coadjoint orbits in ĝ ∗
reg. In this case, Gelfand, Vershik and Graev, [18], have constructed

some of the corresponding representations.

2.2 Computation of Hamiltonian operator and coadjoint

representation

Let us introduce H1 inner product on the algebra ĝ

〈 f̂ , ĝ 〉H1 =

∫

S1

[ f(x)g(x) + a(x)b(x) + ∂xf(x)∂xg(x) ] dx + α · β, (10)

where

f̂ =

(
f

d

dx
, a, α

)
, ĝ =

(
g

d

dx
, b, β

)
.

Now we compute :

Lemma 2.1 The coadjoint operator with respect to the H1 inner product is given by

〈ad∗
bf

(
u

v

)
ĝ〉 =

(
(1 − ∂2)−1[2f ′(x)(1 − ∂2

x)u(x) + f(x)(1 − ∂2
x)u′(x) + a′v(x)] + c1f

′′′ + c2a
′′

f ′v(x) + f(x)v′(x) − c2f
′′(x) + 2c3a

′(x)

)
.

(11)

Proof: Since we have identified g with g∗, it follows from the definition that

〈 ad∗
bf
û , ĝ 〉H1 = 〈 û , [f̂ , ĝ] 〉H1

= −

∫

S1

[ (fg′ − f ′g)u − (fb′ − ga′)v − ∂x(fg′ − f ′g)∂xu ]dx.

After computing all the terms by integrating by parts and using the fact that the
functions f(x), g(x), u(x) and a(x), b(x), v(x) are periodic, the right hand side can be
expressed as above.

Let us compute now the left hand side:

ad∗
bf

(
u

v

)
=

∫

S1

[ (ad∗
bf
u)g + (ad∗

bf
u)′g′ + (ad∗

bf
v)b ] dx

=

∫

S1

[ [(1 − ∂2)ad∗
bf
u]g + (ad∗

bf
v)b ] dx =

〈
((1 − ∂2)ad∗

bf
u , (ad∗

bf
v)), (g, b)

〉

Thus by equating the the right and left hand sides, we obtain the desired formula. 2

Using standard technique of integrable systems [3] we extract the Hamiltonain op-
erator from the coadjoint action (11).
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Proposition 2.2 The Hamiltonian operator associated to extended Bott-Virasoro orbit
with respect to H1–metric is given by

OH1 =

(
c1D

3 + Dρ + ρD vD + c2D
2

Dv − c2D
2 2c3D

)
, (12)

where ρ = (1 − ∂2
x)u.

Corollary 2.3 The Hamiltonian operator with respect to right invariant L2 metric is
given by

OL2 =

(
c1D

3 + Du + uD vD + c2D
2

Dv − c2D
2 2c3D

)
(13)

Subsequently we have to restrict on specific hyperplanes for the construction of
various types of peakon systems.

2.3 Modified Gelfand-Fuchs cocycle

Consider the following “modified” Gelfand-Fuchs cocycle on V ect(S1):

ωmGF (f(x)
d

dx
, g(x)

d

dx
) =

∫

S1

(af ′g′′ + bf ′g)dx. (14)

This cocycle is cohomologues to the Gelfand-Fuchs cocycle, hence, the corresponding
central-extension is isomorphic to the Virasoro algebra. The additional term in (14) is
a coboundary term. It is easy to check that the functional

∫

S1

f ′g dx =
1

2

∫

S1

(f ′g − fg′)dx

depends on the commutator of f d
dx

, g d
dx

∈ V ect(S1).

The Gelfand-Fuchs theorem states that H2(V ect(S1)) = R, and therefore, every
nontrivial cocycle is proportional to the Gelfand-Fuchs cocycle upto a coboundary. Thus
one has

ω̃1 = λω1 + b,

where b is a coboundary

b(f
d

dx
, g

d

dx
) =< u, [f, g] >

for some u belongs to space quadratic differential form or dual of V ect(S1).

The new coboundary term modified the original Lie-Poisson structure on V ect∗(S1).
Thus the new bivector is an affine perturbation of the canonical Lie-Poisson structure
on V ir∗. It is given by

Λ = Λ0 + Λ1,

where Λ0 is the canonical or unperturbed Poisson bivector. The perturbed (constant)
bivector Λ1 is itself a Poisson bivector since it satisfies automatically the Schouten-
Nijenhuis condition

[Λ1,Λ1] = 0.
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2.4 Modified Hamiltonian structure

We now compute the modified Hamiltonian structure corresponding to modified Lie-
Poisson structure on the extended Bott-Virasoro group. It is clear that V ect(S1) ⋉

C∞(S1) algebra is extended by the non-trivial three 2-cocycles (ω̃1, ω2, ω3). Let us com-
pute the coadjoint action of V ect(S1)⋉C∞(S1) ⊕R3 on its dual C∞(S1) ⊕C∞(S1) ⊕R3

and is given by

ad∗
f̂
û =



(2f ′(x)u(x) + f(x)u′(x) + a′v(x) − c1(af ′′′ + bf ′) + c2a

′′

f ′v(x) + f(x)v′(x) − c2f
′′(x) + 2c3a

′(x)
0





Thus the modified Hamiltonian structure associated with the coadjoint action in
presence of modified cocycle is given by

ÔL2 =

(
−c1(aD3 + bD) + 2uD + ux vD + c2D

2

vx + vD − c2D
2 2c3D

)

≡

(
c1D

3 + c4D + 2uD + ux vD + c2D
2

vx + vD − c2D
2 2c3D

)
, (15)

where c4 is a new constant.

3 Duality, moment of inertia and equations

In this Section we give an algorithmic construction of the generalized multicomponent
Camassa-Holm equation. This method depends directly on the frozen Lie-Poisson struc-
ture. We briefly recapitulate frozen Lie-Poisson in the next section.

3.1 Frozen Lie-Poisson structure

Consider the dual of the Lie algebra of g∗ with a Poisson structure given by the ”frozen”
Lie-Poisson structure. In otherwords, we fix some point µ0 ∈ g∗ and define a Poisson
structure given by

{f, g}0(µ) :=< [df(µ), dg(µ)], µ0 >

It was shown by Khesin and Misiolek [24] that

Proposition 3.1 The brackets {·, ·}LP and {·, ·}0 are compatible for every ”freezing”
point µ0.

Proof: Let us take any linear combination

{·, ·}λ := {·, ·}LP + λ{·, ·}0

is again a Poisson bracket, it is just the translation of the Lie-Poisson bracket from the
origin to the point −λµ0.
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2

Let us proceed to compute frozen brackets on the dual space of the extended semi-
direct product space V ect(S1) ⋉ C∞(S1) . In general, given

(u0, v0, c) ∈ ̂V ect(S1) ⋉ C∞(S1)
∗

≃ C∞(S1) ⊕C∞(S1) ⊕R3,

the frozen bracket is given by

{f, g}(u, v, c) =< (u0, v0, c), [
δf

δ(u, v, c)
,

δg

δ(u, v, c)
] >,

=< −ad∗ δf
δ(u,v,c)

(u0, v0, c),
δf

δ(u, v, c)
> .

Furthermore, recall the corresponding Euler-Poincaré equations of motions are given by

d

dt
(u, v, c) = −ad∗ δf

δ(u,v,c)

(u0, v0, c).

We compute the generalized frozen Hamiltonian structure from equation (15).

Lemma 3.2 We consider the frozen Poisson structure at u0 = µ, v0 = λ, c1 = a,
c2 = c and c3 = d, where µ, λ, c and d are some constants. It is given by

OgFrozen =

(
aD3 + (c4 + µ)D λD + cD2

λD − cD2 2dD

)
≡

(
aD3 + bD λD + cD2

λD − cD2 2dD

)
(16)

where we assume (c4 + µ) = b.

Remark on coboundary operator and frozen structure Every 2-cocycle Γ
defines a Lie-Poisson structure on g∗. The vanishing of Schouten-Nijenhuis bracket for
Poisson bivector can be recast as a cocycle condition ∂Γ = 0, where ∂ : ∧kg∗ → ∧k+1g∗.
A special case of Lie-Poisson structure is given by a 2-cocycle Γ which is a coboundary
[6, 7]. If Γ = ∂µ0 for some µ0 ∈ g∗, the expression

{f, g}0(µ) = µ0([dµf, dµg])

considered to be Lie-Poisson bracket which has been “frozen” at a point µ0 ∈ g∗.

3.2 Frozen Hamiltonian structure and moment of inertia

operator

Let G be an arbitrary Lie group, g be its Lie algebra, and g∗ be the corresponding dual
algebra. Let I : g → g∗ be a positive definite symmetric operator, known as moment
of inertia operator, defining ascalar product on the Lie algebra. The moment of inertia
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operator defines a left or right-invariant inertia operator IG on the group. This defines
a left or right-invariant metric or inner product.

Consider this inner product on the Lie algebra of vector fields V ect(S1) on S1. If
this inner product is local, it is defined via the moment of inertia operator I

< η
d

dx
, β

d

dx
>=

∫

S1

ηIβ dx η
d

dx
, β

d

dx
∈ V ect(S1).

We define a quadratic functional, Hamiltonian function

H(u) =
1

2

∫

S1

uI
−1(u)

on the regular dual V ect∗(S1).
If the metric is left-invariant, then geodesics of this metric are described by the

Euler-Poincaré equation
u̇ = ad

I−1uu u ∈ g
∗.

Let us generalized this to semidirect product algebra V ect(S1) ⋉ C∞(S1). It must
be noticed that in the infinite dimensional case the operator I is invertible only on a
regular part of the dual algebra (V ect(S1) ⋉ C∞(S1))∗.

Definition 3.3 The generalized moment of inertia I maps

I :

(
u d

dx

v(x)

)
−→

(
m(dx)2

p(x)

)
, (17)

given by (
m(x)
p(x)

)
= I

(
u(x)
v(x)

)
. (18)

Now we state the algorithmic method to compute the generalized moment of inertia
operator. This follows directly from the Lie-Poisson structure.

Recipe to compute generalized moment of inertia operator The general-
ized moment of inertia is obtained from the frozen Poisson structure Ofrozen. It is given
by

Ofrozen = IDI, (19)

where I is the identity matrix, and it is given by

I2×2 =

(
aD2 + b λ + cD

λ − cD 2d

)
. (20)

This is a symmetric operator, and equation (20) is the most generalized form of moment
of inertia associated to the coadjoint orbit of ĝ.
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3.2.1 Examples of moment of inertia operators

We illustrate this phenomena by examples. Let us start with a few special cases.

1. The moment of inertia operator for the KdV equation is a trivial operator.

2. In the case of two component Camassa-Holm equation we choose a = −b. The
moment of inertia operator for the Camassa-Holm equation is I = (1 − ∂2).

3. The moment of inertia operator for the 2- component Camassa-Holm equation is

I2×2 =

(
b(1 − D2) λ + cD

λ − cD 2d

)
, (21)

where we assume a = −b in equation (20).

Lemma 3.4 The moment of inertia operator relates (u, v) pair to (m, p) pair for two
component Camassa-Holm equation as

m(x) = b(u − uxx) + λv + cvx

p(x) = λu − cux + 2dv. (22)

Proof: Using equation (18) we obtain m and p.
2

Let ĝ = V ect(S1) ⋉ C∞(S1) ⊕R3. The inner product is defined via the moment of
inertia operator

I2×2 : ĝ −→ ĝ
∗.

Thus the moment of inertia I2×2 plays the role of a metric – it allows us to build a
quadratic form from two elements of ĝ∗. Thus the Hamiltonian is defined as

H(m, p) =
〈(

m(x)
p(x)

)
, I

−1
2×2

(
m(x)
p(x)

)〉
=
〈(

m(x)
p(x)

)
,

(
u(x)
v(x)

)〉

=

∫

S1

(mu + pv) dx. (23)

4 Moment of inertia, Boussinesq system and du-

ality equation

Let us compute the dual equation associated to the generalized Hamiltonian operator

associated to coadjoint orbit of the extended Bott-Virasoro group ̂Diff(S1) ⋉ C∞(S1).
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4.1 Construction of generalized dual equation associated

to the Bott-Virasoro group

The frozen Hamiltonian structure is computed straight away from equation (16) and it
is given by

Ofrozen =

(
c1D

3 + αD λD + c2D
2

−c2D
2 + λD 2c3D

)
, (24)

where α = c4 + u0.

Thus the generalized moment of inertia operator associated to ĝ is given by

Igen =

(
c1D

2 + α λ + c2D

−c2D + λ 2c3

)
. (25)

Therefore the dual variables are

m(x) = c1uxx + αu + λv + c2vx

p(x) = −c2ux + λu + 2c3v. (26)

The dual variables induces the modified Hamiltonian structure

Ôgen =

(
Dm + mD Dp

Dv 0

)
. (27)

The Euler-Poincaré flow on dual space of Lie algebra g∗ can be written in the form

(
m

p

)

t

= −Ôgen

(
δH1
δm
δH1
δp

)
(28)

where the Hamiltonian is given by

H =
1

2

∫

S1

mu + pv dx.

Proposition 4.1 The Euler-Poincaré flow associated to the modified Hamiltonian op-
erator yields a flow on ĝ∗, given by

mt + (mu +
c1

2
u2

x +
α

2
u2 + λuv + c3v

2)x = 0

pt + (pu)x = 0, (29)

where m and p is defined as (26).

Proof: By direct computation. 2

Equation (29) is the most general form of peakon version of coupled KdV equation.
All other two component peakon type equations are reductions of this equation. Hence
we call this equation as the peakon/compacton ( or dual ) version of the Antonowicz-
Fordy equation.

13



Example We give a prototypical example of the two component Camassa-Holm equa-
tion. The Euler-Poincaré flow of the dual equation yields the generalized two component
Camassa-Holm equation (see for example, [10])

mt + mxu + 2mux + pvx = 0

pt + (pu)x = 0, (30)

where m and p satisfy equation (22).

4.2 Dual equation of the Boussinesq system

Let us consider the Kupershmidt’s version [26] of the Boussinesq system

ut = uux + vx − vxx

vt = (uv)x + vxx (31)

The Hamiltonian structure of the Boussinesq system

O =

(
uD + Du 2D2 + vD

−2D2 + Dv 2D

)
(32)

is associated to hyperplane at c1 = 0, c2 = 2, c3 = 1 in the coadjoint orbit of ĝ and
corresponding Hamiltonian is given by

H =
1

4

∫

S1

(u2 + v2) dx.

The first Hamiltonian operator is just O1 = DI, where I is the 2 × 2 identity matrix.

We start with the frozen Hamiltonian structure associated to (31). We compute the
Hamiltonian structure at u0 = µ and v0 = λ. Here λ and µ are constants. Thus the
frozen Hamiltonian structure is

Ofrozen =

(
µD 2D2 + λD

−2D2 + λD 2D

)
. (33)

Thus the moment of inertia operator of the Boussinesq system becomes

IBoussinesq =

(
µ λ + 2D

λ − 2D 2

)
. (34)

Let us fix µ = λ = 1. Then IBoussinesq yields

(
m(x)
p(x)

)
= IBoussinesq

(
u(x)
v(x)

)
=

(
2u(x) + v − 2vx

u(x) + 2ux

)
.

Once again the moment of inertia transforms the primitive pair (u, v) to a newer
pair (m, p), given by

m(x) = v + 2vx

p(x) = u − 2ux + 2v (35)

14



Equation (35) transforms the Hamiltonian operator to

(
uD + Du vD

Dv 0

)
7−→

(
mD + Dm pD

Dp 0

)
.

The Hamiltonian function becomes

H̃ =
1

2

∫

S1

(mu + pv) dx. (36)

Proposition 4.2 The Euler-Poincaré flow with respect to new Hamiltonian and Pois-
son structure yields the dual equation of Boussinesq system

mt + (mv)x = 0

pt + (vp + u2 + uv)x = 0 (37)

4.3 Dual equation of various dispersive water wave equa-

tions

We narrate our construction with another prototypical example, the dispersive water
waves equation, given by

ut = vxxx + 2(uv)x ,

vt = ux + 2vvx . (38)

This is a geodesic flow on the extension of the Bott-Virasoro group. It is connected
to a hyperplane c1 = 1, c2 = 0, c3 = 1

2
in the coadjoint orbit of ĝ and the flow is given

by (
ut

vt

)
=

(
D3 + Du + uD vD

Dv D

)(
δH
δu
δH
δv

)
H =

∫

S1

uv dx. (39)

This equation is also known as the Kaup-Boussinesq system. The KB system has
a natural two wave structure, which enables one to capture the effects of interaction of
unmodular bores or rarefaction waves arising in the decay of a jump discontinuity.

4.4 Dual equation of the Kaup-Boussinesq system

The frozen Hamiltonian structure at u0 = µ and v0 = λ of the Kaup-Boussinesq system
is given by

Ofrozen =

(
D3 + µD λD

λD D

)
. (40)

It is ready to see that the moment of inertia operator of the KB system IKB yields

m(x) = uxx + µu + λv, p(x) = λu + v.

15



Once again we can normilize µ = λ = 2 The modified Hamiltonian structure of the dual
equation is given by

Ô =

(
Dm + mD pD

Dp 0

)
(41)

yields the dual equation for the Kaup-Boussinesq system

mt + (mu +
1

2
u2

x + u2 + 2uv)x = 0

pt + (pu)x = 0 (42)

for Ĥ =
∫
S1(mu + pv) dx.

4.5 Dual equation of the Broer-Kaup system

Let us study the Broer-Kaup system

ut = −uxx + 2(uv)x + uux, vt = vxx + 2vvx − 2ux

is a geodesic flow associated to the hyperplane c1 = 0, c2 = −1, c3 = −1. Hence the
Hamiltonian structure is

OBK =

(
uD + Du −D2 + vD

D2 + Dv −2D

)
, with H =

∫

S1

uv dx.

The moment of inertia operator of the Broer-Kaup system computed from the frozen
Hamiltonian structure at u0 = v0 = 1 and given by

IBK =

(
1 1 − D

D + 1 −2

)

Therefore IBK yields

m(x) = u + v − vx, p(x) = u + ux − 2v.

Thus the dual equation for the Kaup-Boussinesq system is

mt + (mu + uv − v2)x = 0

pt + (pu)x = 0 (43)

for Ĥ = 1

2

∫
S1(mu + pv) dx.

Hence in this paper we present a more generalized formalism to construct two com-
ponent type Camassa–Holm type equations. We have demonstrated our method with
several examples. All these systems obtained appears to be bi-Hamiltonian flow on the
coadjoint orbit of Diff(S1) ⋉ C∞(S1).

16



5 Conclusion and outlook

In this paper we have derived various two-component generalization of the Camassa-
Holm type systems using extended Bott-Virasoro algebra. Our method is closely related
to Olver-Rosenau method. We have given a more Lie algebraic illustration of their
construction. It would be rather interesting to generalize this method to supersymmetric
dual integrable systems. This would involve extended superconformal group.
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