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Abstract

Let S ⊂ R
2 be a bounded domain with boundary of class C∞ and

let gij = δij denote the flat metric on R
2. Let u be a minimizer of the

Willmore functional within a subclass (defined by prescribing boundary
conditions on parts of ∂S) of all W 2,2 isometric immersions of the Rie-
mannian manifold (S, g) into R

3. In this article we study the regularity
properties of such u. Our main result roughly states that minimizers
u are C∞ away from three kinds of line segments: Segments which in-
tersect ∂S tangentially, segments which bound regions on which ∇u is
locally constant and segments for which ∇2u diverges near one endpoint.
At segments of the third kind, we prove that u is precisely C3 (in the
interior), and we obtain sharp estimates for the size of its derivatives.
Our main motivation to study this problem comes from nonlinear elas-
ticity: On isometric immersions, the Willmore functional agrees with
Kirchhoff’s energy functional for thin elastic plates.

1 Introduction

The Willmore functional for surfaces u : Σ → R
3 immersed in R

3 is given by

W(u) =
1

4

∫

Σ

|H|2 dµg,

where H denotes the mean curvature of the immersion u, the pull-back metric
is g = (∇u)T (∇u) and µg denotes the induced area measure. There has been
considerable interest in the properties of critical points of this functional, the
so-called Willmore surfaces (cf. e.g. [25, 22, 19, 15, 16, 21] and the refer-
ences cited therein). Recently, there has been growing interest in costrained
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versions of the Willmore functional, see e.g. [1] and work in progress by Ku-
wert and Schätzle, where constraints are imposed on the conformal class of the
admissible surfaces. Constrained Willmore functionals are also interesting for
applications, e.g. in the modelling of biological membranes (Helfrich model,
cf. [6]) or in nonlinear elasticity (Kirchhoff’s plate theory, cf. [3]).
In the present article we study critical points of the Willmore functional within
all possible realizations (i.e. isometric immersions) in R

3 of the same Rieman-
nian surface. Motivated by applications in three dimensional nonlinear elastic-
ity, we consider the case of flat surfaces, i.e. u : S → R

3 with S ⊂ R
2 such that

the pull-back metric (∇u)T (∇u) agrees with the standard metric in R
2. This

is a very strong constraint, and the problem is highly degenerate. Therefore,
it is a priori not even clear whether there exist enough variations to obtain
informative Euler-Lagrange equations. (Indeed, prescribing boundary data on
too large a set leads to an ill-posed problem where no variations are possible
at all.) In [11] certain variations were found which satisfy the natural local
boundary conditions. Their corresponding Euler-Lagrange equation, the con-
strained Willmore equation, was derived. However, these variations are quite
artificial and it is therefore not obvious that their Euler-Lagrange equations
carry enough information to derive good regularity properties from them. As
usual, the most difficult task is to obtain some low regularity in an initial step.
(Indeed, arbitrary competitors can display a very pathological behaviour, as
shown in the appendix to [10].) Higher regularity is then obtained by standard
arguments.
Apart from being very relevant for applications (cf. [3, 23, 24]), the problem
studied here is also interesting because, on the one hand, it is particularly ac-
cessible, whereas, on the other hand, it displays a nontrivial (and unexpected)
regularity. It is accessible because, at least partially, it can be reduced to
the analysis of a system of ordinary differential equations (the Euler-Lagrange
equations derived in [11]). It is nontrivial because this description is not global
and, more importantly, because the Euler-Lagrange system exhibits two kinds
of degeneracies. One of them is a vestige of the fact that the original prob-
lem is a problem on surfaces and not just on curves. It is this degeneracy
which leads to an unexpected failure of regularity even in the interior of the
so-called “developable” regions on which the Euler-Lagrange system is satis-
fied. Nonetheless, one can perform a detailed analysis of the surface at this
singular set. It reveals, among other details, an interesting scaling behaviour
of the mean curvature.

Let us describe the main results of this article more precisely. By the direct
method, one easily finds minimizers of the Willmore functional among iso-
metric immersions of S into R

3 satisfying the boundary conditions mentioned
earlier, cf. [11]. The natural class in which minimizers exist is the set

W 2,2
iso (S; R3) = {u ∈ W 2,2(S; R3) : (∇u)T (∇u) = Id almost everywhere} (1)

2



of W 2,2 isometric immersions (cf. [11]). This class is natural because it consists
exactly of those isometries which have finite Willmore energy. Indeed, if u :
S → R

3 is an isometric immersion then, up to a constant prefactor, W(u)
agrees with

E(u; S) :=

∫

S

|∇2u(x)|2 dx. (2)

In nonlinear elasticity, E is called Kirchhoff’s plate functional, and W 2,2
iso is its

natural domain of definition. E models the behaviour of unstrechable thin elas-
tic films. This modern formulation as well as the relation between Kirchhoff’s
plate theory and nonlinear three dimensional elasticity was obtained in [3]. It
motivated the present analysis.
While simple counterexamples show that W 2,2

iso (S; R3) 6⊂ C2(S; R3), it turns out
that all mappings u ∈ W 2,2

iso (S; R3) are C1 even up to the boundary provided
that the latter is smooth enough, cf. [17, 14]. (This regularity, however, is
too low to get started in the regularity analysis below.) Another fundamental
property shared by all W 2,2 isometric immersions is that they are developable
surfaces, cf. [20, 5, 14, 18, 13]). More precisely, they consist of planar regions
and of “developable” regions.
In the interior of their planar region, the surfaces are trivially smooth. In the
interior of their developable region, critical points satisfy the Euler-Lagrange
equations from [11]. The boundary of the developable region belongs to the
singular set. This part of the singular set, as all others, consists of straight
line segments with endpoints on ∂S on which ∇u is constant. Under extra
regularity conditions on the boundary values one can prove that it consists of
only finitely many segments. In general, it is not empty and minimizers indeed
fail to be smooth there. (This and other examples can be found in [12].) The
second part of the singular set, denoted Στ , consists of lines which intersect
∂S tangentially. The third, quite unexpected, kind of singular line segments is
the one mentioned at the beginning. We denote it by Σ0. It is contained in the
developable region. It consists of at most countably many lines which can only
accumulate near Στ ∪ ∂S. This local finiteness is a key regularity result since,
for arbitrary W 2,2 isometric immersions, the set Σ0 can be Cantor-like and can
accumulate anywhere. Its proof is based on the discovery of a monotone quan-
tity that is linked to the mean curvature via the Euler-Lagrange equations.
Once local finiteness is established, one can prove that the surface is precisely
C3 (in the interior of the domain) at lines in Σ0. Moreover, the energy density
diverges at one endpoint of each such line Y ⊂ Σ0. Near Y (and uniformly
away from ∂S), the mean curvature H(x) scales like F (distY (x)), where F is
the inverse of t 7→ t log t.
Our main positive result is that minimizers are C∞ away from the singular
sets just described. The regularity results obtained in this paper are optimal:
In forthcoming work ([12]) we provide examples of boundary data leading to
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minimizers for which the first two kinds of singular sets indeed occur and which
fail to be better than C3 at any of these sets. Moreover, there is very strong
numerical evidence that, in general, Σ0 6= ∅, cf. [23] and other physics litera-
ture about the Möbius strip.
This article is organized as follows. In Section 2 we recall some basic defini-
tions a properties of W 2,2

iso , mainly taken from [9, 10], and the Euler-Lagrange
equations from [11]. Then we state our main results, Theorem 2.4 and Theo-
rem 2.7. In Section 3 we derive some basic consequences of the Euler-Lagrange
equations and deduce a first partial regularity result. In Section 4 we derive
our main regularity result and the scalings alluded to above. In Section 5 we
use this result to deduce C∞ regularity at planar lines which do not belong
to Σ0. In Section 6 we analyze the singular set and provide an instance of
sufficient conditions on the boundary data ensuring that it consists of only
finitely many line segments.
The main results of this article were announced in [8].

Notation. S will always denote a bounded domain in R
2. Unless stated

otherwise, its boundary is assumed to be of class C∞. The curves Γ are always
parametrized by arclength. Statements involving pointwise properties of L1

loc-
functions refer to their precise representatives as defined e.g. in [4]. We write
∗ for + or −, and if ∗ = + then we set ∗̄ = − and viceversa. The letters C
and c will denote positive constants which may vary from line to line. Often
we abbreviate {t ∈ [−T, T ] : f(t) = c} by {f = c}. We abbreviate f ◦ g by
f(g).
By ei we denote standard unit vectors in R

n and by Lk, Hk the k-dimensional
Lebesgue and Hausdorff measures, respectively. If f, g are real-valued functions
on an interval then we write “f ∼ g near t0” to denote that there is c > 0 such
that c|g(t)| ≤ |f(t)| ≤ 1

c
|g(t)| for all t ∈ (t0−c, t0+c). The equality u = (Γ, κn)

is to be understood as equality up to a rigid motion, i. e. there exist Q ∈ SO(3)
and d ∈ R

3 such that d + Qu(x) = (Γ, κn)(x) for all x ∈ [Γ(−T, T )].

2 Preliminaries and main results

2.1. Some definitions. We briefly recall some definitions introduced in
[8, 9, 10, 11]. For details and proofs, we refer to these articles. Unless stated
otherwise, throughout this article S ⊂ R

2 denotes a bounded C∞ domain
and ∂cS ⊂ ∂S is closed. For µ ∈ S

1 and x ∈ S we denote by [x]µ the
connected component of (x + Span µ) ∩ S which contains x. For x ∈ S and
µ ∈ R

2 \ {0} we define ν(x, µ) = inf{θ > 0 : x + θµ /∈ S}. We also set
ν1(x, µ) · ei = limε↓0

1
ε
(ν(x + εei, µ) − ν(x, µ)) whenever this limit exists. A

simple implicit function argument (cf. e.g. [9]) shows that if the boundary of S
is Ck, k ≥ 1, and if [x]µ intersects ∂S transversally (i.e. µ is not perpendicular
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to the outer unit normal to ∂S at any of the two points in [x]µ ∩ ∂S) then ν

is Ck in a neighbourhood of (x, µ).
Let X ⊂ S. A mapping q : X → S

1 is called an S-ruling on X if [x]qf (x) ∩
[y]qf (y) 6= ∅ implies [x]qf (x) = [y]qf (y) whenever x, y ∈ X. This nonintersection
property ensures that q is locally Lipschitz when considered as a mapping into
the projective space P

1, so locally one can choose antipodal points such that
q is Lipschitz into S

1. A mapping f : X → R
P , P ≥ 1, is called S-developable

on X if there exists an S-ruling for f , i.e. an S-ruling qf : X → S
1 such that

f is constant on X ∩ [x]qf (x) for all x ∈ X.

Let u ∈ W 2,2
iso (S; R3). We set

C∇u = {x ∈ S : ∇u is constant in a neighbourhood of x}.

It is shown in [14, 18, 17] that ∇u ∈ C0(S; R3×2) and that ∇u is S-developable
on S \ C∇u, cf. also [20, 5, 13]. Regarded as a mapping into P

1, the mapping
q∇u : S \ C∇u → S

1 is uniquely determined by u, cf. Remark 2.2.1 in [9]. The
notation [x] will always mean [x]q∇u(x).
In [9] it was shown that C∇u consists of countably many connected components
U , and each U has finite perimeter and there is a countable set ZU ⊂ S \C∇u

such that S ∩ ∂U =
⋃

x∈ZU
[x] and such that for x, y ∈ ZU the segments [x]

and [y] only intersect when x = y. We denote by Ĉ∇u the union of those U for
which the cardinality of ZU is at least three, i.e. S ∩ ∂U consists of at least
three connected components. We set

D∇u = {x ∈ S : ∇u is S-developable in a neighbourhood of x}.

If x0 ∈ D∇u then there is a ∇u-integral curve passing through x0, i.e. there is
T > 0 and a solution Γ ∈ W 2,∞([−T, T ]; S) of the ODE system

Γ′(t) = −
(

q∇u(Γ(t))
)⊥

for all t ∈ (−T, T ) and Γ(0) = x0. (3)

For arbitrary arclength parametrized (we will tacitly assume this for all curves
Γ occuring from now on) Γ ∈ W 2,∞([−T, T ]; S), we introduce the following
definitions:

• For J ⊂ [−T, T ] we set [Γ(J)] :=
⋃{[Γ(t)]N(t) : t ∈ J}.

• We define s±Γ : [−T, T ] → R by setting s∗Γ(t) := ∗ν(Γ(t), N(t)) for ∗ =
+,− (in the sequel we will often omit the index Γ).

• Γ is said to be admissible if [Γ(t1)]N(t1) ∩ [Γ(t2)]N(t2) 6= ∅ implies that
t1 = t2 for any t1, t2 ∈ [−T, T ].

• Γ is said to be locally admissible if 1 − s±Γ κ(t) ≥ 0 for almost every
t ∈ (−T, T ).
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• Γ is said to be transversal on J ⊂ [−T, T ] if [Γ(t)] intersects ∂S transver-
sally for all t ∈ J .

In what follows we will, with a slight abuse of notation, mostly write [Γ(t)]
instead of [Γ(t)]N(t).
If Γ solves (3) then Γ is admissible, provided that T is small enough (cf. Lemma
3.2.3 in [9]).
For admissible Γ ∈ W 2,∞([−T, T ]; S) and κn ∈ L2(−T, T ) we define a mapping
(Γ, κn) : [Γ(−T, T )] → R

3 as follows. Let N = (Γ′)⊥ and κ = Γ′′ · N , and let
r : [−T, T ] → SO(3) be the unique W 1,2-solution to the ODE

r′ =





0 κ κn

−κ 0 0
−κn 0 0



 r and r(0) = Id. (4)

Define γ′, v, n to be the first, second and third row of r and set γ(t) =
∫ t

0
γ′.

Then we define
(Γ, κn)(Γ(t) + sN(t)) = γ(t) + sv(t), (5)

where and t ∈ [−T, T ], and s ∈ (s−Γ (t), s+
Γ (t)). The mapping (Γ, κn) obtained

in (5) is a well defined element of W 2,2
loc, iso([Γ(−T, T )]; R3), provided that Γ is

admissible, cf. Proposition 2.3 in [10]. Moreover, we have

(s, t) 7→ κ2
n(t)

1 − sκ(t)
∈ L1(Ms±Γ

), (6)

if and only if (Γ, κn) ∈ W 2,2
iso ([Γ(−T, T )]; R3), see again Proposition 2.3

in [10] and Remark 2.6 in [11]. Here we have introduced Ms±Γ
=

⋃

t∈(−T,T )(s
−
Γ (t), s+

Γ (t)) × {t}.
If Γ : [−T, T ] → S is a ∇u-integral curve then there is κn ∈ L2(−T, T ) such
that u = (Γ, κn) on [Γ(−T, T )], and we have κ ∈ L∞(−T, T ). (Here and below
the equality u = (Γ, κn) is to be understood up a rigid motion. When studying
the local behaviour of u, it constitutes no loss of generality to assume that it
is an equality. A true equality is obtained by choosing appropriate values of
r(0) and γ(0).) Moreover, γ is a line of curvature on the surface u

(

[Γ(−T, T )]
)

with normal curvature κn and geodesic curvature κ. And r is the Darboux
frame along γ. In addition, we have (6), and

∫

[Γ(−T,T )]

|∇2(Γ, κn)(x)|2 dx =

∫ T

−T

κ2
n(t)g(s±(t), κ(t)) dt. (7)

Here g(s±, x) =
∫ s+

s−
1

1−sx
ds, and in the integrand on the right-hand side of (7)

we define 0 · ∞ := 0. Notice that (6) implies the important fact that κn = 0
almost everywhere on the set

IΓ
0 :=

{

t ∈ [−T, T ] : κ(t) ∈ { 1

s−(t)
,

1

s+(t)
}
}

.
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For η > 0 we define

IΓ
η := {t ∈ [−T, T ] : 1 − s+(t)κ(t) ≥ η and 1 − s−(t)κ(t) ≥ η}.

In what follows we will omit the index Γ. We recall that κ refers to the precise
representative, so the above sets are well defined.
For s− < 0 < s+ and x ∈ ( 1

s−
, 1

s+ ) and ∗ ∈ {−, +} we define

g∗(s
±, x) = ∗ 1

1 − s∗x
(8)

g2(s
±, x) = −

∫ s+

s−

1

(1 − sx)2
ds (9)

g3(s
±, x) =

∫ s+

s−

s

(1 − sx)2
ds. (10)

We set χ∗ = χ{∗κ>0} and σ =
∑

∗ χ∗s
∗. Finally, we recall from [11] the following

definitions

h = κ
∑

∗

∗χ∗ν1(Γ, ∗N) · Γ′ (11)

F1 =
∑

∗

ν1(Γ, ∗N) · Γ′

1 − s∗κ
+ hg2(s

±, κ) (12)

F2 =
∑

∗

s∗ν1(Γ, ∗N) · Γ′

1 − s∗κ
+ σhg2(s

±, κ). (13)

2.2. Definition. A pair (Γ, κn) with Γ ∈ W 2,∞((−T, T ); S) locally admissible
and transversal and κn ∈ L2(−T, T ) is said to satisfy the Euler-Lagrange equa-
tions if there exist λ1, λ2 ∈ R

3 and λ3, λ4 ∈ R such that the following equations
are satisfied for almost every t ∈ (−T, T ):

2(1 − χI0(t))κn(t)g(s±Γ (t), κ(t)) = −v(t) · (λ2 − λ1 ∧
∫ T

t

γ′) (14)

(1 − χI0(t))κ
2
n(t)g2(s

±
Γ (t), κ(t)) = (1 − χI0(t))Ω2(t) (15)

(1 − χI0(t))κ
2
n(t)g3(s

±
Γ (t), κ(t)) = Ω3(t) + χI0(t)

Ω2(t)

κ(t)
(16)

Here, Ω2 and Ω3 are the unique Lipschitz continuous solutions to the terminal
value problems

Ω′
2 = −hΩ2 + κn(λ1 · n) + κ2

nF1 and Ω2(T ) = λ3 + λ1 · γ′(T ) (17)

Ω′
3 = hσΩ2 − κnγ′ · (λ2 − λ1 ∧

∫ T

t

γ′) − κ2
nF2 and Ω3(T ) = λ4 + λ2 · n(T ).

(18)
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2.3. Remarks.

(i) If Γ is transversal on [−T, T ] then ν1(Γ, ∗N) ∈ L∞(−T, T ), cf. e.g.
Proposition 3.1.11 in [9]. So in this case

h, F1, F2 ∈ L∞(−T, T ). (19)

For h this follows from the definition. For the Fi it is a consequence of
the equalities

F1 =
(

χ{κ=0} +
∑

∗

χ∗

1 − s∗̄κ

)

(ν1(Γ, N) + ν1(Γ,−N)) · Γ′, (20)

F2 =
(

χ{κ=0} +
∑

∗

χ∗

1 − s∗̄κ

)

(s+ν1(Γ, N) + s−ν1(Γ,−N)) · Γ′. (21)

The simple proof of (20, 21) is given below the formulae (59, 60) in [11].

(ii) For solutions of the Euler-Lagrange equations with L1(I0) = 0 (we will
see that this is satisfied in the cases of interest), we have Ω2 = κ2

ng2(s
±, κ)

almost everywhere by (15) and the differential equations (17, 18) are
equivalent to

Ω′
2 = κn(λ1 · n) + κ2

n

∑

∗

ν(Γ, ∗N) · Γ′

1 − s∗κ
(22)

Ω′
3 = −κnγ

′ · (λ2 − λ1 ∧
∫ T

t

γ′) − κ2
n

∑

∗

s∗ν1(Γ, ∗N) · Γ′

1 − s∗κ
. (23)

Our main regularity result for solutions to the Euler-Lagrange equations reads
as follows.

2.4. Theorem. Let S ⊂ R
2 be a bounded C∞-domain, let T > 0 and let Γ ∈

W 2,∞([−T, T ]; S) be locally admissible and transversal. Let κn ∈ L2(−T, T ) be
such that (Γ, κn) solve the Euler-Lagrange equations in the sense of Definition
2.1, assume that (6) holds and assume that L1({t ∈ (−T, T ) : κn(t) 6= 0}) > 0.
Then

κn ∈ C0([−T, T ]) and κ, κn ∈ C∞
(

[−T, T ] \ ∂{t ∈ [−T, T ] : κn(t) = 0}
)

,

and the set I0 has empty interior.
Assume, in addition, that the set {t ∈ (−T, T ) : κn(t) = 0} has empty in-
terior. Then κn only has finitely many zeroes and it changes its sign at
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each of them. Moreover, κ ∈ C∞([−T, T ] \ I0) ∩ C2([−T, T ]) and κn ∈
C∞([−T, T ]\I0)∩C1([−T, T ]). If there exists a δ > 0 such that κ ∈ C2,δ(−T, T )
or κn ∈ C1,δ(−T, T ) then I0 = ∅.

2.5. Remarks.

(i) As seen above, if Γ is admissible and (6) holds, then the pair (Γ, κn)
induces a mapping (Γ, κn) ∈ W 2,2

iso ([Γ(−T, T )]; R3) via (5). If κn = 0
almost everywhere on (−T, T ) then (Γ, κn) is affine on [Γ(−T, T )], so the
assumption L1({κn 6= 0}) > 0 is not restrictive on the level of surfaces,
i.e. if one is interested in the regularity of the surface (Γ, κn).

(ii) Emptyness of int I0 is a key regularity result. In the situation of interest
when Γ is admissible and the induced surface (Γ, κn) is a critical point of
E (under its own boundary conditions on [Γ(0)] ∪ [Γ(T )]), Theorem 2.4
in fact implies that either the interior of {κn = 0} is empty or κn = 0
almost everywhere.
Indeed, if int{κn = 0} is nonempty, then there exists a pair (Γ̂, κ̂n) such

that int I Γ̂
0 is nonempty but the induced surfaces still agree, i.e. (Γ, κn) =

(Γ̂, κ̂n). This is proven in Lemma 7.4. Thus (Γ̂, κ̂n) is critical as well, and
so it solves the Euler-Lagrange equations by the results in [11]. Hence
Theorem 2.4 implies that κ̂n = 0 almost everywhere, i.e. (Γ̂, κ̂n) affine.
Thus (Γ, κn) is affine, i.e. κn = 0 almost everywhere.
Once {κn = 0} has empty interior, the second part of Theorem 2.4 implies
that it is finite. Thus by (6) also I0 is finite. This is a key regularity result,
and it is clearly relevant for applications as well. It sharply contrasts e.g.
with the example in the appendix to [10]. There it is shown that for
arbitrary (Γ, κn) ∈ W 2,2

iso the set I0 can be open and dense (while still
L1({κn 6= 0}) > 0).

(iii) In Proposition 4.1 below we obtain a good picture of the behaviour of Γ
and κn near the set I0: Suppose that t0 ∈ I0, denote by ∗ ∈ {+,−} the
sign of κ(t0) and set α∗ = 1 − s∗κ. Then, in a neighbourhood of t0, we
have

√

α∗(t)| log α∗(t)| ∼ |t − t0|. Moreover,

|κ − κ(t0)| ∼ α∗, |κ′| ∼
√

α∗

| log α∗| and |κ′′| ≤ C(log α∗)−2.

In addition,
|κn| ∼

√
α∗ and |κ′

n| ∼ | log α∗|−1. (24)

In particular, κ′, κ′′ and κ′
n are continuous and zero at t0. Moreover, using

9



e.g. (4) in [10] together with the above scalings, we have

|∇2(Γ, κn)(Γ(t) + s∗(t)N(t))| ≥ C
|κn(t)|

1 − s∗(t)κ(t)
≥ C

1
√

α∗(t)
.

So ∇2(Γ, κn) diverges near Γ(t0) + s∗(t0)N(t0) ∈ ∂S.
If (Γ, κn) ∈ C2 then one can define a line of striction of the developable
surface (Γ, κn)([Γ(−T, T )]), cf. [2]. The line of striction does not intersect
this surface. But it intersects the boundary of the surface at the point
(Γ, κn)(Γ(t0)+s∗(t0)N(t0)) = γ(t0)+s∗(t0)v(t0) precisely if t0 is as above.

(iv) The last statement of Theorem 2.4 shows that the regularity of κ and κn

stated in the theorem are optimal. It could only be improved by showing
that I0 = ∅. There is strong numerical evidence that in general I0 6= ∅,
cf. [23].

(v) If Γ ∈ C∞([−T, T ]; S) is admissible and transversal, and if I0 = ∅ and
κn ∈ C∞([−T, T ]), then (Γ, κn) is C∞ up to the boundary of the domain
[Γ(−T, T )]. It can even be extended as a C∞ isometric immersion to a
domain containing [Γ(−T, T )]. This is proven in Proposition 7.3 in the
appendix.

2.6. For given u ∈ W 2,2
iso (S; R3) and a closed subset ∂cS ⊂ ∂S we set

Au(S, ∂cS) = {ũ ∈ W 2,2
iso (S; R3) : ũ = u on ∂cS and ∇ũ = ∇u on ∂cS}. (25)

In (25) the boundary values of the derivatives are understood in the trace
sense. (Of course this definition makes sense even if S is only Lipschitz.) To
formulate our main result in terms of the surface u we introduce three kinds
of line segments in S:

Σu
τ = {x ∈ S \ C∇u : [x] intersects ∂S tangentially}

Σu
c = S ∩ {x ∈ S \ C∇u : [x] intersects ∂cS}

Σu
0 = {x ∈ S \ (C∇u ∪ Σu

τ ∪ Σu
c ) : there is a ∇u-integral curve Γ and t0 ∈ I0

such that [x] = [Γ(t0)]N(t0) }.

These sets are well defined by the uniqueness of q∇u on S \ C∇u. In what
follows we omit the index u.

2.7. Theorem. Let S ⊂ R
2 be a bounded C∞-domain, let ∂cS ⊂ ∂S be closed

and let u be a minimizer of E(·; S) within the class Au(S, ∂cS). Then

u ∈ C3(S \ (Στ ∪ Σc ∪ ∂Ĉ∇u); R
3) (26)
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and
u ∈ C∞(S \ (Σ0 ∪ Στ ∪ Σc ∪ ∂Ĉ∇u); R

3).

2.8. Remarks.

(i) The existence of minimizers is easy to prove, cf. [11].

(ii) The set Σc belongs to the singular set because the regularity of u on Σc

is determined by the boundary conditions, which are not assumed to be
regular.

(iii) The set S ∩ ∂Ĉ∇u consists of line segments on which ∇u is constant. In
general, however, there can be uncountably many such segments (but of
course int ∂Ĉ∇u = ∅), cf. Section 6. The reason why Ĉ∇u rather than
C∇u occurs in Theorem 2.7 is that C∇u \ Ĉ∇u ⊂ D∇u. Notice also that
∂Ĉ∇u ⊂ C∇u, cf. again Section 6.
Under certain assumptions on the boundary conditions one can prove
that ∂Ĉ∇u consists of only finitely many segments, cf. Proposition 6.4
and, for more sophisticated results, cf. [12]. In general, the boundary
conditions imposed on ∂cS force Ĉ∇u 6= ∅ whenever u ∈ W 2,2

iso (S; R3)

satisfies them, and minimizers are not smooth at ∂Ĉ∇u, cf. again [12].

(iv) The set Στ is closed and has empty interior, cf. Section 6. It consists of
straight line segments intersecting ∂S tangentially at one end, and ∇u
is constant on each such line segment. If S is convex, then Στ is empty.
In [12] we give an example of a domain S and boundary data such that
for every minimizer u the set Στ is nonempty and u fails to be smooth
at Στ .

(v) A related issue is the role of the regularity of ∂S. From the Euler-
Lagrange equations and the arguments in this paper it is easy to see that
u cannot be smooth if ∂S is not. As at Στ , it is failure of regularity of
the directed distance ν which determines that of u.

(vi) Since u = (Γ, κn) locally on D∇u, Theorem 2.4 implies the following facts
(cf. also Proposition 6.3):

• We have ∇2u = 0 on Σ0. (By (26) this makes sense pointwise.)

• The set Σ0 consists of countably many line segments. They can
accumulate only at ∂S ∪ Σc ∪ Στ .

• The regularity at Σ0 is optimal.
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• If x0 ∈ Σ0 then there is x1 ∈ ∂S∩ [x0] (i.e. x1 is one of the endpoints
of [x0]) such that ∇2u(yn) diverges as yn → x1 with |yn − x1| ∼
dist[x0](yn) (cf. Remark 2.5). This explains the energy concentration
found by numerical simulations for the Möbius strip in [23]. Remark
2.5 describes the local behaviour of the surface near such lines.

• Since the Gauss curvature of u is zero, its mean curvature H agrees
with the normal curvature κn. More precisely, H(Γ(t) + sN(t)) =

κn(t)
1−sκ(t)

whenever Γ is a ∇u-integral curve, i.e. (the preimage of) a

nontrivial line of curvature. From this and from (24) one obtains
the scaling of H(x) with respect to the distance of x from a given
segment Y in Σ0 that was mentioned in the introduction. For each
δ > 0, the scaling constants can be chosen uniformly on {distR2\S ≥
δ}.

3 Partial regularity

3.1. Some definitions. We fix T > 0, Γ ∈ W 2,∞([−T, T ]; S) locally admis-
sible and transversal and κn ∈ L2(−T, T ) such that (Γ, κn) solve the Euler-
Lagrange equations in the sense of Definition 2.1. In addition, we assume that
(6) holds. This implies that κn = 0 almost everywhere on I0.
We define

Λ1 = γ′ ·
(

λ2 − λ1 ∧
∫ T

t

γ′(s) ds
)

Λ2 = v ·
(

λ2 − λ1 ∧
∫ T

t

γ′(s) ds
)

Λ3 = n ·
(

λ2 − λ1 ∧
∫ T

t

γ′(s) ds
)

m = λ1 · n.

The following equalities are obtained directly from the definitions and using
the ODE (4):

Λ′
1 = κΛ2 + κnΛ3 (27)

Λ′
2 = −κΛ1 + λ1 · n (28)

Λ′
3 = −κnΛ1 − λ1 · v (29)

Since Γ is continuous, η̃ := 1
2
inf dist∂S(Γ([−T, T ])) > 0. We fix this η̃ for the

rest of this section. For η ≥ 0 we define the bounded domain

Mη = {(s−, s+, x) ∈ R
3 : |s±| ∈ (η̃, 2 diam S) and 1 − s±x > η}. (30)
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Since Γ is locally admissible, we have (s+(t), s−(t), κ(t)) ∈ M̄0 for all t ∈
[−T, T ]. For s− < 0 < s+ and x ∈ [ 1

s−
, 1

s+ ] we define the function

Z(s±, x) =

{

−g3(s±,x)
g2(s±,x)

if x ∈ ( 1
s−

, 1
s+ )

1
x

if x ∈ { 1
s−

, 1
s+}.

(31)

For z ∈ [s−, s+] we define Q(s±, z) implicitly by setting Z(s±, Q(s±, z)) = z.
By Lemma 7.6, this gives a well-defined function which is continuous up to the
boundary of M ′

0. The behaviour of Z(s±, x) as s±x → 1 is studied in Lemma
7.6.
The following facts about g (defined in §2.1) and the functions related to it
are easy to check, and they will often be used implicitly:

• The functions g and g2 and g3 are in C∞(M0) and in C∞(M̄η) for any
η > 0.

• There is c > 0, depending only on η̃, such that g(s±, x) ≥ c and
g2(s

±, x) ≤ −c for all (s±, x) ∈ M0. This follows from the definitions
and from the trivial estimate 0 < 1 − sx ≤ 1 + |s||x| ≤ C(diam S, η̃).

• For (s±, x) ∈ M0 we have −xg2(s
±, x) =

∑

∗ g∗(s
±, x) and g(s±, x) =

−g2(s
±, x) − xg3(s

±, x).

3.2. Basic consequences of the Euler-Lagrange equations. We will
make frequent use of the estimate

|κn| + |m′| + |Λ′
1| ≤ C|Λ2|. (32)

To prove it, notice that |κn| ≤ CΛ2 by (14) because g(s±, κ) ≥ c > 0. This
estimate implies the others because m′ = −κnλ1 · γ′ (by (4)) and because of
the above expression for Λ′

1.
Since g(s±, κ) ≥ c, (14) implies that, up to a set of measure zero (and in fact
this null set is empty, see Proposition 3.4 below),

{t ∈ [−T, T ] : Λ2(t) = 0} = {t ∈ [−T, T ] : κn(t) = 0}. (33)

This fact will be used implicitly throughout the paper. We claim that

{Λ2 = 0} ∩ {Ω2 6= 0} ⊂ I0 ⊂ {Λ2 = 0} and {Ω2 = 0} ⊂ {Ω3 = 0} ∩ {Λ2 = 0}.
(34)

In fact, on the complement of I0 we have Ω2 = κ2
ng2(s

±, κ) (by (15)) and
Λ2 = −2κng(s±, κ) (by (14)). So {Ω2 = 0}\I0 = {Λ2 = 0}\I0 (up to a null set)
because |g2(s

±, κ)| and g(s±, κ) are never zero. This proves {Λ2 = 0} ∩ {Ω2 6=
0} ⊂ I0. By (33) we have Λ2 = 0 on I0. Regarding the second part of (34),
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notice that on I0 we have Ω3 = −Ω2σ (by (16)). Since σ is not zero on I0, we
have {Ω2 = 0}∩I0 = {Ω3 = 0}∩I0 ⊂ {Λ2 = 0}. Since Ω3 = 0 on {Λ2 = 0}\I0

(by (16) and (33), we are done because {Ω2 = 0} \ I0 = {Λ2 = 0} \ I0.
Assume that κn does not vanish identically, i.e. L1({t ∈ (−T, T ) : κn(t) 6=
0}) > 0. Then we have:

{t ∈ [−T, T ] : m(t) = Λ2(t) = Λ1(t) = 0} = ∅ (35)

and
{t ∈ [−T, T ] : m(t) = Ω2(t) = 0} = ∅. (36)

To prove (35), assume that there exists a t′0 with m(t′0) = Λ2(t
′
0) = Λ1(t

′
0) = 0.

Then there is t0 ∈ {m = Λ1 = 0} ∩ ∂{Λ2 6= 0} because Λ′
1 = m′ = 0 almost

everywhere on {Λ2 = 0} (by (33) and by Λ′
1 = κnΛ3 + κΛ2, see §3.1) and

since {Λ2 6= 0} 6= ∅ by the hypothesis and by (33). Let us assume that
(t0, t0 +ε)∩{Λ2 6= 0} 6= ∅ for all ε > 0. Then |Λ2(t)| ≤ C

∫ t

t0
|m′|+C

∫ t

t0
|Λ′

1| ≤
C

∫ t

t0
|Λ2| by (28, 32). Thus Gronwall’s inequality implies that Λ2 = 0 on

(t0, t0 + ε) for some ε > 0, contradicting the choice of t0. The case when
(t0 − ε, t0) ∩ {Λ2 6= 0} 6= ∅ is similar.
To prove (36), assume the contrary. Let us first consider the situation that
there is t0 ∈ ∂{Ω2 6= 0} with m(t0) = Ω2(t0) = 0. Without loss of generality
we assume t0 = 0 and that (0, δ) ∩ {Ω2 6= 0} 6= ∅ for all δ > 0; the case
(−δ, 0) ∩ {Ω2 6= 0} 6= ∅ is similar. From (17) we deduce, since h ∈ L∞ by
transversality,

|Ω2(t)| ≤ C
(

(

∫ t

0

|κn|)2 +

∫ t

0

|Ω2| +
∫ t

0

κ2
n

)

. (37)

By Jensen’s inequality (
∫ t

0
|κn|)2 ≤ t

∫ t

0
κ2

n. But since |g2| ≥ c > 0, from (15)

we also have κ2
n ≤ Cκ2

n|g2(s
±, κ)| ≤ C|Ω2|. Thus (37) implies |Ω2| ≤ C

∫ t

0
|Ω2|.

Hence by Gronwall’s inequality we find δ > 0 such that Ω2 = 0 on (0, δ), a
contradiction.
Now let t0 ∈ int{Ω2 = 0} ⊂ (−T, T ) and suppose that m(t0) = 0. Denoting
by (t1, t2) the maximal interval in {Ω2 = 0} containing t0 we find that m(t2) =
m(t1) = m(t0) = 0 because m′ = −(λ1 · γ′)κn = 0 on {Ω2 = 0}. But unless
Ω2 = 0 on all of [−T, T ] (which would imply κn = 0 almost everywhere,
contradicting the hypothesis), we have that ti ∈ (−T, T )∩∂{Ω2 6= 0} for some
i ∈ {1, 2}. Now we can apply the first part of the proof with ti instead of t0
to find the desired contradiction. This concludes the proof of (36).

Again assume that κn does not vanish identically. Then, for every interval J
in {Λ2 = 0} we have:

Λ1 and m are constant on J with Λ1 6= 0, and κ = m
Λ1

on int J . (38)
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To prove this, let J be a nondegenerate maximal (therefore closed) interval in
the closed set {Λ2 = 0}. Then

κn = 0 and 0 = Λ′
2 = −κΛ1 + m almost everywhere on J . (39)

So Λ′
1 = κΛ2 + κnΛ3 = 0 (see §3.1) and m′ = −(λ1 · γ′)κn = 0 on J as well.

If Λ1 = 0 then (39) implies m = 0 on J , contradicting (35). If Λ1 = c 6= 0 on
int J then by continuity Λ1 = c on J , and from (39) we deduce that the precise
representative of κ equals the constant m

Λ1
everywhere on int J .

3.3. For all t ∈ [−T, T ] we define

ζ(t) =

{

−Ω3(t)
Ω2(t)

if Ω2(t) 6= 0
Λ1(t)
m(t)

if Ω2(t) = 0.

In the relevant situation (namely when κn does not vanish identically), it is
well defined by (36). Moreover, we have

ζ = Z(s±, κ) almost everywhere on {t ∈ [−T, T ] : Ω2(t) 6= 0}. (40)

In fact, by (16) we have ζ = −Ω3

Ω2
= σ = Z(s±, κ) on I0∩{Ω2 6= 0}. But on the

complement of I0, by (15, 16) we have κ2
ng2(s

±, κ) = Ω2 and κ2
ng3(s

±, κ) = Ω3,
so ζ = Z(s±, κ) also on {Ω2 6= 0} \ I0. This proves (40).
Notice that (40) together with Lemma 7.6 imply that

ζ(t) ∈ [s−(t), s+(t)] for all t ∈ {Ω2 6= 0}. (41)

Let us note the useful estimate

|Ω3| ≤ C|Ω2|. (42)

To prove it, note that Ω3 = σΩ2 on I0 by (16). Outside I0 we have |Ω3| =
|Ω2||Z(s±, κ)| by (15, 16). And |Z(s±, κ)| ∈ [s−, s+] by Lemma 7.6.

The next proposition provides a first regularity result for κ and κn. It is not
very useful at the moment due to poor control over the sets {Ω2 6= 0} and
{κn = 0}.

3.4. Proposition. We have κn ∈ C0([−T, T ]) and κ ∈ C0({t ∈ [−T, T ] :

Ω2(t) 6= 0}). Moreover, κ, κn ∈ C∞
(

[−T, T ] \ ∂{t ∈ [−T, T ] : κn(t) = 0}
)

.

Proof. We claim that

κ, κn ∈ C∞({Λ2 6= 0}) ∩ C0({Ω2 6= 0}). (43)

To prove this let t′ ∈ {Ω2 6= 0}. By §3.3 and the definition of Q we have κ(t) =
Q(s±(t), ζ(t)) for all t in a relatively open interval J ⊂ [−T, T ] containing t′,
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since {Ω2 6= 0} is relatively open. Hence κ ∈ C0(J) because Ω2, Ω3, s
± are

continuous, because ζ ∈ [s−, s+] on {Ω2 6= 0} and because Q ∈ C0(M̄ ′
0), cf.

Lemma 7.6. But κn(t) = − Λ2(t)
2g(s±(t),κ(t))

by (14). Hence κn ∈ C0(J) because
1
g
∈ C0(M̄0). This proves continuity on {Ω2 6= 0}. To prove smoothness on

{Λ2 6= 0} assume that t′ ∈ J , where J ⊂ [−T, T ] is a relatively open interval
with J̄ ⊂ {Λ2 6= 0}. Then κ, κn ∈ C0(J̄) because {Λ2 6= 0} ⊂ {Ω2 6= 0} by
(34). But if k is a nonnegative integer and κ, κn ∈ Ck(J) then Ω2, Ω3, s

± ∈
Ck+1(J). On the other hand, we have J̄ ∩I0 = ∅, since I0 ⊂ {Λ2 = 0} (see 34).
So (s−(t), s+(t), κ(t)) ∈ M0 for all t ∈ J̄ . But g ∈ C∞(M0) and Q ∈ C∞(M ′

0)
by Lemma 7.6. So κ = Q(s±, ζ) is in Ck+1. Hence so is κn = − Λ2

2g(s±,κ)
, and

(43) follows inductively.
Let us next prove continuity of κn on [−T, T ]. Since κn = 0 almost everywhere

on {Λ2 = 0}, by what was shown above we have κn ∈ C∞
(

{Λ2 6= 0}∪int{Λ2 =

0}
)

. But g(s±, κ) is bounded from below by a positive constant. So from (14)

we deduce that limt→t0 |κn(t)| ≤ C limt→t0 |Λ2(t)| for every t0 ∈ ∂{t ∈ [−T, T ] :
Λ2(t) = 0}. So κn is continuous and {Λ2 = 0} = {κn = 0}. Hence (43) and
(38) imply the claim. ¤

4 Main regularity results

For ∗ ∈ {−, +} and t ∈ [−T, T ] we define

α∗(t) = 1 − s∗(t)κ(t). (44)

In this section we will prove the following key result:

4.1. Proposition. Assume that (6) holds, that L1({t ∈ (−T, T ) : κn(t) 6=
0}) > 0 and that {t ∈ (−T, T ) : κn(t) = 0} has empty interior. Then the
following hold:

(i) κ ∈ C0([−T, T ]).

(ii) The set {t ∈ [−T, T ] : κn(t) = 0} is finite. In particular, I0 is finite.
Moreover, if κn(t0) = 0 then κn changes its sign at t0 and |Λ2(t)| ≥
c|t − t0| for all t near t0. In particular, |κn(t)| ≥ c|t − t0| whenever
κn(t0) = 0 and t0 /∈ I0.

(iii) The set I0 agrees with {t ∈ [−T, T ] : Λ2(t) = 0 and Ω2(t) 6= 0}.
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(iv) If t0 ∈ I0 and ∗ denotes the sign of κ(t0), then there are c, C > 0 such
that for all t in a neighbourhood of t0:

c|t − t0| ≤
√

α∗(t)| log α∗(t)| ≤ C|t − t0| (45)

cα∗(t) ≤ |κ(t) − κ(t0)| ≤ Cα∗(t) (46)

c

√

α∗(t)

| log α∗(t)| ≤ |κ′(t)| ≤ C

√

α∗(t)

| log α∗(t)| (47)

|κ′′(t)| ≤ C
(

log α∗(t)
)−2

(48)

c
√

α∗(t) ≤ |κn(t)| ≤ C
√

α∗(t). (49)

c| log α∗(t)|−1 ≤ |κ′
n(t)| ≤ C| log α∗(t)|−1. (50)

In particular, κ′, κ′′ and κ′
n are continuous and zero at t0.

(v) If J is relatively open in [−T, T ] and κ ∈ C2,ε(J) or κn ∈ C1,ε(J) for
some ε > 0 then I0 ∩ J = ∅.

Remark and Definition. In Proposition 4.1 the hypothesis
int{t ∈ (−T, T ) : κn(t) = 0} = ∅ can be replaced by the following
weaker assumption (A):
We say that (Γ, κn) satisfies condition (A) if the following holds: If J is a non-
degenerate maximal interval in {t ∈ [−T, T ] : κn(t) = 0} with L1(J ∩ I0) = 0
then κ is not constant on J (i.e. there is no κ0 ∈ R such that κ(t) = κ0 for L1

almost every t ∈ J).

The remainder of this section is devoted to the proof of Proposition 4.1. In
addition to the standing assumptions, we also assume that κn is nonzero on a
set of positive measure. However, we do not assume that int{κn = 0} = ∅ (nor
the nondegeneracy assumption (A)) unless stated explicitly. Condition (A) is
only assumed for the second half of Corollary 4.10 below. (And this is then
used in the proof of Proposition 4.1.)
In view of Proposition 3.4, in order to prove global continuity of κ, we must
understand the behaviour at and of the zeroes of Ω2. The main result in
this direction is the following proposition. Recall from (36) that m(t0) 6= 0
whenever Ω2(t0) = 0.

4.2. Proposition. Suppose that Ω2(t0) = 0. Then two cases can occur:

(i) Assume that Λ1(t0)
m(t0)

/∈ {s−(t0), s
+(t0)}. Then Λ1(t0)

m(t0)
∈ (s−(t0), s

+(t0)) and

there is c1 > 0 such that either Ω2 = 0 on (t0, t0 + c1) or Ω2 6= 0 on
(t0, t0 + c1). In the latter case, there are η > 0 and ∗ ∈ {−, +} such
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that (t0, t0 + c1) ⊂ Iη, ∗κn(t) ≥ η|t − t0| for all t ∈ (t0, t0 + c1), and

limt↓t0 ζ(t) = Λ1(t0)
m(t0)

. A similar alternative applies on (t0 − c1, t0).

(ii) Assume that Λ1(t0)
m(t0)

∈ {s−(t0), s
+(t0)}. Then t0 ∈ int I0.

The remaining zeroes of κn, i.e. the set {Ω2 6= 0}∩ {Λ2 = 0}, lie in I0 by (34).
They are handled in the following proposition.

4.3. Proposition. Suppose that Λ2(t0) = 0 and Ω2(t0) 6= 0. Then either
t0 ∈ int I0 or there is ε > 0 such that |Λ2(t)| ≥ ε|t−t0| for all t ∈ (t0−ε, t0+ε).

In the proof of Propositions 4.2 and 4.3 we will assume without loss of gener-
ality that t0 = 0. So the following lemmas are only stated and proven for this
case. We define

Kn(t) =

∫ t

0

κn(r) dr.

Proposition 4.2 (i) will follow from the next two lemmas. Lemma 4.4 states
that Ω2 = mKn and Ω3 = −Λ1Kn, plus error terms of the order

∫ t

0
|Kn|.

Lemma 4.5 shows that these error terms are indeed negligible.

4.4. Lemma. Assume that Ω2(0) = 0. Then Ω3(0) = 0 and there is C1 > 0
such that for all t ∈ [−T, T ] we have

|Ω2(t) − m(t)Kn(t)| ≤ C1

∫ t

0

|Kn(r)| dr (51)

|Ω3(t) + Λ1(t)Kn(t)| ≤ C1

∫ t

0

|Kn(r)| dr. (52)

Proof. Firstly, Ω3(0) = 0 by (42). By a partial integration, from Ω′
2 =

−hΩ2 + κnm + κ2
nF1 we find Ω2 = mKn +

∫ t

0

(

(λ1 · γ′)κnKn − hΩ2 + κ2
nF1

)

. So

|Ω2 − mKn| ≤
∫ t

0

(

|(λ1 · γ′)κn||Kn| + (|h| + |F1|
|g2(s±, κ)|)|Ω2|

)

≤
∫ t

0

(

|(λ1 · γ′)κn||Kn| + (|h| + |F1|
|g2(s±, κ)|)|mKn|

)

+

∫ t

0

(|h| + |F1|
|g2(s±, κ)|)|Ω2 − mKn|

≤ C

∫ t

0

|Kn| + C

∫ t

0

|Ω2 − mKn|. (53)
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Here we used that κ2
n ≤

∣

∣

∣

Ω2

g2(s±,κ)

∣

∣

∣ everywhere. This estimate is trivially true

on {κn = 0}, and on {κn 6= 0} we have κ2
n = Ω2

g2(s±,κ)
by (15). In the last

step leading to (53) we used that, due to transversality, h, F1 ∈ L∞ (cf. (19))
and that |g2(s

±, κ)| ≥ c > 0. From (53) and Gronwall’s inequality we deduce
(51). The proof for (52) is similar, and now we can use κ2

n(t) ≤ C|Ω2(t)| ≤
C|Kn(t)| + C

∫ t

0
|Kn|. ¤

4.5. Lemma. Assume that Ω2(0) = 0, that Λ1(0)
m(0)

/∈ {s−(0), s+(0)} and that

(0, ε) ∩ {Ω2 6= 0} 6= ∅ for all ε > 0. Then there is η > 0 such that κn 6= 0 on
(0, η) and (0, η) ⊂ Iη. In particular,

∫ t

0
|Kn| ≤ t|Kn(t)| on (0, η). A similar

result applies to left neighbourhoods.

Proof. We begin by remarking that
∫ t

0
|Kn| is strictly positive for all t > 0.

In fact, otherwise Kn would vanish identically in a right neighbourhood of
zero. This would imply the same for Ω2 (e.g. by Lemma 4.4), which would
contradict the hypotheses.
Claim #1. There are positive constants c#

1 , C2, δ and η such that

t′ ∈ (0, c#
1 ) and |Kn(t′)| ≥ C2

∫ t′

0

|Kn| (54)

implies that κn(t′) 6= 0, that t′ ∈ Iη and that |Ω2(t
′)| ≥ δ|Kn(t′)| 6= 0.

To prove the claim, notice that since m(0) 6= 0 and Λ1(0)
m(0)

6= s∗(0), by continuity

there are δ, c#
1 ∈ (0, 1) such that

|m(t)| ≥ 2δ and |Λ1(t)

m(t)
− s∗(t)| ≥ 2δ for all t ∈ [0, c#

1 ] and ∗ ∈ {+,−}. (55)

Now let C2 be such that, with C1 from the conclusion of Lemma 4.4,

C1

C2

≤ δ and
C1

C2

≤ δ2

1 + |Λ1(t)
m(t)

|
for all t ∈ [0, c#

1 ]. (56)

Then by Lemma 4.4 and (56) we have, for all t′ satisfying (54),

|Ω2(t
′)| ≥ (|m(t′)| − C1

∫ t′

0
|Kn|

|Kn(t′)|)|Kn(t′)|

≥ (|m(t′)| − C1

C2

)|Kn(t′)| ≥ δ|Kn(t′)|. (57)

And clearly δ|Kn(t′)| ≥ δC2

∫ t′

0
|Kn| 6= 0.

We claim that

|ζ(t′) − Λ1(t
′)

m(t′)
| ≤ δ. (58)
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In fact, since Ω2(t
′) 6= 0, by definition we have ζ(t′) = −Ω3(t′)

Ω2(t′)
. And Ω3

Ω2
+ Λ1

m
=

−Λ1+Ω̃3

m+Ω̃2
+ Λ1

m
, where |Ω̃2(t)|, |Ω̃3(t)| ≤ C1|Kn(t)|−1

∫ t

0
|Kn| by Lemma 4.4. Hence

by (54) we have |Ω̃2(t
′)|, |Ω̃3(t

′)| ≤ C1

C2
. Thus since |m(t′)|− C1

C2
≥ |m(t′)|−δ ≥ δ

we conclude
∣

∣

∣

Ω3(t
′)

Ω2(t′)
+

Λ1(t
′)

m(t′)

∣

∣

∣ ≤ 1

|m(t′)| − |Ω̃2(t′)|
( |Λ1(t

′)|
|m(t′)| · |Ω̃2(t

′)| + |Ω̃3(t
′)|

)

≤ 1

δ

(

1 +
|Λ1(t

′)|
|m(t′)|

)C1

C2

≤ δ (59)

by (56). This proves (58).
Since Ω2(t

′) 6= 0, by (40) (and since κ is continuous in a neighbourhood of t′

by Proposition 3.4) we have

|Z(s±(t′), κ(t′)) − s∗(t′)| ≥ |Λ1

m
(t′) − s∗(t′)| − |ζ(t′) − Λ1

m
(t′)|.

By (55) and (58) this implies |Z(s±(t′), κ(t′)) − s∗(t′)| ≥ δ for ∗ ∈ {+,−}
and for t′ as above. By Lemma 7.6 this implies that t′ ∈ Iη for some η > 0
depending only on δ.

Claim #2. There is c1 ∈ (0, c#
1 ) with the property that whenever t′ ∈ (0, c1)

is such that |Kn(t′)| ≥ C2

∫ t′

0
|Kn| then |Kn(t)| ≥ C2

∫ t

0
|Kn| for all t ∈ [t′, c1].

To prove Claim #2, denote by C3 ∈ (0,∞) the supremum of |g2(s
±, κ)| on Iη

with η as above. Let c1 ∈ (0, c#
1 ) be such that

√

δ

C3

≥ 2|Kn|
1
2 on [0, c1]. (60)

This is possible since Kn(t) → 0 as t ↓ 0. Let t′ ∈ (0, c1) be such that |Kn(t′)| ≥
C2

∫ t′

0
|Kn|. Then Claim #1 implies that t′ ∈ Iη and |Ω2(t

′)| ≥ δ|Kn(t′)|. So
by (60),

|κn(t′)| =
( |Ω2(t

′)|
|g2(s±(t′), κ(t′))|

) 1
2

≥
√

δ

C3

|Kn(t′)| 12

≥ 2|Kn(t′)|. (61)

And |Kn(t′)| ≥ C2

∫ t′

0
|Kn| 6= 0. Now, (61) also shows that |Kn|′(t′) =

|κn(t′)| > d
dt
|t=t′

( ∫ t

0
|Kn|

)

, provided that κn(t′) and Kn(t′) have the same sign.
So if this is the case, Claim #2 follows.
Let us prove that the signs of κn(t′) and Kn(t′) agree. Suppose for contradic-
tion that we had Kn(t′) > 0 yet κn(t′) < 0 (the other case is similar). Let
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t0 = sup{t ∈ [0, t′] : κn(t) = 0}. Since κn(0) = 0 6= κn(t′), continuity of κn

implies that t0 ∈ [0, t′) and that κn(t0) = 0. Moreover, K ′
n = κn < 0 on

(t0, t
′), whence Kn(t0) > Kn(t′) ≥ C2

∫ t′

0
|Kn| ≥ C2

∫ t0

0
|Kn|. In particular,

Kn(t0) > 0, so t0 6= 0. And t0 ∈ Iη by Claim #1. Thus (15) gives

κ2
n(t0) =

|Ω2(t0)|
|g2(s±(t0), κ(t0))|

≥ c|Ω2(t0)| ≥ cδ|Kn(t0)| 6= 0

by Claim #1. This contradiction finishes the proof of Claim #2.

To complete the proof of the lemma, notice that there exists a sequence
tj ↓ 0 such that C̃j =

|Kn(tj)|
R tj
0 |Kn|

→ ∞, because otherwise Gronwall’s inequal-

ity would imply that Kn vanishes identically on a right neighbourhood of zero,
a contradiction. Now let C2 and c1 be the constants furnished by Claims
#1 and #2. There is J0 ∈ N such that for all j ≥ J0 we have C̃j ≥ C2

and tj ∈ (0, c1). Hence Claim #2 implies that Kn(t) ≥ C2

∫ t

0
|Kn| for all

t ∈ ⋃

j≥J0
(tj, c1) = (0, c1). So (0, c1) ⊂ Iη and κn 6= 0 on (0, c1) by Claim #1.

Finally notice that having κn 6= 0 on some (0, η) implies that |Kn| increases
monotonically on (0, η). And this implies

∫ t

0
|Kn| ≤ t|Kn(t)| on (0, η). ¤

4.6. Proof of Proposition 4.2 (i). By translating we may assume without
loss of generality that t0 = 0. If Ω2 does not vanish identically on any (0, c1)

then the assumptions of Lemma 4.5 are satisfied. So limt↓0

R t

0 |Kn|

|Kn(t)|
= 0, whence

there is c > 0 such that |Ω2| ≥ c|Kn| near zero (by Lemma 4.4 because m(0) 6=
0). Also by Lemma 4.5, there are η, c1 > 0 such that κn 6= 0 (so also Ω2 6= 0)
on (0, c1) and (0, c1) ⊂ Iη. The latter fact implies that |g2(s

±, κ)| ≤ C3 < ∞
on (0, c1). Hence by (15)

κ2
n ≥ 1

C3

|Ω2| ≥
c

C3

|Kn| near zero. (62)

Since κn 6= 0 on (0, c1), by continuity its sign ∗ is constant on (0, c1), and it
clearly agrees with the sign of Kn. So taking square roots in (62) we obtain
∗K ′

n ≥ c
√∗Kn. Hence ∗Kn(t) ≥ ct2 for small t ∈ (0, c1). By (62) this implies

∗κn(t) ≥ ct.
Finally notice that by

∫ t

0
|Kn| ≪ |Kn(t)| and by Lemma 4.4 we have

lim
t↓0

ζ(t) =
Λ1(0)

m(0)
. (63)

But by (41) and by continuity of s± the left-hand side lies in the interval
[s−(0), s+(0)] because Ω2 6= 0 near zero. ¤

Next we turn to the case Λ1(0)
m(0)

∈ {s−(0), s+(0)}. For ∗ ∈ {−, +} we define

D∗(t) =
∫ t

0
α∗ (≡ −

∫ 0

t
α∗ if t < 0), with α∗ as defined in (44). Notice that
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by local admissibility α∗ ≥ 0 almost everywhere, so D∗ are nondecreasing
functions. The following lemma provides the key for the proofs of Proposition
4.2 (ii) and of Proposition 4.3. It states that near points where Λ2 and Λ1

m
− s∗

vanish simultaneously, Λ2 behaves like D∗.

4.7. Lemma. Suppose that Λ2(0) = 0 and Λ1(0)
s∗(0)

= m(0). Then m(0) 6= 0 6=
Λ1(0) and there are ε, C > 0 such that

|Λ2(t) −
Λ1(t)

s∗(t)
D∗(t)| ≤ C

∫ t

0

|D∗| for all t ∈ (−ε, ε). (64)

In particular, there are C, c > 0 such that

c|D∗(t)| ≤ |Λ2(t)| ≤ C|D∗(t)| for all t ∈ (−ε, ε). (65)

Proof. We have m(0) = 0 if and only if Λ1(0) = 0, but since Λ2(0) = 0, they
cannot be zero because of (35). Thus m(0) 6= 0 6= Λ1(0).
Since κ ∈ [ 1

s−
, 1

s+ ], we have D∗(t) ≥ 0 if t ≥ 0 and D∗(t) ≤ 0 if t ≤ 0, and D∗

is nondecreasing. Without loss of generality let us restrict to the case t ≥ 0.
We have

Λ′
2 = m − κΛ1 = m − Λ1

s∗
+ α∗Λ1

s∗
. (66)

Since Λ2(0) = 0 and (D∗)′ = α∗, after a partial integration this implies

Λ2(t) =
Λ1(t)

s∗(t)
D∗(t) −

∫ t

0

(
Λ1

s∗
)′D∗ +

∫ t

0

(m − Λ1

s∗
). (67)

But

|m − Λ1

s∗
| ≤

∫ t

0

|m′| + |
(Λ1

s∗

)′

| ≤ C(|Λ2| + |D∗|)

because m(0) − Λ1(0)
s∗(0)

= 0, by assumption, since s∗(0) 6= 0 and because

|m′| + |Λ′
1| + |(s∗)′| ≤ C(|Λ2| + α∗).

This latter estimate follows from (32) and from

(s∗)′ = ∗α∗ν1(Γ, ∗N) · Γ′ for ∗ ∈ {−, +}. (68)

Equation (68) is proven in the appendix to [11].
By the triangle inequality we have |Λ2| ≤ |Λ2 − Λ1

s∗
D∗| + CD∗. Thus (67)

implies

|Λ2(t) −
Λ1(t)

s∗(t)
D∗(t)| ≤ C

(

∫ t

0

D∗ +

∫ t

0

|Λ2 −
Λ1

s∗
D∗|

)

.
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Now (64) follows from Gronwall’s inequality. The estimates (65) follow from
(64) because by monotonicity

∫ t

0
D∗ ≤ tD∗(t) and because Λ1(0) 6= 0. ¤

4.8. Proof of Proposition 4.2 (ii). Without loss of generality we assume

that t0 = 0. We consider only the case when Λ1(0)
m(0)

= s+(0); the other case is

similar. We only prove that (0, ε) ⊂ I0. By an analogous argument one shows
(−ε, 0) ⊂ I0. Then (33) and continuity of Λ2 imply that (−ε, ε) ⊂ {Λ2 = 0}.
Thus (38) and continuity of Λ1,m and s∗ imply that also 0 ∈ I0.
We claim that there is ε > 0 such that (0, ε) ⊂ I0. Suppose that this were
false. Since Ω2(0) = 0, by (34) we have Λ2(0) = 0. So (65) implies the key fact
that there is ε > 0 such that Λ2 6= 0 on (0, ε). So Ω2 6= 0 on (0, ε) by (34) and
κn 6= 0 by (33), and κ, κn ∈ C∞(0, ε) by Proposition 3.4. Moreover,

c|Kn| ≤ |Ω2| ≤ C|Kn| near zero. (69)

Since m(0) 6= 0, this follows from Lemma 4.4 because
∫ t

0
|Kn| ≤ t|Kn(t)| (since

by continuity κn does not change its sign on (0, ε), so Kn is monotone).

Claim #1. We have limt↓0 ζ(t) = limt↓0
1

κ(t)
= Λ1(0)

m(0)
= s+(0).

As we have just seen,
∫ t

0
|Kn| ≤ t|Kn(t)|. So limt↓0 ζ(t) = Λ1(0)

m(0)
by Lemma

4.4. Since κ = Q(s±, ζ) on (0, ε) (by (40)) and since Λ1(0)
m(0)

= s+(0) (and

Q(s±, s+) = 1
s+ by Lemma 7.6), we conclude that limt↓0 κ(t) = 1

s+(0)
. This

proves Claim #1.

As in the proof of Proposition 4.3 we will show that α+ ≤ CD+. However,
the simple scaling argument used there does not work in the present case since
Ω2(0) = 0. Instead, we estimate the derivative of α+.

Claim #2. For t > 0 small enough we have the estimate |κ′(t)| ≤ Cα+(t).
Recall that ζ = Z(s±, κ) on (0, ε). By (68) we have (s−)′ ∼ α− ∼ 1 and
(s+)′ ∼ α+. By Lemma 7.6 we have Z+(s±, κ) ∼ | log α+| and Q−(s±, κ) ∼ α+.
Hence by the Z3-estimate in Lemma 7.6,

|κ′| ≤ 1

|Z3(s±, κ)|
(

|Z+(s±, ζ)||(s+)′| + |Z−(s±, ζ)||(s−)′| + |ζ ′|
)

≤ C(α+ + | log α+|−1α+ + | log α+|−1|ζ ′|). (70)

So we must show that |ζ ′| ≤ C| log α+|α+. We take derivatives in the definition
of ζ and use that by Claim #1 we have σ = s+ near zero, to find:

−ζ ′ =
Ω′

3

Ω2

+ ζ
Ω′

2

Ω2

=
hσΩ2 − κnΛ1 − κ2

nF2

Ω2

+ ζ · −hΩ2 + κnm + κ2
nF1

Ω2

= h(s+ − ζ) +
κn

Ω2

(mζ − Λ1) +
κ2

n(F1ζ − F2)

Ω2

. (71)
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F1 and F2 are uniformly bounded, see (19). Moreover, Ω2 = κ2
ng2(s

±, κ) (cf.
(15)) and |g2(s

±, κ)|−1 ≤ Cα+. So the last term in (71) is dominated by α+.
Since ζ = Z(s±, κ), by (127) we have

|s+ − ζ| ≤ |s+ − 1

κ
| + |Z(s±, κ) − 1

κ
|

≤ Cα+ +
1

|κ|
∣

∣

∣

g(s±, κ)

g2(s±, κ)

∣

∣

∣ ≤ Cα+| log α+|. (72)

Since α+ ≤ C| log α+|α+ by Claim #1, we conclude from (71):

|ζ ′| ≤ C(α+| log α+| + |κn||mζ − Λ1|
|Ω2|

). (73)

It remains to prove

|m(t)ζ(t) − Λ1(t)| ≤ C|Λ2(t)| for t > 0 small enough. (74)

In fact, assume (74) were established. By (14) we have |Λ2| = 2|κng(s±, κ)| ≤
C|κn|| log α+| and by (15) we have |Ω2| = κ2

n|g2(s
±, κ)| ≥ cκ2

n(α+)−1 Hence

(74) implies that |κn||mζ−Λ1|
|Ω2|

≤ Cα+| log α+|. And the claim would follow from

(73) and from (70).
Let us prove (74). By (42) and by (32) we have

|(Λ1Ω2 +mΩ3)
′| ≤ |Λ′

1Ω2 +m′Ω3|+ |Λ1Ω
′
2 +mΩ′

3| ≤ C|Λ2||Ω2|+ |Λ1Ω
′
2 +mΩ′

3|.
(75)

Now s+(0) = Λ1(0)
m(0)

implies that

|m(t)s+(t)−Λ1(t)| ≤ C

∫ t

0

(|m′|+|(s+)′|+|Λ′
1|) ≤ C(D+(t)+

∫ t

0

|Λ2|) ≤ C|Λ2(t)|,

because of (32, 68). In the last step we used (65) and the monotonicity of D+.
Using this together with (17, 18) we find

|Λ1Ω
′
2 + mΩ′

3| = |h(ms+ − Λ1)Ω2 + κ2
n(Λ1F1 − mF2)|

≤ C(|Λ2||Ω2| + |κ2
n|). (76)

Since by Claim #1 we have Λ1(0)Ω2(0) + m(0)Ω3(0) = 0, the estimates (75,
76) imply

|Λ1(t)Ω2(t) + m(t)Ω3(t)| ≤ C

∫ t

0

|Λ2||Ω2| + C

∫ t

0

|Λ2||κn|. (77)

We have used that |κn| ≤ C|Λ2| by (14). By (69), the estimate (77) implies

|m(t)ζ(t) − Λ1(t)| ≤
C

|Kn(t)|
(

∫ t

0

|Kn||Λ2| +
∫ t

0

|Λ2||κn|
)

≤ C
(

|Λ2(t)|
∫ t

0
|Kn|

|Kn(t)| + |Λ2(t)|
∫ t

0
|κn|

|Kn(t)|
)

≤ C|Λ2(t)|.
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Again we used that by (65) Λ2 is equivalent to the monotone function D+, and
we used that Kn is monotone and that

∫ t

0
|κn| = |

∫ t

0
κn| because κn does not

change its sign. Hence (74) follows. This finishes the proof of Claim #2.

By Claim #1 we have limt↓0 κ(t) = 1
s+(0)

. So Claim #2 implies the estimate

|κ(t) − 1
s+(0)

| ≤ C
∫ t

0
α+. Hence by (68)

α+(t) ≤ 1

s+(0)
|s+(t) − s+(0)| + s+(t)|κ(t) − 1

s+(0)
| ≤ C

∫ t

0

α+.

So α+ = 0 on (0, ε) by Gronwall’s inequality. This means that (0, ε) ⊂ I0, a
contradiction. ¤

4.9. Proof of Proposition 4.3. Without loss of generality we may assume
that t0 = 0. First of all recall from (34) that 0 ∈ I0. Proposition 3.4 and
continuity of Ω2 imply that κ is continuous in a neighbourhood of zero. So Λ2

is continuously differentiable near zero. Hence, if Λ′
2(0) 6= 0 then there is ε > 0

such that |Λ2(t)| ≥ εt on (−ε, ε). So if Λ′
2(0) 6= 0 then the proof is finished. It

remains to consider the case Λ′
2(0) = 0.

We claim that in this case 0 ∈ int I0. Since 0 ∈ I0 we have κ(0) ∈ { 1
s−(0)

, 1
s+(0)

}.
For definiteness say κ(0) = 1

s+(0)
. The other case is similar. Let us assume

for contradiction that there were no ε > 0 such that (0, ε) ⊂ I0. The formula
Λ′

2 = m − κΛ1 implies that

Λ1(0)

m(0)
=

1

κ(0)
= s+(0). (78)

So the assumptions of Lemma 4.7 are satisfied with ∗ = +. Thus there is
ε > 0 such that (65) holds with ∗ = +, that is, Λ2 ∼ D+. On the other
hand, |g2(s

±, κ)| ≤ C(α+)−1 near zero because κ(0) = 1
s+(0)

and because κ

and s+ are continuous. So the fact that κ2
n|g2(s

±, κ)| = |Ω2| ≥ c > 0 (by
(15)) implies that |κn| ≥ c

√
α+ near zero. So from (14) we deduce that |Λ2| ≥

|κng(s±, κ)| ≥ c
√

α+| log α+|. Since limt→0 α+(t) = 0, we conclude that α+ ≤√
α+| log α+| ≤ C|Λ2|. By (65) this implies α+ ≤ CD+. Hence by Gronwall’s

inequality, α+ = 0 in a neighbourhood of zero. This contradiction finishes the
proof. ¤

4.10. Corollary. The set I0 has empty interior. If, in addition, we assume
(A), then the whole set {t ∈ [−T, T ] : κn(t) = 0} has empty interior.

Proof. Recall our standing hypothesis that κn differs from zero on a set of
positive measure. Suppose that the interior of I0 were nonempty. Let (t0, t1)
be a maximal interval in int I0. Since κn does not vanish identically, we must
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have t0 > −T or t1 < T . For definiteness let us assume t1 < T . If Ω2(t1) 6= 0
then t1 ∈ int I0 by Proposition 4.3 because Λ2 = 0 in a left neighbourhood of
t1. If Ω2(t1) = 0 then we use (38) and continuity of Λ1, m and s± to conclude
that

Λ1(t1)

m(t1)
∈ {s+(t1), s

−(t1)}.

So t1 ∈ int I0 by Proposition 4.2 (ii). But on the other hand t1 /∈ int I0 by
maximality of (t0, t1). This contradiction proves that I0 has empty interior.
Now make the extra assumption (A). Suppose that int{κn = 0} 6= ∅. Let
(t0, t1) ⊂ int{κn = 0} be a maximal interval. We claim that then

(t0, t1) ⊂ I0, (79)

contradicting the first part of the corollary.
To prove (79) notice that L1((t0, t1) ∩ I0) > 0: Otherwise (A) implies that κ
takes at least two different values on (t0, t1), but (38) implies that κ is constant
on (t0, t1), a contradiction.
By (38) m and Λ1 6= 0 are constant on (t0, t1) and κ = m

Λ1
almost everywhere on

(t0, t1). But κ ∈ { 1
s+ , 1

s−
} almost everywhere on I0∩ (t0, t1), so by continuity of

s±, m and Λ1 (and since |s+−s−| ≥ inf [−T,T ] dist∂S(Γ) > 0) there is ∗ ∈ {+,−}
such that

κ(t) =
m(t)

Λ1(t)
=

1

s∗(t)
for almost every t ∈ (t0, t1) ∩ I0. (80)

By constancy of κ we conclude that (80) in fact holds for all t ∈ (t0, t1), so
(79) follows. ¤

4.11. Proof of Proposition 4.1. Recall that we assume (A) (or even that
int{κn = 0} = ∅) and that κn does not vanish identically on [−T, T ]. So by
Corollary 4.10 the zero set of κn has empty interior.
Claim #1. The set {t ∈ [−T, T ] : Ω2(t) = 0} is finite.
In fact, assume that the claim were wrong, i.e. there is an accumulation point
t0 of {Ω2 = 0}. For definiteness assume that (t0, t0 + ε) intersects {Ω2 = 0}
for all ε > 0; the other case is similar. By continuity we have Ω2(t0) = 0. But
there is no ε > 0 such that Ω2(t) 6= 0 for all t ∈ (t0, t0+ε)\{t0}. So Proposition
4.2 implies that κn = 0 on (t0, t0 + c) for some c > 0 (either because Ω2 = 0 or
because t0 ∈ int I0). This contradiction to Corollary 4.10 proves Claim #1.

By Claim #1, Proposition 3.4 implies that

κ = Q(s±, ζ) almost everywhere. (81)

Next notice that Proposition 4.2 (ii) and Corollary 4.10 imply that
{

t ∈ [−T, T ] : Ω2(t) = 0 and
Λ1(t)

m(t)
∈ {s−(t), s+(t)}

}

= ∅. (82)
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So the second alternative in Proposition 4.2 (i) applies at both sides of each of
the finitely many zeroes of Ω2. Thus ζ ∈ C0([−T, T ]). Hence κ ∈ C0([−T, T ])
by (81), by continuity of s± and by continuity of Q.

Claim #2. The set {t ∈ [−T, T ] : Λ2(t) = 0} is finite.
In fact, otherwise this set would have an accumulation point t0. By Proposition
4.3 and since int I0 = ∅ we conclude that Ω2(t0) = 0. But then Proposition 4.2
(i) shows that |κn(t)| ≥ c|t− t0| near t0. By (33) this contradicts the fact that
t0 is an accumulation point of {Λ2 = 0}.
Next notice that if Ω2(t0) = 0 then by Proposition 4.2 (i) we have |Λ2(t)| ≥
c|t − t0| near t0 (because |Λ2| = 2|κn|g(s±, κ)). If Λ2(t0) = 0 and Ω2(t0) 6= 0
then Proposition 4.3 implies the same estimate. But Λ2 is C1 because κ is
continuous. So Λ2 changes its sign at each of its zeroes. Hence so does κn

by (14). And if t0 /∈ I0 then g(s±, κ) ≤ C near t0 by continuity of κ, so
|κn(t)| ≥ c|Λ2(t)| ≥ c|t− t0| for t near t0. Summarizing, statements (i) and (ii)
of Proposition 4.1 are proven.
Next we claim that

I0 = {t ∈ [−T, T ] : Ω2(t) 6= 0 and Λ2(t) = 0}. (83)

In fact, the inclusion {Ω2 6= 0} ∩ {Λ2 = 0} ⊂ I0 was proven in §3.2, see (34).
To prove the opposite inclusion recall that I0 ⊂ {κn = 0} = {Λ2 = 0} by
(33). So we must show {Ω2 = 0} ∩ I0 = ∅. Let t0 ∈ {Ω2 = 0}. By (82)
and by Claim #1, Proposition 4.2 (i) implies that there is η > 0 such that
(t0 − η, t0 + η) \ {t0} ⊂ Iη. So by continuity of κ and s± we conclude that
t0 ∈ Iη. This proves (83) and hence part (iii).

Let us prove part (iv). Let t0 ∈ I0. By translation we may assume without
loss of generality that t0 = 0, and we also assume that κ(0) = 1

s+(0)
; the case

κ(0) = 1
s−(0)

is analogous. By (83) we have Ω2(0) 6= 0 and Λ2(0) = 0. Since

int I0 6= ∅, Proposition 4.3 implies existence of ε > 0 such that |Λ2(t)| ≥ ε|t|
on (−ε, ε). Hence κ, κn ∈ C∞

(

(−ε, ε) \ {0}
)

by Proposition 3.4.
We claim that (after possibly making ε smaller) there are c, C > 0 such that
(45) holds for t ∈ (−ε, ε). In fact, since Λ2 6= 0 on (−ε, ε) \ {0}, we have
I0 ∩ (−ε, ε) = {0}. Hence Ω2(t) = κ2

n(t)g2(s
±(t), κ(t)) for all t ∈ (−ε, ε) \ {0}

by (15). We claim that

|Ω2| ∼ 1 and |κn| ∼
√

α+ near zero. (84)

The first estimate follows from continuity because Ω2(0) ∈ (0,∞). The second
one follows from the first one and from (15) because |g2(s

±, κ)| ∼ 1
α+ near zero

(recall that by continuity of κ we have limt→0 α+(t) = 0). This proves (84)
and thus (49). On the other hand, we have c|t| ≤ |Λ2(t)| ≤ C|t| near zero, so
(14) and the fact that g(s±, κ) is of the order | log α+| near zero imply that

c|t| ≤ |κn(t) log α+(t)| ≤ C|t| (85)
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The scalings (84) and (85) imply (45). Now since κ = 1−α+

s+ , we have

κ(t) − κ(0) =
( 1

s+(t)
− 1

s+(0)

)

− α+(t)

s+(t)
. (86)

By (68) and since α+ is equivalent to an increasing function by (45), the first
term on the right hand side of (86) is dominated by tα+(t). This proves (46).
To prove (47) we recall that for t near 0 we have ζ = Z(s±, κ) by §3.2 and
because Ω2 6= 0. Taking derivatives we obtain

Z3(s
±, κ)κ′ = −Z−(s±, ζ)(s−)′ − Z+(s±, ζ)(s+)′ + ζ ′. (87)

The first two terms are estimated using (68) and (131): both are dominated
by α+. To estimate the third term in (87), notice that (71) implies

| − ζ ′ − κn

Ω2

(mζ − Λ1)| = |h(s+ − 1

κ
) + h(

1

κ
− ζ) +

κ2
n(F1ζ − F2)

Ω2

|

≤ C(α+ + α+| log α+| + α+) ≤ Cα+| log α+| (88)

because 1
κ
− ζ = 1

κ
− Z(s±, κ) (cf. (127)) and because of (19, 84). Near zero

|mζ − Λ1| is uniformly bounded from below and above by positive constants:
In fact, boundedness from above is clear. Boundedness from below follows by
continuity from the fact that m(0)ζ(0) 6= Λ1(0). To prove this, notice that
Λ2 ∈ C1 since κ ∈ C0, and recall that |Λ2(t)| ≥ c|t|. Therefore,

0 6= |Λ′
2(0)| = |m(0) − κ(0)Λ1(0)|.

But ζ(0) = 1
κ(0)

e.g. by (16) since 0 ∈ I0. Thus indeed |mζ − Λ1| ∼ 1.

By (84) we therefore conclude from (88) that near zero

c
√

α+ ≤ |ζ ′| ≤ C
√

α+ (89)

because α+| log α+| ≪
√

α+. Hence (47) follows from (87) and from the Z3-
estimates in Lemma 7.6.
To prove (50) we take derivatives in (14) to find

κ′
n = − Λ′

2

2g(s±, κ)
+ κn ·

∑

∗ g∗(s
±, κ)(s∗)′ + g3(s

±, κ)κ′

g(s±, κ)
. (90)

Now Λ′
2 ∼ 1, g(s±, κ) ∼ | log α+|, |g∗(s±, κ)(s∗)′| ∼ 1 (since (s∗)′ =

∗α∗ν1(Γ, ∗N) · Γ′ and |g∗(s±, κ)| ∼ (α∗)−1) and |g3(s
±, κ)| ∼ (α+)−1. So the

first term in (90) is of the order 1
| log α+|

, whereas by (47) the second term in

(90) is of the order 1
| log α+|2

. Since the latter expression is much smaller than

the former, (90) implies (50). And (50) implies that κ′
n is continuous at 0 with
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κ′
n(0) = 0.

To prove (48) we take derivatives in (87) (we omit the argument (s±, κ))

Z3κ
′′ = ζ ′′ −

∑

∗,∗′

Z∗∗′(s
∗)′(s∗

′

)′ −
∑

∗

Z∗(s
∗)′′ − 2

∑

∗

Z∗3(s
∗)′κ′ − Z33(κ

′)2.

(91)

The first term on the right-hand side gives an expression dominated by
|Z++|(α+)2+|Z−+||α+|+|Z−−|. By Lemma 7.6 this is dominated by α+ log α+,
which is much smaller than | log α+|−1. Also, |Z∗3(s

∗)′| ≤ C| log α+|, which
by (47) shows that |Z∗3(s

∗)′κ′| ≪ | log α+|−1. Again using (47) we find
|Z33(κ

′)2| ≤ C| log α+|−1. Thus dividing by Z3 and using (130), the estimate
(91) gives

|κ′′| ≤ C
(

| log α+|−2 + α+| log α+|−1|(s−)′′| + |(s+)′′| + | log α+|−1|ζ ′′|
)

. (92)

(The leading | log α+|−2-term comes from Z33(κ
′)2.) Using (68) we estimate

further:
|(s∗)′′| ≤ C(|α∗| + |(α∗)′|) ≤ C(|α∗| + |κ′|).

So by (47) we conclude |(s+)′′| ≤ C|κ′| ≤ C
√

α+| log α+|−1 and |(s−)′′| ≤ C.
To estimate the last term in (92) let us take derivatives in (71):

−ζ ′′ = h′(s+ − ζ) + h(s+ − ζ)′ +
κ′

n(mζ − Λ1) + κn(mζ − Λ1)
′

Ω2

− κn(mζ − Λ1)

Ω2

· Ω′
2

Ω2

+
2κnκ

′
n(F1ζ − F2) + κ2

n(F1ζ − F2)
′

Ω2

− κ2
n(F1ζ − F2)

Ω2

· Ω′
2

Ω2

. (93)

Using that Ω2 is Lipschitz, that h is C1 near zero because so is κ, that the Fi

are bounded, using |s+ − ζ| ≤ Cα+| log α+| (by (72)) and using (84, 50), we
see that the right-hand side of (93) is dominated by

α+| log α+| + |(s+ − ζ)′| +
(

| log α+|−1 +
√

α+|(mζ − Λ1)
′|
)

+
√

α+

+
(√

α+| log α+|−1 + α+|(F1ζ − F2)
′|
)

+ α+. (94)

We will show below that the Fi are C1 near zero. Moreover, we employ the
rough estimates |(s+ − ζ)′| ≤ |(s+)′| + |ζ ′| ≤ C

√
α+ (by (68) and (89)) and

|(mζ − Λ1)
′| ≤ C. Inserting these estimates into (94) and exploiting that

α+(t) → 0 as t → 0, we conclude that

|ζ ′′| ≤ C| log α+|−1.

Together with (92) this yields the estimate (48). To finish the proof of part
(iv) it remains to prove that F1 and F2 are C1 near zero. In fact, since κ is
continuous and κ(0) = 1

s+(0)
, equation (20) reduces to

F1 =
1

α−

(

ν1(Γ, N) + ν1(Γ,−N)
)

· Γ′.
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Since α−(0) 6= 0 we have F1 ∈ C1 because κ ∈ C1 implies α− ∈ C1. A similar
proof applies to F2.
To prove (v) notice that the estimates (47, 48) imply that κ′, κ′′ are continuous
at 0, and that κ′(0) = κ′′(0) = 0. If we had κ ∈ C2,ε(−ε, ε) for some ε > 0,
then we could Taylor expand κ about 0 to find |κ(t) − κ(0)| ≤ C|t|2+ε. But
since α+(0) = 0, this implies |α+(t)| ≤ C|s+(t) − s+(0)| + C|t|2+ε. Since
|(s+)′(t)| ≤ α+(t), Gronwall’s inequality implies that α+(t) ≤ C|t|2+ε. But
this contradicts the lower bound in (45). Therefore, if κ ∈ C2,ε(−ε, ε) then
0 /∈ I0. Similarly, if κn ∈ C1,ε(−ε, ε) for some ε > 0 then (49, 50) imply that
|
√

α+(t)| ≤ C|t|1+ε, which is easily seen to contradict (45). ¤

5 Higher Regularity

5.1. In this section we assume, in addition to the standing hypotheses, that
κn does not vanish identically (since otherwise the surface is trivially smooth).
Moreover, we assume that {κn = 0} has empty interior. Proposition 3.4 and
Proposition 4.1 provide us the following picture: The functions κ and κn are
continuous up to the boundary on [−T, T ]. The set of zeroes of κn is finite.
Moreover, κ, κn ∈ C∞

(

{t ∈ [−T, T ] : κn(t) 6= 0}
)

. In this section we improve
this to κ, κn ∈ C∞

(

[−T, T ] \ I0

)

. This cannot be improved further because at
I0 we already have an optimal regularity result, see Proposition 4.1.

5.2. Let t0 ∈ [−T, T ] be a zero of κn. We are interested in the local behaviour
at t0. The cases t0 ∈ {−T, T} are obtained by applying the arguments below
only on one side. So we assume without loss of generality that t0 ∈ (−T, T ).
Since the zero set of κn is finite, after translating, rescaling and restricting we
may assume that t0 = 0, that T = 1 and that 0 is the only zero of κn in [−1, 1].
We consider the case when 0 /∈ I0, so I0 = ∅. Thus κ, κn ∈ C∞

(

(−1, 1) \ {0}
)

.
And both are continuous at 0. By continuity of s±κ we conclude that there is
η > 0 such that [−1, 1] ⊂ Iη.

We define κ̃n(t) = κn(t)
t

. We claim that κ̃n is continuous at 0. In fact, κ̃n(t) =

− Λ2(t)
2tg(s±(t),κ(t))

by (14). By continuity of κ, we have Λ2 ∈ C1(−1, 1), with

Λ′
2(0) = m(0) − κ(0)Λ1(0) and Λ2(0) = 0 by (33). So

lim
t→0

κ̃n(t) = −m(0) − κ(0)Λ1(0)

2g(s±(0), κ(0))
. (95)

It is important that κ̃n(0) 6= 0. This follows from Proposition 4.1 (ii), according
to which m(0) − κ(0)Λ1(0) = Λ′

2(0) 6= 0. Notice that 0 ∈ {κn = 0} \ I0

implies that Λ2(0) = Ω2(0) = Ω3(0) = 0, see e.g. §3.2. Moreover, we have
Ω2 6= 0 on (−1, 1) \ {0} since κn 6= 0 here. So by Proposition 4.2 we have
Λ1(0)
m(0)

∈ (s−(0), s+(0)) and limt→0 −Ω3(t)
Ω2(t)

= limt→0 ζ(t) = Λ1(0)
m(0)

. Since I0 = ∅, by
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(15) we have Ω2 = κ2
ng2(s

±, κ) almost everywhere on (−1, 1). So (18) simplifies
to (23), i.e.

Ω′
3 = −κnΛ1 − κ2

n

∑

∗

s∗ν1(Γ, ∗N) · Γ′

1 − s∗κ
(96)

5.3. For t ∈ (−1, 1) and x ∈ R
2 with x1 ∈ ( 1

s−(t)
, 1

s+(t)
) we define

P̃ (t, x) =

(

−2x2
2g3(s

±(t), x1) − x2Λ1(t) − 2tx2
2

∑

∗
s∗(t)ν1(Γ(t),∗N(t))·Γ′(t)

1−s∗(t)x1

2x2g(s±(t), x1) + m(t) − x1Λ1(t) + 2tx2

∑

∗ ν1(Γ(t), ∗N(t)) · Γ′(t)

)

.

(97)
For brevity we define ~κ(t) ∈ R

2 by setting ~κ1(t) = κ(t) and ~κ2(t) = κ̃n(t). On
(−1, 1) \ {0} the Euler-Lagrange equation (16) gives

2κ̃nκ̃
′
ng3 + κ̃2

ng33κ
′ + κ̃2

n

∑

∗

g3∗(s
∗)′ = (t−2Ω3)

′ = −2Ω3/t
2

t
+

Ω′
3

t2
. (98)

Here and below we omit the argument (s±(t), x1) of all functions involving g or
its derivates. Now (96), the definition of P̃ and (98) imply 2κ̃nκ̃′

ng3+ κ̃2
ng33κ

′ =
1
t
P̃1(t, ~κ). Here we used that g3∗(s

∗)′ = s∗ν1(Γ,∗N)·Γ′

1−s∗κ
.

Equation (14) gives, on (−1, 1) \ {0}:

−2κ̃′
ng − 2κ̃ng3κ

′ − 2κ̃n

∑

∗

g∗(s
∗)′ = (t−1Λ2)

′ = −Λ2/t

t
+

Λ′
2

t
. (99)

By Λ′
2 = m − κΛ1 and since g∗(s

∗)′ = ν1(Γ, ∗N) · Γ′ we deduce from (99) that
−2κ̃′

ng − 2κ̃ng3κ
′ = 1

t
P̃2(t, ~κ). We claim that

lim
t→0

g3(s
±(t), κ(t))

g(s±(t), κ(t))
=

Λ1(0)

m(0) − κ(0)Λ1(0)
. (100)

In fact, since Z(s±, κ) = ζ, Proposition 4.2 implies Λ1(0)
m(0)

=

limt→0 Z(s±(t), κ(t)). So if g3(s
±(0), κ(0)) = 0, so Z(s±(0), κ(0)) = 0, then

Λ1(0) = 0 (recall that m(0) 6= κ(0)Λ1(0)). So it remains to consider the case
g3(s

±(0), κ(0)) 6= 0. But then (100) follows from (127):

g(s±(t), κ(t))

g3(s±(t), κ(t))
= −κ(t) + Z(s±(t), κ(t)) → −κ(0) +

m(0)

Λ1(0)
.

We have P̃1(t, ~κ(t)) = −2κ̃2
n(t)g3(s

±(t), κ(t)) − κ̃n(t)Λ1(t) + O(t). Recall-
ing (95) we conclude limt→0 P̃1(t, ~κ(t)) = 0 by (100). Also P̃2(t, ~κ(t)) =
2κ̃n(t)g(s±(t), κ(t)) + m(t) − κ(t)Λ1(t) converges to zero as t → 0 by (95).
In vector notation, (98, 99) imply tM(t, ~κ(t))~κ′(t) = P̃ (t, ~κ(t)). Here

M(t, x) =

(

x2
2g33(s

±(t), x1) 2x2g3(s
±(t), x1)

−2x2g3(s
±(t), x1) −2g(s±(t), x1)

)

. (101)
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In §5.4 below we prove that M(t, ~κ(t)) is invertible for each t ∈ (−1, 1). So
if we set P (t, x) = M(t, x)−1P̃ (t, x) then t~κ′(t) = P (t, ~κ(t)). Notice that
P (0, ~κ(0)) = 0 because P̃ (0, ~κ(0)) = 0.
Let us compute ∇P (0, ~κ(0)), where ∇ refers to the x-variable. We have
P,i(0, x) = (M−1(0, x)),iP̃ (0, x) + M−1(0, x)P̃,i(0, x). The first term con-
verges to zero as x → ~κ(0) because so does P̃ (0, x) (clearly M−1(0, ·) is
C∞ in a neighbourhood of ~κ(0)). Now P̃1,1(0, x) = −2x2

2g33(s
±(0), x1),

P̃1,2(0, x) = −4x2g3(s
±(0), x1) − Λ1(0), P̃2,1(0, x) = 2x2g3(s

±(0), x1) − Λ1(0)
and P̃2,2(0, x) = 2g(s±(0), x1). Since Λ1(0) = −2κ̃n(0)g3(s

±(0), κ(0)) by (95,
100), we conclude that

∇P (0, ~κ(0)) =

(

−2 0
0 −1

)

(102)

because ∇P̃ (0, ~κ(0)) = M(0, ~κ(0))A. Here and below A denotes the right-hand
side of (102). We conclude

t~κ′(t) =A(~κ(t) − ~κ(0))+

+ [P (t, ~κ(t)) − P (0, ~κ(t))] + [P (0, ~κ(t)) −∇P (0, ~κ(0))(~κ(t) − ~κ(0))].
(103)

5.4. Let us estimate the determinants of the matrices M(t, x) defined in

(101). We have det M(t, x) = −2x2
2

(

g33(s
±, x1)g(s±, x1) − 2g2

3(s
±, x1)

)

. We

claim that for all η̃ > 0 there is c > 0 such that whenever s− < −η̃ < η̃ < s+

and x1 ∈ ( 1
s−

, 1
s+ ) then

(

g(s±, x1)g33(s
±, x1)

) 1
2 −

√
2|g3(s

±, x1)| ≥ c. (104)

To prove (104) first note from §7.5 that g33(s
±, x1) =

∫ s+

s−
2s2

(1−sx1)3
ds > 0. Next

we apply Hölder’s inequality to find

√

g(s±, x1)g33(s±, x1) ≥
∫ s+

s−

1

(1 − sx1)
1
2

·
√

2|s|
(1 − sx1)

3
2

ds =

∫ s+

s−

√
2|s|

(1 − sx1)2
ds.

So

1√
2

√

g(s±, x1)g33(s±, x1)−|g3(s
±, x1)| ≥

∫ s+

s−

|s|
(1 − sx1)2

ds−
∣

∣

∣

∫ s+

s−

s

(1 − sx1)2
ds

∣

∣

∣
.

From this and the assumptions on s± and x1, estimate (104) follows easily.

32



5.5. Lemma. Let f ∈ C∞((0, 1); Rn) be bounded. Assume that a ∈ R
n,

that B ∈ R
n×n has only negative eigenvalues and that α, Y ∈ L∞(0, 1) with

|Y (t)| ≤ Ct and |α(t)| → 0 as t ↓ 0. If

tf ′(t) = Bf(t) + Y (t) + a + α(t)(f(t) + B−1a) for all t ∈ (0, 1) (105)

then f ∈ W 1,∞(0, 1) with f(0) = −B−1a.

Proof. After possibly replacing f by f + B−1a we may assume without loss
of generality that a = 0. Let ε > 0. By the variation of constants formula we
have

f(t) = e
R t

ε

B+α(r)
r

drf(ε) +

∫ t

ε

e
R t

s

B+α(r)
r

dr Y (s)

s
ds. (106)

Since the eigenvalues of B are negative, there is c > 0 such that

|e
R t

ε

B+α(r)
r

drf(ε)| ≤ e−c log t
ε |f(ε)|. As ε → 0 this converges to zero because

f is bounded on (0, 1). So letting ε ↓ 0 in (106) we find

f(t) =

∫ t

0

e
R t

s

B+α(r)
r

dr Y (s)

s
ds.

Hence |f(t)| ≤
∫ t

0
e−c log t

s
|Y (s)|

s
ds ≤ t−c

∫ t

0
sc ds ≤ Ct. Plugging this into (105)

(recall that a = 0) shows that f ′ ∈ L∞(0, 1). ¤

5.6. Now we argue by induction. The function α(t) =
P (0,~κ(t))−∇P (0,~κ(0))(~κ(t)−~κ(0))

~κ(t)−~κ(0)
converges to zero as t ↓ 0 because P (0, ·) is C∞

near ~κ(0) and because ~κ is continuous. Hence (103) is of the form (105) with
f = ~κ − ~κ(0), a = 0 and Y (t) = P (t, ~κ(t)) − P (0, ~κ(t)). Since κ ∈ C0 we have
s± ∈ C1. So M−1 and P̃ are C1. Therefore, P ∈ C1 in a neighbourhood of
(0, ~κ(0)). Thus, |Y (t)| ≤ Ct. So we can apply Lemma 5.5 to conclude that
~κ ∈ W 1,∞(0, 1). This implies s± ∈ W 2,∞, so P ∈ W 2,∞ near (0, ~κ(0)).
Taking derivatives in (103) and setting β(t) = ∇P (t, ~κ(t)) − ∇P (0, ~κ(0)) we
find

t~κ′′(t) = (A − I)~κ′(t) + Pt(t, ~κ(t)) + β(t) · ~κ′(t). (107)

But |β(t)| ≤ Ct because ~κ and ∇P are Lipschitz. And Pt is Lipschitz as well.
So we can apply Lemma 5.5 to (107) (with Y (t) = Pt(t, ~κ(t)) − Pt(0, ~κ(0)) +
β(t)~κ′(t), α = 0, a = Pt(0, ~κ(0)) B = A − I and f = ~κ′ + B−1a) to conclude
~κ ∈ W 2,∞(0, 1). And limt↓0 ~κ′(t) = −(A − I)−1Pt(0, ~κ(0)).
Now assume that ~κ ∈ Wm,∞(0, 1) for some integer m ≥ 2. Then s± ∈ Wm+1,∞,
so P ∈ Wm+1,∞ near (0, ~κ(0)). Differentiating (107) m − 1 times we find

t~κ(m+1) = (A − mI)~κ(m) + Pm(t) + β(t) · ~κ(m)(t). (108)

Here Pm(t) = dm−1

dtm−1 (Pt(t, ~κ(t)) + β(t) · ~κ′(t)) − β(t) · ~κ(m). Since P ∈ Wm+1,∞

and ~κ ∈ Wm,∞, we have that t 7→ Pt(t, ~κ(t)) and t 7→ β(t) are in Wm,∞. The
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highest derivative of ~κ occurring in Pm is ~κ(m−1). Hence Pm is Lipschitz near
zero. So Lemma 5.5 applies to (108) with α = 0, a = Pm(0) and Y (t) =
Pm(t) + β(t) · ~κ(m)(t) − Pm(0). Thus ~κ ∈ Wm+1,∞(0, 1) and limt↓0 ~κ(m)(t) =

−(A − mI)−1Pm(0). Notice that Pm(0) = dm−1

dtm−1 |t=0

(

Pt(t, ~κ(t)) + β(t) · ~κ′(t)
)

.
Inductively, we conclude that ~κ ∈ C∞([0, 1)).
Of course the value of the mth derivative at zero, limt↓0 ~κ(m)(t), can be cal-
culated from the values of ~κ(0), ~κ′(0), ..., ~κ(m−1)(0). But ~κ is continuous at
0. So inductively ~κ(m)(0) depends only on the values of functions which are
continuous at 0. In particular, applying the above arguments on (−1, 0) gives
limt↑0 ~κ(m)(t) = limt↓0 ~κ(m)(t) for all m ∈ N.

Proof of Theorem 2.4. First we apply Proposition 3.4 and Corollary 4.10.
If we assume (A) or even that {κn = 0} has empty interior, then we can apply
Proposition 4.1. The higher regularity on [−T, T ]\ I0 then follows by applying
§5.1 through §5.6 above to each of the finitely many subintervals of [−T, T ]\I0.

¤

Proof of Theorem 2.7. Let x ∈ D∇u \ (C∇u ∪ Σc ∪ Στ ). Then by [11]
Theorem 2.10 there are T > 0 and a ∇u-integral curve Γ ∈ W 2,∞([−T, T ]; S)
with Γ(0) = x which is transversal on [−T, T ], and there is κn ∈ L2(−T, T )
such that u = (Γ, κn) on [Γ(−T, T )] and (Γ, κn) solves the Euler-Lagrange
equations. And (6) is satisfied. By Lemma 7.4 we may assume without loss of
generality that

either int{κn = 0} = ∅ or int I0 6= ∅. (109)

Since x /∈ C∇u, we know that κn does not vanish identically in any neighbour-
hood of zero (a similar argument is given in detail in the proof of Proposition
6.3). Thus int I0 = ∅ by Theorem 2.4. Hence {κn = 0} has empty interior as
well by (109). Thus all claimed statements follow from Theorem 2.4 and from
the equality

∂2

∂xi∂xj

(Γ, κn)(Γ(t) + sN(t)) =
( κn(t)

1 − sκ(t)
Γ′

i(t)Γ
′
j(t)

)

n(t),

which holds for all t ∈ (−T, T ) and s ∈ (s−(t), s+(t)) (cf. Proposition 2.2 in
[10]).
If x ∈ C∇u then u is obviously C∞ in a neighbourhood of x. Hence it remains

to prove that the set C∇u∪
(

D∇u \(Στ ∪Σc)
)

agrees with S \(∂Ĉ∇u∪Στ ∪Σc).

This will proven in Proposition 6.3. ¤
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6 The singular set

Above we proved that minimizers are C3 on the open set C∇u ∪
(

D∇u \ (Στ ∪
Σc)

)

, which by definition of Στ and Σc agrees with (C∇u ∪ D∇u) \ (Στ ∪ Σc).

Proposition 6.3 below provides a simple formula for the complement of this set.
First, however, we collect some facts that are true for arbitrary W 2,2 isometric
immersions.

6.1. Proposition. Let S ⊂ R
2 be a bounded C1 domain and let u ∈

W 2,2
iso

(S; R3). Then the following hold:

(i) Each of the sets Στ , Σc and S ∩ ∂C∇u consists of straight line segments
in S on which ∇u is constant and which intersect ∂S at both endpoints.
We have Στ ∪ Σc ⊂ S \ C∇u. Moreover, the sets S ∩ ∂C∇u and Στ are
relatively closed in S and have empty interior.

(ii) We have

S ⊂ D∇u ∪ Ĉ∇u (110)

(iii) We have

S \ (Στ ∪ Σc ∪ ∂Ĉ∇u) ⊂ Ĉ∇u ∪
(

D∇u \ (Στ ∪ Σc)
)

. (111)

6.2. Remarks.

(i) By definition of Ĉ∇u and Lemma 7.1 (ii) we have ∂Ĉ∇u ⊂ ∂C∇u. Hence

C∇u \ Ĉ∇u = C∇u \ Ĉ∇u. So (110) implies that C∇u \ Ĉ∇u ⊂ D∇u.

(ii) The example in the appendix to [10] shows that for arbitrary u ∈
W 2,2

iso (S; R3) the set C∇u can be dense in S and S ∩ ∂C∇u can consist of
uncountably many line segments. Slightly modifying this example shows
that in general also S ∩ ∂Ĉ∇u consists of uncountably many segments.
For irregular boundary conditions, this situation cannot be exluded for
minimizers either. However, Proposition 6.4 below identifies a class of
boundary conditions for which S ∩ ∂Ĉ∇u consists of only finitely seg-
ments when u is a minimizer. More sophisticated results will be given in
[12].

Proof. In this proof we omit the index ∇u. To prove (i), notice that the
statement about the geometry of Σc and Στ is an immediate consequence of
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their definitions. That Σc ⊂ S \ C follows from closedness of the latter set,
and Στ ⊂ S \ C by definition. The statement about the geometry of S ∩ ∂C
follows from Lemma 7.1. And intS ∩ ∂C = ∅ because ∂C is the boundary of
an open set.
To prove (ii), we note that by Proposition 2.2.5 in [9] the mapping ∇u is
S-developable on S \ Ĉ. Hence

int(S \ Ĉ) ⊂ D (112)

by maximality of D. Since S is open, we have S \ Ĉ = int(S \ Ĉ). Thus (110)
follows from (112).

To prove (iii), notice that Ĉ = Ĉ \ (Στ ∪ Σc ∪ ∂Ĉ) because Ĉ is open and
Στ ∪ Σc ⊂ S \ C. Hence from (110) we conclude that

S \ (Στ ∪ Σc ∪ ∂Ĉ) = Ĉ ∪
(

D \ (Στ ∪ Σc ∪ ∂Ĉ)
)

.

This proves (111).
To prove the statements about Στ in (i), notice that it is relatively closed
by continuity of q∇u (cf. Proposition 2.2.1 in [9]) and by continuity of the
outer unit normal to S. To prove int Στ = ∅, we argue by contradiction. Let
x ∈ int Στ , so x ∈ S \ C because Στ ⊂ S \ C by definition. Thus x ∈ D by
(110). Hence there are T > 0 and a ∇u-integral curve Γ : [−T, T ] → int Στ

with Γ(0) = x. Since S is C1, it satisfies condition (∗) from [9]. Hence we can
apply Proposition 3.1.11 (iii) in [9] to conclude that the set

JΓ := {t ∈ (−T, T ) : [Γ(t)]N(t) intersects ∂S tangentially}

is contained in I0 (up to a null set). But since Γ([−T, T ]) ⊂ Στ , we have
(−T, T ) ⊂ JΓ up to a null set. Thus κn = 0 almost everywhere on (−T, T )
because of (6) (which holds because (Γ, κn) ∈ W 2,2([Γ(−T, T )]; R3)). As in the
proof of Proposition 6.3 below, this would imply that x ∈ C, a contradiction.

¤

6.3. Proposition. Assume that the hypotheses of Theorem 2.7 are satisfied.
Then

C∇u ∪
(

D∇u \ (Στ ∪ Σc)
)

= S \ (Στ ∪ Σc ∪ ∂Ĉ∇u). (113)

Moreover, the sets Σ0 and

Σ′
0 := {x ∈ S \ (C∇u ∪ Στ ∪ Σc) : ∇2u(x) = 0}

consist of countably many line segments intersecting ∂S at both endpoints.
Lines in Σ′

0 can only accumulate at Στ ∪ Σc ∪ ∂S. We have Σ0 ⊂ Σ′
0.
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Proof. We omit the index ∇u. One inclusion in (113) follows from (111)
because Ĉ ⊂ C. To prove that C ∪ (D \ (Στ ∪ Σc)) ⊂ S \ (Στ ∪ Σc ∪ ∂Ĉ),
notice that D∪ Ĉ = D∪C because C \ Ĉ ⊂ D (cf. the remark to Proposition
6.1). So we must prove that D ∪ Ĉ ⊂ (S \ ∂Ĉ) ∪ Στ ∪ Σc, But Ĉ ⊂ S \ ∂Ĉ
by openness. So it remains to show that D ⊂ (S \ ∂Ĉ) ∪ Στ ∪ Σc, which is
equivalent to D ∩ ∂Ĉ ⊂ Στ ∪ Σc. We claim that even (recall ∂Ĉ ⊂ ∂C by the
remark to Proposition 6.1)

D ∩ ∂C ⊂ Στ ∪ Σc. (114)

In fact, since D is open and Στ ∪Σc is closed, by Lemma 7.1 (ii), it suffices to
prove that D ∩ ∂U ⊂ Στ ∪ Σc for each connected component U of C.
To prove this, we argue by contradiction. Suppose there were x0 ∈ (D ∩
∂U) \ (Στ ∪ Σc). Theorem 2.10 in [11] implies that there is T > 0 and
Γ ∈ W 2,∞([−T, T ]; S) transversal and with Γ(0) = x0, and there exists
κn ∈ L2(−T, T ) such that u|[Γ(−T,T )] = (Γ, κn) and such that (Γ, κn) satisfy
the Euler-Lagrange equations in the sense of Definition 2.1. Moreover, (6) is
satisfied, and by Lemma 7.4 we may also assume that the alternative (109)
holds. By Proposition 2.2.3 in [9], there exists r ∈ (0, T ) such that Br(x0)\ [x0]
consists of precisely two connected components B1 and B2 (of course B1,2 are
open half-disks) such that B1 ⊂ U and B2 ⊂ S \ Ū . Since Γ is parametrized
by arclength, we have Γ(−r, r) ⊂ Br(x0). Since Γ′(0) is perpendicular to [x0],
after possibly changing the orientation of Γ we therefore have Γ(−r, 0) ⊂ B1

and Γ(0, r) ⊂ B2. (For a proof of this simple fact see e.g. Remark 3.2.4 in [9].)
Hence κn = 0 on (−r, 0). Hence int I0 6= ∅ by (109). Thus κn = 0 on (−T, T )
by the first part of Theorem 2.4. This implies that [Γ(−T, T )] ⊂ C. But since
κ ∈ L∞, there is ε > 0 such that Bε(x0) ⊂ [Γ(−T, T )] (cf. Remark 3.2.4 in
[9]). Hence x0 ∈ C, contradicting the fact that C ∩ ∂U = ∅ by openness of C.
This concludes the proof of (114).
By the first part of Theorem 2.7, the mapping u is C3 on the complement
of C ∪ Στ ∪ Σc. Thus the set Σ′

0 is well defined. Moreover, by (110) and by
Theorem 2.10, for all x0 in the complement of C ∪ Στ ∪ Σc there exist (Γ, κn)
as above. Thus Σ0 is well defined, and (6) implies that Σ0 ⊂ Σ′

0. Moreover,
we have

Σ′
0 ∩ [Γ(−T, T )] = {[Γ(t)] : t ∈ (−T, T ), κn(t) = 0}. (115)

Hence Σ′
0 does not accumulate at x0 = Γ(0). In fact, otherwise the second

part of Theorem 2.4 would imply that int{κn = 0} 6= ∅. As above this would
imply x0 ∈ C, a contradiction. ¤

Certain regularity assumptions on the boundary conditions allow us to con-
clude that, for a minimizer u, the set Ĉ∇u consists of only finitely many con-
nected components U and that S ∩ ∂U consists of finitely many line segments
for each U . In other words, (gradients of) minimizers are finitely developable
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in the sense of [9]. In particular, the modified version of the example from [10]
mentioned in the remarks to Proposition 6.1 is excluded. We end this section
by giving a simple example for such regularity assumptions on the boundary
conditions. More sophisticated examples can be found in [12].

6.4. Proposition. Let S ⊂ R
2 be a convex bounded domain and assume

that ∂cS consists of finitely many connected components ∂1
c S, ..., ∂M

c S. Let
u0 ∈ W 2,2

iso
(S; R3) be such that ∇u0 is constant on each ∂i

cS (in the trace sense).
Then, for every minimizer of E within Au0(S, ∂cS) the sets Ĉ∇u and S ∩ ∂Ĉ∇u

consist of at most finitely many connected components.

Proof. We argue quickly since more detailed proofs in a similar spirit can be
found in [9, 12]. We assume that Ĉ∇u 6= ∅. Let U be a connected component
of Ĉ∇u and let x ∈ ∂U . Then [x] is well defined. Moreover, S \ [x] = S1

x ∪ S2
x

for two disjoint connected open sets S1
x, S2

x, and ∂S \ {x+, x−} = ∂1S ∪ ∂2S
for two disjoint open subarcs ∂1S ∪ ∂2S of ∂S. And ∂Si = [x]∪ ∂iS. (A proof
of these facts can be found e.g. in the appendix of [9].) By the regularity of
∂S there exists a constant c > 0, depending only on S, such that

H1([x]) ≥ c min
j=1,2

H1(∂jS). (116)

On the other hand,
[x] ∩ int ∂cS = ∅. (117)

(Here, the interior is understood relative to ∂S.) In fact, by convexity of S we
know that [x] intersects ∂S transversally. So if [x] intersects int ∂i

cS for some
i, then by constancy of ∇u on ∂i

cS (by the hypothesis on ∇u0) and on [x],
we would conclude that ∇u is constant in a neighbourhood of x. This would
imply that x ∈ C∇u, contradicting the fact that x ∈ ∂C∇u.
Now (117) implies that, for each component int ∂i

cS of int ∂cS either int ∂i
cS ⊂

∂1S or int ∂i
cS ⊂ ∂2S. But if ∂jS did not intersect ∂cS then by minimality u

would be affine on Sj. Thus U = Sj, and S ∩ ∂U = [x], contradicting the fact

that U ⊂ Ĉ∇u. Hence both ∂1S and ∂2S must intersect int ∂cS, and so both
must contain a connected component of int ∂cS. Thus

min
j=1,2

H1(∂jS) ≥ δ2 := min
i=1,...,M

H1(∂i
cS). (118)

From (116, 118) and arbitrariness of x we conclude that H1([x]) ≥ cδ2 for
all x ∈ ∂U and for all connected components U of Ĉ∇u. But by Proposition
2.2.4 in [9] there exists only finitely many components U of Ĉ∇u for which all
boundary segments are longer than a given constant. ¤
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7 Appendix

7.1. Lemma. Let S ⊂ R
2 be a bounded Lipschitz domain and let u ∈

W 2,2
iso

(S; R3). Then the following hold:

(i) The boundary of C∇u agrees with the closure of

⋃

{x ∈ ∂U : U is a connected component of C∇u}.

(ii) If y ∈ S ∩ ∂C∇u then [y] ⊂ ∂C∇u.

Proof. We omit the index ∇u. To prove (i), notice that since C is open, it
consists of countably many connected components U , each of which is itself
open. Now let x ∈ ∂C and let xn ∈ C be such that xn → x. Denote by Un

the connected component of C that contains xn. Since x /∈ Un (because by
openness x /∈ C), we have distUn

(x) = dist∂Un
(x). But distUn

(x) ≤ |x − xn| →
0. Hence there exist yn ∈ ∂Un such that yn → x.
To prove (ii) notice that [y] is well defined because by openness y ∈ S \C. By
(i) there exist components Un of C and yn ∈ ∂Un such that yn → y. After
passing to subsequences (in fact, this is not necessary), the Hausdorff limit Y
of the sets [yn] exists. Lemma 2.2.6 in [9] implies that [y] ⊂ S∩Y . But Y ⊂ ∂C
because [yn] ⊂ ∂Un by Proposition 2.2.3 in [9]. This proves (ii). ¤

For a given curve Γ ∈ W 2,∞([−T, T ]; S) we define β±
Γ (t) = Γ(t) + s±Γ (t)N(t).

7.2. Lemma. Assume that Γ ∈ W 2,∞([−T, T ]; S) is admissible and transver-
sal, and that β±

Γ (−T ) 6= β±
Γ (T ). Then Γ is simple in the sense of [10]. (This

means that β±
Γ (−T, T ) are singletons or Jordan arcs, that s±Γ ∈ C0([−T, T ])

and that β+
Γ ([−T, T ]) ∩ β−

Γ ([−T, T ]) = ∅.)
Proof. We omit the index Γ. Since Γ is transversal, we have s± ∈ C0([−T, T ])
(cf. Proposition 3.1.11 in [9]). Since Γ is also admissible, Lemma 7.8 in [11]
implies that β+

Γ ([−T, T ]) ∩ β−
Γ ([−T, T ]) = ∅.

Since Γ is admissible, we have Lemma 3.1.9 from [9] at our disposal. By the
remark following it (i.e. by the nondegeneracy of the lifting), if β∗(−T ) 6=
β∗(T ) then β∗([−T, T ]) does not agree with the whole connected component
of ∂S that contains β∗([−T, T ]). Thus Remark 3.1.7 in [9] implies that Γ is
simple. ¤
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7.3. Proposition. Let Γ ∈ C∞([−T, T ]; S) be admissible and transversal, and
let κn ∈ C∞([−T, T ]). Assume, moreover, that 1 − s±Γ κ > 0 on [−T, T ] and
that β±

Γ (T ) 6= β±
Γ (−T ). Then there exists an open set U ⊂ R

2 that contains
the closure of [Γ(−T, T )] and there exists ũ ∈ C∞

iso
(U ; R3) such that (Γ, κn) = ũ

on [Γ(−T, T )].

Proof. We omit the index Γ. Since as above by transversality s± are contin-
uous on [−T, T ], and since by hypothesis κ is continuous as well, the curve Γ
is uniformly admissible. This means that 1 − s±κ ≥ c > 0 and that Γ is ad-
missible (which is true by hypothesis). On the other hand, Lemma 7.2 implies
that Γ is simple. Now we can argue (with some minor modifications) as in the
proofs of Lemma 2.4 in [10] and of Proposition 2.5 in [10] to obtain the desired
conclusion.
For the convenience of the reader, we give some details. The only difference
to [10] is that in the present context both Γ and κn are smooth up to the
boundary, so we do not need the condition κn = 0 near {−T, T} required in
Proposition 2.5 in [10]. Instead, we can extend Γ smoothly to all of R, so
κ ∈ C∞(R). Define s̃±δ as in Lemma 2.4 in [10]. Then there exists δ > 0
such that 1 − s̃δκ ≥ c

2
on [−T − δ, T + δ]. After possibly multiplying κ with

a smooth cutoff function we may assume that sptκ ⊂ (−T − δ, T + δ). Then
1 − s̃±δ κ ≥ c

2
on all of R. Thus we obtain a mapping Φ ∈ C∞(R2; R2) as in

the proof of Lemma 2.4 in [10]. As there one deduces from simpleness and
uniform admissibility of Γ on [−T −δ, T +δ] that Φ is globally injective on M̃δ.
Defininig U := Φ(M̃δ) and ũ := (Γ, κn) (with κn and Γ extended smoothly to
R), we obtain the claim. ¤

7.4. Lemma. Let Γ ∈ W 2,∞([0, T ]; S) be admissible and transversal, and let
κn ∈ L2(0, T ) be such that int{t ∈ (0, T ) : κn(t) = 0} 6= ∅.
Then there exist T ′ > 0 and Γ̂ ∈ W 2,∞([0, T ′]; S) (parameterized by arclength
as well) admissible and transversal, and there exists κ̂n ∈ L2(0, T ′) such that
the following hold:

int I Γ̂
0 6= ∅ (119)

[Γ̂(0, T ′)] = [Γ(0, T )] (120)

(Γ̂, κ̂n) = (Γ, κn) on [Γ(0, T )]. (121)

Moreover, if (6) holds, then the analogue for (Γ̂, κ̂n) holds as well.

Proof. By the results from [9] outlined in §2.1, the hypotheses imply that
(Γ, κn) is well defined as an element of W 2,2

loc, iso([Γ(0, T )]; R3). Moreover, for
all ε > 0 small enough there exist t0, t1 ∈ (0, T ) such that t1 − t0 ∈ (0, ε) and
[t0, t1] ⊂ int{κn = 0}. Throughout this proof we tacitly assume that ε is chosen
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t1β(  )−

t0β(  )+

t0Γ(  ) Γ(  )t1

Γ

Γ̂

v

Γ(  )^ t’1

Y

Ν(  ) Ν(  )t0
t1

Figure 1: The construction used in the proof of Lemma 7.4.

small enough to justify all steps. If N(t0) 6= N(t1) (this is equivalent to N(t0) 6‖
N(t1) because ε is small), then there exists a unique v ∈ [Γ(t0)]

R
2 ∩ [Γ(t1)]

R
2
,

where [Γ(t)]R
2

:= Γ(t) + span N(t). Since by admissibility [Γ(t0)]∩ [Γ(t1)] = ∅,
we have v /∈ [Γ(t0)] or v /∈ [Γ(t1)]. After possibly changing the orientation
of Γ, we may assume that v /∈ [Γ(t0)]. We translate coordinates such that
Γ(t0) = 0 and rotate coordinates such that [Γ(t0)] is contained in the x2-axis
and Γ′(t0) = e1. (If N(t0) = N(t1) the we do the same and directly proceed
with the next paragraph.) Since v /∈ [Γ(t0)] but 0 = Γ(t0) ∈ [Γ(t0)] and v is
contained in the x2-axis, we have v · e2 6= 0. We assume that v · e2 > 0. The
other case is similar. The situation is depicted in Figure 1 (left).
For t ∈ (t0, t1) we have N(t) · e2 = 1 +

∫ t

t0
(−κΓ′) ≥ 1 − ε‖κ‖L∞(0,T ) because

N(t0) = e2. Similarly, |Γ · e2| ≤ ‖κ‖L∞(0,T )ε
2 on (t0, t1). Thus N(t1) · e2 ≥

|Γ(t1) · e2|. Also, Γ(t) · e1 ≥ (t − t0)(1 − ‖κ‖L∞(0,T )(t − t0)) for t > t0. So
Γ(t1) · e1 ≥ (1− ε‖κ‖L∞(0,T ))ε. This is positive for small ε > 0. Since N(t1) =
v−Γ(t1)
|v−Γ(t1)|

(unless N(t0) = N(t1)), we conclude that N(t1) · e1 < 0 (with equality

if N(t0) = N(t1)). Since also N(t1) · e2 > 0, we conclude that there exists
α2 ∈ [0, π

2
) such that, identifying R

2 with C, we have N(t1) = ieiα2 , cf. Figure
1 (right). (The case α2 = 0 occurs if i = N(t0) = N(t1).) Similarly, for

Y := β+(t0)−β−(t1)
|β+(t0)−β−(t1)|

, one shows that there is α0 ∈ [α2,
π
2
) such that Y = ieiα0 .

Thus e−iα1Y = N(t1), where α1 = α0 − α2 ≥ 0. (The case α1 = 0 occurs if
v = β+(t0).)
Set L = |β+(t0)−β−(t1)|−s+(t0), and set t′ = t0 +α0s

+(t0) and t′1 = t′ +α1L.
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Define

κ̂(t) =











κ(t) for t ∈ (0, t0)
1

s+(t0)
for t ∈ (t0, t

′)

− 1
L

for t ∈ (t′, t′1).

Denote by Γ̂ : (0, t′1) → R
2 the unique arclength parametrized curve with

Γ̂(0) = Γ(0) and Γ̂′(0) = Γ(0) and with curvature Γ̂′′ · N̂ = κ̂.
Obviously Γ̂ = Γ on (0, t0). On (t0, t

′), one easily checks that Γ̂ is a sub-
arc of the circle with center β+(t0) and radius s+(t0). Moreover, β+(t0) =
Γ̂(t) + s+(t0)N̂(t) for all t ∈ (t0, t

′). (In fact, this is true for t = t0, and
(Γ̂ + s+(t0)N̂)′ = (1− s+(t0)κ̂)Γ̂′ = 0.) In particular, Γ̂(t′) = β+(t0)− s+(t0)Y
because N̂(t′) = Y . (In fact, defining K̂(t) :=

∫ t

t0
κ̂ we have N̂(t′) =

eiK̂(t′)N̂(t0). Since N̂(t0) = N(t0) = i, the choices of α0 and t′ imply that
indeed N̂(t′) = Y .)
Similarly, Γ̂ is a subarc of the circle with center β−(t1) and radius L, and
β−(t1) = Γ̂(t) − LN̂(t) for all t ∈ (t′, t′1). Thus Γ̂(t′1) = β−(t1) + LN̂(t′1). But
by the choices of α1 and t′1, a similar calculation as above shows that N̂(t′1) =
N(t1). We conclude that Γ̂(t′1) ∈ [Γ(t1)], and therefore [Γ̂(t′1)] = [Γ(t1)]. (As
usual, [Γ̂(t)] denotes [Γ̂(t)]N̂(t).) More precisely, we have Γ̂(t′1)−Γ(t1) = θN(t1),

since Γ(t1) = β−(t1) − s−(t1)N(t1). Here we have introduced

θ = L − s−(t1) = |β+(t0) − β−(t1)| − s+(t0) + s−(t1). (122)

Inserting the definitions of β±, we can estimate

|θ| ≤ |Γ(t0) − Γ(t1)| + |s−(t1)(N(t0) − N(t1))|
+ |(s+(t0) − s−(t1))N(t0)| − (s+(t0) − s−(t1))

≤ Cε, (123)

because the second line equals zero. Define τ(t) = t′1 +
∫ t

t1
(1 − θκ) for all

t ∈ (t1, T ). Since |θ| ≤ Cε, we have |τ ′ − 1| ≤ Cε, so τ is Bilipschitz. Hence,
writing T ′ = τ(T ), we can define κ̂ : (t′1, T

′) → R by setting κ̂(τ(t)) :=
κ(t)
τ ′(t)

for all t ∈ (t1, T ). Extend Γ̂ to (t′1, T
′) with curvature κ̂. Then Γ̂(τ) is

equivalent to Γ on (t1, T ) in the sense of [10]. This means that [Γ̂(τ(t))] = [Γ(t)]
for all t ∈ (t1, T ). More precisely, Γ̂(τ) − Γ = θN and N̂(τ) = N on (t1, T ).
This is easy to verify, and similar arguments can be found in [10].
By equivalence, Γ̂ is transversal on [0, t0] ∪ [t′1, T

′]. Since |K̂| ≤ Cε on (t0, t
′
1),

for small ε it is also transversal on (t0, t
′
1). (Notice in passing that this and

(123) ensure that Γ̂([0, T ′]) ⊂ S.)
By construction Γ̂ is obviously admissible on [t0, t

′] and on [t′, t′1]. Moreover,
[Γ̂([t0, t

′))] and [Γ̂((t′, t′1])] are disjoint because they are contained in different
connected components (half-spaces) of R

2\span Y . (In fact, [Γ̂(t)]∩span Y = ∅
for all t ∈ (t0, t

′
1) \ {t′} because [Γ̂(t)]R

2 ∩ span Y ⊂ {β+(t0), β
−(t1)}, and these
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two points are in R
2 \ S, so none of them is contained in any [Γ̂(t)]. But

both [Γ̂([t0, t
′))] and [Γ̂((t′, t′1])] are connected. And they intersect different

connected components of R
2 \ span Y because Γ̂′(t′) is perpendicular to Y .)

Thus Γ̂ is admissible on [t0, t
′
1].

We claim that
[Γ̂(t0, t

′
1)] = [Γ(t0, t1)]. (124)

In fact, since Γ̂ is admissible and transversal on [t0, t
′
1], Proposition 3.1.8 in

[9] implies that [Γ̂(t0, t
′
1)] agrees with a connected component of S \ ([Γ̂(t0)] ∪

[Γ̂(t′1)]) = S \ ([Γ(t0)] ∪ [Γ(t1)]). The same is true for [Γ(t0, t1)] because Γ is
transversal and admissible on [t0, t1]. But clearly [Γ̂(t0, t

′
1)] ∩ [Γ(t0, t1)] 6= ∅

(because Γ̂(t0) = Γ(t0) and Γ̂′(t0) = Γ′(t0) is perpendicular to [Γ(t0)]). Hence
(124) follows.
The analoga to (124) on (0, t0) and on (t′1, T

′) hold trivially by equivalence of
Γ̂ and Γ on the corresponding sets. Hence (120) is proven.
Since Γ is admissible on [0, T ], by equivalence Γ̂ is admissible on [0, t0]∪ [t′1, T

′].
And admissibility of Γ implies that [Γ(0, t0)], [Γ(t0, t1)] and [Γ(t1, T )] are mu-
tually disjoint. Hence by (124) and since, by equivalence, [Γ̂(0, t0)] = [Γ(0, t0)]
and [Γ̂(t′1, T

′)] = [Γ(t1, T )], admissibility of Γ̂ on [0, t0], [t0, t
′
1] and on [t′1, T

′]
implies its admissibility on [0, T ′].
Define κ̂n : (0, T ′) → R by

κ̂n(t) =

{

κn(t) if t ∈ (0, t0)

0 if t ∈ (t0, t
′
1)

(125)

and κ̂n(τ(t)) = κn(t)
τ ′(t)

if t ∈ (t1, T ). We claim that the second fundamental form

Â of (Γ̂, κ̂n) and that of (Γ, κn), called A, agree on [Γ(0, T )]. Since the metrics
are the same and since obviously (Γ̂, κ̂n) = (Γ, κn) on [Γ(0, t0)], this will imply
(121) by Bonnet’s Theorem (cf. [2]).

By Proposition 2.2 in [10] we have A(Γ(t) + sN(t)) = κn(t)
1−sκ(t)

Γ′(t) ⊗ Γ′(t), and

a similar expression for Â(Γ̂(t) + s ˆN(t)). Obviously A = Â on [Γ(0, t0)] and
A = 0 = Â on [Γ(t0, t1)] (here we use (124) again). It remains to consider the
set [Γ(t1, T )]. But Γ(t)+sN(t) = Γ̂(τ(t))+(s−θ)N̂(τ(t)) for t ∈ (t1, T ). From
this and since

κ̂n(τ)

1 − (s − θ)κ̂(τ)
=

κn

τ ′ − (s − θ)κ
=

κn

1 − sκ
(126)

on (t1, T ), we deduce that A = Â also on [Γ(t1, T )]. This concludes the proof
of (121).
Equation (126) also implies that (Γ̂, κ̂n) satisfies the analogue of (6) if (Γ, κn)

satisfies (6). Finally, notice that (119) is satisfied because (t0, t
′
1) ⊂ I Γ̂

0 by
construction. ¤
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7.5. Recall the definitions of g, g∗, g2 and g3 in §2.1. Let us compute the
derivatives of g and g2 needed in the proof of Lemma 7.6 below. We will
slightly abuse notation and write α∗ to denote 1 − s∗x.

g∗∗(s
±, x) = ∗ x

(1 − s∗x)2
and g∗∗̄(s

±, x) = 0

g23(s
±, x) = −

∫ s+

s−

2s

(1 − sx)3
ds and g33(s

±, x) =

∫ s+

s−

2s2

(1 − sx)3
ds

g2∗(s
±, x) = − ∗ (α∗)−2 and g23∗(s

±, x) = − ∗ 2s∗(α∗)−3

g2∗∗(s
±, x) = − ∗ 2x(α∗)−3 and g233(s

±, x) = −
∫ s+

s−

6s2

(1 − sx)4
ds.

Recall the definition of Z in (31). Using that g3(s
±, x) = − 1

x
(g(s±, x) +

g2(s
±, x)) for x 6= 0, that g2 ≤ −c < 0 and using the definitions of g2, g3

at x = 0, we have

Z(s±, x) =

{

1
x

(

1 + g(s±,x)
g2(s±,x)

)

if x 6= 0
s++s−

2
if x = 0.

(127)

In Lemma 7.6 below, we denote by Z∗ the partial derivative of Z(s±, x) with
respect to s∗ and by Z3 the partial derivative of Z(s±, x) with respect to x.
Similar definitions apply to Q.

7.6. Lemma. Let η̃ > 0 and let

M0 = {(s−, s+, x) ∈ R
3 : |s±| ∈ (η̃, 2 diam S) and x ∈ (

1

s−
,

1

s+
)}, (128)

M ′
0 = {(s−, s+, z) ∈ R

3 : |s±| ∈ (η̃, 2 diam S) and z ∈ (s−, s+)}. (129)

Then Z ∈ C0(M̄0) ∩ C∞(M0). In addition, for all s− < 0 < s+, the func-
tion Z(s±, ·) is a homeomorphism from [ 1

s−
, 1

s+ ] onto [s−, s+], and it is an

orientation preserving diffeomorphism from ( 1
s−

, 1
s+ ) onto (s−, s+). We have

Z(s±, x) = 1
x

if and only if x ∈ { 1
s−

, 1
s+}.

There is ε > 0 such that, whenever α∗ ∈ (0, ε), we have:

|Z3(s
±, x)| ∼ | log α∗| (130)

|Z∗(s
±, x)| ∼ | log α∗| and |Z∗̄(s

±, x)| ∼ α∗. (131)

And:

|Z33(s
±, x)| + |Z3∗(s

±, x)| ≤ C
| log α∗|

α∗
and |Z3∗̄(s

±, x)| ≤ C (132)

|Z∗∗(s
±, x)| ≤ C

| log α∗|
α∗

and |Z∗∗̄(s
±, x)| ≤ C and |Z∗̄∗̄(s

±, x)| ≤ Cα∗. (133)
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The function Q, defined for all s− < 0 < s+ and all z ∈ [s−, s+] by

Z(s±, Q(s±, z)) = z, (134)

satisfies Q ∈ C0(M̄ ′
0) ∩ C∞(M ′

0).

Proof. From the definition of Z in (31) and the properties of g2 and g3 we
deduce that Z ∈ C0(M̄0) ∩ C∞(M0). In particular, Z(s±, ·) ∈ C∞(( 1

s−
, 1

s+ )).

Using g2(s
±, x) = −xg3(s

±, x) − g(s±, x) one easily shows that Z3 =
gg33−2g2

3

g2
2

.

By §5.4 this is strictly positive. So Z(s±, ·) is increasing on ( 1
s−

, 1
s+ ). From

this one also sees that Z(s±, ·) is continuous on [ 1
s−

, 1
s+ ]. From (127) and since

|g(s±,x)|
|g2(s±,x)|

∼ | log(1−s∗x)|
|1−s∗x|

as x → 1
s∗

, we conclude

lim
( 1

s−
, 1
s+

)∋x→ 1
s∗

Z(s±, x) =
1

x
= s∗.

Continuity and monotonicity therefore imply that Z(s±, ·) maps [ 1
s−

, 1
s+ ] onto

[s−, s+].
By monotonicity and smoothness, for all s± there clearly exists a smooth
inverse Q(s±, ·) of Z(s±, ·). That Q ∈ C∞(M ′

0) ∩ C0(M̄ ′
0) can be seen e.g. by

applying the implicit function theorem to the function (s±, z, x) 7→ Z(s±, x)−z.
We now come to the proof of the scaling estimates for small α±. Taking ε < 1

2

we may suppose that x 6= 0. To avoid heavy notation we prove (130) through
(133) only for ∗ = +; the case ∗ = − is similar. In what follows ∗ is a dummy
variable and not the ∗ from the statement of the lemma (which we just fixed to
be +). We will omit the argument (s±, x) of Z, g, g2, g3 and their derivatives.
By (127) we have (again using −xg3 = g + g2)

Z3 = −1

x

(

2Z +
g23g

(g2)2

)

(135)

Z∗ =
1

x

(g∗
g2

− g2∗g

(g2)2

)

. (136)

Taking further derivatives we find (again ∗, ∗′ ∈ {+,−} are dummy variables)

Z33 = −3

x
Z3 −

1

x

(g233g + g23g3

g2
2

− g23g

g2
2

· 2g23

g2

)

(137)

Z3∗ = −2

x
Z∗ −

1

x

(g23∗g + g23g∗
g2
2

− g23g

g2
2

· 2g2∗

g2

)

(138)

Z∗∗′ =
1

x

(

(g∗∗′

g2

− g∗
g2

· g2∗′

g2

)

−
(g2∗∗′g + g2∗g∗′

g2
2

− g2∗g

g2
2

· 2g2∗′

g2

)

)

(139)

To derive the scaling of the above derivatives as α+ ↓ 0, we use the following
facts (which are easily verified): We have |g| ∼ | log α+|, |g+| ∼ (α+)−1, g− ∼ 1.
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For i = 2, 3, we have |gi| ∼ (α+)−1, |gi+| ∼ (α+)−2, |gi−| ∼ 1, and similarly
|gi++| ∼ (α+)−3, gi+− = 0, |gi−−| ∼ 1. Also |g23| ∼ (α+)−2, |g23+| ∼ (α+)−3,
|g23−| ∼ 1, |g++| ∼ (α+)−2, |g−−| ∼ 1, and |g233| ∼ (α+)−3. Thus (130)
through (133) follow from (135) through (139). ¤
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