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Abstract

We give a sufficient condition on a Lévy measure µ which ensures that the gener-
ator L of the corresponding pure jump Lévy process is (locally) hypoelliptic, i.e.,
sing suppu ⊆ sing suppLu for all admissible u. In particular, we assume that
µ|Rd\{0} ∈ C∞(Rd \ 0). We also show that this condition is necessary provided
that suppµ is compact.
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1 Introduction

Hypoellipticity of elliptic partial differential operators or, more generally, pseudodifferential
operators is one of the classical topics in the theory of partial differential equations. Briefly,
an operator L is called hypoelliptic if the singular support of u is contained in the singular
support of Lu for all u in the domain of L. In particular, hypoellipticity comprises the
C∞-regularity of functions on their domains of L-harmonicity where we call u : Rd → R

L-harmonic on Ω if Lu = 0 on Ω.
This analytic notion has, if L generates a strong Markov process (Xt)t≥0 in an appro-

priate way, a probabilistic counter-part. More precisely, a bounded measurable function u
is said to be harmonic on Ω with respect to (Xt)t≥0 if u(Xt∧τΩ) is, for all x ∈ Rd, a local
Px-martingale. Here τΩ denotes the first exit time of Ω and Px is the probability measure
under which the process starts in x, i.e., X0 = x a.s.. If (Xt)t≥0 is a Brownian motion,
this yields the mean value property of classical harmonic functions. Functions harmonic
in this sense play an important role in the potential theory of Markov processes. This
motivates an increasing interest for example in questions of regularity of these operators
by probabilists. Since, by the Theorem of Courrège [Cou66], generators of strong Markov
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processes are pseudodifferential operators with continuous negative definite symbols as de-
scribed for example in [Jac05] or [Hoh98], generally they do not fit in the framework of
classical symbol classes, for example the Hörmander class Sm

1,0.
Regularity of functions which are harmonic with respect to jump processes has been an

object of intense studies in the last years. Let us mention here for example [PS00], [BL02],
[BK05a], [SU07], [HK06], [Szt07], [Hoh07], [Kas08]. Most of these papers deal with a-
priori continuity estimates in the broader context of processes with space-dependent jump
measures. They rely on a delicate interplay between lower and upper bounds on the jump
measures, i.e., they deal with fixed order operators where the small jumps are in principle
comparable to those of an rotationally symmetric α-stable Lévy process. The variable
order case is far more difficult as it is for example emphasized by a counter-example in
[BBCK05].

In the present paper we concentrate on stochastic processes with stationary and inde-
pendent increments, so-called Lévy processes. Their generators are translation-invariant
and map C∞

0 (Rd) continuously to C∞(Rd). Hence they act as convolution with a distribu-
tion. We show that in this case essentially smoothness away from the origin and a lower
bound on the Lévy measure are enough to yield smoothness of harmonic functions.

Let us give a precise formulation of our results: Let ν be a Lévy measure, i.e., a
non-negative Borel measure on Rd such that ν({0}) = 0 and

∫
Rd min(1, |h|2)ν(dh) < ∞.

Moreover, we assume that ν is absolutely continuous with respect to the Lebesgue measure
with a density n satisfying the following assumptions:

(A1) n ∈ C∞(Rd \ {0}) and n|Rd\B1(0) ∈ H∞(Rd \ B1(0)).

(A2) There exists r0, c > 0, α ∈ (0, 2) such that for all ω ∈ Sd−1 = {x ∈ Rd : |x| = 1},
0 < r ≤ r0:

∫

|h|≤r

|h · ω|2 ν(dh) ≥ cr2−α. (1.1)

(A1) ensures that n is smooth on Rd \ {0} with all its derivatives square-integrable away
from 0. Note also, that (A2) only assumes a lower bound on the growth of ν near 0. For
example, (A2) holds if n(h) ≥ c |h|−d−α near 0. The generator of the associated Lévy
process L is on C2

b (Rd) given by

Lu(x) =

∫

Rd

(
u(x + h) − u(x) −

h · ∇u(x)

1 + |x|2

)
ν(dx). (1.2)

It acts in the Fourier space as multiplication operator with the continuous negative-definite
function associated to ν by the Lévy-Khinchine formula, cf. (2.3) below. Moreover, it is of
order 2 on certain weighted Sobolev spaces Hψ,s(Rd), see Section 2 for precise definitions.

We say that L is locally hypoelliptic with respect to H = H−∞(Rd) or H = Hs(Rd),
s ∈ R, if for any f ∈ H and a distribution u ∈ H−∞(Rd) such that Lu = f in Rd and
U ⊂ Rd open we have

f |U ∈ C∞(U) ⇒ u|U ∈ C∞(U).
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The translation invariance of L implies that local hypoellipticity of L on Hs0(Rd) for some
s0 ∈ R entails local hypoellipticity on H−∞(Rd), cf. Lemma 2.4 below. Therefore we will
call L sometimes simply locally hypoelliptic in this case.

Our main results now reads as follows:

Theorem 1.1 Let ν be an absolutely continuous Lévy measure with density n that satisfies
(A1)–(A2). Then the generator of the pure-jump Lévy process L given by (1.2) is locally
hypoelliptic on H−∞(Rd).

Moreover, in the case that ν is a compactly supported Lévy measure satisfying (1.1) it is
also necessary that ν is smooth on Rd \ {0}. More precisely, we have:

Theorem 1.2 Let ν be a compactly supported Lévy measure that satisfies (A2). Assume
furthermore that L is locally hypoelliptic on H−∞(Rd). Then ν is absolutely continuous
with a density which is smooth on Rd \ {0}.

Note that a compactly supported Lévy measure with smooth density on Rd \{0} automat-
ically satisfies (A1). Hence (A1) is also necessary in that case.

We want to finish this section by some examples.
Let α ∈ (0, 2) and f : Sd−1 → R+ be a smooth function such that the support of f is

not contained in any proper subspace of Rd. We set ν(dh) = |h|−d−α f(h/ |h|). Then ν
satisfies (A1) and (A2) and therefore the generator of the associated symmetric α-stable
Lévy process is hypoelliptic.

It is also interesting to remark the following: In [BK05b] there is given a counter-
example of a Lévy process which does not admit a scale-invariant Harnack inequality. One
can modify this construction in an obvious way such that our results apply. Hence in this
example the related Lévy process has still a hypoelliptic generator.

2 Prerequisites

We start by recalling some basic concepts. Details can be found for example in [BF75],
[Sat99] and [Jac05].

We denote by S (Rd) the Schwartz space, by D ′(Rd) the space of distributions, i.e.,
the topological dual of C∞

0 (Rd), by E ′(Rd) the space of compactly supported distributions,
and by S ′(Rd) the space of tempered distributions, i.e., the dual of S (Rd). Moreover,
let Hs(Rd) be the usual L2-Sobolev space of order s ∈ R. Furthermore, we set H∞(Rd) =⋂

s∈RHs(Rd) and H−∞(Rd) =
⋃

s∈RHs(Rd). We also write F for the Fourier transform
and denote û = F [u]. Note that by the Paley-Wiener Theorem [Hör83, Theorem 7.3.1]
E ′(Rd) ⊂ H−∞(Rd).

A function φ : Rd → C is called negative definite if the matrix (φ(ξi) + φ(ξj) − φ(ξi −
ξj))

k
i,j=1 is positive definite for each choice of k ∈ N, ξ1, . . . ξk ∈ Rd. Then φ satisfies for

example φ(ξ) = φ(−ξ), Re φ(ξ) ≥ φ(0) and the Peetre-type inequality

(1 + |φ(ξ)|)s

(1 + |φ(η)|)s
≤ 2|s|(1 + |φ(ξ − η)|)|s|. (2.1)
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Note also the estimate:

|φ(ξ) − φ(η)| ≤ 4(1 + |φ(ξ − η)|)(1 +
√

Re φ(ξ)). (2.2)

This follows from the third inequality of Lemma 3.6.21 in [Jac05] which implies

|φ(ξ) − φ(η)| ≤ |φ(ξ) − φ(η) + φ(η − ξ)| + |φ(η − ξ)|

≤ 2
√

Re φ(η − ξ)
√

Re φ(ξ) + |φ(η − ξ)| (1 +
√

Re φ(ξ)).

If φ is locally bounded we have in addition |φ(ξ)| ≤ c(1 + |ξ|2). The set of continuous
negative definite functions CN(Rd) is a convex cone closed in the topology of uniform
convergence on compact sets. Each φ ∈ CN(Rd) has the unique Lévy-Khinchine represen-
tation

φ(ξ) = b + Aξ · ξ + iξ · γ +

∫

Rd

(
1 − eih·ξ +

ih · ξ

1 + |h|2

)
ν(dh). (2.3)

Here, b ≥ 0, A is a positive definite matrix, γ ∈ Rd and ν is a Lévy measure, i.e., a
non-negative Borel measure on Rd with ν({0}) = 0 and

∫
(1 ∧ |h|2)ν(dh) < ∞.

By the Theorem of Schönberg [BF75, Thm. 7.8], the elements φ ∈ CN(Rd) satisfying
φ(0) = 0 are in one-to-one correspondence with Lévy processes (Xt)t≥0. More precisely,
the Fourier transform of the distribution of Xt in Rd is given by e−tφ(ξ), on the other hand
the generator of (Xt)t≥0 is the pseudodifferential operator with symbol −φ(ξ)

−φ(Dx)u(x) = −Fξ 7→x [φ(ξ)û(ξ)] = −

∫

Rd

eix·ξφ(ξ)û(ξ)d̄ ξ,

where d̄ ξ = (2π)−ddξ. If A = b = γ = 0, then Lu = −φ(Dx)u, where Lu is as in (1.2).
An important example for continuous negative definite functions are the functions ξ 7→

|ξ|α where α ∈ (0, 2]. The corresponding Lévy processes are the rotationally invariant
α-stable Lévy processes for α ∈ (0, 2) and in particular a Brownian motion for α = 2.

In our framework it is useful to introduce weighted (or anisotropic) Sobolev spaces
tailored on the operators we consider here. We fix a continuous negative definite reference
function ψ : Rd → C which satisfies lim|ξ|→∞ |ψ(ξ)| = ∞ and set

Hψ,s(Rd) =
{

u ∈ L2(Rd) : ‖u‖ψ,s :=
∥∥(1 + |ψ(·)|)s/2û

∥∥
L2(Rd)

< ∞
}

.

Define also for an open set Ω ⊂ Rd

Hψ,s
loc (Ω) =

{
u : Ω → R : χu ∈ Hψ,s(Rd) for all χ ∈ C∞

0 (Ω)
}

and Hs
loc(Ω) := H

|ξ|2,s
loc (Ω). We have Hs(Rd) = H |ξ|2,s(Rd) and Hs(Rd) ⊂ Hψ,s(Rd) due to

|ψ(s)| ≤ C(1 + |ξ|2). Note also, that (Hψ,s(Rd))∗ ∼= Hψ,−s(Rd): u is in Hψ,s(Rd) if and
only if (u, v)L2 ≤ c ‖v‖ψ,−s for all v ∈ Hψ,−s(Rd).

Let φ ∈ CN(Rd) satisfy the following conditions:
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(S1) There exists κ1 > 0 such that |φ(ξ)| ≤ κ1(1 + |ψ(ξ)|).

(S2) There exist κ2, r0 > 0 such that |φ(ξ)| ≥ κ2 |ψ(ξ)| if |ξ| ≥ r0.

Then, by (S1), φ(Dx) maps Hψ,s+2(Rd) continuously to Hψ,s(Rd).

Theorem 2.1 Let φ satisfy (S1) and (S2). Let t ∈ R and f ∈ Hψ,t(Rd). If u ∈ H−∞(Rd)
is a solution of φ(Dx)u = f in S ′(Rd), then u ∈ Hψ,t+2(Rd).

Proof: Without loss of generality we may assume f ∈ L2(Rd). Then φû ∈ L2(Rd),
û ∈ L2

loc(R
d), and lim|ξ|→∞ |φ(ξ)| = ∞ imply (1 + |φ|)û ∈ L2(Rd). Thus (S2) implies the

statement of the theorem.

Moreover, the commutator [φ(Dx), χ] of φ(Dx) and the multiplication with χ ∈ C∞
0 (Rd)

acts with order 1 in Hψ,−∞(Rd), i.e.:

Lemma 2.2 Let φ satisfy (S1) and (S2), t ∈ R and χ ∈ C∞
0 (Rd). Then for all u ∈

Hψ,t+1(Rd) we have

‖[φ(Dx), χ]u‖t,ψ ≤ C ‖u‖t+1,ψ ,

where C is independent of u.

Proof: Let u, v ∈ S (Rd). Then on one hand we have

F
([

φ(D), χ
]
u
)
(ξ) =

∫
χ̂(ξ − η)

(
φ(ξ) − φ(η)

)
û(η) dη.

By the Theorem of Plancherel, (S1), (2.2) and (2.1) we estimate:

∣∣∣(φ(Dx), χ]u, v)L2(Ω)

∣∣∣ ≤
∫∫

|χ̂(ξ − η)| |φ(ξ) − φ(η)| |û(η)| |v̂(ξ)| dη dξ

≤ C

∫∫
|χ̂(ξ − η)| (1 + |ξ − η|2)(1 + |ψ(ξ)|)1/2 |û(η)| |v̂(ξ)| dη dξ

= C

∫∫
|χ̂(ξ − η)| (1 + |ξ − η|2)

(
1 + |ψ(ξ)|

1 + |ψ(η)|

)(t+1)/2

·(1 + |ψ(η)|)(t+1)/2 |û(η)| (1 + |ψ(ξ)|)−t/2 |v̂(ξ)| dη dξ

≤ C

∫∫
|χ̂(ξ − η)| (1 + |ξ − η|2)(|t|+3)/2(1 + |ψ(η)|)(t+1)/2 |û(η)|

·(1 + |ψ(ξ)|)−t/2 |v̂(ξ)| dη dξ

≤ C
∥∥(1 + |ξ|2)(|t|+3)/2χ̂(ξ)

∥∥
L1(Rd)

‖u‖ψ,t+1 ‖v‖ψ,−t ≤ C ‖u‖ψ,t+1 ‖v‖ψ,−t .

The assertion now follows by continuity and the characterization of Hψ,s(Rd) as dual of
Hψ,−s(Rd).

A direct application of this commutator estimate yields local regularity of the following
type:
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Theorem 2.3 Let φ satisfy (S1) and (S2). If χ ∈ C∞
0 (Rd), t ∈ R, f ∈ L2(Rd) with

χf ∈ Hψ,t(Rd) and u ∈ Hψ,t+1(Rd) solves φ(D)u = f , then χu ∈ Hψ,t+2(Rd).

Unfortunately, we cannot expect to iterate this result without additional assumptions as
it is illustrated by Theorem 1.2.

We finish this section by showing that the notion of local hypoellipticity with respect
to Hs(Rd) is independent of s ∈ R.

Lemma 2.4 Let s0 ∈ R. If L is locally hypoelliptic with respect to Hs0(Rd), then L is
locally hypoelliptic with respect to H−∞(Rd).

Proof: Let L be locally hypoelliptic with respect to Hs0(Rd). In order to prove that L
is locally hypoelliptic with respect to Hs(Rd), s ∈ R, let f ∈ Hs(Rd), u ∈ S ′(Rd) with
Lu = f and U ⊂ Rd open such that f |U ∈ C∞(U). Then f ′ = 〈Dx〉

s0−sf ∈ Hs(Rd),

where 〈ξ〉 = (1 + |ξ|2)
1

2 and 〈Dx〉
s denotes the pseudodifferential operator with symbol

〈ξ〉s. Moreover, Lu′ = f ′ with u′ = 〈Dx〉
s0−su since L commutes with 〈Dx〉

s0−s. Since
〈ξ〉s0−s ∈ Ss0−s

1,0 (Rd×Rd), 〈Dx〉
s0−s is pseudo-local, i.e., sing supp f ′ = sing supp〈Dx〉

s0−sf ⊆
sing supp f , cf. e.g. [Hör83, Theorem 18.1.16]. Hence f ′|U ∈ C∞(U) and therefore
u′|U ∈ C∞(U) due to the local hypoellipticity with respect to Hs0(Rd). Finally, since
〈Dx〉

s−s0 is pseudo-local too, sing supp u = sing supp〈Dx〉
s−s0u′ ⊆ sing supp u′. Thus

u|U ∈ C∞(U). This shows that L is locally hypoelliptic with respect to Hs(Rd) for any
s ∈ R. Hence L is locally hypoelliptic with respect to H−∞(Rd).

3 Proof of Theorem 1.1

Let ψ be the continuous negative definite function associated by (2.3) to the pure-jump
Lévy process with Lévy measure ν and let L be its generator. The real part of ψ is

Re ψ(ξ) =

∫

Rd

(1 − cos(h · ξ))ν(dh). (3.1)

Lemma 3.1 Assume (A2). Then there exists some c > 0 such that 1 + |ψ(ξ)| ≥ c |ξ|α.

Proof: Using (A2) and the inequality 1 − cos x ≥ x2

4
for |x| ≤ 1

2
, we estimate for all

|ξ| ≥ (2r1)
−1

|ψ(ξ)| ≥ Re ψ(ξ) ≥

∫

|h|≤(2|ξ|)−1

(1 − cos(h · ξ))ν(dh)

≥
|ξ|2

4

∫

|h|≤(2|ξ|)−1

∣∣h · |ξ|−1 ξ
∣∣2 ν(dh) ≥ c |ξ|α .
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Therefore for all s > 0 the anisotropic Sobolev space Hψ,s(Rd) is continuously embedded
into Hαs/2(Rd).

Observe that by (A2) the asymptotic behavior of |ψ(ξ)| for |ξ| → ∞ remains unchanged
if one cuts off the large jumps of ν in the following sense: Fix for r > 0 a function
ρr ∈ C∞

0 (B2r(0)) with 0 ≤ ρr ≤ 1 and ρr ≡ 1 on Br(0). Then ψ can be decomposed as
ψ = ψr,long + ψr,short where

ψr,long(ξ) =

∫

Rd

(
1 − eih·ξ)(1 − ρr(h)

)
ν(dh),

ψr,short(ξ) =

∫

Rd

(
1 − eih·ξ +

ih · ξ

1 + |h|2

)
ρr(h)ν(dh) + iξ ·

∫

Rd

h(1 − ρr(h))

1 + |h|2
ν(dh).

Because ψr,long is bounded, Lemma 3.1 implies that ψr,short satisfies (S1) and (S2). Note
also that the operator associated to ψr,short is 2r-local in the sense that

supp ψr,short(Dx)u ⊂ B2r(supp u) = {x ∈ R
d : dist(x, supp u) < 2r}

For the following we also assume that ν(dh) = n(h)dh and the density n satisfies (A1).
The key step in our argument is the following regularity result.

Lemma 3.2 Let Ω ⊂ Rd be open. If f ∈ L2(Rd) with f |Ω ∈ Hψ,t
loc (Ω) and u ∈ Hψ,1(Rd)

with u|Ω ∈ Hψ,t+1
loc (Ω) solve ψ(Dx)u = f in S ′(Rd), then u|Ω ∈ Hψ,t+2

loc (Ω).

Proof: Let χ1 ∈ C∞
0 (Ω). We fix r > 0 such that 4r < dist(Rd \ Ω, supp χ1) and choose

a cut-off function χ2 ∈ C∞
0 (Ω) with χ2 ≡ 1 on B4r(supp χ1). If ψr,short and ψr,long are as

above, then χ2u solves

ψr,short(Dx)(χ2u) = f − ψr,long(Dx)u − ψr,short(Dx)
(
(1 − χ2)u

)
= f̃ in S

′(Rd),

where f̃ is in L2(Rd). By (A1), ψr,long(Dx)u is the sum of a convolution of u with
(1−ρr)n ∈ H∞(Rd) – which is smooth – and a constant multiple of u. Since supp(1−χ2)u ⊆
Rd \B4r(supp χ1) the support of ψr,short(Dx)

(
(1−χ2)u

)
is contained in Rd \supp χ1. Hence

χ1f̃ ∈ Hψ,t(Rd) and Theorem 2.3 yields χ1χ2u = χ1u ∈ Hψ,t+2(Rd).

Proof of Theorem 1.1: Because of Lemma 2.4 it is sufficient to prove that L is locally
hypoelliptic with respect to L2(Rd). To this end let Ω ⊂ Rd and let u ∈ H−∞(Rd) be a so-
lution of ψ(Dx)u = f in S ′(Rd) with f ∈ L2(Rd) and f |Ω ∈ C∞(Ω). Since f |Ω ∈ Hψ,∞

loc (Ω),

iterating Lemma 3.2 implies u ∈ Hψ,∞
loc (Ω). By Lemma 3.1 we have u ∈ H∞

loc(Ω) and there-
fore, by Sobolev embedding, u ∈ C∞(Ω).

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the results of Chapter 16 in [Hör83], which will be
summarized below. Let us first fix some notation: If E is a set, then ch E denotes its
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convex hull. The supporting function of a convex, compact subset E ⊂ Rd is given by

HE(x) = sup
y∈E

x · y

where H∅ ≡ −∞ by definition. This gives a one-to-one correspondence between convex
compact subsets and the set H of convex, subadditive, positively homogenous functions.
For each u ∈ E ′(Rd) we denote by H(u) ⊂ H the same set as defined in [Hör83, Defini-
tion 16.3.2]. We omit the precise definition at this point since it is a bit involved and not
needed for our purposes. In the following we will only use some of the properties of H(u),
which we summarize now.

Theorem 4.1 Let u ∈ E ′(Rd) and let H be the supporting function of ch sing supp u. Then

H(x) = sup
h∈H(u)

h(x).

The latter theorem coincides with [Hör83, Theorem 16.3.4].

Theorem 4.2 Let u ∈ E ′(Rd) and let h ∈ H(u). Then there is some w ∈ E ′(Rd)∩C0(Rd)
with sing supp w = {0} such that h is the supporting function of ch sing supp u ∗ w.

The statement of the theorem is just the first statement of [Hör83, Theorem 16.3.13] with
the only difference that the statement is formulated with w ∈ E ′(Rd) only. That indeed
there is some w ∈ E ′(Rd) ∩ C0(Rd) with the stated properties is shown in the proof of
[Hör83, Theorem 16.3.13].

Finally, we note that u is called invertible if −∞ /∈ H(u), cf. [Hör83, Definition 16.3.12].
The following condition for u not to be invertible will be used several times:

Theorem 4.3 Let µ ∈ E ′(Rd). Then the following statements are equivalent:

1. −∞ ∈ H(µ)

2. For every x ∈ Rd there is some w ∈ C0(Rd) \ C1(Rd) such that sing supp w = {x}
and µ ∗ w ∈ C∞(Rd).

3. There is some w ∈ E ′(Rd) such that µ ∗ w ∈ C∞(Rd) but w 6∈ C∞(Rd).

The latter theorem coincides with [Hör83, Theorem 16.3.9].

Theorem 4.4 Let µ ∈ E ′(Rd). Then the following statements are equivalent:

1. u ∈ D′(Rd) and µ ∗ u ∈ C∞(Rd) implies u ∈ C∞(Rd).

2. µ is hypoelliptic in the sense of [Hör83], i.e., µ is invertible and

| Im ζ|

log |ζ|
→|ζ|→∞ ∞ on {ζ ∈ C

d : µ̂(ζ) = 0}.
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3. There is some E ∈ E ′(Rd) such that E ∗ µ − δ ∈ C∞(Rd) and sing supp E =
− sing supp µ.

Proof: The theorem follows directly from the equivalent conditions (i),(ii), and (v) of
[Hör83, Theorem 16.6.5], where we note that hypoellipticity is defined in Definition 16.6.4
of [Hör83].

Note the following: If ν is a Lévy measure, then the associated operator L : C∞
0 (Rd) →

C∞(Rd) is linear, translation invariant and continuous and can therefore be written as
convolution with a distribution µ ∈ D ′(Rd), cf. [Hör83, Theorem 4.2.1]. Moreover, for
u ∈ C∞

0 (Rd) and x /∈ supp u it follows that

Lu(x) =

∫

Rd

(
u(x + h) − u(x) −

h · ∇u(x)

1 + |x|2

)
ν(dh) =

∫

Rd

u(x + h)ν(dh) = ν̃ ∗ u,

where ν̃ denotes the reflection of ν, i.e., 〈ν̃, ϕ〉 := −〈ν, ϕ̃〉 and ϕ̃(x) = ϕ(−x) for all
ϕ ∈ C∞

0 (Rd). Thus µ and ν̃ agree on Rd \ {0}. As a consequence supp µ = − supp ν is
compact and sing supp µ\{0} = − sing supp ν \{0}. The following proposition relates local
hypoellipticity for L as we have defined it above and to hypoellipticity of µ in the sense of
Hörmander, cf. Theorem 4.4:

Proposition 4.5 Let L be a Lévy operator that is locally hypoelliptic and satisfies (A2).
Then for any u ∈ D′(Rd) and f ∈ C∞(Rd) such that Lu = f we have u ∈ C∞(Rd).

Proof: Let M > 0 be such that supp µ ⊆ BM(0). In order to show that u ∈ C∞(Rd)
it is sufficient to show that u|BR(0) ∈ C∞(BR(0)) for any R > 0. Therefore let R > 0 be
arbitrary and let η ∈ C∞

0 (Rd) such that η ≡ 1 on BR+M(0). Then

Lu(x) = µ ∗ u(x) = µ ∗ (ηu)(x) for all x ∈ BR(0),

where ηu ∈ E ′(Rd). Now there is some s ∈ R such that ηu ∈ Hs(Rd). Thus L(ηu) = f ′ ∈
Hs−2(Rd) since |ψ(ξ)| ≤ C(1+|ξ|)2 for every continuous negative definite function ψ. More-
over, f ′|BR(0) = Lu|BR(0) = f |BR(0) ∈ C∞(BR(0)), which implies ηu|BR(0) ∈ C∞(BR(0)) be-
cause of the local hypoellipticity of L. Since R > 0 was arbitrary we obtain u ∈ C∞(Rd).

Proof of Theorem 1.2: First of all, because of Proposition 4.5, the first statement of
Theorem 4.4 is true. Therefore there is a parametrix E ∈ E ′(Rd) such that

k = E ∗ µ − δ ∈ C∞(Rd) and sing supp E = − sing supp µ.

Here even k ∈ C∞
0 (Rd) since E and µ have compact support. Since µ is in turn a parametrix

for E, E is also hypoelliptic due to Theorem 4.4 again. In particular this implies that E
is invertible, i.e., −∞ 6∈ H(E).

Next we show H(E) = {0}. To this end let h ∈ H(E). By Theorem 4.2 there is some
w ∈ E ′(Rd) ∩ C0(R

d) with sing supp w = {0} such that h is the supporting function of
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ch sing supp E ∗w. In particular, w ∈ L2(Rd). Next let v := F−1
[
η(ξ)ψ(ξ)−1f̂(ξ)

]
, where

η ∈ C∞(Rd) such that η(ξ) = 1 for |ξ| ≥ ρ + 1 and η(ξ) = 0 for |ξ| ≤ ρ where ρ is as in
(S2). Then v ∈ Hψ,2(Rd) and

Lv = f + k′ where k′ ∈ C∞(Rd).

Now, if u = E ∗ w, then µ ∗ (u − v) = k ∗ w − k′ ∈ C∞
0 (Rd). Thus u − v ∈ H∞(Rd)

and therefore u ∈ Hψ,2(Rd). Now, because convolution with µ is by assumption locally
hypoelliptic, we have

sing supp E ∗ w ⊆ sing supp µ ∗ E ∗ w = sing supp(w + k ∗ w) = sing supp w = {0} .

As noted above −∞ /∈ H(E), and therefore h cannot be the supporting function of ∅. We
conclude ch sing supp E ∗ w = {0} which implies h ≡ 0. This shows H(E) = {0}.

Thus the supporting function of ch sing supp E is H(x) = suph∈H(E) h(x) = 0 and finally

{0} = ch sing supp E = sing supp E = − sing supp µ.

This completes the proof.
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